JPH01183401A - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JPH01183401A
JPH01183401A JP453388A JP453388A JPH01183401A JP H01183401 A JPH01183401 A JP H01183401A JP 453388 A JP453388 A JP 453388A JP 453388 A JP453388 A JP 453388A JP H01183401 A JPH01183401 A JP H01183401A
Authority
JP
Japan
Prior art keywords
gas
reaction
reforming
gas flow
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP453388A
Other languages
Japanese (ja)
Other versions
JP2646101B2 (en
Inventor
▲お▼畑 勲
Isao Obata
Yoshiaki Amano
天野 義明
Akio Hanzawa
半澤 晨夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63004533A priority Critical patent/JP2646101B2/en
Publication of JPH01183401A publication Critical patent/JPH01183401A/en
Application granted granted Critical
Publication of JP2646101B2 publication Critical patent/JP2646101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable high efficiency of reforming reaction and contrive a small- sized and compact apparatus, by providing the first gas flow passage filled with a reforming catalyst adjacent to the second gas flow passage filled with a CO conversion catalyst. CONSTITUTION:A raw material for reforming is passed through a raw material inlet 7 and fed to a reforming catalyst layer 14. The raw material fed to the reforming catalyst layer 14 starts reforming reaction and is slowly reformed into a hydrogenenriched gas. Since the reforming reaction is endothermic reaction, heat absorption is carried out from the resultant reformed gas flowing through a CO conversion catalyst layer 15 and a combustion gas flowing through a heating layer 16. The reformed gas after completing the reforming reaction is fed to the CO conversion catalyst layer 15 to slowly carry out CO conversion reaction. The obtained gas is then led out of a reformed gas outlet 8. On the other hand, a fuel is passed through a fuel inlet 9, fed to a fuel device 12 and burned with air, passed through an air inlet 10 and fed thereto.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルコール類や炭化水素系燃料を水蒸気改質
して水素を生成する燃料改質装置に係わり、特に、燃料
電池システム及び水素製造装置に好適な燃料改質装置に
関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fuel reformer that generates hydrogen by steam reforming alcohol or hydrocarbon fuel, and particularly relates to a fuel cell system and hydrogen production. The present invention relates to a fuel reformer suitable for the apparatus.

〔従来の技術〕[Conventional technology]

従来の燃料改質装置は、時開60−264302号に示
される如く、反応部には円筒状の反応管を使用し、改質
触媒は、反応管内部に充填されていた。さらに、改質触
媒を効率良く加熱するために1反応管内部にはスペーサ
が設けられ、環状触煤層とすることで伝熱特性の改善を
図っていた。
As shown in Jikai No. 60-264302, a conventional fuel reformer uses a cylindrical reaction tube for the reaction section, and a reforming catalyst is filled inside the reaction tube. Furthermore, in order to efficiently heat the reforming catalyst, a spacer is provided inside one reaction tube to form an annular soot layer to improve heat transfer characteristics.

また1反応管を加熱するための伝熱部では、熱源となる
燃焼ガスを発生するバーナ燃焼室と燃焼ガスからの熱伝
達を促進するため、燃焼ガス流路に伝熱粒子が充填され
た伝熱層とすることや、燃焼ガスの温度低下に合わせて
流路を狭くすることにより伝熱効率の向上を図っていた
In addition, in the heat transfer section for heating one reaction tube, in order to promote heat transfer from the burner combustion chamber that generates combustion gas as a heat source and the combustion gas, the combustion gas flow path is filled with heat transfer particles. Heat transfer efficiency was improved by creating a thermal layer and by narrowing the flow path as the temperature of the combustion gas decreased.

また、特開昭59−217605号に示される如く、中
央部にCO転化触媒層が新しく設けている従来例も存在
する。
Furthermore, as shown in Japanese Patent Laid-Open No. 59-217605, there is also a conventional example in which a CO conversion catalyst layer is newly provided in the center.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術による反応管タイプの改質装置では、構造
が比較的簡単であり、改質効率もある程度確保出来るた
め、小型化を指向する燃料電池等に使用されている。し
かし、高効率化を図るうえで、構造が複雑になる等の問
題点がある為、あまり改善がなされておらず、現在以上
の小型・コンパクト化への対応は困難であった。
The reaction tube type reformer according to the above-mentioned conventional technology has a relatively simple structure and can secure a certain degree of reforming efficiency, so it is used in fuel cells and the like that are aimed at miniaturization. However, in order to achieve high efficiency, there are problems such as the structure becoming complicated, so not much improvement has been made, and it has been difficult to respond to further miniaturization and compactness.

