JPH07106881B2 - Fuel cell reformer device - Google Patents

Fuel cell reformer device

Info

Publication number
JPH07106881B2
JPH07106881B2 JP60020889A JP2088985A JPH07106881B2 JP H07106881 B2 JPH07106881 B2 JP H07106881B2 JP 60020889 A JP60020889 A JP 60020889A JP 2088985 A JP2088985 A JP 2088985A JP H07106881 B2 JPH07106881 B2 JP H07106881B2
Authority
JP
Japan
Prior art keywords
conduit
reformer
gas
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60020889A
Other languages
Japanese (ja)
Other versions
JPS61183102A (en
Inventor
勇 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60020889A priority Critical patent/JPH07106881B2/en
Publication of JPS61183102A publication Critical patent/JPS61183102A/en
Publication of JPH07106881B2 publication Critical patent/JPH07106881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、燃料電池に用いられる、炭化水素系ガスの改
質反応を促進する改質器装置に関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a reformer device used in a fuel cell for promoting a reforming reaction of a hydrocarbon-based gas.

[発明の技術的背景] 近年、その開発・実用化の研究に期待と関心が寄せられ
ている燃料電池は、燃料の持つ化学エネルギーを電気化
学プロセスで酸化させることにより、酸化反応に伴って
放出させるエネルギーを直接電気エネルギーに変換する
装置である。この燃料電池を用いた発電プラントは、比
較的小さな規模でも発電の熱効率が40〜50%にも達し、
新鋭火力発電をはるかにしのぐと期待されている。さら
に、近年大きな社会問題となっている公害要因であるSO
x,NOxの排出が極めて少ない。発電装置内に燃焼サイク
ルを含まないので大量の冷却水を必要としない、振動音
が小さいなど、原理的に高いエネルギー変換効率が期待
できると共に、騒音・排ガスなどの環境問題が少なく、
さらに、負荷変動に対して応答性が良いなどの特徴があ
る。
[Technical background of the invention] In recent years, fuel cells, which have been expected and interested in research on their development and practical application, release the chemical energy of the fuel by an electrochemical process by oxidizing the chemical energy of the fuel. It is a device that directly converts the energy to be converted into electric energy. In a power plant using this fuel cell, the thermal efficiency of power generation reaches 40 to 50% even on a relatively small scale,
It is expected to far surpass new thermal power generation. In addition, SO is a pollution factor that has become a major social problem in recent years.
Extremely low x and NOx emissions. Since the power generator does not include a combustion cycle, a large amount of cooling water is not required, and vibration noise is small. In principle, high energy conversion efficiency can be expected, and there are few environmental problems such as noise and exhaust gas.
Furthermore, there are features such as good responsiveness to load fluctuations.

この様な燃料電池においては、天然ガスなどの炭化水素
系の燃料に水蒸気を加えて加熱変成し、水素リッチな反
応ガスを得る為に、改質器装置が配設されている。
In such a fuel cell, a reformer device is arranged in order to add steam to a hydrocarbon-based fuel such as natural gas to heat-transform it to obtain a hydrogen-rich reaction gas.

