JPH04108601A - Methanol reforming method utilizing waste heat and waste heat recovery-type methanol reformer - Google Patents

Methanol reforming method utilizing waste heat and waste heat recovery-type methanol reformer

Info

Publication number
JPH04108601A
JPH04108601A JP2229862A JP22986290A JPH04108601A JP H04108601 A JPH04108601 A JP H04108601A JP 2229862 A JP2229862 A JP 2229862A JP 22986290 A JP22986290 A JP 22986290A JP H04108601 A JPH04108601 A JP H04108601A
Authority
JP
Japan
Prior art keywords
exhaust gas
methanol
reaction
heat transfer
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2229862A
Other languages
Japanese (ja)
Other versions
JPH0794321B2 (en
Inventor
Nobutaka Tsuchimoto
土本 信孝
Yutaka Nakao
豊 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Research and Development Co Ltd
Original Assignee
Takuma Research and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Research and Development Co Ltd filed Critical Takuma Research and Development Co Ltd
Priority to JP2229862A priority Critical patent/JPH0794321B2/en
Publication of JPH04108601A publication Critical patent/JPH04108601A/en
Publication of JPH0794321B2 publication Critical patent/JPH0794321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

PURPOSE:To reform methanol at a low cost by providing an air-diffusible radiation promoter close to a material forming a reaction space packed with a reforming catalyst, bringing the heating waste gas into contact with the material through the promoter and transmitting heat with high efficiency. CONSTITUTION:A reaction tube 7 is packed with a reforming catalyst 14, and an air-diffusible radiation promoter 2 is provided close to the wall 3 of the reaction tube. A raw gas S contg. methanol is passed through the reaction tube 7 from an inlet nozzle 12, the high-temp. waste gas O is introduced from an inlet nozzle 5, passed through the promoter 2 and brought into contact with the wall 3, and the heat retained by the waste gas O is transmitted to the reaction tube 7 with high efficiency. Consequently, the raw gas contg. methanol is heated to reform the methanol into a reformed gas T enriched with hydrogen which is discharged from an outlet nozzle 13. The energy recovery rate of the waste gas is increased in this way, and the reformer is miniaturized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガスエンジン設備、ガスタービン設備。[Detailed description of the invention] (Industrial application field) The present invention relates to gas engine equipment and gas turbine equipment.

燃料電池設備等に於いて使用する排熱を利用するメタノ
ール改質方法及び排熱回収型メタノール改質装置の改良
に係り、改質器内全域を最適な改質反応温度に維持する
ことにより、改質性能並びに作動の安定性の向上を可能
とした排熱回収型メタノール  改質システへに関する
ものである。
Regarding the improvement of the methanol reforming method and exhaust heat recovery type methanol reformer that utilize waste heat used in fuel cell equipment, etc., by maintaining the entire area inside the reformer at the optimal reforming reaction temperature, This paper relates to an exhaust heat recovery methanol reforming system that enables improved reforming performance and operational stability.

(従来の技術) ガスエンジンやガスタービンの排気熱を利用してメタノ
ールを改質反応させ、増熱された改質ガスをガスエンジ
ンやガスタービンの燃料として用いる方法は公知である
(時開52−113426゜時開59−77014.特
開平1−244123等)。
(Prior Art) A method is known in which methanol is subjected to a reforming reaction using the exhaust heat of a gas engine or gas turbine, and the heated reformed gas is used as fuel for the gas engine or gas turbine. -113426° time opening 59-77014. JP-A-1-244123, etc.).

また、燃料電池の燃料極からの未反応燃料の燃焼熱を利
用してメタノールを改質反応させ、水素リッチな改質ガ
スを燃料電池用燃料として用いる方法も公知である(特
開昭60−258865゜特開昭64−5901等)。
Additionally, a method is known in which methanol is subjected to a reforming reaction using the combustion heat of unreacted fuel from the fuel electrode of the fuel cell, and the hydrogen-rich reformed gas is used as a fuel for the fuel cell (Japanese Unexamined Patent Application Publication No. 1983-1992). 258865° JP-A-64-5901, etc.).

ところで、一般的にメタノールの改質反応と呼ばれてい
るものには次のA及びBの二とおりの反応があるが、通
常あまり厳格に呼称の区別はされていない。
Incidentally, what is generally called the methanol reforming reaction includes the following two reactions A and B, but the names are not usually distinguished very strictly.

(A)メタノールの分解反応(理想反応)CH,0H−
)CO+2H2・・・(1)(ΔH,,=:21.7K
caQ/mo12)CH3OH+n H20→(2+ 
n ) HZ +(1−n)CO+nCO2−(2) ここでO<n<1 (B)メタノールの水蒸気改質反応(理想反応)CH,
OH+ m H,○−)3H2+C○2十(m−1)H
,○ (△H2,= 11.8Kca12/+moQ)−(3
)二二でm≧1 従来の技術では、ガスエンジンシステムに於いてはAの
方法が、またガスタービンシステムや燃料電池システム
に於いてはBの方法が夫々多く採用されている。
(A) Methanol decomposition reaction (ideal reaction) CH, 0H-
)CO+2H2...(1)(ΔH,,=:21.7K
caQ/mo12) CH3OH+n H20→(2+
n) HZ +(1-n)CO+nCO2-(2) where O<n<1 (B) Steam reforming reaction of methanol (ideal reaction) CH,
OH+ m H,○-)3H2+C○20(m-1)H
,○ (△H2,= 11.8Kca12/+moQ)-(3
)22 and m≧1 In the conventional technology, method A is often used in gas engine systems, and method B is often used in gas turbine systems and fuel cell systems.

また、(A)の分解反応であれ或いは(B)の水蒸気改
質反応であれ、改質装置の熱交換方式には■排ガスとの
直接熱交換方式と、■間接熱交検力式(排ガスと熱交換
した蒸気或いは油等の熱媒を循環して改質装置の加熱源
とする)とがあるが、いずれにしても改質装置の触媒層
内に温度斑が無いようにする必要があり、特に多管方式
の場合には、各反応管への伝熱量ができるだけ等しくな
るように構造上の工夫を施す必要がある。
In addition, whether it is the decomposition reaction (A) or the steam reforming reaction (B), the heat exchange method of the reformer is: (1) Direct heat exchange method with exhaust gas, (2) Indirect heat exchange method (exhaust gas (The heat medium such as steam or oil that has been heat exchanged with the reformer is circulated and used as a heating source for the reformer.) However, in any case, it is necessary to ensure that there are no temperature irregularities in the catalyst layer of the reformer. Especially in the case of a multi-tube system, it is necessary to take structural measures to make the amount of heat transferred to each reaction tube as equal as possible.