本発明の目的は、改質反応の高効率化が可能で、さらに
小型・コンパクトな燃料改質装置を提供することにある
An object of the present invention is to provide a small and compact fuel reformer that can improve the efficiency of the reforming reaction.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明は、改質触媒が充填さ
れてなる第1のガス流通路と、該通路に原料ガスを供給
する原料ガス供給手段と、前記第1のガス流通路内の原
料ガスに熱量を付与する伝熱手段と、前記第1のガス流
通路内の原料ガスが改質された改質ガスを取り出す取り
出し手段とを備えてなる燃料改質装置において、前記第
1のガス流通路に隣接されて設けられ、内部にco転化
触媒が充填されてなる第2のガス流通路と、前記第1の
ガス流通路から出たガスが当該第2のガス流通路に導く
ための改質ガス導入部とが設けられていることを特徴と
する燃料改質装置である。
In order to achieve the above object, the present invention provides a first gas flow passage filled with a reforming catalyst, a raw material gas supply means for supplying raw material gas to the passage, and a gas flow passage in the first gas flow passage. In the fuel reformer, the fuel reformer comprises a heat transfer means for imparting heat to the raw material gas, and a take-out means for taking out the reformed gas obtained by reforming the raw material gas in the first gas flow path. a second gas flow path provided adjacent to the gas flow path and filled with a co-conversion catalyst; and a second gas flow path for guiding the gas discharged from the first gas flow path to the second gas flow path. This fuel reformer is characterized in that it is provided with a reformed gas introduction section.

〔作用〕[Effect]

上記本発明によれば、改質触媒が充填された第1のガス
流通路と、CO転化触媒が充填された第2のガス流通路
とが隣接されて設けられているため、CO転化反応によ
り発生する熱を第1の通路内に充填された改質触媒層の
改質反応熱として利用することが出来る。
According to the present invention, since the first gas flow passage filled with the reforming catalyst and the second gas flow passage filled with the CO conversion catalyst are provided adjacent to each other, the CO conversion reaction The generated heat can be used as reforming reaction heat of the reforming catalyst layer filled in the first passage.

改質反応は次式により示される。The reforming reaction is shown by the following equation.

CH,+2H,O→Co、+4H,(吸熱反応)但し、
800℃に於ける平衡反応では約15%のCOが発生す
る。
CH, +2H, O → Co, +4H, (endothermic reaction) However,
Approximately 15% CO is evolved in an equilibrium reaction at 800°C.

次に、CO転化反応は次式により示される。Next, the CO conversion reaction is shown by the following equation.

GO+H,O→Co、+H,(発熱反応)co転化触媒
層を流れる改質ガスは徐々に反応を進めながら発熱及び
顕熱を改質触媒層に与えており、かつ、改質触媒層は、
°充填層となっているため、より熱伝達が促進され、伝
熱面積の縮減が可能となり高効率で小型・コンパクトな
燃料改質装置を提供出来る。
GO+H, O→Co, +H, (exothermic reaction) The reformed gas flowing through the co conversion catalyst layer gives heat and sensible heat to the reforming catalyst layer while gradually proceeding with the reaction, and the reforming catalyst layer
° Since it is a packed bed, heat transfer is further promoted and the heat transfer area can be reduced, making it possible to provide a highly efficient, small and compact fuel reformer.

〔実施例〕〔Example〕

以下、本発明の実施例を添付図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例の構成を示した縦断面図であ
る。第1図において、外管1と内管3とからなる2重管
が複数配置されている。外管1と内管3の間に環状部に
は、改質触媒2が充填されて、改質触媒層14が構成さ
れている。前記内管3の内側にはCO転化触媒4が充填
されたCO転化触媒層15が設けられている。燃焼ガス
流路となる前記外管1と胴5の内側には、断熱材6が設
けられている。この断熱材6と前記外管1との間には伝
熱促進を図るため耐熱性のアルミナ球を利用した伝熱粒
子13が充填された加熱層16が設けられ、伝熱効率を
高めている。熱源として必要な熱量を発生させるため、
下部に燃焼装置12が備えられている。燃焼装置として
は、一般的にはバーナが用いられているが、燃焼触媒を
用いた触媒燃焼方式としても良い。
FIG. 1 is a longitudinal sectional view showing the structure of an embodiment of the present invention. In FIG. 1, a plurality of double tubes each consisting of an outer tube 1 and an inner tube 3 are arranged. The annular portion between the outer tube 1 and the inner tube 3 is filled with a reforming catalyst 2 to form a reforming catalyst layer 14 . A CO conversion catalyst layer 15 filled with a CO conversion catalyst 4 is provided inside the inner tube 3 . A heat insulating material 6 is provided inside the outer tube 1 and the shell 5, which serve as a combustion gas flow path. A heating layer 16 filled with heat transfer particles 13 made of heat-resistant alumina spheres is provided between the heat insulating material 6 and the outer tube 1 in order to promote heat transfer, thereby increasing heat transfer efficiency. In order to generate the necessary amount of heat as a heat source,
A combustion device 12 is provided at the bottom. A burner is generally used as the combustion device, but a catalytic combustion system using a combustion catalyst may also be used.