この様な改質器装置の構成を第3図及び第4図に示した
断面図によって説明する。即ち、改質器1の上部には、
燃料タンク(図示せず)に連結した導管2より送りこま
れる燃料と、空気供給機(図示せず)に連結した導管3
より送り込まれる空気を混合して燃焼する主バーナー4
が配設されている。この主バーナー4を点火する為に、
主バーナー4の側部に燃料を供給する導管5、空気を供
給する導管6及び先端に電気点火装置を有する補助バー
ナー7が設けられている。また、主バーナー4の燃焼排
ガスは燃焼室8を下方へ流れ、改質器1の内部に配設さ
れた改質管9の外周空間を通り、その外周空間の下部層
に配設されたセラミック球11を保持した導管10を通過
し、これと通過した排ガス管12を通じ改質器1外へ排出
され、ターボコンプレッサー(図示せず)へ導かれ運転
に寄与する。さらに、改質器1の内部に配設された改質
管9には、その下部に接続された導管13より、天然ガス
などの炭化水素系燃料と水蒸気の混合気体が導入され、
その混合気体は改質管9内の触媒粒14を保持した管路を
通過する。この際に、主バーナー4の燃焼によって得ら
れる熱と触媒粒14の作用により混合気体の改質反応が行
なわれ水素リッチなガスとなる。この様にして得られた
改質ガスは、改質管9内の導管15を下方へ流れ、これに
連通した導管16を経て、改質器1外へ導かれる。
The structure of such a reformer device will be described with reference to the sectional views shown in FIGS. 3 and 4. That is, in the upper part of the reformer 1,
Fuel sent from a conduit 2 connected to a fuel tank (not shown), and a conduit 3 connected to an air supplier (not shown)
Main burner 4 that mixes and burns the air sent in
Is provided. In order to ignite this main burner 4,
A conduit 5 for supplying fuel, a conduit 6 for supplying air, and an auxiliary burner 7 having an electric igniter at its tip are provided on the sides of the main burner 4. Further, the combustion exhaust gas of the main burner 4 flows downward in the combustion chamber 8, passes through the outer peripheral space of the reforming pipe 9 arranged inside the reformer 1, and is disposed in the lower layer of the outer peripheral space. After passing through the conduit 10 holding the sphere 11, the exhaust gas pipe 12 passing through the conduit 10 is discharged to the outside of the reformer 1, and is guided to a turbo compressor (not shown) to contribute to the operation. Further, a mixed gas of a hydrocarbon-based fuel such as natural gas and steam is introduced into a reforming pipe 9 arranged inside the reformer 1 from a conduit 13 connected to a lower portion thereof,
The mixed gas passes through the pipe line in the reforming tube 9 holding the catalyst particles 14. At this time, the reforming reaction of the mixed gas is carried out by the heat obtained by the combustion of the main burner 4 and the action of the catalyst particles 14 to become a hydrogen-rich gas. The reformed gas thus obtained flows downward through the conduit 15 in the reforming pipe 9, and is guided to the outside of the reformer 1 through the conduit 16 communicating with this.

次に、前記改質器1に接続されている各種の機器の配置
構成を、第5図の系統図によって説明する。即ち、天然
ガスなどの炭化水素系燃料を供給する導管17と水蒸気を
導入する導管18によって混合されたガスが熱交換器19に
送りこまれ、その熱交換器19に高温ガスを通している管
20より熱を受けて温度を上げられた後、導管13によって
改質器1内に送られる。また、改質器1内で水素リッチ
なガスとなった改質ガスは、導管16によって改質器外へ
導かれ、熱交換器21に送りこまれ、その熱交換器21に冷
却用ガスを通している管22によって温度を下げられた
後、改質ガス中に含有する一酸化炭素COを二酸化炭素CO
2に変える高温変成器23と低温変成器(図示せず)を経
て、燃料電池へ送られ発電に寄与する。
Next, the arrangement of various devices connected to the reformer 1 will be described with reference to the system diagram of FIG. That is, a gas mixed by a conduit 17 for supplying a hydrocarbon fuel such as natural gas and a conduit 18 for introducing steam is sent to a heat exchanger 19, and a pipe through which a high temperature gas is passed through the heat exchanger 19.
After being heated by 20 to raise the temperature, it is sent into the reformer 1 through the conduit 13. Further, the reformed gas that has become a hydrogen-rich gas in the reformer 1 is guided to the outside of the reformer by the conduit 16, is sent to the heat exchanger 21, and the cooling gas is passed through the heat exchanger 21. After the temperature is lowered by the pipe 22, carbon monoxide CO contained in the reformed gas is converted into carbon dioxide CO
It is sent to the fuel cell through a high-temperature transformer 23 and a low-temperature transformer (not shown) that change to 2 , and contributes to power generation.

[背景技術の問題点] ところで、第3図乃至第5図に示した様な改質器1にお
いては、改質管9の入口部分の導管13内の燃料と水蒸気
の混合気体の温度は、427℃以上510℃以下の範囲に制御
する必要がある。その理由は、427℃以下になると改質
管9内の触媒14にポリプロプレンが沈着し、触媒14の性
能が劣化してしまうという欠点があった。また、510℃
以上になると燃料が分解してカーボンを生成して、この
カーボンが触媒14の組織内に入り込んで触媒14を破壊
し、粉化させて改質管9内の差圧を増大させるといった
欠点があった。
[Problems of Background Art] In the reformer 1 as shown in FIGS. 3 to 5, the temperature of the mixed gas of fuel and steam in the conduit 13 at the inlet of the reforming pipe 9 is It is necessary to control the temperature within the range of 427 ℃ to 510 ℃. The reason is that when the temperature is 427 ° C. or lower, polypropylene is deposited on the catalyst 14 in the reforming tube 9 and the performance of the catalyst 14 is deteriorated. Also, 510 ℃
In the above case, the fuel is decomposed to generate carbon, and the carbon enters the structure of the catalyst 14 to destroy the catalyst 14 and pulverize it to increase the differential pressure in the reforming tube 9, which is a drawback. It was