更に、改質装置にバーナを設けて燃料の燃焼熱を利用す
る場合には、火炎による局部加熱によって反応管の熱損
傷や充填触媒の熱劣化等が生ずるのを避ける工夫が必要
になる。
Furthermore, when a burner is provided in the reformer to utilize the combustion heat of the fuel, it is necessary to take measures to avoid thermal damage to the reaction tubes and thermal deterioration of the packed catalyst due to local heating caused by the flame.

(発明が解決しようとする課題) しかし、従来用いられている熱媒循環型の熱交換方式で
は、改質器の触媒層内の各部の温度が比較的均一となり
、局部加熱ができにくいという特徴をもっている反面、
システムが複雑になって装置が大形化し、/JX容量の
装置(例えば水素発生量500 Nm3/H以下)やコ
ンパクトな可搬式装置には適用し難いという難点がある
(Problem to be solved by the invention) However, in the conventionally used heat exchange type heat exchange method, the temperature of each part in the catalyst layer of the reformer is relatively uniform, and local heating is difficult to achieve. On the other hand,
The problem is that the system becomes complicated and the device becomes large, and it is difficult to apply it to a device with a /JX capacity (for example, a hydrogen generation amount of 500 Nm3/H or less) or a compact portable device.

また、排ガスとの直接熱交換方式に於いても、300℃
〜600℃程度の排ガス温度では排ガスと反応管との放
射熱伝達係数が小さいので、伝熱の形態としては接触熱
伝達による伝熱を主にした熱交換器の設計にせざるをえ
ない6 ところが、排ガスそのものが流れ方向に温度勾配を生じ
ている関係上、触媒層内の各部の温度が不均一になり易
いうえ、触媒層にも排ガスの流れ方向に温度勾配が生じ
るという不都合がある。
In addition, even in the direct heat exchange method with exhaust gas,
At an exhaust gas temperature of ~600°C, the radiation heat transfer coefficient between the exhaust gas and the reaction tube is small, so it is necessary to design a heat exchanger that uses contact heat transfer as the main form of heat transfer6. Since the exhaust gas itself has a temperature gradient in the flow direction, the temperature of each part within the catalyst layer tends to be non-uniform, and there is also a disadvantage that a temperature gradient occurs in the catalyst layer in the flow direction of the exhaust gas.

一方、直接熱交換方式に於ける上述の如き欠点を解消す
るため、第5図に示す如く改質器A内を複数の室ts1
,62.$3及び#4に画成し、各室へ供給するメタノ
ール量B、、 Bz、 B1.B4をコントローラCに
より各室の温度に応じて制御する方式が開発されている
(特公昭58−7822号等)。
On the other hand, in order to eliminate the above-mentioned drawbacks of the direct heat exchange method, the inside of the reformer A is divided into multiple chambers ts1 as shown in FIG.
,62. The amount of methanol defined in $3 and #4 and supplied to each chamber B,, Bz, B1. A system has been developed in which B4 is controlled by a controller C according to the temperature of each room (Japanese Patent Publication No. 7822/1983, etc.).

しかし、この特公昭58−7822号の技術にあっても
、改質器全体の伝熱面積や充填触媒量の面から判断して
、コンパクトで効率的な設計が可能とは到底言えないも
のになっている。尚、第5ある。
However, even with the technology disclosed in Japanese Patent Publication No. 58-7822, it cannot be said that a compact and efficient design is possible, judging from the heat transfer area of the entire reformer and the amount of catalyst packed. It has become. Furthermore, there is a fifth one.

(課題を解決するための手段) 本発明は、上述の如き従来技術の欠点を解消するため、
■排ガスとの直接熱交換方式をとってシステムを簡単化
すると共に、■改質器内の排ガス通路に輻射伝熱促進体
を設置して伝熱性を高めることにより、装置を小型コン
パクトにし、■更に。
(Means for Solving the Problems) In order to eliminate the drawbacks of the prior art as described above, the present invention has the following features:
■In addition to simplifying the system by using a direct heat exchange method with the exhaust gas, ■Installing a radiation heat transfer accelerator in the exhaust gas passage in the reformer to improve heat transfer, the device is made smaller and more compact.■ Furthermore.

複数ある反応管への伝熱量がほぼ均一になるような改質
器の構造とすることにより、改質器内全域を最適な改質
反応温度に維持して改質特性を高めると共に、安定した
作動性能を得られるようにした。排熱を利用するメタノ
ール改質方法と、排熱回収型メタノール改質装置を提供
するものである。
By structuring the reformer so that the amount of heat transferred to the multiple reaction tubes is almost uniform, the entire area inside the reformer is maintained at the optimal reforming reaction temperature, improving reforming characteristics and achieving stable It was possible to obtain operational performance. The present invention provides a methanol reforming method that utilizes exhaust heat and an exhaust heat recovery type methanol reformer.

即ち、本件方法発明は、メタノールを含む原料ガスを改
質反応触媒が充填された反応空間へ通し乍ら、外部より
排ガスにより加熱して水素リッチなメタノール改質ガス
を得るようにした排熱を利用するメタノール改質方法に
おいて、前記反応空間の形成材の近傍位置に通気性の輻
射伝熱促進体を配設すると共に、当該輻射伝熱促進体を
貫通して加熱用排ガスを反応空間の形成材へ接触自在に
流通させ、輻射伝熱促進体から反応空間の形成材へ熱量
を高効率で伝熱するようにしたことを発明の基本構成と
するものである。
That is, the present method invention involves passing raw material gas containing methanol into a reaction space filled with a reforming reaction catalyst, while heating the exhaust gas from the outside to obtain hydrogen-rich methanol reformed gas. In the methanol reforming method to be used, an air-permeable radiant heat transfer promoter is disposed near the reaction space forming material, and the heating exhaust gas is passed through the radiation heat transfer promoter to form the reaction space. The basic structure of the invention is that the radiation heat transfer accelerator is made to flow freely in contact with the material, and the amount of heat is transferred with high efficiency from the radiation heat transfer promoter to the material forming the reaction space.