改質用の原料は、原料入ロアを通って前記改質触媒層1
4に供給される。前記改質触媒層14に供給された原料
は、改質反応を始め徐々に水素富化ガスに改質される。
The raw material for reforming passes through the raw material input lower and enters the reforming catalyst layer 1.
4. The raw material supplied to the reforming catalyst layer 14 starts a reforming reaction and is gradually reformed into hydrogen-enriched gas.

改質反応は吸熱反応であるため、前記CO転化触媒層1
5を流れる改質ガス及び前記加熱層16を流れる燃焼ガ
スより吸熱が行なわれる6次に、改質反応の終了した改
質ガスは、前記CO転化触媒層15へ供給され、徐々に
CO転化反応を行い、改質ガス出口8より導き出される
。改質ガスは、改質反応中のガスである反応ガスより常
に温度が高く、また、CO転化反応は発熱反応でありJ
より多くの熱を前記改質触媒層14へ供給できる。この
時、改質ガスから反応ガスへ移動する熱量をQとすれば Q=KAΔT         ・・・・・・ (1)
K:熱通過率 A:伝熱面積 ΔT:温度差    で表わされる。
Since the reforming reaction is an endothermic reaction, the CO conversion catalyst layer 1
Endotherm is absorbed from the reformed gas flowing through the heating layer 5 and the combustion gas flowing through the heating layer 16.Next, the reformed gas that has undergone the reforming reaction is supplied to the CO conversion catalyst layer 15, where it gradually undergoes a CO conversion reaction. The reformed gas is extracted from the reformed gas outlet 8. The temperature of the reformed gas is always higher than that of the reaction gas during the reforming reaction, and the CO conversion reaction is an exothermic reaction.
More heat can be supplied to the reforming catalyst layer 14. At this time, if the amount of heat transferred from the reformed gas to the reaction gas is Q, then Q=KAΔT... (1)
K: Heat transfer rate A: Heat transfer area ΔT: Temperature difference.

ここでAを一定と考えれば、CO転化反応により改質ガ
ス温度が高くなるのでΔT、Kが共に大きくなり、従っ
てQが大きくなる。従来のCO転化触媒の設けられてい
ない改質装置に対する本発明の燃料改質装置のQは約1
.2倍となり、燃焼量を減らすことが出来、高効率化を
達成出来る。また、Qを一定と考えればAを小さくする
ことが出来る。従来技術の反応管長さに対する本発明の
反応管長さは約0.9倍となり改質装置の小型化が達成
される。従って、小型・コンパクト化に合つた改質装置
の選択が可能となる。
Here, assuming that A is constant, the temperature of the reformed gas increases due to the CO conversion reaction, so both ΔT and K become large, and therefore Q becomes large. The Q of the fuel reformer of the present invention compared to a conventional reformer without a CO conversion catalyst is about 1.
.. The amount of fuel is doubled, reducing the amount of combustion and achieving high efficiency. Furthermore, if Q is considered constant, A can be made small. The length of the reaction tube of the present invention is about 0.9 times that of the conventional technology, and the size of the reformer can be reduced. Therefore, it is possible to select a reformer suitable for downsizing and compactness.

一方、燃料は燃料人口9を通って前記燃焼装置12に供
給され、空気入口10を通って供給された空気により燃
焼する。燃焼ガスは前記加熱層16を通り、前記改質触
媒層14に熱を供給して燃焼ガス出口11より導き出さ
れる。
Meanwhile, fuel is supplied to the combustion device 12 through the fuel port 9 and is combusted by air supplied through the air inlet 10. The combustion gas passes through the heating layer 16, supplies heat to the reforming catalyst layer 14, and is led out from the combustion gas outlet 11.