また、改質器1内に配設された改質管9に、下部から導
入された燃料と水蒸気の混合気体は、改質管9内の触媒
層14を上昇するに従い、加温されて温度が上昇し、760
℃以上で水素ガスに改質する反応を起こし、改質管9の
上部での最高温度が982℃となる様に、改質器1の主バ
ーナー4により改質管9を加熱制御する。また、この様
にして改質された水素リッチなガスは、改質管9の頂部
より管路15を下方へ流れる際に、触媒14に伝達して、改
質管9の出口部分では約593℃に制御する必要がある。
さらに、改質管9で反応したガス中には、一酸化炭素CO
が含まれており、これは、電池本体に害を与える為、こ
れを無害の二酸化炭素CO2に変えるため、改質管9の出
口部分で約593℃であった改質ガス温度を、熱交換器21
内に設けられた導管22の冷却用ガスまたは冷却用水によ
って、387℃以上421℃以下に下げて、高温変成器23に送
り、一酸化炭素COを二酸化炭素CO2に変える触媒反応を
させる。
Further, the mixed gas of fuel and steam introduced from the lower part into the reforming pipe 9 arranged in the reformer 1 is heated as the temperature rises in the catalyst layer 14 in the reforming pipe 9 and the temperature is raised. Rises to 760
The main burner 4 of the reformer 1 heats and controls the reforming tube 9 so that a reaction of reforming into hydrogen gas occurs at a temperature of not less than 0 ° C. and the maximum temperature at the upper portion of the reforming tube 9 becomes 982 ° C. Further, the hydrogen-rich gas reformed in this way is transmitted to the catalyst 14 when flowing downward from the top of the reforming pipe 9 through the pipe 15, and about 593 at the outlet of the reforming pipe 9. It is necessary to control at ℃.
Further, in the gas reacted in the reforming tube 9, carbon monoxide CO
Is contained in the reformed gas temperature, which is about 593 ° C. at the outlet of the reforming tube 9, in order to convert it into harmless carbon dioxide CO 2 because it harms the battery body. Exchanger 21
The temperature is lowered to 387 ° C. or higher and 421 ° C. or lower by the cooling gas or the cooling water in the conduit 22 provided inside and sent to the high temperature shift converter 23 to cause a catalytic reaction to convert carbon monoxide CO into carbon dioxide CO 2 .

次に、上述した燃料と水蒸気の基本改質反応式を示す。Next, the basic reforming reaction formula of the above-mentioned fuel and steam will be shown.

“改質管内の反応” CH4+2H2O+熱→CO+H2O+3H2 “高温変成器の反応” CO+H2O→熱+CO2+H2 以上述べた様に、改質管9内へ送り込まれる燃料と水蒸
気の混合気体の温度を、約200℃から427℃〜510℃の範
囲に上昇させなければならず、また、改質管9を経た改
質ガスの温度も、約593℃から、高温変成器23に適した3
87℃〜421℃に降下させなければならない。
“Reaction in reforming pipe” CH 4 + 2H 2 O + heat → CO + H 2 O + 3H 2 “Reaction of high temperature converter” CO + H 2 O → heat + CO 2 + H 2 As described above, the fuel fed into the reforming pipe 9 The temperature of the mixed gas of steam must be raised from about 200 ° C to 427 ° C to 510 ° C, and the temperature of the reformed gas that has passed through the reforming tube 9 is also about 593 ° C. Suitable for 23 3
Must be lowered to 87 ° C-421 ° C.

しかしながら、熱交換器19によって天然ガスと水蒸気の
混合ガスの温度を上昇させる場合も、また、熱交換器21
によって改質ガスの温度を降下させる場合も、熱交換の
温度差が非常に大きいため、温度制御が正確にできない
という欠点があった。
However, when the temperature of the mixed gas of natural gas and steam is raised by the heat exchanger 19, the heat exchanger 21
Even when the temperature of the reformed gas is lowered by the above method, there is a drawback that the temperature control cannot be accurately performed because the temperature difference of the heat exchange is very large.