また、請求項(5)に記載の本件装置発明は、排ガス流
入ノズルと排ガス流出ノズルを夫々備えた筒状の外部ケ
ーシングと;改質反応触媒が充填され且つメタノールを
含む原料ガスが流通する複数の反応管の各上端部及び各
下端部を上部リングヘソダ及び下部リングヘッダへ夫々
接続して成り。
Further, the present device invention as set forth in claim (5) includes: a cylindrical outer casing provided with an exhaust gas inflow nozzle and an exhaust gas outflow nozzle, respectively; The upper and lower ends of the reaction tubes are respectively connected to an upper ring header and a lower ring header.

前記外部ケーシング内へ配設した筒状の反応管壁と;外
部ケーシング内へ前記筒状反応管壁と同芯状に且つ前記
排ガス流入ノズルと連通状に配設した通気性を有する筒
状の輻射伝熱促進体とから構成され、排ガス流入ノズル
から流入した排ガスを輻射伝熱促進体を貫通せしめて反
応管壁へ接触自在に流通させ、輻射伝熱促進体から反応
管へ熱量を高効率で伝熱することを発明の基本構成とす
るものである。
a cylindrical reaction tube wall disposed inside the outer casing; a cylindrical gas permeable tube disposed inside the outer casing concentrically with the cylindrical reaction tube wall and in communication with the exhaust gas inflow nozzle; The exhaust gas flowing from the exhaust gas inflow nozzle passes through the radiation heat transfer promoter and flows freely to the reaction tube wall, thereby transferring the amount of heat from the radiation heat transfer promoter to the reaction tube with high efficiency. The basic structure of the invention is to transfer heat by .

更に、本件請求項(11)に記載の本件装置発明は。Furthermore, the present device invention described in claim (11) is as follows.

排ガス流入ノズルと排ガス流出ノズルを備えた筒状の外
部ケーシングと;改質反応触媒が充填さ九且つメタノー
ルを含む原料ガスが流通する空間部を形成する二重筒体
の上部開口及び下部開口へ上部リングヘッダ及び下部リ
ングヘッダを夫々接続して成り、前記外部ケーシング内
へ配設した筒状の反応管壁と;外部ケーシング内へ前記
筒状反応管壁と同芯状に且つ前記排ガス流入ノズルと連
通状に配設した通気性を有する筒状の輻射伝熱促進体と
から構成され、排ガス流入ノズルから流入した排ガスを
輻射伝熱促進体を通過せしめて反応管壁へ接触自在に貫
通させ、輻射伝熱促進体から反応管壁へ熱量を高効率で
伝熱することを発明の基本構成とするものである。
A cylindrical outer casing equipped with an exhaust gas inflow nozzle and an exhaust gas outflow nozzle; and an upper opening and a lower opening of a double cylindrical body that is filled with a reforming reaction catalyst and forms a space through which raw material gas containing methanol flows. a cylindrical reaction tube wall formed by connecting an upper ring header and a lower ring header and disposed in the outer casing; and an exhaust gas inflow nozzle concentrically with the cylindrical reaction tube wall into the outer casing; and a cylindrical radiation heat transfer promoter with air permeability arranged in communication with each other, the exhaust gas flowing from the exhaust gas inflow nozzle is allowed to pass through the radiation heat transfer promoter and penetrate the reaction tube wall so as to be able to freely contact the reaction tube wall. The basic structure of the invention is to transfer heat from the radiation heat transfer promoter to the reaction tube wall with high efficiency.

(作用) 伝熱促進体2を貫通したあと、反応空間の形成材である
反応管7に沿って流通し、排ガス流出ノズル4から外部
へ排出される。
(Function) After passing through the heat transfer promoter 2, the gas flows along the reaction tube 7, which is the material forming the reaction space, and is discharged to the outside from the exhaust gas outflow nozzle 4.

各反応管7は、前記高放射率の輻射伝熱促進体2からの
輔射熱と排ガスOの接触伝熱によってほぼ均一に加熱さ
れ、これにより反応管7内に充填された改質反応触媒1
4が加熱される6一方、原料ガス流入ノズル12より供
給された原料ガスSは反応空間を形成する各反応管7内
へほぼ均等に供給される。各反応管7内へ供給された原
料ガスは、充填された改質反応触媒14と接触しつつ流
通する間に、所謂分解反応若しくは水蒸気改質反応を受
けて改質され1発生したメタノール改質ガスTが流出ノ
ズル13より外部へ取り呂されて行く。
Each reaction tube 7 is heated almost uniformly by contact heat transfer between the radiant heat from the high-emissivity radiant heat transfer promoter 2 and the exhaust gas O, and as a result, the reforming reaction catalyst filled in the reaction tube 7 1
On the other hand, the raw material gas S supplied from the raw material gas inflow nozzle 12 is almost equally supplied into each reaction tube 7 forming the reaction space. The raw material gas supplied into each reaction tube 7 is reformed through a so-called decomposition reaction or steam reforming reaction while flowing while coming into contact with the reforming reaction catalyst 14 filled in it. Gas T is taken out from the outflow nozzle 13.

(実施例) 以下1本発明の実施例を図面に基づいて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

面図である。It is a front view.

第1図及び第2図に於いて、1は密閉筒形の外部ケーシ
ング、2は外部ケーシング1の中央部に同芯状に立設し
た円筒状の輻射伝熱促進体、3は外部ケーシング1と輻
射伝熱促進体2との間に同芯状に立設した反応管壁3で
あり、反応管壁3の両側空間が排ガス流MP、Qとなっ
ている。
In FIGS. 1 and 2, 1 is a closed cylindrical outer casing, 2 is a cylindrical radiation heat transfer accelerator disposed concentrically in the center of the outer casing 1, and 3 is the outer casing 1. A reaction tube wall 3 is installed concentrically between the reactor tube wall 3 and the radiation heat transfer promoter 2, and spaces on both sides of the reaction tube wall 3 form exhaust gas flows MP and Q.

前記外部ケーシング1は鋼板及び断熱材等から形成され
ており、その下方側部には排ガス流出ノズル4が設けら
れている。また、外部ケーシング1の下方部には前記輻
射伝熱促進体2に連通する排ガス流入ノズル5が、更に
、外部ケーシング1の上方部には輻射伝熱促進体2の出
し入れ口が夫々設けられており、常時は蓋体6により密
閉されている。
The outer casing 1 is made of a steel plate, a heat insulating material, etc., and is provided with an exhaust gas outflow nozzle 4 on its lower side. Further, an exhaust gas inflow nozzle 5 communicating with the radiant heat transfer promoter 2 is provided in the lower part of the outer casing 1, and an inlet/outlet for the radiant heat transfer promoter 2 is provided in the upper part of the outer casing 1. It is normally sealed with a lid 6.