上記本実施例において、改質触媒としては、例えば、N
i系のものが用いられる。また、CO転化触媒としては
、Fe−Cr系のものを用いることができる。
In this embodiment, the reforming catalyst is, for example, N
i-series is used. Further, as the CO conversion catalyst, a Fe-Cr type catalyst can be used.

上記本実施例においては、二重管構造となっており、C
O転化触媒層の回りに改質触媒層が隣接して配置されて
いるために、熱効率がさらに向上する。なお、二重管の
内管と外管との間の隔壁は。
In this embodiment, it has a double pipe structure, and C
Since the reforming catalyst layer is arranged adjacent to the O conversion catalyst layer, thermal efficiency is further improved. In addition, the partition wall between the inner tube and outer tube of the double tube.

波形、フィン状であっても良い。It may be wave-shaped or fin-shaped.

第2図には5第1図に示した本発明の実施例及び従来の
co転化触媒が設けられていない改質装置の温度分布及
び反応率の分布を表すグラフを示す、比較の為、反応管
先端部の燃焼温度30.原料入口温度28及び反応平衡
温度29を同一とした。
FIG. 2 shows a graph showing the temperature distribution and reaction rate distribution of the example of the present invention shown in FIG. 1 and the conventional reformer without a co-conversion catalyst. Combustion temperature at the tip of the tube 30. The raw material inlet temperature 28 and the reaction equilibrium temperature 29 were made the same.

改質触媒層14に入った原料は反応率26,27に示す
様急激に反応を始めるため1反応ガス温度22.23は
急激に温度低下を伴う、上記本発明の一実施例装置にお
ける反応ガス温度22が従来装置の反応ガス温度23に
較べて高いのは1本発明装置の燃焼ガス温度20及び改
質ガス温度24が従来装置の燃焼ガス温度21及び改質
ガス温度25に比較して高く、熱伝達が良いためである
Since the raw material entering the reforming catalyst layer 14 starts to react rapidly as shown in reaction rates 26 and 27, 1 reaction gas temperature 22.23 is the reaction gas in the apparatus according to the embodiment of the present invention, which is accompanied by a sudden temperature drop. The reason why the temperature 22 is higher than the reaction gas temperature 23 of the conventional device is because the combustion gas temperature 20 and reformed gas temperature 24 of the device of the present invention are higher than the combustion gas temperature 21 and the reformed gas temperature 25 of the conventional device. , because of good heat transfer.

反応ガス温度22.23は徐々に上昇し、反応平衡温度
29に達する。この場合、本発明装置の反応管長さは従
来装置の反応管、長さに対して1割短くても良い、改質
反応終了後の改質ガスは反応ガスに熱を供給するため、
徐々に温度降下する0本発明装置の改質ガス温度24は
、CO転化反応による発熱のため従来装置の改質ガス温
度25に較べ温度降下が少ない、燃焼ガス温度の温度降
下が体さいことも、CO転化反応における発熱を有効利
用していることを意味する。
The reaction gas temperature 22.23 gradually increases and reaches the reaction equilibrium temperature 29. In this case, the length of the reaction tube of the apparatus of the present invention may be 10% shorter than that of the conventional apparatus, since the reformed gas supplies heat to the reaction gas after the reforming reaction is completed.
The temperature of the reformed gas 24 of the device of the present invention, which gradually decreases in temperature, is smaller than the reformed gas temperature 25 of the conventional device due to the heat generated by the CO conversion reaction, and the temperature drop of the combustion gas temperature may be small. , which means that the heat generated in the CO conversion reaction is effectively utilized.

本発明装置によれ−ば、全体的に温度レベルが高くなり
、改質反応が促進されることとなる。さらに、前記内管
3内側に前記CO転化触媒4を充填したことにより燃料
改質装置出口改質ガスのCO濃度を下げることが出来、
CO転化装置(以下シフトコンバータと言う)内のCO
転化触媒量の削減が可能となり、シフトコンバータの小
型化を達成出来るうえ、例えば、燃料電池発電システム
に利用された場合、システム全体の小型化も可能となる
According to the apparatus of the present invention, the overall temperature level becomes high and the reforming reaction is promoted. Furthermore, by filling the inside of the inner pipe 3 with the CO conversion catalyst 4, it is possible to lower the CO concentration of the reformed gas at the exit of the fuel reformer,
CO in the CO conversion device (hereinafter referred to as shift converter)
This makes it possible to reduce the amount of conversion catalyst, making it possible to downsize the shift converter, and, for example, when used in a fuel cell power generation system, it also becomes possible to downsize the entire system.