[発明の目的] 本発明は、上述の様な従来技術の欠点を解消する為に提
案されたもので、その目的は、天然ガスと水蒸気の混合
ガスを水素リッチのガスに改質する為に用いられる燃料
電池用改質器装置において、その温度制御を正確で容易
なものとし、また、省エネルギー化を可能とした改質器
装置を提供することにある。
[Object of the Invention] The present invention has been proposed in order to solve the above-mentioned drawbacks of the prior art, and its object is to reform a mixed gas of natural gas and steam into a hydrogen-rich gas. It is an object of the present invention to provide a reformer device used in a fuel cell reformer device, which enables accurate and easy temperature control and energy saving.

[発明の概要] 本発明の改質器装置は、天然ガス導入用の導管と改質ガ
ス排出用の導管の間に、互いの熱を交換できる様な熱交
換器を配設し、また、改質ガス排出用の導管にバイパス
管を設け、このバイパス管と改質ガス排出用導管に自動
調節弁を設け、さらに、天然ガス導入用の導管に温度検
出器を設け、この温度検出器に制御器を配設し、前記自
動調節弁と接続することにより、天然ガス導入用の導管
と改質ガス排出用の導管の間で、効率的な熱交換を行
い、前記温度検出器によって温度制御を正確に行なうこ
とができる様にしたものである。
[Summary of the Invention] The reformer apparatus of the present invention is provided with a heat exchanger capable of exchanging heat between the natural gas introduction conduit and the reformed gas discharge conduit, and A bypass pipe is provided in the reformed gas discharge conduit, an automatic control valve is provided in the bypass pipe and the reformed gas discharge conduit, and a temperature detector is installed in the natural gas introduction conduit. By installing a controller and connecting it to the automatic control valve, efficient heat exchange is performed between the natural gas introduction conduit and the reformed gas discharge conduit, and the temperature is controlled by the temperature detector. It is designed to be able to perform accurately.

[発明の実施例] 以下、本発明の一実施例を第1図及び第2図に基づいて
具体的に説明する。なお、第3図乃至第5図の従来型と
同一の部材については、同一符号を付し、説明は省略す
る。
[Embodiment of the Invention] An embodiment of the present invention will be specifically described below with reference to FIGS. 1 and 2. The same members as those of the conventional type shown in FIGS. 3 to 5 are designated by the same reference numerals, and the description thereof will be omitted.

第1図において、改質器1内に配設された改質管9に天
然ガスと水蒸気の混合ガスを導入する第1の導管13と、
改質管9より改質ガスを器外に導出する第2の導管16と
の間で、互いに熱交換ができる様な熱交換器30が配設さ
れている。また、導管16には前記熱交換器30を挟んでバ
イパス管31が設けられ、導管16より熱交換器30に入る部
位には、自動調節弁32が設けられ、バイパス管31には自
動調節弁33が設けられている。さらに、導管13の改質器
1の導入入口部近傍には、温度検出器34が配設され、こ
の温度検出器34には制御器35が接続され、また制御器35
は、前記自動調節弁32,33に接続され、自動調節弁32,33
を比例制御できる様に構成されている。
In FIG. 1, a first conduit 13 for introducing a mixed gas of natural gas and water vapor into a reforming pipe 9 arranged in the reformer 1,
A heat exchanger 30 is provided so that heat can be exchanged with the second conduit 16 that leads the reformed gas from the reforming pipe 9 to the outside of the device. Further, the conduit 16 is provided with a bypass pipe 31 with the heat exchanger 30 sandwiched therebetween, an automatic control valve 32 is provided at a portion entering the heat exchanger 30 from the conduit 16, and the bypass pipe 31 is provided with an automatic control valve. 33 are provided. Further, a temperature detector 34 is arranged near the inlet of the reformer 1 of the conduit 13, a controller 35 is connected to the temperature detector 34, and a controller 35.
Is connected to the automatic control valves 32 and 33, and the automatic control valves 32 and 33 are
Is configured so that it can be proportionally controlled.