前記輻射伝熱促進体2は、排ガス最高温度に耐えしかも
放射率の高い多孔質の金属発泡体や金属調の積層体、多
孔質のセラミックス材等により中空円筒状に形成されて
おり、前記排ガス流入ノズル5に連通せしめて外部ケー
シング1の中央部に、これと同芯状に配設されている。
The radiation heat transfer accelerator 2 is formed into a hollow cylindrical shape of a porous metal foam, a metal-like laminate, a porous ceramic material, etc. that can withstand the maximum temperature of the exhaust gas and has a high emissivity. It is connected to the inflow nozzle 5 and is disposed in the center of the outer casing 1 concentrically therewith.

前記反応管壁3は、複数本の反応管7と反応管7の相互
間を連結する排ガス流規制バッフル8とから円筒形に形
成されている。即ち、反応空間の形成材である複数本の
反応管7は、前記円筒状の輻射伝熱促進体2の外側近傍
にこれと同芯状に配列されている。
The reaction tube wall 3 is formed into a cylindrical shape by a plurality of reaction tubes 7 and an exhaust gas flow regulating baffle 8 that connects the reaction tubes 7 with each other. That is, the plurality of reaction tubes 7, which form the reaction space, are arranged concentrically near the outside of the cylindrical radiation heat transfer promoter 2.

前記各反応管7の上端部はリング状の上部ヘッダ9に、
また、各反応管7の下端部はリング状の下部ヘッダ10
に夫々連通されており、更に1反応管壁3を構成する排
ガス規制バッフル8は反応管7よりも若干短く選定され
ており、これによって反応管壁3の上方部には、流路P
から流路Qへ排ガス0が流通するための流路11が形成
されている。
The upper end of each reaction tube 7 is connected to a ring-shaped upper header 9,
Further, the lower end of each reaction tube 7 is provided with a ring-shaped lower header 10.
Further, the exhaust gas control baffle 8 constituting one reaction tube wall 3 is selected to be slightly shorter than the reaction tube 7, so that the upper part of the reaction tube wall 3 has a flow path P.
A flow path 11 is formed through which exhaust gas 0 flows from the flow path Q to the flow path Q.

尚、第1図に於いて12は上部リングヘッダ9に設けら
れた原料ガス流入ノズル、13は下部リングヘッダ10
に設けられた改質ガス流出ノズル、14は反応管7内に
充填された改質反応触媒、Sは原料ガス、Tはメタノー
ル改質ガスである6第3図は本発明の第2実施例に係る
排熱回収型メタノール改質装置の縦断面概要図であり、
排ガス○の流入方向やその流れ方向、原料ガスの流れ方
向を前記第1図の場合と逆にした場合を示すものである
In addition, in FIG. 1, 12 is a raw material gas inflow nozzle provided in the upper ring header 9, and 13 is a lower ring header 10.
14 is a reforming reaction catalyst filled in the reaction tube 7, S is a raw material gas, and T is a methanol reformed gas. 6 Fig. 3 shows a second embodiment of the present invention. 1 is a vertical cross-sectional schematic diagram of an exhaust heat recovery type methanol reformer according to
This figure shows a case where the inflow direction of the exhaust gas ○, its flow direction, and the flow direction of the raw material gas are reversed from those shown in FIG. 1 above.

また、第4図は本発明の第3実施例に係る装置の横断面
概要図であり1反応空間の構造が前記第1実施例と若干
具なっている。即ち、本実施例にあっては2反応空間が
同芯状に配列した二個の筒体15.16とから形成され
ており、両筒体15゜16の間に改質反応触媒14が充
填されている。
Further, FIG. 4 is a schematic cross-sectional view of an apparatus according to a third embodiment of the present invention, and the structure of one reaction space is slightly different from that of the first embodiment. That is, in this embodiment, two reaction spaces are formed from two cylinders 15 and 16 arranged concentrically, and the reforming reaction catalyst 14 is filled between the cylinders 15 and 16. has been done.

また、反応空間を形成する筒体15.16の上方部に、
排ガス流路11が形成されていることは勿論である。
In addition, in the upper part of the cylinder 15.16 forming the reaction space,
Of course, the exhaust gas flow path 11 is formed.

次に、本発明に係る排熱回収型メタノール改質装置の作
動を第1実施例に基づいて説明する。
Next, the operation of the exhaust heat recovery type methanol reformer according to the present invention will be explained based on the first embodiment.

原料ガスS、即ちメタノール(分解反応の場合)或いは
メタノールと水の混合物(水蒸気改質の場合)の過熱蒸
気(例えば200℃〜350℃)は、原料ガス流入ノズ
ル12より上部リングヘッダ9内へ導入され、複数本の
反応管7へほぼ均等に分配される。この原料ガスSが改
質反応触媒14の充填された各反応管7内を下部リング
ヘッダ10に向けて流通する間に改質反応が進行し、改
質ガス流出ノズル13より改質ガスTとして取り出され
る。
The raw material gas S, that is, the superheated steam (for example, 200° C. to 350° C.) of methanol (in the case of decomposition reaction) or a mixture of methanol and water (in the case of steam reforming) flows into the upper ring header 9 from the raw material gas inflow nozzle 12. It is introduced and distributed almost equally into the plurality of reaction tubes 7. While this raw material gas S flows through each reaction tube 7 filled with the reforming reaction catalyst 14 toward the lower ring header 10, the reforming reaction progresses, and the reformed gas T is released from the reformed gas outflow nozzle 13. taken out.

このメタノールの分解反応あるいは水蒸気改質反応は吸
熱反応なので、反応管7の外部より加熱を行なう必要が
ある。
Since this methanol decomposition reaction or steam reforming reaction is an endothermic reaction, it is necessary to heat the reaction tube 7 from outside.

本発明は、この加熱源にガスエンジンやガスタービンそ
の他の装置・機器からの300℃−600℃程度の中温
の排ガスOを有効に利用しようとするものであり、排ガ
ス○は流入ノズル5より改質器に導入され、中空円筒型
の輻射伝熱促進体2の内筒部より外筒部に向けて、多孔
質な輻射伝熱促進体2内を貫通して排ガス通路P内へ流
れ込む。
The present invention attempts to effectively use exhaust gas O at a medium temperature of about 300°C to 600°C from gas engines, gas turbines, and other equipment/equipment as the heating source, and the exhaust gas ○ is modified from the inflow nozzle 5. The gas is introduced into the exhaust gas passage P, passes through the porous radiation heat transfer promoter 2 from the inner cylinder to the outer cylinder of the hollow cylindrical radiation heat transfer promoter 2, and flows into the exhaust gas passage P.