第3図にCO転化触媒4の耐熱温度が低い場合の本発明
の他の実施例の縦断面構成図を示す。
FIG. 3 shows a vertical cross-sectional configuration diagram of another embodiment of the present invention in which the CO conversion catalyst 4 has a low allowable temperature limit.

原料ガス入ロアから供給された原料は、改質触媒層14
に導かれ改質反応を行う、改質反応に要する熱量は加熱
層16を流れる燃焼ガス及び内管3内側を流れる改質ガ
スによって与えられる。前記内管3内側の先端部には伝
熱粒子13Aが充填されており、前記伝熱粒子13Aの
上にはCO転化触媒4が充填されている。前記充填粒子
13Aの充填層高さはco転化触媒4の耐熱温度により
決まる。すなわち、CO転化触媒の耐熱温度が低い場合
は、伝熱粒子の充填層高さを大きくする。
The raw material supplied from the raw material gas input lower is transferred to the reforming catalyst layer 14.
The amount of heat required for the reforming reaction is given by the combustion gas flowing through the heating layer 16 and the reformed gas flowing inside the inner tube 3. The inner tip of the inner tube 3 is filled with heat transfer particles 13A, and the CO conversion catalyst 4 is filled on top of the heat transfer particles 13A. The height of the packed bed of the packed particles 13A is determined by the allowable temperature limit of the co conversion catalyst 4. That is, when the allowable temperature limit of the CO conversion catalyst is low, the height of the packed bed of heat transfer particles is increased.

現在のところ、Go転化触媒の耐熱温度は、はぼ600
℃であり、伝熱粒子13Aが充填された部分は、温度が
高い(約800℃)ため、Go−+Co2の反応が進み
にくい、このため、CO転化触媒ではなく伝熱粒子13
Aが充填されている。改質反応の終了した改質ガスは、
前記内管3内側の伝熱粒子層13Aを通りCO転化触媒
4で反応し、改質ガス出口8より導き出される。前記第
1の実施例と比較して、CO転化触媒量は少ないが、反
応量は触媒層出口温度により決められるので、本実施例
のCO転化触媒層15での発熱量も先の実施例と本質的
には同じとなる。
At present, the heat resistance temperature of the Go conversion catalyst is approximately 600℃.
℃, and the temperature of the part filled with the heat transfer particles 13A is high (approximately 800℃), so the reaction of Go-+Co2 does not proceed easily.
A is filled. The reformed gas after the reforming reaction is
It passes through the heat transfer particle layer 13A inside the inner tube 3, reacts with the CO conversion catalyst 4, and is led out from the reformed gas outlet 8. Although the amount of CO conversion catalyst is smaller than that of the first embodiment, since the amount of reaction is determined by the temperature at the outlet of the catalyst layer, the amount of heat generated in the CO conversion catalyst layer 15 of this embodiment is also similar to that of the previous embodiment. They are essentially the same.

本発明の他の実施例の斜視図を第4図に示す。A perspective view of another embodiment of the invention is shown in FIG.

さらに、第5図に本実施例装置の縦断面図、第6図にそ
の横断面図を示す。
Furthermore, FIG. 5 shows a longitudinal cross-sectional view of the apparatus of this embodiment, and FIG. 6 shows a cross-sectional view thereof.