この様な構成を有する本実施例の改質器装置において
は、第2図の系統図に示した様に導管17より送り込まれ
た天然ガスと導管18より送り込まれた水蒸気との混合ガ
ス(約200℃)は熱交換器19に入り、高温ガスを通して
いる管20より熱を受けて一段階温度が上がる。さらに、
この混合ガスは、熱交換器30に送られ、改質管9より送
り出された高温の改質ガス(約590℃)を通している導
管16より熱を受けて、温度が大幅に上昇する。この際、
導管13の改質器1の導入入口部近傍に設けられた温度検
出器34により、この部位のガス温度が改質反応に適した
427〜510℃の範囲内に維持される様に監視し、この温度
検出器34に連携した制御器35によって、自動調節弁32,3
3を比例制御して、熱交換器30の熱交換を制御してい
る。
In the reformer apparatus of the present embodiment having such a configuration, as shown in the system diagram of FIG. 2, a mixed gas of natural gas sent from the conduit 17 and steam sent from the conduit 18 (approximately (200 ° C.) enters the heat exchanger 19 and receives heat from the pipe 20 through which the high temperature gas passes, and the temperature rises by one step. further,
This mixed gas is sent to the heat exchanger 30 and receives heat from the conduit 16 passing through the high-temperature reformed gas (about 590 ° C.) sent out from the reforming pipe 9, and the temperature thereof is significantly increased. On this occasion,
With the temperature detector 34 provided near the inlet of the reformer 1 of the conduit 13, the gas temperature at this portion is suitable for the reforming reaction.
The temperature is maintained within the range of 427 to 510 ° C, and the automatic control valves 32, 3 are controlled by the controller 35 linked to this temperature detector 34.
The heat exchange of the heat exchanger 30 is controlled by controlling 3 proportionally.

一方、改質器1内で水素リッチなガスに改質された改質
ガスは、改質管9の出口で約593℃に制御されている
が、さらに、熱交換器30内において熱を奪われるので、
熱交換器30を経た後の改質ガス温度は下げられ、熱交換
器21に送られ、冷却用管22によって高温変成器23に入る
適温(約430〜450℃)に下げられる。この様にして温度
制御された改質ガスは、高温変成器23内で一酸化炭素CO
を二酸化炭素CO2に変成した後、低温変成器(図示せ
ず)を経て、燃料電池(図示せず)へ送られ発電に寄与
する。
On the other hand, the reformed gas which has been reformed into the hydrogen-rich gas in the reformer 1 is controlled to be about 593 ° C. at the outlet of the reforming pipe 9, and further heat is taken in the heat exchanger 30. Because it will be
The temperature of the reformed gas after passing through the heat exchanger 30 is lowered, sent to the heat exchanger 21, and lowered by the cooling pipe 22 to an appropriate temperature (about 430 to 450 ° C.) which enters the high temperature shift converter 23. In this way, the reformed gas whose temperature is controlled is heated in the high-temperature converter 23 by carbon monoxide CO
After being converted into carbon dioxide CO 2, it is sent to a fuel cell (not shown) through a low-temperature converter (not shown) and contributes to power generation.

以上、説明した様に本発明の改質器装置においては、温
度検出器34を配設したことにより、精度が高い温度制御
ができ、また、効率良い熱交換が可能なので大幅な省エ
ネルギー化が実現できる。
As described above, in the reformer device of the present invention, by disposing the temperature detector 34, highly accurate temperature control can be performed, and efficient heat exchange is possible, so that significant energy saving is realized. it can.

なお、本発明の改質器装置は、上述の実施例に限定され
るものではなく、熱交換器30は改質器1内に配設しても
良い。また、熱交換器30の熱交換率を高めることによ
り、従来から用いられている熱交換器19は省略してもよ
い。
The reformer device of the present invention is not limited to the above embodiment, and the heat exchanger 30 may be arranged in the reformer 1. Further, by increasing the heat exchange rate of the heat exchanger 30, the conventionally used heat exchanger 19 may be omitted.

[発明の効果] 以上の通り、本発明によれば、改質器装置における反応
ガスの温度制御を正確に且つ容易に行なうことができ、
また、効率的な熱交換ができるので、省エネルギー化を
可能とした改質器装置を提供できる効果がある。特に、
一般に改質器には要求されていないが、燃料電池用改質
器固有に望まれる性能としては、次のものがある。
As described above, according to the present invention, the temperature control of the reaction gas in the reformer device can be accurately and easily performed.
Further, since efficient heat exchange can be performed, there is an effect that it is possible to provide a reformer device capable of saving energy. In particular,
Although not generally required for a reformer, there are the following performances unique to a fuel cell reformer.