排ガス通路P内へ入った排ガスOは1反応管7および排
ガス流規制バッフル8から成る反応管壁3に規制されて
、排ガス通路P内を上方へ流れ、上部のバッフル8の欠
けている通路11を通って排ガス通路Q内へターンし、
通路Qを上から下へ流れながら排ガス流出ノズル4より
排気される。
The exhaust gas O that has entered the exhaust gas passage P is regulated by the reaction tube wall 3 consisting of a reaction tube 7 and an exhaust gas flow regulating baffle 8, and flows upward in the exhaust gas passage P, until it reaches the passage 11 where the upper baffle 8 is missing. Turn into the exhaust gas passage Q through the
The exhaust gas flows through the passage Q from top to bottom and is exhausted from the exhaust gas outflow nozzle 4.

このとき、輻射伝熱促進体2には利用する排ガス温度の
最高温度に耐え、かつ放射率の大きい材質が使用されて
いるため、反応管壁3への放射伝熱が促進され、かつ各
反応管7への伝熱量も大むね均一とすることができる。
At this time, since the radiation heat transfer promoter 2 is made of a material that can withstand the maximum temperature of the exhaust gas used and has a high emissivity, radiation heat transfer to the reaction tube wall 3 is promoted and each reaction The amount of heat transferred to the tube 7 can also be made generally uniform.

尚、第1表は各種材料の放射率を示すものである。Incidentally, Table 1 shows the emissivity of various materials.

ここで、物体から放射される熱放射エネルギーと、その
伝達のしくみについて概要する。
Here, we will outline the thermal radiation energy radiated from objects and the mechanism of its transmission.

(1)先ず、−様温度の灰色ガス体表面から単位面積・
単位時間当たり放射さ九る熱放射エネルギーは、次のよ
うに表される。
(1) First, from the surface of the gray gas body at -like temperature,
The thermal radiant energy radiated per unit time is expressed as:

E=fg(S)−〆、rg(にcaQ/mh)但し E
;熱放射エネルギー(Kca Q /ボh)6g(s)
 ;ガスの指向放射率 ♂;ステファンボルツマン定数 (4,88X 10−’Kca n / m h ’に
’)Tg:ガス温度    (°K) また、6g(s)はガス体の種類、温度(Tg) 。
E=fg(S)-〆, rg(nicaQ/mh) However, E
; Thermal radiant energy (Kca Q / Boh) 6g (s)
; Directional emissivity of gas ♂ ; Stefan Boltzmann constant (4,88 ).

分圧(P)、ガス体層厚さ(S)により定まる。It is determined by the partial pressure (P) and the gas body layer thickness (S).

(2)  次に、−様温度の灰色固体表面から単位面積
・単位時間当たり放射される熱放射エネルギーは次のよ
うに表される。
(2) Next, the thermal radiation energy radiated per unit area and unit time from the surface of a gray solid at -like temperature is expressed as follows.

E=Ew−r ・Tw’(Kcau/mh)但し、E;
熱放射エネルギー(Kca Q / m h )εW;
固体表面放射率 〆 ;ステファンポルツマン定数 (4,88X 10−” )にca Q / rd h
 ’に+)Tw;固体表面温度  (°K) また、εWは固体の種類、表面状況、温度により定まる
E=Ew-r ・Tw' (Kcau/mh) However, E;
Thermal radiation energy (Kca Q / m h) εW;
Solid surface emissivity: Stephan-Polzmann constant (4,88X 10-”) ca Q / rd h
Tw; solid surface temperature (°K) εW is determined by the type of solid, surface condition, and temperature.

促進体が無い場合のガス放熱による場合の伝熱量は次の
ようになる。
The amount of heat transferred by gas heat radiation in the absence of a promoter is as follows.

但し、排ガス温度: 500℃、排ガス成分:CO21
0%、H2O10%、残N ’x 及び02゜反応管壁
温度:300℃、ガス体層厚さ=0.8m (反応管壁
3の内径約1,000φ)とする。また、このときのt
g(s)は約0.15となる。
However, exhaust gas temperature: 500℃, exhaust gas component: CO21
0%, H2O 10%, remaining N'x and 02°. Reaction tube wall temperature: 300°C, gas layer thickness = 0.8 m (inner diameter of reaction tube wall 3 approximately 1,000φ). Also, at this time t
g(s) is approximately 0.15.

排ガス0から反応管7への熱放射伝熱量は近似的に次式
で表わされる。
The amount of heat radiant heat transferred from the exhaust gas 0 to the reaction tube 7 is approximately expressed by the following equation.

ΔQ = t g (s)・(’直Tg’−Tw’)上
記値を代入すると△Q弁1,800 Kca Q/イh
となる。
ΔQ = t g (s)・('Direct Tg'-Tw') Substituting the above value, ΔQ valve 1,800 Kca Q/Ih
becomes.

(4)最後に、第1図に示す本件発明に係る改質器で輻
射伝熱促進体2を設置した場合の伝熱量は次のようにな
る。
(4) Finally, the amount of heat transferred when the radiation heat transfer accelerator 2 is installed in the reformer according to the present invention shown in FIG. 1 is as follows.

いま、排ガス温度を500℃(従って輻射伝熱促進体の
表面温度TB=500℃)、反応管の管壁温度を300
℃とする。
Now, the exhaust gas temperature is 500°C (therefore, the surface temperature TB of the radiation heat transfer promoter = 500°C), and the reaction tube wall temperature is 300°C.
℃.

また、輻射伝熱促進体を20−25ステンレス(SO5
31O5)製メッシュ金網を多重にしたものを高温酸化
処理したもの(表1よりεa4o、9となる)とする。
In addition, the radiation heat transfer promoter is 20-25 stainless steel (SO5
31O5) was subjected to high-temperature oxidation treatment (εa4o, 9 from Table 1).

更に、輻射伝熱促進体2から反応管7までの距離を1o
a11前後とすると、その間でのガス体0における熱放
射エネルギー吸収は無視できて、輻射伝熱促進体2から
反応管7への熱放射伝熱量は、近似的に次式で表される
Furthermore, the distance from the radiation heat transfer promoter 2 to the reaction tube 7 is set to 1o.
If it is around a11, the thermal radiation energy absorption in the gas body 0 during that period can be ignored, and the amount of thermal radiation heat transferred from the radiation heat transfer promoter 2 to the reaction tube 7 is approximately expressed by the following equation.