外筒31と内筒32との間に偶数個のらせん板18を配
置し、前記外筒31、前記内筒32及び前記らせん板1
8により形成されるらせん状の空間部分に改質触媒2を
一空間おきに充填し、改質触媒層14を形成する。前記
改質触媒層14の両側には、高温ガス流路となる加熱層
16を隣接しており、この加熱層16には高温ガスから
前記改質触媒層14への伝熱促進を図るため伝熱粒子1
3が充填されている。また、熱源として必要な熱量を発
生させるため、前記加熱層16の燃料・空気入口に燃焼
触媒19を充填している。前記改質触媒2)前記燃焼触
媒19及び前記伝熱粒子13は、セラミック製のハニカ
ム状支持板により固定している。前記内筒32の内側に
はco転化触媒が充填され、CO転化触媒層15と成る
。原料は原料人ロアを通って前記改質触媒層14に供給
される。前記改質触媒層14に入った原料は、前記らせ
ん板18を介して前記加熱層16を通過する高温ガス及
び前記内筒32を介して改質ガスから熱を受け、改質反
応の進行と共に水素富化な改質ガスとなる。生成した改
質ガスは前記内筒32に集められCO転化触媒層15に
供給され、反応ガスに熱を奪われることによりCO転化
反応が促進され、COの少ない改質ガスとなり改質ガス
出口8より取り出される。一方、反応ガスの加熱源とな
る高温ガスは、前記加熱層16の燃料・空気入口に充填
した前記燃焼触媒19で燃料を燃やすことにより得られ
る0発生した高温燃焼ガスは、前記加熱層16を通るこ
とにより前記らせん板18を介して前記改質触媒層14
に熱を与える。これは、前記伝熱粒子13の存在により
、対流、伝導・輻射の伝熱係態が有効に作用して行なわ
れる。前記改質触媒層14を加熱した高温ガスは温度で
降下し、排ガスとして、排気管より排気される0本実施
例ではco転化反応による発熱を有効に利用出来るので
燃料の削減が可能となり、構造上デッドスペースが無く
なり、大幅な小型化が達成出来。
An even number of spiral plates 18 are arranged between the outer cylinder 31 and the inner cylinder 32, and the outer cylinder 31, the inner cylinder 32 and the spiral plate 1
The reforming catalyst 2 is filled in every other space in the spiral space formed by the reforming catalyst 8 to form the reforming catalyst layer 14. Adjacent to both sides of the reforming catalyst layer 14 are heating layers 16 that serve as high-temperature gas flow paths. thermal particle 1
3 is filled. Further, in order to generate the necessary amount of heat as a heat source, a combustion catalyst 19 is filled in the fuel/air inlet of the heating layer 16. The reforming catalyst 2) The combustion catalyst 19 and the heat transfer particles 13 are fixed by a ceramic honeycomb support plate. The inside of the inner cylinder 32 is filled with a CO conversion catalyst to form the CO conversion catalyst layer 15. The raw material is supplied to the reforming catalyst bed 14 through the raw material lower. The raw material that has entered the reforming catalyst layer 14 receives heat from the high-temperature gas passing through the heating layer 16 via the spiral plate 18 and from the reformed gas via the inner cylinder 32, and as the reforming reaction progresses. The result is hydrogen-enriched reformed gas. The generated reformed gas is collected in the inner cylinder 32 and supplied to the CO conversion catalyst layer 15, where heat is taken away by the reaction gas to promote the CO conversion reaction, resulting in a reformed gas with less CO and a reformed gas outlet 8. taken out from On the other hand, the high-temperature gas that serves as a heating source for the reaction gas is obtained by burning fuel with the combustion catalyst 19 filled in the fuel/air inlet of the heating layer 16.The generated high-temperature combustion gas is By passing through the helical plate 18, the reforming catalyst layer 14
give heat to. This is accomplished by the effective effects of convection, conduction, and radiation heat transfer due to the presence of the heat transfer particles 13. The high-temperature gas that heated the reforming catalyst layer 14 is lowered in temperature and is exhausted from the exhaust pipe as exhaust gas.In this embodiment, the heat generated by the CO conversion reaction can be effectively used, making it possible to reduce fuel consumption. There is no dead space on the top, making it possible to achieve significant downsizing.

体積は約174とすることが可能となる。また。The volume can be approximately 174. Also.

改質触媒は、らせん状に保持されるため、触媒自体の重
量による破壊を防止できる。
Since the reforming catalyst is held in a spiral shape, it can be prevented from being destroyed by the weight of the catalyst itself.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、改質触媒が充填さ
れた第1のガス流通路と、CO転化触媒が充填された第
2のガス流通路とが隣接されて設けられているため、温
度差による伝熱に加えて。
As explained above, according to the present invention, since the first gas flow passage filled with a reforming catalyst and the second gas flow passage filled with a CO conversion catalyst are provided adjacently, In addition to heat transfer due to temperature differences.

CO→CO□転化反応による発熱を利用して改質反応を
行うことができる。したがって、熱伝達の向上によりそ
の分装置の小型・コンパクト化が達成でき、かつ、熱効
率が向上し燃料の消費量を低減できる。
The reforming reaction can be carried out using the heat generated by the CO→CO□ conversion reaction. Therefore, by improving heat transfer, the device can be made smaller and more compact, and the thermal efficiency can be improved and fuel consumption can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施装置の縦断面図構成図、第2図は
、改質装置の温度分布及び反応率の比較のグラフ、第3
図または第4図は本発明の他の実施例の構成を示す一部
透視斜視図、第5図は第4図の実施例装置の縦断面構成
図、第6図は第4図の実施例装置の横断面構成図である
。 1・・・外管、2・・・改質触媒、3・・・内管、4・
・・CO転化触媒、5・・・胴、6・・・原料入口、8
・・・改質ガス、9・・・燃料入口、10・・・空気入
口、11・・・燃焼ガス出口、12・・・燃焼装置、1
3・・・伝熱粒子、14・・・改質触媒層。 15・・・Go転化触媒層、16・・・加熱層、17・
・・燃料・空気入口、18・・・らせん板、19・・・
燃焼触媒、 20・・・本発明による燃焼ガス温度。 21・・・従来技術による燃焼ガス温度、22・・・本
発明による反応ガス温度。 23・・・従来技術による反応ガス温度、24・・・本
発明による改質ガス温度、25・・・従来技術による改
質ガス温度、26・・・本発明による反応率、 27・・・従来技術による反応率、 28・・・原料入口温度、29゛・・・反応平衡温度。 30・・・燃焼温度、31・・・外筒、32・・・内筒
FIG. 1 is a vertical cross-sectional view and configuration diagram of the apparatus for implementing the present invention, FIG. 2 is a graph comparing the temperature distribution and reaction rate of the reformer, and FIG.
4 is a partially transparent perspective view showing the configuration of another embodiment of the present invention, FIG. 5 is a vertical cross-sectional configuration diagram of the embodiment device of FIG. 4, and FIG. 6 is an embodiment of the embodiment of FIG. 4. FIG. 2 is a cross-sectional configuration diagram of the device. 1...Outer tube, 2...Reforming catalyst, 3...Inner tube, 4...
... CO conversion catalyst, 5 ... cylinder, 6 ... raw material inlet, 8
... Reformed gas, 9... Fuel inlet, 10... Air inlet, 11... Combustion gas outlet, 12... Combustion device, 1
3... Heat transfer particles, 14... Reforming catalyst layer. 15... Go conversion catalyst layer, 16... Heating layer, 17.
...Fuel/air inlet, 18...Spiral plate, 19...
Combustion catalyst, 20... Combustion gas temperature according to the present invention. 21... Combustion gas temperature according to the prior art, 22... Reaction gas temperature according to the present invention. 23... Reaction gas temperature according to the prior art, 24... Reformed gas temperature according to the present invention, 25... Reformed gas temperature according to the prior art, 26... Reaction rate according to the present invention, 27... Conventional Reaction rate by technology, 28... Raw material inlet temperature, 29゛... Reaction equilibrium temperature. 30... Combustion temperature, 31... Outer cylinder, 32... Inner cylinder.

Claims (4)

【特許請求の範囲】[Claims] (1)改質触媒が充填されてなる第1のガス流通路と、
該通路に原料ガスを供給する原料ガス供給手段と、前記
第1のガス流通路内の原料ガスに熱量を付与する伝熱手
段と、前記第1のガス流通路内の原料ガスが改質された
改質ガスを取り出す取り出し手段とを備えてなる燃料改
質装置において、前記第1のガス流通路に隣接されて設
けられ、内部にCO転化触媒が充填されてなる第2のガ
ス流通路と、前記第1のガス流通路から出たガスが当該
第2のガス流通路に導くための改質ガス導入部とが設け
られていることを特徴とする燃料改質装置。
(1) a first gas flow path filled with a reforming catalyst;
a raw material gas supply means for supplying raw material gas to the passage; a heat transfer means for imparting heat to the raw material gas in the first gas flow passage; and a raw material gas in the first gas flow passage to be reformed. a second gas flow path provided adjacent to the first gas flow path and filled with a CO conversion catalyst; , and a reformed gas introduction section for guiding gas discharged from the first gas flow path to the second gas flow path.
(2)特許請求の範囲第1項において、前記第1のガス
流通路と第2のガス流通路とは、二重管構造とから構成
され、当該二重管の内部にCO転化触媒が充填されてな
ることを特徴とする燃料改質装置。
(2) In claim 1, the first gas flow path and the second gas flow path are constructed of a double pipe structure, and the inside of the double pipe is filled with a CO conversion catalyst. A fuel reformer characterized by:
(3)特許請求の範囲第1項または第2項において、前
記第2のガス流通路の前記改質ガス導入部側先端部に、
伝熱粒子が充填されてなることを特徴とする燃料改質装
置。
(3) In claim 1 or 2, at the tip of the second gas flow path on the reformed gas introduction section side,
A fuel reformer characterized by being filled with heat transfer particles.
(4)特許請求の範囲第1項ないし第3項のいずれか1
項において、前記ガス流通路がらせん状に形成されてな
ることを特徴とする燃料改質装置。
(4) Any one of claims 1 to 3
2. The fuel reformer according to item 1, wherein the gas flow passage is formed in a spiral shape.
JP63004533A 1988-01-12 1988-01-12 Fuel reformer Expired - Lifetime JP2646101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004533A JP2646101B2 (en) 1988-01-12 1988-01-12 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004533A JP2646101B2 (en) 1988-01-12 1988-01-12 Fuel reformer

Publications (2)

Publication Number Publication Date
JPH01183401A true JPH01183401A (en) 1989-07-21
JP2646101B2 JP2646101B2 (en) 1997-08-25

Family

ID=11586684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004533A Expired - Lifetime JP2646101B2 (en) 1988-01-12 1988-01-12 Fuel reformer

Country Status (1)

Country Link
JP (1) JP2646101B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000361A1 (en) * 1996-06-28 1998-01-08 Matsushita Electric Works, Ltd. Modification apparatus
EP1020400A1 (en) * 1999-01-15 2000-07-19 DBB Fuel Cell Engines Gesellschaft mit beschränkter Haftung Device for the combination of two heterogeneous catalytic reactions
JP2002249302A (en) * 2001-02-16 2002-09-06 Nippon Chem Plant Consultant:Kk Method and apparatus for reforming by internal heating- type oxidation
JP2009274919A (en) * 2008-05-15 2009-11-26 Univ Of Yamanashi External heat type hydrogen production apparatus and fuel cell power system using the same
JP2010235346A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2010235348A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2011201729A (en) * 2010-03-25 2011-10-13 Jx Nippon Oil & Energy Corp Reforming device and fuel cell system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227489A (en) * 1985-07-26 1987-02-05 Chiyoda Chem Eng & Constr Co Ltd Steam reforming device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227489A (en) * 1985-07-26 1987-02-05 Chiyoda Chem Eng & Constr Co Ltd Steam reforming device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000361A1 (en) * 1996-06-28 1998-01-08 Matsushita Electric Works, Ltd. Modification apparatus
US6413479B1 (en) 1996-06-28 2002-07-02 Matsushita Electric Works, Ltd. Reforming apparatus for making a co-reduced reformed gas
USRE39675E1 (en) 1996-06-28 2007-06-05 Matsushita Electric Works, Ltd. Reforming apparatus for making a co-reduced reformed gas
EP1020400A1 (en) * 1999-01-15 2000-07-19 DBB Fuel Cell Engines Gesellschaft mit beschränkter Haftung Device for the combination of two heterogeneous catalytic reactions
JP2002249302A (en) * 2001-02-16 2002-09-06 Nippon Chem Plant Consultant:Kk Method and apparatus for reforming by internal heating- type oxidation
JP2009274919A (en) * 2008-05-15 2009-11-26 Univ Of Yamanashi External heat type hydrogen production apparatus and fuel cell power system using the same
JP2010235346A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2010235348A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2011201729A (en) * 2010-03-25 2011-10-13 Jx Nippon Oil & Energy Corp Reforming device and fuel cell system

Also Published As

Publication number Publication date
JP2646101B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US4909809A (en) Apparatus for the production of gas
US3531263A (en) Integrated reformer unit
US4071330A (en) Steam reforming process and apparatus therefor
JP4073960B2 (en) Hydrocarbon steam reforming method
JPS6158801A (en) Method of improving hydrocarbon and reactor
Zanfir et al. Influence of flow arrangement in catalytic plate reactors for methane steam reforming
JPS62210047A (en) Apparatus for reaction
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
JPH0326326A (en) Modifying equipment for fuel cell
JPH01183401A (en) Fuel reformer
JP3939347B2 (en) Furnace for fuel cell power plant
JPH0692242B2 (en) Fuel reformer
JPH0154820B2 (en)
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JPS6211608B2 (en)
JPH0794322B2 (en) Methanol reformer
JPS63291802A (en) Fuel reforming apparatus
JPS6325201A (en) Fuel reformer
JP2572251B2 (en) Fuel reformer
JPH01264903A (en) Apparatus for reforming hydrocarbon
JP2601707B2 (en) Catalytic reactor
JP2550716B2 (en) Fuel reformer
JPH0335241B2 (en)
US6596039B1 (en) Compact fuel gas reformer assemblage with burner wall temperature control
JPS62246802A (en) Methanol reformer