燃料電池では電池の負荷に応じて必要とする燃料の量
が変化し、それに伴い燃料となる改質ガスを製造するた
めの原料ガス(改質用炭化水素系ガス)の量が変化す
る。従って、改質器の改質ガス量に対する改質器内の温
度制御の迅速な応答が望まれる。
In the fuel cell, the amount of fuel required changes according to the load of the cell, and the amount of the raw material gas (reforming hydrocarbon-based gas) for producing the reformed gas serving as the fuel changes accordingly. Therefore, a rapid response of the temperature control in the reformer to the amount of reformed gas in the reformer is desired.

燃料電池は、燃料不足に弱く、電池特性に大きな影響
を及ぼす。従って、燃料として使用する改質ガスの均一
な供給が、一般の改質器以上に望まれる。
Fuel cells are vulnerable to fuel shortages and have a great impact on cell characteristics. Therefore, the uniform supply of the reformed gas used as the fuel is desired more than that of a general reformer.

これらの要求に対し、本発明では、入り口の温度を一定
に保つように制御するため、改質器の温度を一定とする
には、単に反応量に応じて変化する吸熱量のみを見て熱
源バーナーを制御するだけで良い。このように単純な制
御で済む本発明によれば、前述したような負荷変動の激
しい燃料電池用の改質器であっても、反応量に対する改
質器内の温度を容易かつ迅速に追従させることができ
る。
In response to these requirements, in the present invention, the temperature of the inlet is controlled so as to be kept constant. Therefore, in order to keep the temperature of the reformer constant, the heat source can be obtained by simply looking at the endothermic amount that changes according to the reaction amount. All you have to do is control the burner. According to the present invention, which requires only simple control as described above, the temperature inside the reformer with respect to the reaction amount can be easily and quickly made to follow, even in the case of the reformer for a fuel cell in which the load fluctuation is severe as described above. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の改質器装置の一実施例を示す拡大断面
図、第2図はその系統図、第3図は従来の改質器装置を
示す縦断面図、第4図はその横断面図、第5図は従来の
改質器装置の系統図である。 1……改質器、2,3……導管、4……主バーナー、5,6…
…導管、7……補助バーナー、8……燃焼室、9……改
質管、10……導管、11……セラミック球、12……排ガス
管、13……導管、14……触媒、15,16,17,18……導管、1
9……熱交換器、20……管、21……熱交換器、22……
管、23……高温変成器、30……熱交換器、31……バイパ
ス管、32,33……自動調節弁、34……温度検出器、35…
…制御器。
FIG. 1 is an enlarged sectional view showing an embodiment of the reformer device of the present invention, FIG. 2 is a system diagram thereof, FIG. 3 is a longitudinal sectional view showing a conventional reformer device, and FIG. FIG. 5 is a cross-sectional view of a conventional reformer device. 1 …… Reformer, 2,3 …… Conduit, 4 …… Main burner, 5,6…
… Conduit, 7 …… Auxiliary burner, 8 …… Combustion chamber, 9 …… Reformer tube, 10 …… Conduit, 11 …… Ceramic sphere, 12 …… Exhaust gas pipe, 13 …… Conduit, 14 …… Catalyst, 15 , 16,17,18 …… Conduit, 1
9 …… Heat exchanger, 20 …… Tube, 21 …… Heat exchanger, 22 ……
Tube, 23 …… High temperature transformer, 30 …… Heat exchanger, 31 …… Bypass pipe, 32,33 …… Automatic control valve, 34 …… Temperature detector, 35…
… Controller.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被改質用炭化水素系ガスと水蒸気との混合
ガスを通流させ触媒作用により水素リッチな改質ガスに
改質させるための改質管と、この改質管を加熱制御する
加熱用バーナーとを備えて成る燃料電池用改質器におい
て、 前記改質管に前記被改質用炭化水素系ガスと水蒸気との
混合ガスを導入する第1の導管と、 前記改質管より前記改質ガスを導出する第2の導管と、 第1の導管と第2の導管との間で熱交換を行わせる熱交
換器と、 第2の導管により分岐して設けられるとともに前記熱交
換器をバイパスして連通するよう設けられるバイパス管
と、 このバイパス管と第2の導管に設けられ各々の管内部を
通流する前記改質ガスの流量を調節するための自動調節
弁と、 前記改質器内への第1の導管の導入入口部近傍内の混合
ガスの温度を検出する温度検出器と、 前記温度検出器で検出される前記混合ガスの温度を所定
値となるよう制御するため前記自動調節弁を調節して前
記熱交換器の熱交換を制御する制御器とを備えてなるこ
とを特徴とする燃料電池用改質器装置。
1. A reforming pipe for allowing a mixed gas of a hydrocarbon-based gas to be reformed and steam to flow therethrough to reform it into a hydrogen-rich reformed gas by a catalytic action, and heating control of this reforming pipe. A reformer for a fuel cell, comprising: a heating burner for introducing a mixed gas of the hydrocarbon gas to be reformed and steam into the reforming tube; A second conduit for leading the reformed gas further, a heat exchanger for exchanging heat between the first conduit and the second conduit, and a second conduit for branching the heat exchanger. A bypass pipe provided so as to bypass and communicate with the exchanger; and an automatic control valve provided in the bypass pipe and the second conduit for adjusting the flow rate of the reformed gas flowing inside each pipe, The temperature of the mixed gas in the vicinity of the inlet of the first conduit into the reformer And a controller for controlling the heat exchange of the heat exchanger by adjusting the automatic adjustment valve to control the temperature of the mixed gas detected by the temperature detector to be a predetermined value. A reformer device for a fuel cell, comprising:
【請求項2】前記熱交換器が前記燃料電池用改質器内に
配設されている特許請求の範囲第1項記載の燃料電池用
改質器装置。
2. The reformer device for a fuel cell according to claim 1, wherein the heat exchanger is arranged in the reformer for the fuel cell.
JP60020889A 1985-02-07 1985-02-07 Fuel cell reformer device Expired - Lifetime JPH07106881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020889A JPH07106881B2 (en) 1985-02-07 1985-02-07 Fuel cell reformer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020889A JPH07106881B2 (en) 1985-02-07 1985-02-07 Fuel cell reformer device

Publications (2)

Publication Number Publication Date
JPS61183102A JPS61183102A (en) 1986-08-15
JPH07106881B2 true JPH07106881B2 (en) 1995-11-15

Family

ID=12039779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020889A Expired - Lifetime JPH07106881B2 (en) 1985-02-07 1985-02-07 Fuel cell reformer device

Country Status (1)

Country Link
JP (1) JPH07106881B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230503A (en) * 1987-03-20 1988-09-27 Hitachi Ltd Method for increasing temperature of reforming system
JPS6437401A (en) * 1987-08-04 1989-02-08 Tokyo Gas Co Ltd Steam reforming apparatus using lpg
JP2648620B2 (en) * 1988-07-23 1997-09-03 株式会社日立製作所 Cogeneration system
JP2656319B2 (en) * 1988-09-19 1997-09-24 株式会社東芝 Fuel cell power generation system
DE19526886C1 (en) * 1995-07-22 1996-09-12 Daimler Benz Ag Methanol reformation giving high methanol conversion and low amts. of carbon mono:oxide
JP2005289709A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Hydrogen producing apparatus and its driving method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813481A (en) * 1981-07-14 1983-01-25 Diesel Kiki Co Ltd Positioning and joining method for sintered alloy material

Also Published As

Publication number Publication date
JPS61183102A (en) 1986-08-15

Similar Documents

Publication Publication Date Title
CA2109655A1 (en) Combined reformer and shift reactor
CN110316703A (en) A kind of self-heating preparing hydrogen by reforming methanol reaction system
US20060143983A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
CN100354197C (en) Autooxidation internal heating type steam reforming system
JPH07230816A (en) Internally modified solid electrolyte fuel cell system
JPH01186570A (en) Reformation of fuel for fuel cell
JPH07106881B2 (en) Fuel cell reformer device
CN210340323U (en) Self-heating methanol reforming hydrogen production reaction system
CN217458828U (en) Ammonia decomposition hydrogen production system based on hydrogen combustion
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JP2001313053A (en) Fuel cell system
JP4486832B2 (en) Steam reforming system
JP2004155650A (en) Autoxidation internal heating type steam reforming system
JP2002104808A (en) Method of reforming fuel
JPS58119166A (en) Fuel cell device incorporating fuel reformer
JPS5823168A (en) Fuel cell power generating system
JP4676819B2 (en) Method for reducing reforming catalyst
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JP2006294464A (en) Fuel cell power generation system
JP3467759B2 (en) Control method of outlet temperature of reformer
JPS6274448A (en) Reformer of fuel cell
JP2002025598A (en) Fuel cell system and its operating method
JP2002175828A (en) Fuel-reforming system for fuel cell
JP4114980B2 (en) Partial oxidation gasifier
JPH05266906A (en) Fuel cell power generation facility