ΔQ=sB−(7’(TB’−Tw’)ここで、上記各
値を代入すると、△Q#10 900Kca12/rr
rhとなる。
ΔQ=sB-(7'(TB'-Tw') Here, by substituting each value above, ΔQ#10 900Kca12/rr
It becomes rh.

このように、排ガスOの顕熱を利用したメタノール改質
装置において、輻射伝熱促進体2をうまく設置すると、
設置しない場合に比べて格段に反応管7への伝熱量が約
5〜7倍増大することになる。
In this way, in a methanol reformer that utilizes the sensible heat of exhaust gas O, if the radiation heat transfer promoter 2 is installed properly,
The amount of heat transferred to the reaction tube 7 is significantly increased by about 5 to 7 times compared to the case where it is not installed.

(発明の効果) 本件発明に於いては1原料ガス0が流通し且つ改質反応
触媒を充填した反応空間の形成材の近傍に、高放射率の
多孔質性輻射伝熱促進体2を配設すると共に、当該輻射
伝熱促進体2を貫通せしめた後の排ガスを反応空間形成
材に沿って流通させる構成としているため、排ガスの保
有する顕熱を有効に反応空間の形成材へ伝熱することが
出来、排ガスのエネルギー回収率が向上すると共に装置
の大幅な小形化が可能となる6 また、本発明に於いては、多孔質性の輻射伝熱促進体2
を円筒状に形成すると共にこれと同芯状に反応空間を形
成する反応管7(又は筒体15゜16)を配設し、排ガ
ス0を輻射伝熱促進体2の内方から外方へ向けて貫通さ
せる構成としているため、各反応管7への伝熱量は夫々
はぼ均一となり、触媒充填量の面からも改質反応のより
効率的な設計が可能となる。
(Effect of the invention) In the present invention, a porous radiation heat transfer accelerator 2 with a high emissivity is disposed near the forming material of the reaction space through which the raw material gas 0 flows and is filled with a reforming reaction catalyst. At the same time, the structure is such that the exhaust gas after passing through the radiation heat transfer accelerator 2 is circulated along the reaction space forming material, so that the sensible heat possessed by the exhaust gas is effectively transferred to the reaction space forming material. In addition, in the present invention, the porous radiation heat transfer promoter 2
is formed into a cylindrical shape, and a reaction tube 7 (or cylindrical body 15° 16) is arranged concentrically therewith to form a reaction space, and exhaust gas 0 is directed from the inside of the radiation heat transfer promoter 2 to the outside. Since the structure is such that the tubes 7 pass through the tubes, the amount of heat transferred to each reaction tube 7 is approximately uniform, and it is possible to design the reforming reaction more efficiently in terms of the amount of catalyst packed.

更に、本発明に於いては、排ガスとの直接熱交換方式を
採用しているため、従来の熱媒体油循環方式に比べてシ
ステムを簡単にでき、設備費を大幅に低減できる。
Furthermore, since the present invention employs a direct heat exchange method with exhaust gas, the system can be simplified compared to the conventional heat medium oil circulation method, and equipment costs can be significantly reduced.

本発明は上述の通り、装置の小形・コンパクト化や熱回
収率の向上、改質効率の向上等の面で優れた実用的効用
を奏するものである。
As described above, the present invention has excellent practical effects in terms of downsizing and compactness of the apparatus, improvement of heat recovery rate, improvement of reforming efficiency, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本件発明の第1実施例に係る排熱回収型メタノ
ール改質装置の縦断面概要図であり、第2図は第1図の
A−A視断面図である。 第3図は本発明の第2実施例に係る装置の縦断面概要図
である。 第4図は本発明の第3実施例に係る装置の横断面概要図
である。 第5図は、従前の排熱回収型メタノール改質装置に於け
る排ガス直接熱交換方式の説明図である。 1 外部ケーシング 2 輻射伝熱促進体 3 反応管壁 4 排ガス流出ノズル 5 排ガス流入ノズル 6 輻射伝熱促進体の出し入れロ ア 反応管 8 排ガス流規制バッフル 15゜ −Q ○ 上部リングヘッダ 下部リングヘッダ 排ガス流路 原料ガス流入ノズル 改質ガス流出ノズル 改質反応触媒 16 金属製筒体 排ガス通路 排ガス 原料ガス メタノール改質ガス
FIG. 1 is a schematic vertical cross-sectional view of an exhaust heat recovery type methanol reformer according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. FIG. 3 is a schematic vertical cross-sectional view of an apparatus according to a second embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of an apparatus according to a third embodiment of the present invention. FIG. 5 is an explanatory diagram of the exhaust gas direct heat exchange method in the conventional exhaust heat recovery type methanol reformer. 1 External casing 2 Radiant heat transfer accelerator 3 Reaction tube wall 4 Exhaust gas outflow nozzle 5 Exhaust gas inflow nozzle 6 Radiant heat transfer accelerator loading/unloading lower Reaction tube 8 Exhaust gas flow regulating baffle 15°-Q ○ Upper ring header Lower ring header Exhaust gas flow Path raw material gas inflow nozzle Reformed gas outflow nozzle Reforming reaction catalyst 16 Metal cylindrical body Exhaust gas passage Exhaust gas Raw material gas Methanol Reformed gas

Claims (11)

