JPS6274448A - Reformer of fuel cell - Google Patents
Reformer of fuel cellInfo
- Publication number
- JPS6274448A JPS6274448A JP60212143A JP21214385A JPS6274448A JP S6274448 A JPS6274448 A JP S6274448A JP 60212143 A JP60212143 A JP 60212143A JP 21214385 A JP21214385 A JP 21214385A JP S6274448 A JPS6274448 A JP S6274448A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reforming
- heat exchanger
- temperature
- reformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
- B01J8/062—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Fuel Cell (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野〕
本発明は、改質器容器内において、改質管より流出する
改質ガスおよび燃焼排ガスを夫々用いて、改質管へ導入
する炭化水素系の原料ガスと水蒸気の混合ガス温度を熱
交換器にて適温(ユ上昇させることにより、改質反応を
効率よく促進させ得るようにした燃料電池の改質器装置
5ユ関する。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a hydrocarbon system that is introduced into a reforming tube using reformed gas and combustion exhaust gas flowing out from the reforming tube in a reformer container. The present invention relates to a fuel cell reformer device 5 in which a reforming reaction can be efficiently promoted by raising the temperature of a mixed gas of raw material gas and water vapor to an appropriate temperature in a heat exchanger.
[発明の技術的背景]
近年、その開発、実用化の研究ζ二期待と関心が寄せら
れてきている燃料IE池は、燃料の有する化学エネルギ
ーを電気化学プロセスで酸化させることにより、酸化反
応C二伴って放出されるエネルギーを直接電気エネルギ
ーC二変換する装置である。[Technical Background of the Invention] In recent years, fuel IE ponds have been attracting attention and expectations from research into their development and practical application. This is a device that directly converts the energy released along with C2 into electrical energy C2.
この燃料電池を用いた発電プラントは、比較的小さな規
模でも発電の熱効率が40〜50%Cユも達し、新鋭火
力発電をはるかにしのぐと期待されている。Even on a relatively small scale, a power generation plant using fuel cells has a thermal efficiency of 40 to 50% CU, and is expected to far exceed new thermal power generation.
また、近年大きな社会問題になっている公害要因である
いおう酸化物、窒素酸化物の排出が極めて少ない。さら
に、発電装置内に燃焼サイクルを含まないことから、大
量の冷却水を必要としない、振動音が小さいなど、原理
的くユ高いエネルギー変換効率が期待できると共に、騒
音・排ガス等の環境問題が少なく、さらCユは負荷変動
Cユ対して応答性が良い等の特長がある。そして、この
様な燃料電池を用いた発電プラントにおいては、天然ガ
ス等炭化水素系の原料ガスに水蒸気を混合して改質器内
で加温変成して得られた水素ガスと、他系統のターボ・
コンプレッサーよりの空気とを夫々燃料電池1:供給し
て酸化反応させ、これ1ユより電力を得るようイユして
いるものが多い。In addition, emissions of sulfur oxides and nitrogen oxides, which are pollution factors that have become a major social problem in recent years, are extremely low. Furthermore, since the power generation device does not include a combustion cycle, it does not require large amounts of cooling water and generates little vibration noise, so it can be expected to have high energy conversion efficiency in principle, as well as reduce environmental problems such as noise and exhaust gas. In addition, C-yu has the advantage of good responsiveness to load fluctuation C-yu. In a power generation plant using such a fuel cell, hydrogen gas obtained by mixing water vapor with hydrocarbon-based raw material gas such as natural gas and heating it in a reformer is mixed with hydrogen gas from other systems. turbo·
In many fuel cells, air from a compressor is supplied to each fuel cell to cause an oxidation reaction, and electricity is obtained from each unit.
第5図は、この種の燃料電池発電プラントに設けられる
改質器の一例を示した系統図で、第6図は第5図C二お
ける改質器本体のSX例を縦断面図にて示し之もの、第
7図は第6図の平面図を示したものである。図において
、改質器容器1の内部には、図示しない燃料タンクに連
結した導管2よりの燃料と、図示しない空気供給機に連
結した導管3よりの空気を夫々導入混合して燃焼する主
バーナ−4が配設されており、また導管5より燃料およ
び導管6より空気が夫々導入され、かつ先端(ユ電気点
火装置を有した主バーナ−4を点火させるための補助バ
ーナー7が設けられている。上記主バーナ−4の高温燃
焼排ガスは、加温室8を流通しこれにより断面環状の改
質管9の外周空間を通り、下層部にあるセラミック球1
1を保持した導管10を通過し、さらにこれと連通した
排ガス管12を通して改質器容器1の外部へ排出され、
図示しないターボ・コンプレッサーへ導かれて運転(ユ
寄与する。一方、天然ガス等炭化水素系の原料ガスと水
蒸気との混合ガスは、導管13より導入され、改質管9
内の改質触媒層(以下、単(ユ触媒114と称する)1
4を保持した管路な通過する。そして、この通過中に加
温と触媒作用により改質反応が行なわれて水素リッチな
ガスに改質される。この改質ガスは、改質管9内の導管
15を介しさら(ユこれと連通した4管16?介して改
質器容器lの外部へ導かれ、熱交換器21にて温度を下
けてこれにより改質ガス中眉二含有する一酸化炭素を二
酸化炭素にする高温変成器23と、メ1示しない低温変
成器を介し、図示しない燃料電池へ供給されて発に寄与
することになる。Fig. 5 is a system diagram showing an example of a reformer installed in this type of fuel cell power generation plant, and Fig. 6 is a longitudinal cross-sectional view of an SX example of the reformer main body in Fig. 5 C2. FIG. 7 is a plan view of FIG. 6. In the figure, inside the reformer container 1 is a main burner that introduces fuel from a conduit 2 connected to a fuel tank (not shown) and air from a conduit 3 connected to an air supply machine (not shown), mixes the mixture, and burns the mixture. In addition, fuel is introduced through a conduit 5 and air is introduced through a conduit 6, respectively, and an auxiliary burner 7 for igniting the main burner 4 having an electric ignition device is provided. The high-temperature combustion exhaust gas from the main burner 4 flows through the heating chamber 8, passes through the outer circumferential space of the reforming tube 9 having an annular cross section, and passes through the ceramic bulb 1 in the lower layer.
1, and is further discharged to the outside of the reformer container 1 through an exhaust gas pipe 12 communicating with the conduit 10,
On the other hand, a mixed gas of hydrocarbon-based raw material gas such as natural gas and steam is introduced from the conduit 13 and is operated by the reforming pipe 9.
The reforming catalyst layer (hereinafter referred to as single catalyst 114) 1
Pass through the conduit holding 4. During this passage, a reforming reaction takes place due to heating and catalytic action, and the gas is reformed into hydrogen-rich gas. This reformed gas is led to the outside of the reformer vessel l via a conduit 15 in the reforming tube 9 (and via four pipes 16 connected thereto), and is lowered in temperature by a heat exchanger 21. As a result, the carbon monoxide contained in the reformed gas is converted into carbon dioxide through the high-temperature shift converter 23 and the low-temperature shift converter (not shown), and is supplied to the fuel cell (not shown) and contributes to the generation of carbon dioxide. .
[背景技術の問題点]
ところで、この種の装置としては例えば特開53−79
767号公報が知られている。上述したような改質器C
二おいて、改質管9人口側の原料ガスと水蒸気との混合
ガスの温度は、427℃以上510℃以下Cユ制御する
必要がある。その理由は、温度が427℃以下(ユなる
と触媒層141ニポリプロピレンが沈着して触媒の性能
が劣化し、また510”C以上になると混合ガスが分解
を起こしてカーボンを生成し、これが触媒層14の組織
内盛二人りこんで触媒を破壊し、粉化させて改質管9内
の差圧を増大させるからである。そして実際には、改質
器容器1内の改質管9の下部から導入された原料ガスと
水蒸気との混合ガスは、改質管9内の触媒層14を上昇
するに従がい、温度が上昇して760°C以上で水素ガ
スに改質する反応を起こし、改質管9の上部での温度が
982°Cと最高となるように、改質器容器1 (7)
主バーナ−4により改質管9を加熱制御している。[Problems with the background art] By the way, as this type of device, for example, Japanese Patent Laid-Open No. 53-79
No. 767 is known. Reformer C as described above
Second, the temperature of the mixed gas of raw material gas and steam on the input side of the reforming tube 9 needs to be controlled at 427° C. or higher and 510° C. or lower. The reason for this is that when the temperature falls below 427 degrees Celsius (141), polypropylene deposits on the catalyst layer 141, deteriorating the performance of the catalyst, and when the temperature rises above 510 degrees Celsius, the mixed gas decomposes and generates carbon, which is deposited on the catalyst layer. This is because the catalyst enters the structure of the reformer container 1, destroys the catalyst, turns it into powder, and increases the differential pressure inside the reformer tube 9. The mixed gas of raw material gas and water vapor introduced from the bottom rises through the catalyst layer 14 in the reforming tube 9, and its temperature rises to cause a reaction of reforming into hydrogen gas at 760°C or higher. , the reformer vessel 1 (7) so that the temperature at the top of the reformer tube 9 reaches the maximum of 982°C.
The main burner 4 controls the heating of the reforming tube 9.
また、これC二より改質された水素リッチなガスは、改
質管9の頂部より内側の導管15を流降下しっつ触媒層
14へ伝熱して、改質管9の出口側では約593°Cに
制御するようC二している。In addition, the hydrogen-rich gas reformed from C2 flows down the conduit 15 inside the top of the reforming tube 9 and transfers heat to the catalyst layer 14, and on the exit side of the reforming tube 9, approximately The temperature was controlled at 593°C.
一方、改質管9で反応改質したガス中には、−酸化炭素
COが含まれており、こねは電池本体C:害を与えるの
で、これを無害の二酸化炭素CO2に変えるため、改質
ガス温度約593℃を熱交換器21にて導管22の冷却
用ガスにより温度を387℃以上421°C以下の範囲
C:下げて、高温変成器23に導入して触媒反応Cユよ
り一酸化炭素COを二酸化炭素CO2に変える。原料ガ
スと水蒸気混合ガスの基本改質反応式を下記C:示す。On the other hand, the gas reacted and reformed in the reforming tube 9 contains -carbon oxide CO, which is harmful to the battery body C. The gas temperature is reduced to about 593°C by the cooling gas in the conduit 22 in the heat exchanger 21 to a range of 387°C to 421°C, and then introduced into the high temperature shift converter 23 where it is monoxidized by the catalytic reaction C. Converts carbon CO to carbon dioxide CO2. The basic reforming reaction formula of raw material gas and steam mixed gas is shown below.
改質管内の反応 CH4+ 2H2+熱→Co + H
20+ 3H2高温変成器内の反応 Co + H2O
−*熱+CO2+H2以上の説明から、原料ガスと水蒸
気との混合ガスが改質管9内に充填された触媒層14で
水素リッチなガスに改質するには、改質管9の入口部C
−おいて原料ガスと水蒸気の混合ガスが427℃〜51
0°Cの範囲の適温になるように加熱を効率良く行なわ
なければならないことがわかる。かつ改質管9にて改質
されたガスの温度約593°Cを、高温変成器23感−
導入する適温387℃〜421℃の範囲まで下げねばな
らないことがわかる。Reaction inside the reforming tube CH4+ 2H2+ heat → Co + H
20+ 3H2 Reaction in high temperature shift converter Co + H2O
-*Heat+CO2+H2 From the above explanation, in order to reform the mixed gas of raw material gas and steam into a hydrogen-rich gas in the catalyst layer 14 filled in the reforming tube 9, it is necessary to
- The mixed gas of raw material gas and water vapor is between 427°C and 51°C.
It can be seen that heating must be carried out efficiently to maintain an appropriate temperature in the range of 0°C. And the temperature of the gas reformed in the reforming pipe 9 is set at about 593°C to the high temperature shift converter 23.
It can be seen that the appropriate temperature for introduction must be lowered to a range of 387°C to 421°C.
しかし乍ら従来の改質器では、天然ガスと水蒸気の混合
ガスの温度約200℃を熱交換器19(:て、改質管9
へ導入させるための適温427℃〜510℃範囲迄上昇
させるのC;大きな熱エネルギーを与えなければならな
いことC二よる熱損失と、熱交換19の熱授受温度差が
大きいため温度制御が困難であるという問題があった。However, in conventional reformers, the temperature of the mixed gas of natural gas and steam is about 200°C through the heat exchanger 19 (: the reforming tube 9
The temperature must be raised to an appropriate temperature range of 427°C to 510°C in order to introduce the heat into the heat exchanger 19. C; It is difficult to control the temperature due to the heat loss due to the need to provide a large amount of thermal energy and the large difference in temperature between heat transfer and reception in the heat exchanger 19. There was a problem.
さらに1改質管9より排出されたガスの温度約593℃
を熱交換器21C:て高温変成器23へ導入させるため
の適温387℃〜421℃範囲(ユ下げるのに大きな熱
エネルギーを放出する熱損失と、熱交換の温度差が大き
いための温度制御が困難であるといりような問題がある
。Furthermore, the temperature of the gas discharged from the first reforming pipe 9 is approximately 593°C.
Heat exchanger 21C: Suitable temperature range of 387°C to 421°C for introducing heat into the high-temperature transformer 23 (heat loss that releases a large amount of thermal energy to lower the temperature, and temperature control due to the large temperature difference during heat exchange) There are some problems that can be difficult.
[発明の目的]
本発明は上記のような問題を解決する几めに成されたも
ので、その目的は改質反応を効率的に行なうと共C−省
エネルギー化を図ることができ、また改質管内C:導入
される原料ガスと水蒸気の混合ガス温度および改質管よ
り排出される改質ガス温度を適温Cユ容易に制御すると
共C1省エネルギー化を図ることが可能な改質器装置を
提供することC二ある。[Objective of the Invention] The present invention has been made to solve the above-mentioned problems, and its purpose is to efficiently carry out the reforming reaction and to save energy. Inside the reformer tube C: A reformer device that can easily control the temperature of the mixed gas of raw material gas and steam introduced and the temperature of the reformed gas discharged from the reformer tube at an appropriate temperature C and also save energy. There are two things to offer.
「発明の概要」
上記目的を構成するために本発明では、前述した改質管
内C:導入される原料ガスおよび水蒸気の混合ガスと上
記改質管の外側を通過した後の高温燃焼排ガスと、上記
改質管より排出される改質ガスとを同一の熱交換器内で
熱交換を行なう熱交換器を改質器外周側部に設けること
と該熱交換器内Cニガス流が等分布させる多数個の孔を
有したガス分流板を設けたことを第1の特徴とし、また
これC1加えて上記改質器より排出されるバーナー燃焼
の排ガスを改質器容器外部へ導く第1のバイパス管、お
よび前記第1バイパス管より上記熱交換器入口側から分
岐して熱交換器を経て第1バイパス管と接続する第2の
バイパス管を夫々設け、上記改質管内に導入される原料
ガスおよび水蒸気の混合ガスの温度を検出する温度検出
器と、上記第1のバイパス管に設けられ当該管内の改質
ガス流量を調節する第1の調節弁と、上記第2のバイパ
ス管C;設けられ当該管内の改質ガス流量を調節する第
2の調節弁と、上記温度検出器からの検出温度と規定の
混合ガス温度とを比較し、かつこの比較結果に応じて上
記第1の調節弁および第2の調節弁の開度な夫々制御す
る制御器とを備えて成ることを第2の特徴とする。"Summary of the Invention" In order to achieve the above object, the present invention provides the above-mentioned reforming pipe interior C: a mixed gas of raw material gas and water vapor to be introduced, and a high-temperature combustion exhaust gas after passing through the outside of the reforming pipe, A heat exchanger for exchanging heat with the reformed gas discharged from the reforming tube in the same heat exchanger is provided on the outer circumferential side of the reformer, and the C gas flow within the heat exchanger is evenly distributed. The first feature is that a gas distribution plate having a large number of holes is provided, and in addition to this C1, a first bypass guides the burner combustion exhaust gas discharged from the reformer to the outside of the reformer container. and a second bypass pipe that branches from the first bypass pipe from the inlet side of the heat exchanger and connects to the first bypass pipe through the heat exchanger, and the raw material gas introduced into the reforming pipe is provided. and a temperature detector for detecting the temperature of the mixed gas of water vapor, a first control valve provided in the first bypass pipe to adjust the flow rate of the reformed gas in the pipe, and the second bypass pipe C; A second control valve that adjusts the flow rate of the reformed gas in the pipe, and a second control valve that compares the detected temperature from the temperature detector and a specified mixed gas temperature, and according to the comparison result, the first control valve and a controller for controlling the opening degree of the second control valve.
[発明の実施例]
以下、本発明の一実施例C二ついて図面を参照(2て具
体的Cユ説明する。第1図は、本発明C−よる改質器装
置の系統図を示したもので、第2図は同改質器装置の構
成例を縦断面図にて示したもので、第3図は同改質器装
置の構成例を平面図にて示したもの、第4図は本発明に
よる熱交換器内のガス分流板の説明図である。第5図、
第6図、第7図の従来型と同一部分には同一符号を付し
て示している。[Embodiments of the Invention] Hereinafter, two embodiments of the present invention will be described with reference to the drawings. Fig. 2 shows a longitudinal cross-sectional view of an example of the structure of the reformer device, Fig. 3 shows a plan view of an example of the structure of the reformer device, and Fig. 4 shows an example of the structure of the reformer device in a plan view. FIG. 5 is an explanatory diagram of a gas distribution plate in a heat exchanger according to the present invention.
Components that are the same as those of the conventional type in FIGS. 6 and 7 are designated by the same reference numerals.
第1図および第2図、第3図、第4図Cおいて、改質器
容器1の頂部には、主バーナ−4が設けられ、その燃焼
口は改質器容器1の内側部g−あるよう(:設置されて
いる。また、燃焼ノズルC−電気点火装置を有した補助
バーナー7が、上記主バーナ−4を点火出来るように配
設されている。さらに、主バーナ−4の下方f二は、断
面環状の改質管9を複数本等間隔に配列している。主バ
ーナ−4で燃焼した高温燃焼排ガスは、複数本ある改質
管9の間隔を改質管9を加温しながら流下し、改質管9
の下方外周部(:セラミック球11を充填した導管10
を通過して、さらζユこれ1;連通している導管12よ
り改質器容器1外へ排出し、導管12は改質器容器1外
にて二方向に分岐し、一方向の第1のバイパス管25は
自動調節弁27を介して、排ガス熱利用の図示しないタ
ーボ・コンプレッサーの運転に寄与して排ガスを放出す
るようにしている。一方導管12より熱交換器24の入
口側から分岐した第2のバイパス管26は改質器容器1
の外周壁C二設けられた熱交換器24を介し、さらfユ
自動調節弁28を経て、第1のバイパス管25に設けで
ある自動調節弁27の下流側で接続するよう域−設けで
ある。一方、炭化水素系の原料ガスと水蒸気との混合ガ
スは、導管13より熱交換器24の上部C二設けられた
、流出側C:多数個の孔32を有したガス分流板31を
具備した室に導入する、上記導入ガスは分流板31の孔
32を均等(ユ分流して下降するよう(ニジである。前
記の主バーナ−4で燃焼した高温燃焼排ガスおよび改質
管9C二て改質された高温の改質ガスは、熱交換器24
の下部より夫々導入され、熱交換器24の下部に設けら
れた流出側に条数個の孔32を有したガス分流板31を
具備した夫々の室C二導入する、このガスは分流板3]
の孔32を均等に分流して、上記原料ガスと水蒸気との
混合ガスの下降流の内周側部と外周側部を通り上記ガス
と熱交換して上昇流し、熱交換器24の上部C二股けら
れた、流入部に多数個の孔32を有した分流板を具備し
た尾f二流入し、ガスは集合して導管12および導管1
61ユ夫々連通する。1, 2, 3, and 4C, a main burner 4 is provided at the top of the reformer vessel 1, and its combustion port is located at the inner side g of the reformer vessel 1. In addition, an auxiliary burner 7 having a combustion nozzle C and an electric ignition device is arranged so as to be able to ignite the main burner 4. In the lower part f2, a plurality of reforming tubes 9 having an annular cross section are arranged at equal intervals.The high temperature combustion exhaust gas combusted in the main burner 4 passes through the reforming tubes 9 by changing the intervals between the plurality of reforming tubes 9. Flow down while heating, and pass through the reforming pipe 9.
Lower outer periphery (: conduit 10 filled with ceramic balls 11
The conduit 12 is discharged from the reformer container 1 through a communicating conduit 12, and the conduit 12 branches into two directions outside the reformer container 1. The bypass pipe 25 contributes to the operation of a turbo compressor (not shown) for utilizing exhaust gas heat through an automatic control valve 27 to discharge exhaust gas. On the other hand, a second bypass pipe 26 branched from the inlet side of the heat exchanger 24 from the conduit 12 is connected to the reformer vessel 1.
The area is provided so that it is connected to the first bypass pipe 25 via a heat exchanger 24 provided on the outer peripheral wall C2, and further via an automatic control valve 28 on the downstream side of an automatic control valve 27 provided in the first bypass pipe 25. be. On the other hand, the mixed gas of hydrocarbon-based raw material gas and water vapor is passed from the conduit 13 to the upper part C2 of the heat exchanger 24, on the outflow side C: equipped with a gas distribution plate 31 having a large number of holes 32. The above-mentioned introduced gas is introduced into the chamber so that it flows down evenly through the holes 32 of the flow dividing plate 31. The high temperature reformed gas is transferred to a heat exchanger 24.
This gas is introduced from the lower part of the heat exchanger 24 into each chamber C2 equipped with a gas flow divider plate 31 having several holes 32 on the outlet side provided at the lower part of the heat exchanger 24. ]
The mixed gas of the raw material gas and water vapor flows upward through the holes 32 and passes through the inner peripheral side and outer peripheral side of the downward flow of the mixed gas, exchanging heat with the gas, and flows upward to the upper part C of the heat exchanger 24. The tail f2, which is split into two and is equipped with a flow divider plate with a large number of holes 32 at the inflow part, flows into the conduit 12 and the conduit 1.
61 units are connected to each other.
上記原料ガスと水蒸気との混合ガスは熱交換器24を均
等に下降しつ\熱交換して温度を上昇し熱交換器24の
下部(:設けられた流入部1ユ多数個の孔32を有した
分流板を具備した室1ユ流入し、ガスは集合して導管1
3を通じ、改質管9へ導入されるようCユしである。そ
して、改質管9C二導入された混合ガスは改質管9の内
部ζユ充填された触媒層14を通り、改質管9の頂部内
側で導管15に入り、これ(;連通している導管16よ
り水素リッチな改質ガスを改質器容器1外へ導き、熱交
換器241ユ導入し、前記のようC二原料ガスと水蒸気
の混合ガスと熱交換し、さらζ二熱交換器21と高温変
成器23を通して、さらに図示しない低温変成器を介し
て燃料電池へ供給するようζ二している。The mixed gas of the raw material gas and water vapor flows down the heat exchanger 24 evenly and undergoes heat exchange to raise the temperature and pass through the lower part of the heat exchanger 24 (: the inlet section provided with a large number of holes 32). The gas flows into the chamber 1 equipped with a flow divider plate, and the gas collects in the conduit 1.
3 to be introduced into the reforming tube 9. Then, the mixed gas introduced into the reforming tube 9C2 passes through the catalyst layer 14 filled with the inside of the reforming tube 9, enters the conduit 15 inside the top of the reforming tube 9, and enters the conduit 15 (which is in communication with Hydrogen-rich reformed gas is guided to the outside of the reformer container 1 through the conduit 16, introduced into the heat exchanger 241, and exchanged with the mixed gas of the C2 raw material gas and steam as described above, and then transferred to the ζ2 heat exchanger. 21 and a high-temperature transformer 23, and is further supplied to the fuel cell via a low-temperature transformer (not shown).
また、自動調節弁27と郡は、改質管9へ導入される導
管部で原料ガスと水蒸気の混合ガスの温度検出器29i
−より自動制御器30に連係して比例制御をするようC
ユしている。丁なわち、温度検出器29からの検出温度
と規定の混合ガス温度(427〜510℃)とを比較し
、その比較結果検出温度が規定の混合ガス温度よりも低
い時には調節弁28を開方向Cユ、調節弁27を閉方向
を二夫々制御し、また逆に検出温j■が規定の混合ガス
温度よりも高い時には調節弁27を開方向に、調節弁2
8を閉方向に夫々制御するようにしている。Further, the automatic control valve 27 and the group are connected to a temperature detector 29i of the mixed gas of raw material gas and steam at the conduit portion introduced into the reforming pipe 9.
-C to perform proportional control in conjunction with the automatic controller 30.
I'm doing it. That is, the detected temperature from the temperature detector 29 is compared with a specified mixed gas temperature (427 to 510°C), and if the detected temperature as a result of the comparison is lower than the specified mixed gas temperature, the control valve 28 is opened. The control valve 27 is controlled in the closing direction, and conversely, when the detected temperature j■ is higher than the specified mixed gas temperature, the control valve 27 is controlled in the opening direction.
8 in the closing direction.
かかる様に構成した改質器装置tにおいては、原料ガス
と水蒸気の混合ガスが導管13iユより、改質器容器1
外周側部に設けられた熱交換器24に導入される。一方
、主バーナ−4シ二より燃焼用ガスが燃焼さね、その高
温燃焼排ガスは改質管9を加熱しながら流下し、その一
部が導管12より熱交換器24−導入される。さらに、
改質管9で発熱反応した改質ガスは導管16C二導入さ
れて熱交換器24に入り、第3図≦二示す如く導管13
を導管12.16が内側と外側から包み、さらにガス入
口と出口側に多数個の孔32を有するガス分流板31を
設けた構成の熱交換器24f−おいて、上記混合ガスを
効率良く改質Cユ必要な適温まで上昇させることが可能
となる。In the reformer device t configured as described above, a mixed gas of raw material gas and steam is supplied to the reformer container 1 from the conduit 13i.
It is introduced into a heat exchanger 24 provided on the outer peripheral side. On the other hand, combustion gas is combusted from the main burner 4, and the high-temperature combustion exhaust gas flows down the reformer tube 9 while heating it, and a part of it is introduced into the heat exchanger 24 through the conduit 12. moreover,
The reformed gas that has undergone an exothermic reaction in the reforming tube 9 is introduced into the conduit 16C2 and enters the heat exchanger 24, and then passes through the conduit 13 as shown in FIG.
In the heat exchanger 24f, the gas mixture is surrounded by conduits 12 and 16 from the inside and outside, and is further provided with a gas distribution plate 31 having a large number of holes 32 on the gas inlet and outlet sides. It becomes possible to raise the temperature to the appropriate temperature required.
さらに、改質管9C:導入される原料ガスと水蒸気の混
合ガスの温度は、温度検出器29により検出さねて、そ
の温度が適温より高い時は、温度検出器29と連係した
自動制御器30の制御により、自動調節弁27は開度が
大きくなり、それI−反比例制御されて自wJ調節弁2
8の開度は小さくなる。この制御C:より、バーナー4
の燃焼排ガス量は熱交換器24を通る流量が少なくなり
、上記混合ガスへの加熱エネルギーが減少して温度上昇
は少なくなる。Furthermore, the reforming pipe 9C: The temperature of the mixed gas of raw material gas and steam introduced is not detected by the temperature detector 29, and when the temperature is higher than the appropriate temperature, an automatic controller linked to the temperature detector 29 30, the opening degree of the automatic control valve 27 increases, and it is controlled inversely proportionally to the automatic control valve 27.
8, the opening degree becomes smaller. This control C: from burner 4
Regarding the amount of combustion exhaust gas, the flow rate through the heat exchanger 24 is reduced, the heating energy for the mixed gas is reduced, and the temperature rise is reduced.
また、上記温度検出器29により検出された温度が適温
より低い時は、同様3ニジて自MEII調節弁27の開
度は小さくなり、それイニ反比例制御して自動調節弁2
8の開度は犬きくなる。この制御(ユより、混合ガスの
温度は熱交換器24(ユて上昇する。以上の制御により
、改質管9(導入る原料ガスと水蒸気の混合ガスは、効
率良く改質5ユ必要な適温(ユ保持することが可能とな
る。Further, when the temperature detected by the temperature detector 29 is lower than the appropriate temperature, the opening degree of the automatic MEII control valve 27 is similarly reduced three times, and then the automatic control valve 27 is controlled in inverse proportion.
An opening of 8 makes it sound like a dog. Due to this control, the temperature of the mixed gas rises in the heat exchanger 24 (Y). Through the above control, the mixed gas of raw material gas and steam introduced into the reforming tube 9 It becomes possible to maintain an appropriate temperature.
一方、改質管9により改質されたガスは、熱交換器24
により熱交換してその温度が降下するため、高温変成器
23に導入する前C:設けられた熱交換器21において
、高温変成器23ζユ導入される適温まで下げるために
1冷却用ガス22のエネルギーを少なくすることか可能
となる。さら(ユ熱交換器24は、改質器容器1の外周
側を包榎しているので、改質器容器1の外周側よりの放
熱が防げるため、燃焼バーナー4の燃焼量が少なくなり
エネルギーを少なくすることが可能となる。On the other hand, the gas reformed by the reforming pipe 9 is transferred to the heat exchanger 24.
In order to lower the temperature by exchanging heat with the high-temperature transformer 23, in the heat exchanger 21 provided, the cooling gas 22 is cooled to an appropriate temperature before being introduced into the high-temperature transformer 23. It is possible to reduce energy consumption. Furthermore, since the heat exchanger 24 surrounds the outer circumferential side of the reformer vessel 1, heat radiation from the outer circumferential side of the reformer vessel 1 can be prevented, so the combustion amount of the combustion burner 4 is reduced and energy is It is possible to reduce the
上述したように本構成の改質器装置によれば、改質器容
器1の外周側(ユ沿って熱交換器24を設けさらに熱交
換器24のガス入口部およびガス出口部に条数個の孔3
2を有するガス分流板31を設けたことにより、改質管
9に導入される炭化水素系の原料ガスと水蒸気の混合ガ
ス温度を改質(:必要な適温1ユ容易に制御することが
出来るため、水素リッチなガスとする改質反応を極めて
効率よく行なうことができると共(ユ、省エネルギー化
を図ることが可能となる。また、改質管9より排出され
る改質ガスの温度が熱交換器24で温度下降するので、
高温変成器23の入口側の熱交換器21に導入される改
質ガス温度が低くなり、上記同様に温度制御の容易化と
省エネルギー化を図ることが可能となる、[発明の効果
]
以上説明したようCユ本発明によれば、改質管内(ユ導
入される原料ガスおよび水蒸気の混合ガスと、改質管の
外側を通過した後の高温燃焼排ガスおよび改質管より排
出される改質ガスとの熱交換を行なうガス分流板を具備
した熱交換器を改質器容器の外周側部に設け、またこれ
C二加えて上記改質器容器内部の高温燃焼排ガスを上記
熱交換器へ導入 イしかつこれを通過した後の高温燃焼
排ガスを改質器容器外部へ導く導管、およびこの導管の
上記熱交換器入口側から分岐しかつ当該導管の上記熱交
換器出口側に連通するバイパス管を夫々設け、上記改質
管ζ二導入される原料ガスおよび水蒸気の混合ガスの温
度を検出する温度検出器と、上記導管の熱交換器量ロ側
C二股けられ当該管内の燃焼排ガス流線を調節する第1
の調節弁と、上記バイパス管に設けられ当該管内の燃焼
排ガス流量を調節する@2の調節弁と、上記温度検出器
からの検出温度と規定の混合ガス温度とを比較し、かつ
この比較結果lユ応じて上記第1の調節弁および第2の
調節弁の開度を夫々制御する制御器とを備えて構成する
ようにしたので、改質反応を効率的32行なうと共C−
省エネルギー化を図ることができ、また改質管内に導入
される原料ガスと水蒸気の混合ガス温度および改質管よ
り排出される改質ガス温度を適温に容易Cユ制御するこ
とが可能な極めて信頼性の高い改質器装置が提供できる
。As described above, according to the reformer device having this configuration, the heat exchanger 24 is provided along the outer circumferential side of the reformer container 1 (along the y), and several stripes are provided at the gas inlet and gas outlet of the heat exchanger 24. hole 3
2, the temperature of the mixed gas of hydrocarbon-based raw material gas and steam introduced into the reforming tube 9 can be easily controlled for reforming (required appropriate temperature 1 unit). Therefore, the reforming reaction to produce a hydrogen-rich gas can be carried out extremely efficiently (and energy saving can be achieved).In addition, the temperature of the reformed gas discharged from the reforming tube 9 can be lowered. Since the temperature decreases in the heat exchanger 24,
The temperature of the reformed gas introduced into the heat exchanger 21 on the inlet side of the high-temperature shift converter 23 is lowered, making it possible to facilitate temperature control and save energy in the same way as described above. [Effects of the Invention] As explained above. According to the present invention, a mixture of raw material gas and steam introduced into the reforming tube, high-temperature combustion exhaust gas after passing through the outside of the reforming tube, and reformed gas discharged from the reforming tube. A heat exchanger equipped with a gas distribution plate for exchanging heat with the gas is provided on the outer peripheral side of the reformer container, and in addition, the high temperature combustion exhaust gas inside the reformer container is transferred to the heat exchanger. A conduit for guiding high-temperature combustion exhaust gas to the outside of the reformer vessel after passing through the introduction a, and a bypass branching from the inlet side of the heat exchanger of this conduit and communicating with the outlet side of the heat exchanger of the conduit. A temperature detector for detecting the temperature of the mixed gas of raw material gas and water vapor introduced into the reforming tube ζ2, and a combustion exhaust gas flow line in the pipe which is divided into two on the heat exchanger side C of the conduit. The first to adjust
Compare the control valve @2 provided in the bypass pipe to adjust the flow rate of combustion exhaust gas in the pipe, the detected temperature from the temperature detector and the specified mixed gas temperature, and the comparison result. Since the structure is equipped with a controller that controls the opening degrees of the first control valve and the second control valve, respectively, according to
Extremely reliable, it can save energy and easily control the temperature of the mixed gas of raw material gas and steam introduced into the reforming tube and the temperature of the reformed gas discharged from the reforming tube to an appropriate temperature. A reformer device with high performance can be provided.
第1図は本発明の改質器装置の一実施例を示す系耕図、
第2図は同改質器装置を示す縦断面図、第3図は同改質
器装置を示す平断面図、第4□□□は本発明による熱交
換器内のガス分流板の説明図、第5図は従来の改質器装
置を示す系統図、第6図は従来の改質器本体を示す縦断
面図、第7図は第6図の平断面図である。
1・・・改質器容器 4・・・主バーナ−7・・・
補助バーナー 9・・・改質管1]・・・セラミック
球 14・・・触媒層21・・・熱交換器 2
3・・・高温変成器24・・・熱交換器 27.
28・・・自動調節弁29・・・温度検出器 30
・・・自動制御器:31・・・ガス分流板
代理人 弁鍵士 則 近 憲 佑
同 三俣弘文
第4図
第5図
第6図
第7図FIG. 1 is a system diagram showing an embodiment of the reformer device of the present invention;
Fig. 2 is a longitudinal sectional view showing the reformer device, Fig. 3 is a plan sectional view showing the reformer device, and Fig. 4 is an explanatory diagram of the gas distribution plate in the heat exchanger according to the present invention. , FIG. 5 is a system diagram showing a conventional reformer device, FIG. 6 is a longitudinal sectional view showing a conventional reformer main body, and FIG. 7 is a plan sectional view of FIG. 6. 1... Reformer container 4... Main burner 7...
Auxiliary burner 9...Reforming tube 1]...Ceramic bulb 14...Catalyst layer 21...Heat exchanger 2
3... High temperature transformer 24... Heat exchanger 27.
28... Automatic control valve 29... Temperature detector 30
... Automatic controller: 31 ... Gas distribution plate agent Benkishi Nori Chika Ken Yudo Hirofumi Mitsumata Figure 4 Figure 5 Figure 6 Figure 7
Claims (2)
けられた断面環状の複数本の改質管を改質器容器の内部
に配設し、燃焼用ガスおよび燃焼用空気をバーナにより
燃焼させて得られる高温燃焼排ガスを前記改質管の一端
部よりその外側を通して他端部より外部へ流出させると
共に、原料ガスおよび水蒸気の混合ガスを前記改質管の
他端部より流入させ改質触媒層を通して改質ガスに改質
しさらにその一端部より内側管を通して他端部より流出
させる如く構成された改質器において、前記改質管内に
導入される原料ガスおよび水蒸気の混合ガスと、前記改
質管の外側を通過した後の高温燃焼排ガスおよび前記改
質管より排出される改質ガスとの熱交換を行なう熱交換
器を前記改質器容器の外周側部に設け、かつ、前記熱交
換器の入口部と出口部に多数個の孔を有したガス分流板
を設けるようにしたことを特徴とする燃料電池の改質器
装置。(1) A plurality of reforming tubes each having an annular cross-section, one end of which is sealed and a reforming catalyst layer provided inside, are arranged inside the reformer container, and combustion gas and combustion air are supplied to the burner. The high-temperature combustion exhaust gas obtained by combustion is caused to flow from one end of the reforming tube through the outside to the outside from the other end, and a mixed gas of raw material gas and water vapor is allowed to flow in from the other end of the reforming tube. In a reformer configured to be reformed into reformed gas through a reforming catalyst bed and further flowed out from one end through an inner pipe and the other end, a mixed gas of raw material gas and water vapor introduced into the reforming pipe. and a heat exchanger for exchanging heat between the high-temperature combustion exhaust gas that has passed through the outside of the reforming tube and the reformed gas discharged from the reforming tube, is provided on the outer peripheral side of the reformer container, A fuel cell reformer device characterized in that a gas flow dividing plate having a large number of holes is provided at an inlet portion and an outlet portion of the heat exchanger.
換器へ導入しかつこれを通過した後の高温燃焼排ガスを
改質器容器外部へ導く導管、およびこの導管の前記熱交
換器入口側から分岐しかつ当該導管の前記熱交換器出口
側に連通するバイパス管を夫々設ける構成とし、前記改
質管に導入される原料ガスおよび水蒸気の混合ガスの温
度を検出する温度検出器と、前記導管の熱交換器出口側
に設けられ当該管内の燃焼排ガス流量を調節する第1の
調節弁と、前記バイパス管に設けられ当該管内の燃焼排
ガス流量を調節する第2の調節弁と、前記温度検出器か
らの検出温度と規定の混合ガス温度とを比較し、かつこ
の比較結果に応じて前記第1の調節弁および第2の調節
弁の開度を夫々制御する制御器とを具備して成ることを
特徴とする燃料電池の改質器装置。(2) A conduit for introducing the high-temperature combustion exhaust gas inside the reformer container into the heat exchanger and guiding the high-temperature combustion exhaust gas after passing through the same to the outside of the reformer container, and an inlet of this conduit to the heat exchanger. a temperature detector for detecting the temperature of a mixed gas of raw material gas and water vapor introduced into the reforming pipe, the bypass pipes being branched from the side and communicating with the heat exchanger outlet side of the pipes; a first control valve provided on the heat exchanger exit side of the conduit to adjust the flow rate of combustion exhaust gas in the pipe; a second control valve provided in the bypass pipe to adjust the flow rate of combustion exhaust gas in the pipe; A controller that compares the temperature detected by the temperature detector and a specified mixed gas temperature, and controls the opening degrees of the first control valve and the second control valve, respectively, according to the comparison result. A fuel cell reformer device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60212143A JPS6274448A (en) | 1985-09-27 | 1985-09-27 | Reformer of fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60212143A JPS6274448A (en) | 1985-09-27 | 1985-09-27 | Reformer of fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6274448A true JPS6274448A (en) | 1987-04-06 |
Family
ID=16617600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60212143A Pending JPS6274448A (en) | 1985-09-27 | 1985-09-27 | Reformer of fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6274448A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100417362B1 (en) * | 1995-04-12 | 2004-04-17 | 인터내셔널 퓨얼 셀즈 코포레이션 | Fuel processing apparatus having a furnace for fuel cell power plant |
US7488458B2 (en) * | 2002-03-28 | 2009-02-10 | Robert Bosch Gmbh | Apparatus for converting a hydrocarbon-containing flow of matter |
JP2013067551A (en) * | 2011-08-26 | 2013-04-18 | IFP Energies Nouvelles | Heat exchanger type reactor |
-
1985
- 1985-09-27 JP JP60212143A patent/JPS6274448A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100417362B1 (en) * | 1995-04-12 | 2004-04-17 | 인터내셔널 퓨얼 셀즈 코포레이션 | Fuel processing apparatus having a furnace for fuel cell power plant |
US7488458B2 (en) * | 2002-03-28 | 2009-02-10 | Robert Bosch Gmbh | Apparatus for converting a hydrocarbon-containing flow of matter |
JP2013067551A (en) * | 2011-08-26 | 2013-04-18 | IFP Energies Nouvelles | Heat exchanger type reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4073960B2 (en) | Hydrocarbon steam reforming method | |
US7232553B2 (en) | Plate type steam reformer | |
EP0600621A1 (en) | A combined reformer and shift reactor | |
WO2016119224A1 (en) | Isothermal and low temperature shift converter and shift conversion process thereof | |
KR100968541B1 (en) | fuel processor of fuel cell system | |
WO2021031894A1 (en) | Integrated small to medium-sized natural gas steam reforming reactor, and reforming reaction process | |
CN110316703A (en) | A kind of self-heating preparing hydrogen by reforming methanol reaction system | |
KR20040058180A (en) | Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range | |
KR100286620B1 (en) | Steam reforming type hydrogen production method and apparatus | |
JP2004059415A (en) | Fuel reformer and fuel cell power generation system | |
KR101243767B1 (en) | Hydrogen production system for pemfc | |
WO2010091642A1 (en) | Chemical-looping combustion method and system | |
JPS6274448A (en) | Reformer of fuel cell | |
WO2023221070A1 (en) | Methanol hydrogen production apparatus with self-removal of co and method for using same | |
JPH07106881B2 (en) | Fuel cell reformer device | |
JP4641115B2 (en) | CO remover | |
JPH02188406A (en) | Carbon monoxide converter | |
KR100475587B1 (en) | A Plate type fuel processor for fuel cell | |
JPS60248230A (en) | Catalytic combustion type reactor | |
KR101205538B1 (en) | A solid oxide fuel cell system | |
JPH01264903A (en) | Apparatus for reforming hydrocarbon | |
JPH04108601A (en) | Methanol reforming method utilizing waste heat and waste heat recovery-type methanol reformer | |
JPS61256903A (en) | Reforming device | |
JPS61227902A (en) | Reforming apparatus | |
JPS6256304A (en) | Reformer device for fuel cell |