【特許請求の範囲】[Claims] (1)メタノールを含む原料ガスを改質反応触媒が充填
された反応空間へ通し乍ら、外部より排ガスにより加熱
して水素リッチなメタノール改質ガスを得るようにした
排熱を利用するメタノール改質方法において、前記反応
空間の形成材の近傍位置に通気性の輻射伝熱促進体を配
設すると共に、当該輻射伝熱促進体を貫通して加熱用排
ガスを反応空間の形成材へ接触自在に流通させ、輻射伝
熱促進体から反応空間の形成材へ熱量を高効率で伝熱す
るようにした排熱を利用するメタノール改質方法。
(1) A methanol reformer that uses exhaust heat to obtain hydrogen-rich methanol reformed gas by passing raw material gas containing methanol into a reaction space filled with a reforming reaction catalyst and heating it with exhaust gas from the outside. In this method, an air-permeable radiant heat transfer accelerator is disposed near the reaction space forming material, and the heating exhaust gas can freely contact the reaction space forming material by penetrating the radiant heat transfer accelerator. A methanol reforming method that utilizes waste heat that is circulated through the radiant heat transfer accelerator to transfer heat from the radiation heat transfer promoter to the reaction space forming material with high efficiency.
(2)排ガス温度を300℃〜600℃とした請求項(
1)に記載の排熱を利用するメタノール改質方法。
(2) Claim in which the exhaust gas temperature is 300℃ to 600℃ (
A methanol reforming method using the exhaust heat described in 1).
(3)原料ガスをメタノールの過熱蒸気若しくはメタノ
ールと水の混合過熱蒸気とした請求項(1)に記載の排
熱を利用するメタノール改質方法。
(3) The methanol reforming method using exhaust heat according to claim (1), wherein the raw material gas is superheated steam of methanol or mixed superheated steam of methanol and water.
(4)通気性の輻射伝熱促進体を多孔質金属発泡体又は
多メッシュ金網の積層体若しくは多孔質セラミックから
成る輻射伝熱促進体とした請求項(1)に記載の排熱を
利用するメタノール改質方法。
(4) Utilizing the waste heat according to claim (1), wherein the breathable radiation heat transfer promoter is made of a porous metal foam, a laminate of multi-mesh wire mesh, or a porous ceramic. Methanol reforming method.
(5)排ガス流入ノズルと排ガス流出ノズルを夫々備え
た筒状の外部ケーシングと;改質反応触媒が充填され且
つメタノールを含む原料ガスが流通する複数の反応管の
各上端部及び各下端部を上部リングヘッダ及び下部リン
グヘッダへ夫々接続して成り、前記外部ケーシング内へ
配設した筒状の反応管壁と;外部ケーシング内へ前記筒
状反応管壁と同芯状に且つ前記排ガス流入ノズルと連通
状に配設した通気性を有する筒状の輻射伝熱促進体とか
ら構成され、排ガス流入ノズルから流入した排ガスを輻
射伝熱促進体を貫通せしめて反応管壁へ接触自在に流通
させ、輻射伝熱促進体から反応管へ熱量を高効率で伝熱
することを特徴とする排熱回収型メタノール改質装置。
(5) A cylindrical outer casing equipped with an exhaust gas inflow nozzle and an exhaust gas outflow nozzle; each upper end and each lower end of a plurality of reaction tubes filled with a reforming reaction catalyst and through which raw material gas containing methanol flows; a cylindrical reaction tube wall connected to the upper ring header and the lower ring header and disposed within the outer casing; and an exhaust gas inflow nozzle concentrically with the cylindrical reaction tube wall into the outer casing; and a cylindrical radiation heat transfer accelerator with air permeability arranged in communication with each other, the exhaust gas flowing from the exhaust gas inflow nozzle passes through the radiation heat transfer accelerator and flows freely to the reaction tube wall. , an exhaust heat recovery type methanol reformer characterized by transferring heat from a radiation heat transfer promoter to a reaction tube with high efficiency.
(6)排ガス温度を300℃〜600℃とした請求項5
に記載の排熱回収型メタノール改質装置。
(6) Claim 5 in which the exhaust gas temperature is 300°C to 600°C.
The exhaust heat recovery type methanol reformer described in .
(7)原料ガスをメタノール過熱蒸気若しくはメタノー
ルと水の混合過熱蒸気とした請求項(5)に記載の排熱
を利用するメタノール改質装置。
(7) The methanol reformer using exhaust heat according to claim (5), wherein the raw material gas is superheated methanol steam or mixed superheated steam of methanol and water.
(8)通気性の輻射伝熱促進体を多孔質金属発泡体又は
多メッシュ金網の積層体若しくは多孔質セラミックから
成る輻射伝熱促進体とした請求項(5)に記載の排熱を
利用するメタノール改質装置。
(8) Utilizing the waste heat according to claim (5), wherein the breathable radiation heat transfer promoter is made of a porous metal foam, a laminate of multi-mesh wire mesh, or a porous ceramic. Methanol reformer.
(9)排ガス流入ノズルを外部ケーシングの下方部に、
また排ガス流出ノズルを外部ケーシングの下方側部に夫
々形成すると共に、上部リングヘッダに原料ガス流入ノ
ズルを、下部リングヘッダに改質ガス流出ノズルを夫々
設け、更に複数の反応管の相互間を排ガス流規制バッフ
ルで連結すると共に反応管壁の上部に排ガス通路を形成
する構成とした請求項(5)に記載の排熱回収型メタノ
ール改質装置。
(9) Place the exhaust gas inflow nozzle in the lower part of the outer casing,
In addition, exhaust gas outflow nozzles are formed on the lower side of the outer casing, a raw material gas inflow nozzle is provided in the upper ring header, and a reformed gas outflow nozzle is provided in the lower ring header. The exhaust heat recovery type methanol reformer according to claim 5, wherein the exhaust heat recovery type methanol reformer is configured to be connected by a flow regulating baffle and to form an exhaust gas passage in the upper part of the reaction tube wall.
(10)排ガス流入ノズルを外部ケーシングの上方部に
、また排ガス流出ノズルを外部ケーシングの上方側部に
夫々形成すると共に、下部リングヘッダに原料ガス流入
ノズルを、また上部リングヘッダに改質ガス流出ノズル
を夫々設け、更に複数の反応管の相互間を排ガス流規制
バッフルで連結すると共に反応管壁の下部に排ガス通路
を形成する構成とした請求項(5)に記載の排熱回収型
メタノール改質装置。
(10) An exhaust gas inflow nozzle is formed in the upper part of the outer casing, and an exhaust gas outflow nozzle is formed in the upper side part of the outer casing, and the raw material gas inflow nozzle is formed in the lower ring header, and the reformed gas flows out in the upper ring header. The exhaust heat recovery type methanol converter according to claim (5), wherein a plurality of reaction tubes are each provided with a nozzle, and the plurality of reaction tubes are further connected to each other by an exhaust gas flow regulating baffle, and an exhaust gas passage is formed at the lower part of the reaction tube wall. quality equipment.
(11)排ガス流入ノズルと排ガス流出ノズルを備えた
筒状の外部ケーシングと;改質反応触媒が充填され且つ
メタノールを含む原料ガスが流通する空間部を形成する
二重筒体の上部開口及び下部開口へ上部リングヘッダ及
び下部リングヘッダを夫々接続して成り、前記外部ケー
シング内へ配設した筒状の反応管壁と;外部ケーシング
内へ前記筒状反応管壁と同芯状に且つ前記排ガス流入ノ
ズルと連通状に配設した通気性を有する筒状の輻射伝熱
促進体とから構成され、排ガス流入ノズルから流入した
排ガスを輻射伝熱促進体を貫通せしめて反応管壁へ接触
自在に流通させ、輻射伝熱促進体から反応管壁へ熱量を
高効率で伝熱することを特徴とする排熱回収型メタノー
ル改質装置。
(11) A cylindrical outer casing equipped with an exhaust gas inflow nozzle and an exhaust gas outflow nozzle; an upper opening and a lower part of a double cylindrical body that is filled with a reforming reaction catalyst and forms a space through which raw material gas containing methanol flows; a cylindrical reaction tube wall, which is formed by connecting an upper ring header and a lower ring header to the openings, respectively, and disposed in the outer casing; It is composed of an air permeable cylindrical radiation heat transfer accelerator placed in communication with the inflow nozzle, and allows the exhaust gas flowing in from the exhaust gas inflow nozzle to pass through the radiation heat transfer accelerator and come into contact with the reaction tube wall. An exhaust heat recovery type methanol reforming device characterized by circulating heat and transferring heat from a radiation heat transfer promoter to a reaction tube wall with high efficiency.
JP2229862A 1990-08-30 1990-08-30 Methanol reforming method using exhaust heat and exhaust heat recovery type methanol reformer Expired - Fee Related JPH0794321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2229862A JPH0794321B2 (en) 1990-08-30 1990-08-30 Methanol reforming method using exhaust heat and exhaust heat recovery type methanol reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2229862A JPH0794321B2 (en) 1990-08-30 1990-08-30 Methanol reforming method using exhaust heat and exhaust heat recovery type methanol reformer

Publications (2)

Publication Number Publication Date
JPH04108601A true JPH04108601A (en) 1992-04-09
JPH0794321B2 JPH0794321B2 (en) 1995-10-11

Family

ID=16898863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2229862A Expired - Fee Related JPH0794321B2 (en) 1990-08-30 1990-08-30 Methanol reforming method using exhaust heat and exhaust heat recovery type methanol reformer

Country Status (1)

Country Link
JP (1) JPH0794321B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321502A (en) * 1993-05-13 1994-11-22 Kawasaki Heavy Ind Ltd Acceleration of dehydrogen reaction and apparatus therefore
EP0661768A1 (en) * 1993-12-28 1995-07-05 Chiyoda Corporation Method of heat transfer in reformer
JP2002534350A (en) * 1999-01-19 2002-10-15 インターナショナル フュエル セルズ,エルエルシー Small fuel gas reformer
JP2002537101A (en) * 1999-02-18 2002-11-05 インターナショナル フュエル セルズ,エルエルシー Compact and lightweight catalyst bed for fuel cell power plant and method of manufacturing the same
CN102602885A (en) * 2012-03-12 2012-07-25 云南大学 Method for manufacturing hydrogen in reforming way by catalyst loaded at heat conducting material through utilizing heat of tail gas of heat engine
CN116425116A (en) * 2023-05-30 2023-07-14 摩氢科技有限公司 Small-volume methanol reforming hydrogen production reaction device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977014A (en) * 1982-10-25 1984-05-02 Central Res Inst Of Electric Power Ind Thermal efficiency improving method for complex generation of gas turbine and steam turbine
JPS61186201A (en) * 1985-02-14 1986-08-19 Mitsubishi Heavy Ind Ltd Process for forming hydrogen-containing gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977014A (en) * 1982-10-25 1984-05-02 Central Res Inst Of Electric Power Ind Thermal efficiency improving method for complex generation of gas turbine and steam turbine
JPS61186201A (en) * 1985-02-14 1986-08-19 Mitsubishi Heavy Ind Ltd Process for forming hydrogen-containing gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321502A (en) * 1993-05-13 1994-11-22 Kawasaki Heavy Ind Ltd Acceleration of dehydrogen reaction and apparatus therefore
EP0661768A1 (en) * 1993-12-28 1995-07-05 Chiyoda Corporation Method of heat transfer in reformer
US5876469A (en) * 1993-12-28 1999-03-02 Chiyoda Corporation Method of heat transfer in reformer
JP2002534350A (en) * 1999-01-19 2002-10-15 インターナショナル フュエル セルズ,エルエルシー Small fuel gas reformer
JP2002537101A (en) * 1999-02-18 2002-11-05 インターナショナル フュエル セルズ,エルエルシー Compact and lightweight catalyst bed for fuel cell power plant and method of manufacturing the same
CN102602885A (en) * 2012-03-12 2012-07-25 云南大学 Method for manufacturing hydrogen in reforming way by catalyst loaded at heat conducting material through utilizing heat of tail gas of heat engine
CN116425116A (en) * 2023-05-30 2023-07-14 摩氢科技有限公司 Small-volume methanol reforming hydrogen production reaction device

Also Published As

Publication number Publication date
JPH0794321B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
JP4736299B2 (en) Metamorphic equipment
US3541729A (en) Compact reactor-boiler combination
US5567398A (en) Endothermic reaction apparatus and method
US4935037A (en) Fuel reforming apparatus
JP2004171989A (en) Hydrogen generator for fuel cell
JPH0326326A (en) Modifying equipment for fuel cell
JP2005525984A (en) Highly efficient and compact reformer unit for producing hydrogen from gaseous hydrocarbons in the low power range
US6153152A (en) Endothermic reaction apparatus and method
JPH04108601A (en) Methanol reforming method utilizing waste heat and waste heat recovery-type methanol reformer
JP3921477B2 (en) Single tube cylindrical reformer and its operating method
JP2000169102A (en) Fuel reformer
JP3405839B2 (en) Converter
JPH04160002A (en) Method and device for reforming methanol
JP4147521B2 (en) Self-oxidation internal heating type reforming method and apparatus
JP2601707B2 (en) Catalytic reactor
JPH0271834A (en) Steam reforming device
JPH01183401A (en) Fuel reformer
JPH04322739A (en) Fuel reformer for fuel cell
JPH07223801A (en) Fuel-reforming device
JPH01157402A (en) Methanol reformer
JPH03122001A (en) Endothermic reaction unit
JPH07187603A (en) Heat transmitting method in reformer
JPS60103001A (en) Fuel reformer
JPS6274448A (en) Reformer of fuel cell
JPH06281129A (en) Catalyst combustion chamber-integrated heatexchanger type reforming device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees