JP2009274919A - External heat type hydrogen production apparatus and fuel cell power system using the same - Google Patents

External heat type hydrogen production apparatus and fuel cell power system using the same Download PDF

Info

Publication number
JP2009274919A
JP2009274919A JP2008128416A JP2008128416A JP2009274919A JP 2009274919 A JP2009274919 A JP 2009274919A JP 2008128416 A JP2008128416 A JP 2008128416A JP 2008128416 A JP2008128416 A JP 2008128416A JP 2009274919 A JP2009274919 A JP 2009274919A
Authority
JP
Japan
Prior art keywords
reforming
catalyst
section
annular
reaction section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008128416A
Other languages
Japanese (ja)
Other versions
JP5145566B2 (en
Inventor
Masahiro Watanabe
政廣 渡辺
Hisao Yamashita
壽生 山下
Tokio Naoi
登貴夫 直井
Shingo Komori
信吾 小森
Keiichiro Honda
啓一郎 本田
Takashi Mitsuishi
尚 三石
Toshihiko Takazoe
敏彦 高添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Plant Consultant Co Ltd
Sanyo Machine Works Ltd
University of Yamanashi NUC
Original Assignee
Nippon Chemical Plant Consultant Co Ltd
Sanyo Machine Works Ltd
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Plant Consultant Co Ltd, Sanyo Machine Works Ltd, University of Yamanashi NUC filed Critical Nippon Chemical Plant Consultant Co Ltd
Priority to JP2008128416A priority Critical patent/JP5145566B2/en
Publication of JP2009274919A publication Critical patent/JP2009274919A/en
Application granted granted Critical
Publication of JP5145566B2 publication Critical patent/JP5145566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reforming efficiency with a reforming catalyst and to achieve higher performance. <P>SOLUTION: In an external heat type hydrogen production apparatus, in which a raw material gas obtained by mixing a raw material to be reformed and steam is passed through a reforming reaction section heated with external heat, a shift reaction section and a CO oxidation section, and the raw material to be reformed is reformed to hydrogen by a steam reforming reaction and a shift reaction during the passing, a pre-reforming section is disposed on the upstream side of the reforming reaction section 2; this pre-reforming section is made doubly annular; an annular shift reaction section one end of which is made to communicate with the downstream side of the reforming reaction section is disposed in the annular space between the pre-reforming sections; a raw material gas inflow pipe 5 is connected to the upstream side of the pre-reforming section; and the downstream side of the shift reaction section is connected to a reformed gas discharge pipe 25 via the CO selective oxidation section. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば炭化水素あるいは脂肪族アルコールを用いた改質原料ガスに水蒸気を混合した原料ガスを使用して家庭用小型の燃料電池システムに必要な水素を得るための外熱式水素製造装置及びこれを用いた燃料電池発電システムに関する。   The present invention relates to an externally heated hydrogen production apparatus for obtaining hydrogen necessary for a small household fuel cell system by using a raw material gas obtained by mixing steam with a reforming raw material gas using, for example, hydrocarbon or aliphatic alcohol And a fuel cell power generation system using the same.

従来のこの種の外熱式水素製造装置にあっては、例えば特許文献1に開示されているものが知られている。この従来の装置にあっては、筒状の燃焼室の外側に環状の改質反応部が設けられており、この改質反応部の周囲にこの改質反応部にて生成された改質ガス中に含まれるCOを水性シフト反応により低減させるシフト反応部と、このシフト反応部にて処理した後の改質ガス中に含まれるCOを酸化してさらに低減させるCO酸化部が同じく環状に配置された構成になっている。   In this type of conventional externally heated hydrogen production apparatus, for example, the one disclosed in Patent Document 1 is known. In this conventional apparatus, an annular reforming reaction section is provided outside the cylindrical combustion chamber, and the reformed gas generated in the reforming reaction section around the reforming reaction section. A shift reaction part that reduces CO contained therein by an aqueous shift reaction and a CO oxidation part that further reduces CO by oxidizing CO contained in the reformed gas after being processed in this shift reaction part are arranged in a ring shape. It has been configured.

国際公開第W098/00361号パンフレットInternational Publication No. W098 / 00361 Pamphlet

上記従来の装置にあっては、環状に形成された改質反応部の軸方向一端から原料ガスを直接供給し、この原料ガスが軸方向に流れて他端から抜ける間に改質されるようになっているため、この原料ガスを予め加熱するにしても、改質反応部での改質にはある程度の時間がかかり、そのためこの部分での改質時間を短くするためには、この改質反応部の容積が大きくなるという問題があった。   In the above conventional apparatus, the raw material gas is directly supplied from one axial end of the reforming reaction section formed in an annular shape, and the raw material gas is reformed while flowing in the axial direction and exiting from the other end. Therefore, even if this raw material gas is heated in advance, it takes some time for reforming in the reforming reaction part. Therefore, in order to shorten the reforming time in this part, this modification is necessary. There was a problem that the volume of the quality reaction part was increased.

また、上記従来のものにあっては、改質反応部、シフト反応部及びCO酸化部の各触媒は、粒状の担体に担持された粒状触媒が用いられていたため、触媒の使用量が多く、また原料ガスがこの粒状触媒を通過する際の流通抵抗が大きいという問題があった。   Moreover, in the above-mentioned conventional one, since the catalyst of the reforming reaction part, the shift reaction part, and the CO oxidation part is a granular catalyst supported on a granular carrier, the amount of catalyst used is large, There is also a problem that the flow resistance when the raw material gas passes through the granular catalyst is large.

本発明は上記のことに鑑みなされたので、改質触媒部には予備改質した原料ガスを供給できて、この改質触媒部での改質効率をよくすることができて、この改質触媒部の容積を小さくでき、また改質触媒、シフト触媒、CO選択酸化触媒を環状型のハニカム触媒にすることにより、高性能化、低コスト化を図ることができるようにした外熱式水素製造装置及びこれを用いた燃料電池発電システムを提供することを目的とするものである。   Since the present invention has been made in view of the above, it is possible to supply the reformed catalyst portion with the pre-reformed raw material gas, and to improve the reforming efficiency in the reforming catalyst portion. Externally-heated hydrogen that can reduce the volume of the catalyst part and achieve high performance and low cost by using a reforming catalyst, shift catalyst, and CO selective oxidation catalyst as an annular honeycomb catalyst. An object of the present invention is to provide a manufacturing apparatus and a fuel cell power generation system using the same.

上記目的を達成するための本発明に係る外熱式水素製造装置は、改質原料に水蒸気を混合した原料ガスを、外熱にて加熱される改質反応部とシフト反応部とCO酸化部を通過させ、この間の水蒸気改質反応とシフト反応により水素に改質する外熱式水素製造装置において、改質反応部の上流側に予備改質部を設け、この予備改質部を二重の環状にすると共に、この予備改質部の間の環状の空間内に一端部を改質反応部の下流側に連通させた環状のシフト反応部を設け、予備改質部の上流側に原料ガス流入管を接続し、シフト反応部の下流側をCO選択酸化部を介して改質ガス排出管に接続してなる構成になっている。   In order to achieve the above object, an externally heated hydrogen production apparatus according to the present invention comprises a reforming reaction section, a shift reaction section, and a CO oxidation section in which a reformed raw material gas mixed with steam is heated by external heat. In the externally heated hydrogen production apparatus that reforms into hydrogen by steam reforming reaction and shift reaction during this period, a pre-reforming part is provided upstream of the reforming reaction part, and this pre-reforming part is doubled. And an annular shift reaction part with one end communicating with the downstream side of the reforming reaction part in the annular space between the pre-reforming parts, and the raw material upstream of the pre-reforming part The gas inflow pipe is connected, and the downstream side of the shift reaction section is connected to the reformed gas discharge pipe through the CO selective oxidation section.

この構成の装置において、改質反応部、シフト反応部、CO選択酸化部のそれぞれに環状型のハニカム触媒を用い、またこの装置において、予備改質部が原料ガス流入室からの原料ガスの流れ方向に順に充填した伝熱粒子と予備改質触媒からなり、シフト反応部が改質反応部からの改質ガスの流れ方向から順に装入した高温シフト触媒と低温シフト触媒からなる構成になっている。   In the apparatus of this configuration, an annular honeycomb catalyst is used for each of the reforming reaction section, the shift reaction section, and the CO selective oxidation section, and in this apparatus, the pre-reforming section has a flow of the source gas from the source gas inflow chamber. It consists of a heat transfer particle and a pre-reforming catalyst that are packed sequentially in the direction, and the shift reaction section is composed of a high-temperature shift catalyst and a low-temperature shift catalyst that are charged in order from the flow direction of the reformed gas from the reforming reaction section. Yes.

さらに、上記改質反応部の内側中心部に改質反応に必要な顕熱を供給するためのバーナ部を、改質反応部との間に伝熱粒子を介在させて設け、また改質反応部の周囲にバーナ部からの燃焼ガスが通る蒸発室を設け、この蒸発室内に蒸発器を内装し、この蒸発器にて発生した水蒸気を改質原料ガスに混合して原料ガスとするようにした。   Furthermore, a burner part for supplying sensible heat necessary for the reforming reaction is provided in the inner central part of the reforming reaction part with heat transfer particles interposed between the reforming reaction part and the reforming reaction. An evaporation chamber through which the combustion gas from the burner unit passes is provided around the unit, and an evaporator is installed in the evaporation chamber, and the steam generated in the evaporator is mixed with the reforming source gas to form a source gas. did.

また、CO選択酸化触媒の上流側に酸化用ガスを流入するミキサを設け、さらにこのミキサとCO選択酸化触媒の間に流水式の冷却器を設け、この冷却器の下流側を改質反応部の蒸発室内に設けた蒸発器の入口側に接続した構成となっている。   In addition, a mixer for introducing the oxidizing gas is provided upstream of the CO selective oxidation catalyst, and a flowing water type cooler is provided between the mixer and the CO selective oxidation catalyst, and the downstream side of the cooler is connected to the reforming reaction section. It is the structure connected to the inlet side of the evaporator provided in this evaporation chamber.

本発明に係る燃料電池発電システムにあっては、上記のように構成した外熱式水素製造装置の改質ガス出口管を燃料電池の燃料供給部に接続した構成になっている。   In the fuel cell power generation system according to the present invention, the reformed gas outlet pipe of the externally heated hydrogen production apparatus configured as described above is connected to the fuel supply section of the fuel cell.

本発明に係る外熱式水素製造装置にあっては、改質反応部の上流側に予備改質部を設けたことにより、原料ガスは上記改質反応部に流入する前に、予備改質部にて一部改質されることになり、改質反応部での反応負担を一部軽減することができて、この改質反応部での反応効率を向上することができると共に、この改質反応部の小型化を図ることができる。   In the external heating type hydrogen production apparatus according to the present invention, the pre-reforming unit is provided upstream of the reforming reaction unit, so that the raw gas is pre-reformed before flowing into the reforming reaction unit. The reforming reaction part can partially reduce the reaction burden and improve the reaction efficiency in the reforming reaction part. The quality reaction part can be miniaturized.

また、上記予備反応部を二重の環状にすると共に、この予備改質部の間にシフト反応部を設けたことにより、上記予備改質部を通る原料ガスは、このシフト反応部にて発熱された発熱分を効率よく吸収して温度上昇することができ、この部分での予備改質作用を良好に行うことができる。   In addition, since the preliminary reaction part has a double annular shape and a shift reaction part is provided between the preliminary reforming parts, the raw material gas passing through the preliminary reforming part generates heat in the shift reaction part. The generated heat can be efficiently absorbed and the temperature can be raised, and the preliminary reforming action can be satisfactorily performed in this portion.

また本発明装置では、改質反応部、シフト反応部、CO選択酸化部のそれぞれに環状型のハニカム触媒を用いたことにより、粉状の触媒をハニカム支持体に薄くコーティングして、この触媒の全ての活性成分を反応ガスに接触させることができて、触媒の利用率を球状、粒状、ペレット状の触媒に比べて飛躍的に向上させることができる。これにより、球状、粒状、ペレット状の触媒に比べ触媒の使用量を大幅に減少させることができ、低コスト化が可能になった。   In the apparatus of the present invention, by using an annular honeycomb catalyst in each of the reforming reaction section, the shift reaction section, and the CO selective oxidation section, a powdery catalyst is thinly coated on the honeycomb support, All active components can be brought into contact with the reaction gas, and the utilization factor of the catalyst can be dramatically improved as compared with a spherical, granular, or pellet-shaped catalyst. As a result, the amount of catalyst used can be greatly reduced compared to a spherical, granular, or pellet-shaped catalyst, and the cost can be reduced.

また、上記各ハニカム触媒を環状にしたことにより、各ハニカム触媒の強度が向上されると共に、構成の単純化を図ることができて、改質器の部品点数を大幅に削減されてコスト低減を図ることができる。   In addition, by making each honeycomb catalyst into an annular shape, the strength of each honeycomb catalyst is improved and the configuration can be simplified, and the number of parts of the reformer can be greatly reduced, resulting in cost reduction. You can plan.

また本発明によれば、改質反応部の周囲に設けた蒸発室に改質ガスに混合する蒸気を発生する蒸発器を内装したことにより、上記改質反応部を加熱するバーナ部の排熱を利用でき熱効率を向上できる。   Further, according to the present invention, the evaporator that generates steam mixed with the reformed gas is provided in the evaporation chamber provided around the reforming reaction section, so that the exhaust heat of the burner section that heats the reforming reaction section is provided. Can be used to improve thermal efficiency.

以下に本発明に係る装置の実施の形態を図1に基づいて説明する。なお、本発明はこれらの実施の形態のみに限定されるものではないことはいうまでもない。   An embodiment of an apparatus according to the present invention will be described below with reference to FIG. Needless to say, the present invention is not limited to these embodiments.

図1において、1は円筒状で、軸方向を上下に向けて形成された予備改質・シフト反応部、2はこの予備改質・シフト反応部1の上端側に配置される改質反応部である。   In FIG. 1, reference numeral 1 denotes a cylindrical shape, and a pre-reformation / shift reaction unit formed with the axial direction facing up and down, and 2 denotes a reforming reaction unit disposed on the upper end side of the pre-reformation / shift reaction unit 1. It is.

予備改質・シフト反応部1において3は外筒であり、この外筒3内の下端部近傍が第1・第2の仕切板4a,4bにて仕切られて原料ガス流入室5が構成されていて、これに原料ガス流入管6が接続されている。上記外筒3の上端側と下端側とが端板7a,7bにて閉じられていて、下端側の端板7bと上記原料ガス流入室5を形成する第2の仕切板4bとの間が酸化室8となっている。また、外筒3の上端側の端板7aの上側に上記改質反応部2が設けられている。そして上記外筒3内で両端板7a,7b間に、これらを同心状に貫通する内筒9が設けてある。   In the pre-reformation / shift reaction unit 1, reference numeral 3 denotes an outer cylinder, and the vicinity of the lower end portion in the outer cylinder 3 is partitioned by the first and second partition plates 4 a and 4 b to form the raw material gas inflow chamber 5. The raw material gas inflow pipe 6 is connected to this. The upper end side and the lower end side of the outer cylinder 3 are closed by end plates 7 a and 7 b, and the space between the end plate 7 b on the lower end side and the second partition plate 4 b forming the source gas inflow chamber 5 is between. It is an oxidation chamber 8. Further, the reforming reaction section 2 is provided above the end plate 7 a on the upper end side of the outer cylinder 3. An inner cylinder 9 is provided between the both end plates 7a and 7b in the outer cylinder 3 so as to penetrate them concentrically.

上記外筒3と内筒9の間で、かつ第1の仕切板4aと上端側の端板7aとの間の環状の空間内に外側から順に第1・第2の中間筒10,11が同心状に設けてあり、これらの中間筒10,11により外筒3と内筒9との間に、外側から順に外側・中間・内側の環状室12,13,14が構成されている。このときにおいて、外側と内側の環状室12,14の各断面積は略同一になっており、またこの外側と内側の環状室12,14の合計断面積が中間の環状室13の断面積と略同一となっている。   The first and second intermediate cylinders 10 and 11 are arranged in order from the outside in an annular space between the outer cylinder 3 and the inner cylinder 9 and between the first partition plate 4a and the end plate 7a on the upper end side. Concentric, these intermediate cylinders 10 and 11 form outer, intermediate and inner annular chambers 12, 13 and 14 in order from the outside between the outer cylinder 3 and the inner cylinder 9. At this time, the sectional areas of the outer and inner annular chambers 12 and 14 are substantially the same, and the total sectional area of the outer and inner annular chambers 12 and 14 is the same as the sectional area of the intermediate annular chamber 13. It is almost the same.

上記各環状室12,13,14のうち外側と内側の環状室12,14の下端が第1の仕切板4aに設けた連通孔15を介して原料ガス流入室5に連通されており、中間の環状室13の下端が原料ガス流入室5を貫通する連絡管16を介して酸化室8に連通されている。   Outer and inner lower ends of the annular chambers 12, 13, and 14 communicate with the source gas inflow chamber 5 through a communication hole 15 provided in the first partition plate 4a. The lower end of the annular chamber 13 communicates with the oxidation chamber 8 through a connecting pipe 16 that penetrates the source gas inflow chamber 5.

上記予備改質・シフト反応部1の外側と内側の環状室12,14にて二重の環状構造の予備改質部が構成されていて、これらの環状室12,14の下側の約1/2の部分に伝熱粒子17,17が、そして上側の約1/2の部分に予備改質触媒18,18が装入されている。   A pre-reformation section having a double annular structure is formed by the outer and inner annular chambers 12 and 14 of the pre-reformation / shift reaction section 1, and about 1 below the annular chambers 12 and 14. The heat transfer particles 17 and 17 are charged in the / 2 portion, and the pre-reforming catalysts 18 and 18 are charged in the upper half portion.

また中間の環状室13は、上記外側と内側の二重の環状構造の予備改質部の間の環状の空間内に設けられたシフト反応部であり、これの下側の約1/2の部分に低温シフト触媒19が、そして上側の約1/2の部分に高温シフト触媒20が上下方向に区分けされて装入されている。   The intermediate annular chamber 13 is a shift reaction portion provided in an annular space between the outer and inner double annular structure pre-reformers, and is about 1/2 of the lower side. A low temperature shift catalyst 19 is charged in the portion, and a high temperature shift catalyst 20 is charged in the upper half of the upper portion in a vertically divided manner.

上記予備改質部の伝熱粒子17,17は粒子状であり、また予備改質触媒18,18は熱伝導がよいペレットタイプが用いられている。また、低温、高温の両シフト触媒19,20は中間の環状室13の形状に沿う形状の環状型のハニカム構造になっている。そしてこの各シフト触媒19,20は、軸方向に所定の長さのものを軸方向に通気性を有する中間支持体21を介在させて装入されている。   The heat transfer particles 17 and 17 in the preliminary reforming section are in the form of particles, and the preliminary reforming catalysts 18 and 18 are of a pellet type with good heat conduction. Further, both the low temperature and high temperature shift catalysts 19 and 20 have an annular honeycomb structure having a shape along the shape of the intermediate annular chamber 13. Each of the shift catalysts 19, 20 is inserted with a predetermined length in the axial direction through an intermediate support 21 having air permeability in the axial direction.

上記酸化室8内には、上側から順に、中間の環状室13からの連絡管16側へ向けて酸化ガス吹き出し口を有するミキサ22と、冷却器23と、CO選択酸化触媒24が配置されていて、下側の端板7bに酸化室8の最下流側のガスを排出する改質ガス出口管25が設けてある。そしてこの改質ガス出口管25は、図示しない燃料電池の燃料供給部に接続されている。   In the oxidation chamber 8, a mixer 22 having an oxidizing gas outlet, a cooler 23, and a CO selective oxidation catalyst 24 are arranged in this order from the top toward the connecting pipe 16 side from the intermediate annular chamber 13. The lower end plate 7b is provided with a reformed gas outlet pipe 25 for discharging the gas on the most downstream side of the oxidation chamber 8. The reformed gas outlet pipe 25 is connected to a fuel supply unit of a fuel cell (not shown).

上記ミキサ22には空気あるいは酸素である酸化ガスが供給されるようになっている。また、冷却器23の入口部には給水管26が連通されており、出口部は連絡管27を介して改質反応部2に設けた蒸発器28に連通されている。この蒸発器28の出口管は、切換弁28aを介して上記原料ガス流入管6に設けたミキサ6aに接続されている。   The mixer 22 is supplied with an oxidizing gas which is air or oxygen. A water supply pipe 26 communicates with the inlet of the cooler 23, and an outlet communicates with an evaporator 28 provided in the reforming reaction section 2 via a communication pipe 27. The outlet pipe of the evaporator 28 is connected to a mixer 6a provided in the raw material gas inflow pipe 6 through a switching valve 28a.

上記CO選択酸化触媒24は、環状型ハニカム触媒にて構成されている。   The CO selective oxidation catalyst 24 is composed of an annular honeycomb catalyst.

上記予備改質・シフト反応部1の内筒9内には燃焼器29が、これのバーナ部29aを外筒3の上端側へ向けて装着してある。この燃焼器29は二重の環状構造になっていて、内側の通路に空気供給管30が連通されており、外側の環状通路にバーナ燃料供給管31が連通されている。そして中心部には先端部を上記バーナ部29aに臨ませた点火プラグ32が挿通されている。上記燃焼器29は予備混合タイプであり、低NOx、低COの小型構成のものである。   A combustor 29 is mounted in the inner cylinder 9 of the preliminary reforming / shift reaction section 1 with its burner section 29 a facing the upper end side of the outer cylinder 3. The combustor 29 has a double annular structure, and an air supply pipe 30 is communicated with an inner passage, and a burner fuel supply pipe 31 is communicated with an outer annular passage. A spark plug 32 having a tip facing the burner portion 29a is inserted through the center portion. The combustor 29 is a premixed type and has a small configuration with low NOx and low CO.

改質反応部2は、上記したように予備改質・シフト反応部1の上端側に端板7aを介して配置されている。この改質反応部2には予備改質・シフト反応部1の外筒3と内筒9で構成する環状部の開放部を閉じる形状にした有底環状筒33が端板7aに載置した状態で設けられている。この有底環状筒33の内筒の内側に上記燃焼器29のバーナ部29aに対向する燃焼室34が設けられている。そしてこの有底環状筒33の側方と上方が断熱材35にて囲繞されており、有底環状筒33の外側と断熱材35の間の空間及び有底環状筒33の内側内で上記燃焼室34の外側にわたって伝熱粒子36が充填されている。上記断熱材35には有底環状筒33と略同心状にして環状の蒸発室37が設けてあり、この蒸発室37が上記伝熱粒子36が充填されている有底環状筒33の外側室と通路38にて連通しており、また他の通路を介して排気口39に連通していて、上記燃焼室34での燃焼ガスは燃焼室34の外側から有底環状筒33の外側に、これらに充填されている伝熱粒子36を経て通路38より蒸発室37に入り、この蒸発室37より他の通路を通って排気口39へ排出されるようになっている。そして上記蒸発室37内に上記蒸発器28が内装されている。   As described above, the reforming reaction section 2 is disposed on the upper end side of the preliminary reforming / shift reaction section 1 via the end plate 7a. In this reforming reaction section 2, a bottomed annular cylinder 33 having a shape that closes the opening of the annular section constituted by the outer cylinder 3 and the inner cylinder 9 of the preliminary reforming / shift reaction section 1 is placed on the end plate 7a. It is provided in the state. A combustion chamber 34 facing the burner portion 29 a of the combustor 29 is provided inside the inner cylinder of the bottomed annular cylinder 33. The side and upper side of the bottomed annular cylinder 33 are surrounded by a heat insulating material 35, and the combustion is performed in the space between the outside of the bottomed annular cylinder 33 and the heat insulating material 35 and the inside of the bottomed annular cylinder 33. Heat transfer particles 36 are filled over the outside of the chamber 34. The heat insulating material 35 is provided with an annular evaporation chamber 37 that is substantially concentric with the bottomed annular cylinder 33, and this evaporation chamber 37 is an outer chamber of the bottomed annular cylinder 33 filled with the heat transfer particles 36. Are connected to the exhaust port 39 via other passages, and the combustion gas in the combustion chamber 34 flows from the outside of the combustion chamber 34 to the outside of the bottomed annular cylinder 33. The refrigerant enters the evaporation chamber 37 through the passage 38 through the heat transfer particles 36 filled therein, and is discharged from the evaporation chamber 37 to the exhaust port 39 through another passage. The evaporator 28 is housed in the evaporation chamber 37.

上記有底環状筒33内には第1・第2の中間筒40,41が、これらの下端を端板7aに当接し、上端を有底環状筒33の底面(天井面)に対して離隔して内装してある。そして第1の中間筒40の外側の環状空間42と、第2の中間筒37の内側の環状空間43のそれぞれに環状型のハニカム構造の外側と内側で二重構造になっている改質触媒44,44がそれぞれの上下に隙間をあけて内装されている。上記外側と内側の両環状空間42,43の断面積は略同一になっている。そして第1・第2の中間筒40,41の間は環状通路45となっている。   In the bottomed annular cylinder 33, the first and second intermediate cylinders 40 and 41 have their lower ends abutting against the end plate 7a and their upper ends separated from the bottom surface (ceiling surface) of the bottomed annular cylinder 33. And decorated. A reforming catalyst having a double structure outside and inside the annular honeycomb structure in each of the annular space 42 outside the first intermediate cylinder 40 and the annular space 43 inside the second intermediate cylinder 37. 44 and 44 are internally provided with a gap above and below. The cross-sectional areas of the outer and inner annular spaces 42 and 43 are substantially the same. An annular passage 45 is formed between the first and second intermediate cylinders 40 and 41.

上記改質反応部2内にて構成される外側の環状室42と予備改質・シフト反応部1の外側の環状室12が、また改質反応部2内の内側の環状室43と予備改質・シフト反応部1の内側を環状室14とが、また改質反応部2内の中間筒41,42にて構成される環状通路45の下端と予備改質・シフト反応部1の中間の環状室13とがそれぞれ仕切板7aに設けられた通路にて連通されている。   The outer annular chamber 42 configured in the reforming reaction section 2 and the outer annular chamber 12 outside the preliminary reforming / shifting reaction section 1 are also replaced with the inner annular chamber 43 in the reforming reaction section 2 and the preliminary reforming. The inside of the quality / shift reaction section 1 is provided with an annular chamber 14, and the lower end of the annular passage 45 constituted by the intermediate cylinders 41, 42 in the reforming reaction section 2 and the intermediate portion between the preliminary reforming / shift reaction section 1. The annular chambers 13 are communicated with each other through passages provided in the partition plate 7a.

なお図1に示した46は、燃焼室34内の燃焼温度を検出する熱電対である。また47は予備改質・シフト反応部1の周囲に保温するために囲繞した断熱材(マイクロサーム:商品名)である。   In addition, 46 shown in FIG. 1 is a thermocouple which detects the combustion temperature in the combustion chamber 34. Reference numeral 47 denotes a heat insulating material (microtherm: trade name) surrounded by the pre-reformation / shift reaction unit 1 so as to keep it warm.

上記構成において、低温シフト触媒19、高温シフト触媒20、改質触媒44及びCO選択酸化触媒24のそれぞれは、上記したように環状型のハニカム触媒が用いられているが、このように各触媒を環状型のハニカム触媒を用いた理由について以下に説明する。   In the above configuration, each of the low temperature shift catalyst 19, the high temperature shift catalyst 20, the reforming catalyst 44, and the CO selective oxidation catalyst 24 is an annular honeycomb catalyst as described above. The reason why the annular honeycomb catalyst is used will be described below.

まず性能面から見た場合、触媒反応は通常触媒の表面で起こる。触媒に球状、粒状またはペレット状のものを使用した場合、触媒内部に存在する触媒活性成分は反応に寄与しない。これに対してハニカム触媒では、ハニカム支持体の表面に粉状にした触媒を薄く(約100μm)コーティングするので、全ての活性成分が反応ガスと接触する。そのために触媒の利用率が球状、粒状、ペレット状の触媒に比べて飛躍的に向上させることができる。これにより球状、粒状、ペレット状の触媒に比べて触媒の使用量を大幅に減少させることができ、低コスト化が可能となる。   First, from the viewpoint of performance, the catalytic reaction usually occurs on the surface of the catalyst. When a spherical, granular or pellet type catalyst is used, the catalytically active component present in the catalyst does not contribute to the reaction. On the other hand, in the honeycomb catalyst, since the powdered catalyst is thinly coated (about 100 μm) on the surface of the honeycomb support, all the active components come into contact with the reaction gas. Therefore, the utilization factor of the catalyst can be dramatically improved as compared with the spherical, granular, and pellet type catalysts. As a result, the amount of catalyst used can be greatly reduced compared to a spherical, granular, or pellet catalyst, and the cost can be reduced.

また改質触媒の場合、(1)式の反応により水素を生成させるが、運転時においてS/C(水蒸気/炭素)の比率が適正値より低くなった場合には(2)式に示す炭素析出反応が起こる。
CH+HO=3H+CO (1)
CH=2H+C (2)
In the case of a reforming catalyst, hydrogen is generated by the reaction of the formula (1), but when the ratio of S / C (steam / carbon) becomes lower than an appropriate value during operation, the carbon shown in the formula (2) A precipitation reaction takes place.
CH 4 + H 2 O = 3H 2 + CO (1)
CH 4 = 2H 2 + C (2)

球状、粒状、ペレット状の触媒を使用した場合では、触媒層に炭素が蓄積しやすく、流路の閉塞が起こるために圧力損失が大きくなって運転停止を余儀なくされる。これに対してハニカム触媒では析出炭素はセル内を素通りするため、圧力や損失は生じない。   When a spherical, granular, or pellet-shaped catalyst is used, carbon tends to accumulate in the catalyst layer, and the flow path is clogged, resulting in a large pressure loss and forced shutdown. On the other hand, in the honeycomb catalyst, since the deposited carbon passes through the cell, no pressure or loss occurs.

さらにハニカム触媒にする利点として、外表面積が大きいので球状、粒状、ペレット状に比べ反応活性点が増大する。例えば400セル/inのハニカム支持体の外表面積は3m/Lあるのに対して、直径3mmの球状担体では0.8m/Lであり、ハニカム支持体の方が約4倍となる。これらの点から、ハニカム触媒にすることにより、触媒の使用量低減及び触媒体積の減少による改質器の小型化が可能となる。 As an advantage of the honeycomb catalyst, since the outer surface area is large, the reaction active point is increased as compared with the spherical, granular, and pellet shapes. For example, the outer surface area of a honeycomb support of 400 cells / in 2 is 3 m 2 / L, whereas a spherical support with a diameter of 3 mm is 0.8 m 2 / L, and the honeycomb support is about four times as much. . From these points, by using a honeycomb catalyst, it is possible to reduce the amount of the catalyst used and to reduce the size of the reformer by reducing the catalyst volume.

この点についてさらに詳細に述べる。燃料電池用の改質器では、COによる電極触媒の被毒を防止するためには、CO選択酸化触媒は不可欠なものである。この触媒には貴金属、特に白金が使用される。従来、粉末触媒を形成して粒状、球状にするか、または粒状、球状担体に白金溶液を含浸するなどの方法がとられている。このうち、前者では触媒反応は触媒表面で起こるために触媒担体内部にある白金が使用されない。後者では含浸時に担体内部にも白金溶液が拡散するため内部の白金が無駄になってしまう。これに対して触媒の支持体をハニカムにすることにより、このハニカム支持体の表面にだけ触媒が薄くコーティングされるので全ての白金が利用され、触媒の利用率が高くなり、白金の使用量が少なくてよい。   This point will be described in more detail. In a reformer for a fuel cell, a CO selective oxidation catalyst is indispensable for preventing poisoning of an electrode catalyst by CO. The catalyst is a noble metal, especially platinum. Conventionally, a powder catalyst is formed into a granular or spherical shape, or a granular or spherical carrier is impregnated with a platinum solution. Among these, in the former, since the catalytic reaction occurs on the catalyst surface, platinum inside the catalyst carrier is not used. In the latter, the platinum solution diffuses inside the support during impregnation, and the platinum inside is wasted. On the other hand, by making the catalyst support into a honeycomb, the catalyst is thinly coated only on the surface of the honeycomb support, so that all platinum is used, the utilization rate of the catalyst is increased, and the amount of platinum used is reduced. Less.

以上のことを実証するために、本発明者らはCO選択酸化触媒について粉末触媒を成形して粒状触媒にした場合と、ハニカム触媒にした場合の活性を調べた。以下に測定方法を示す。   In order to demonstrate the above, the present inventors investigated the activity of a CO selective oxidation catalyst when a powder catalyst is formed into a granular catalyst and when a honeycomb catalyst is used. The measurement method is shown below.

CO選択酸化触媒は、イオン交換法によって調整した。すなわち、粉末状のモルデナイト担体にPtをイオン交換法で担持した後、乾燥し、さらにFeをイオン交換法で担持し300℃で焼成し、4%Pt−0.5%Fe/モルデナイト触媒を得た。この粉末触媒をプレス後、破砕して1〜2mmの粉状触媒を得た。また同じ4%Pt−0.5%Fe/モルデナイト触媒粉末をアルミナゾル及び水を加えてスラリーにした後、400セルのコージェライト製ハニカムにコーティングしてハニカム触媒を得た。このときの触媒のコーティング量は100g/L−ハニカムである。   The CO selective oxidation catalyst was prepared by an ion exchange method. That is, Pt is supported on a powdery mordenite support by an ion exchange method and then dried, and further Fe is supported by an ion exchange method and calcined at 300 ° C. to obtain a 4% Pt-0.5% Fe / mordenite catalyst. It was. The powder catalyst was pressed and crushed to obtain a 1-2 mm powder catalyst. The same 4% Pt-0.5% Fe / mordenite catalyst powder was made into a slurry by adding alumina sol and water, and then coated on a 400-cell cordierite honeycomb to obtain a honeycomb catalyst. At this time, the coating amount of the catalyst is 100 g / L-honeycomb.

上記した2種類の触媒を以下の方法でCO選択酸化活性を測定した。反応管に触媒2ccを充填し、電気炉で300℃に加熱して水素を流して還元する。還元後、所定温度にして1パーセントCO−0.5%0−Hバランスの反応ガスを導入し、入口と出口のガスの濃度差からCO転化率を求めた。その結果を図2に示す。ハニカム触媒は粒状触媒に比べ高い活性を示すことが分かる。さらに注目されるべきはPtの使用量である。 The CO selective oxidation activity of the above two types of catalysts was measured by the following method. The reaction tube is filled with 2 cc of catalyst, heated to 300 ° C. in an electric furnace, and reduced by flowing hydrogen. After the reduction, 1% CO-0.5% 0 2 -H 2 balance reaction gas was introduced at a predetermined temperature, and the CO conversion rate was determined from the concentration difference between the inlet and outlet gases. The result is shown in FIG. It can be seen that the honeycomb catalyst exhibits higher activity than the granular catalyst. Further attention should be paid to the amount of Pt used.

表1は本実験におけるハニカム触媒と粒状触媒のPt使用量を比較したものである。この結果から明らかなように、ハニカム触媒にすると粒状触媒に比べてPt使用量を1/5以下にすることが可能である。これは粒状触媒では、粒子の内部にあるPtが有効に使われていないのに対して、ハニカム触媒ではハニカム支持体の表面に薄くコーティングされているので、Ptのほとんどが有効に利用されているものと推定される。燃料電池用の水素製造装置では、これのコストが実用化のネックとなっているが、本発明のように改質触媒、高温シフト触媒、低温シフト触媒及びCO選択酸化触媒の全ての触媒をハニカム触媒にすることによりPt使用量を大幅に低減でき、低コスト化に大きく貢献できる。   Table 1 compares the amounts of Pt used in the honeycomb catalyst and the granular catalyst in this experiment. As is clear from this result, when the honeycomb catalyst is used, the amount of Pt used can be reduced to 1/5 or less as compared with the granular catalyst. This is because the particulate catalyst does not effectively use Pt inside the particles, whereas the honeycomb catalyst is thinly coated on the surface of the honeycomb support, so most of Pt is effectively used. Estimated. In a hydrogen production apparatus for a fuel cell, this cost has become a bottleneck in practical use. However, as in the present invention, all the catalysts such as a reforming catalyst, a high temperature shift catalyst, a low temperature shift catalyst and a CO selective oxidation catalyst are used in a honeycomb. By using a catalyst, the amount of Pt used can be greatly reduced, which can greatly contribute to cost reduction.

Figure 2009274919
Figure 2009274919

さらにハニカム触媒にする利点として、圧力損失が小さいことがあげられる。これは改質器に導入する原料ガス、空気または酸素、水の供給に対して少ない動力で済むためにポンプなどの補器類のコスト低減に大きく寄与する。特に家庭用燃料電池などの改質器は一層の小型軽量化が求められるので、ポンプなどの補器類の動力低減、小型軽量化は大きなメリットであり低コスト化にも繋がる。   Further, the advantage of using a honeycomb catalyst is that the pressure loss is small. This greatly contributes to the cost reduction of auxiliary equipment such as pumps because less power is required for the supply of the raw material gas, air, oxygen or water introduced into the reformer. In particular, since reformers such as household fuel cells are required to be further reduced in size and weight, reducing the power of auxiliary devices such as pumps and reducing the size and weight are significant advantages and cost reduction.

燃料電池のようにDSS対応の機器では、冷熱サイクルが繰り返されるため使用する触媒は機械的強度が要求されるが、ハニカム触媒にするさらなる利点として、ハニカム支持体はセラミックではコージェライトを代表とする耐熱性無機材からなっているので、このハニカムは機械的強度が高いこと、及び触媒の形状が一体型(モノリシス)であり、取り付けや取り出しが容易なために使い勝手の上からも優れていることがあげられる。   In a DSS-compatible device such as a fuel cell, since the cooling cycle is repeated, the catalyst used requires mechanical strength. However, as a further advantage of using a honeycomb catalyst, the honeycomb support is represented by cordierite in ceramics. Because it is made of a heat-resistant inorganic material, this honeycomb has high mechanical strength, and the shape of the catalyst is monolithic (monolithic), and it is easy to install and take out, making it excellent in terms of usability Is given.

従来、接触成形体としては粉末状、球状、円柱状、破砕状、リング状などが一般的に用いられてきた。しかしながら粉末状の場合、外表面積は成形体に比べて大きくなり、触媒活性を高めるためには望ましいが、固定床として使う場合は圧力損失が大きくなるため流動床にのみ有効であり、使用条件が限定される。   Conventionally, powdered, spherical, cylindrical, crushed, ring-shaped and the like have been generally used as the contact molded body. However, in the case of powder, the outer surface area is larger than that of the molded body, which is desirable for increasing the catalytic activity. However, when used as a fixed bed, the pressure loss increases, so it is effective only for a fluidized bed. Limited.

これに対してハニカム触媒は、上記したように多くの利点を有している。   On the other hand, the honeycomb catalyst has many advantages as described above.

ハニカム支持体としては、セラミック製または金属性が好適である。なお、セラミック製とはコージェライト、ムライト、アルミナ、ジルコニア等の無機物である。またハニカムの容積、セル数(貫通孔の径を示す数値で、通常の1in角に含まれる孔の数)は触媒性能によって決まるものであるから、任意に設計することができる。   The honeycomb support is preferably made of ceramic or metallic. The ceramic product is an inorganic material such as cordierite, mullite, alumina, zirconia. Further, the honeycomb volume and the number of cells (a numerical value indicating the diameter of the through-hole and the number of holes included in a normal 1 inch square) are determined by the catalyst performance, and can be arbitrarily designed.

触媒粉末のコーティング方法としては、支持体であるセラミックや金属との結着性をよくするために少量のバインダーを用いることが好ましい。結着性が悪い場合には、触媒粉末が剥離して粉塵となって飛散してしまうので、バインダーの選択は特に重要である。触媒粉末とバインダー及び水を混合したスラリー液にハニカム支持体を浸漬し、乾燥後所定の温度で焼成する。   As a method for coating the catalyst powder, it is preferable to use a small amount of a binder in order to improve the binding property with the ceramic or metal as the support. When the binding property is poor, the catalyst powder is peeled off and scattered as dust, so the selection of the binder is particularly important. The honeycomb support is immersed in a slurry liquid in which catalyst powder, a binder and water are mixed, dried and fired at a predetermined temperature.

次に触媒粉末について記述する。   Next, the catalyst powder will be described.

まず水蒸気改質触媒の場合、活性成分としてFe、Co、Ni、Ru、Rh、Pd、Ir、Ptの中から選ばれた少なくとも1種と、Mg、Al、Si、Ti、Zr、Ba、Laから選ばれた少なくとも1種の担体成分を含有する触媒であることが望ましい。さらに一般的に担体成分にアルカリ元素や希土類元素を加えることにより、触媒の固体酸性度を制御することができ、炭素析出を抑制することが可能となる。   First, in the case of a steam reforming catalyst, at least one selected from Fe, Co, Ni, Ru, Rh, Pd, Ir, and Pt as active components, and Mg, Al, Si, Ti, Zr, Ba, La, and La It is desirable that the catalyst contains at least one carrier component selected from Furthermore, generally by adding an alkali element or a rare earth element to the support component, the solid acidity of the catalyst can be controlled, and carbon deposition can be suppressed.

シフト反応用触媒は、活性成分としてCr、Mn、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Ir、Ptの中から選ばれた少なくとも1種と,Mg,Al,Si、Ti、Zr、Ba、Laから選ばれた少なくとも1種の担体成分を含有する触媒であることが望ましい。   The shift reaction catalyst has at least one selected from Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ir, and Pt as active components, and Mg, Al, Si, Ti. It is desirable that the catalyst contains at least one carrier component selected from Zr, Ba, and La.

一酸化炭素の選択酸化触媒は、活性成分としてPt、Pd、Rh、Ir、Ru、Ni、Co及びFeより選ばれた1種または2種以上の混合物もしくは合金からなり、担体としてはゼオライト、アルミナ、チタニア、シリカ等の多孔質担体が好適である。   The selective oxidation catalyst for carbon monoxide is composed of one or a mixture or alloy selected from Pt, Pd, Rh, Ir, Ru, Ni, Co and Fe as active components, and zeolite, alumina as a support A porous carrier such as titania or silica is preferred.

上記した各触媒の製造方法として、通常の含浸法、混練法、イオン交換法などの湿式法、さらに乾式法としてプラズマ合成法などの方法があり、最高活性を示す製造法を適宜選択すればよい。   As a method for producing each catalyst described above, there are a wet method such as a normal impregnation method, a kneading method and an ion exchange method, and a dry method such as a plasma synthesis method, and a production method exhibiting the highest activity may be appropriately selected. .

また、次にハニカム触媒を環状型にする理由を記述する。   Next, the reason why the honeycomb catalyst is formed into an annular shape will be described.

改質器には改質触媒、高温シフト触媒、低温シフト触媒及びCO選択酸化触媒が使用される。そして改質反応は吸熱反応であり、シフト反応及びCO選択酸化反応は発熱反応である。これらの反応を効率よく起こさせるためには、改質器の内部に装填された改質触媒では外部からの熱を触媒全体に伝えることが重要であり、シフト触媒では外部に熱を伝えることが重要である。   For the reformer, a reforming catalyst, a high temperature shift catalyst, a low temperature shift catalyst and a CO selective oxidation catalyst are used. The reforming reaction is an endothermic reaction, and the shift reaction and the CO selective oxidation reaction are exothermic reactions. In order for these reactions to occur efficiently, it is important to transfer heat from the outside to the entire catalyst in the reforming catalyst loaded inside the reformer, and to transfer heat to the outside in the shift catalyst. is important.

これらの触媒が、粉末状、球状、円柱状、破砕状、リング状であっては、触媒相互が密着して充填されるために触媒間の熱の伝熱がよく均一な温度になりやすい。一方、ハニカム触媒では触媒の内部に貫通孔があるために粉末状、球状、円柱状、破砕状、リング状の触媒に比べて周方向からの熱の伝達が悪い。   When these catalysts are in the form of powder, sphere, cylinder, crushed shape, or ring shape, the catalysts are closely packed with each other, so that heat transfer between the catalysts is good and the temperature tends to be uniform. On the other hand, the honeycomb catalyst has through-holes inside the catalyst, and therefore, heat transfer from the circumferential direction is worse than that of a powdery, spherical, cylindrical, crushed, or ring-shaped catalyst.

しかしながら本発明者らの実験によれば、ハニカム触媒を環状にすれば、そしてこの半径方向の厚さが25mm未満であれば、周方向からの熱を十分伝達することが可能で、改質反応、シフト反応が問題なく行われることが確認できた。また、ハニカム触媒を環状にすることにより、これの周方向からの熱を均一にこのハニカム触媒に伝達することができると共に、ハニカム触媒に作用する応力を分散させることができ、その上、環状にすることにより改質器の部品点数を大幅に削減することができて原価低減に寄与することがわかった。   However, according to the experiments by the present inventors, if the honeycomb catalyst is formed in an annular shape and the thickness in the radial direction is less than 25 mm, it is possible to sufficiently transfer the heat from the circumferential direction. It was confirmed that the shift reaction was performed without any problem. In addition, by making the honeycomb catalyst annular, heat from the circumferential direction thereof can be uniformly transmitted to the honeycomb catalyst, and stress acting on the honeycomb catalyst can be dispersed. By doing so, it was found that the number of parts of the reformer could be greatly reduced and contributed to cost reduction.

次に上記構成装置の作用を説明する。   Next, the operation of the above configuration apparatus will be described.

本発明装置の起動にあたっては、まず燃焼器29の空気供給管30から空気を、またバーナ燃料供給管31よりバーナ燃料をそれぞれ所定の圧力にて供給し、ついで点火プラグ電極32にて点火してバーナ部29aにての燃焼を開始する。このバーナ部29aでの燃焼ガスは、改質反応部2の有底環状筒33の外側に充填された伝熱粒子36を通って通路38より環状の蒸発室37を経て排気口39より排出され、この間に改質反応部2の有底環状筒33の内側に内装された改質触媒44が、これの内側と外側から加熱されると共に、上記蒸発室37内の蒸発器28が加熱される。   In starting the apparatus of the present invention, first, air is supplied from the air supply pipe 30 of the combustor 29 and burner fuel is supplied from the burner fuel supply pipe 31 at a predetermined pressure, and then the ignition plug electrode 32 is ignited. Combustion at the burner unit 29a is started. The combustion gas in the burner portion 29a passes through the heat transfer particles 36 filled on the outside of the bottomed annular cylinder 33 of the reforming reaction portion 2 and is discharged from the exhaust port 39 through the passage 38 through the annular evaporation chamber 37. During this time, the reforming catalyst 44 housed inside the bottomed annular cylinder 33 of the reforming reaction section 2 is heated from the inside and outside thereof, and the evaporator 28 in the evaporation chamber 37 is heated. .

また、このバーナ部29aでの燃焼と並行して給水管26より水を供給して冷却器23を経て蒸発室37内に配置された蒸発器28に水を流して蒸気を発生させる。そしてこのときの切換弁28aはOFFにしておき、この蒸発器28から所定温度の蒸気が発生した状態で切換弁28aをONにしてこの蒸気をミキサ6aに供給する。   Further, in parallel with the combustion in the burner portion 29a, water is supplied from the water supply pipe 26, and water is caused to flow through the cooler 23 to the evaporator 28 disposed in the evaporation chamber 37 to generate steam. At this time, the switching valve 28a is turned off, and the steam is supplied to the mixer 6a with the switching valve 28a turned on in a state where steam at a predetermined temperature is generated from the evaporator 28.

上記バーナ29aでの燃焼により改質触媒44が所定の温度になると共に、蒸発器28からの蒸気の温度が所定の温度になって、切換弁28aのONによりこの蒸気がミキサ6aから原料ガス流入管6へ供給される。そしてこの状態になってから改質原料ガスを供給して、原料ガス流入管6より蒸気と混合した原料ガスとして、原料ガス流入室5へ供給して装置の運転を開始する。   Combustion in the burner 29a brings the reforming catalyst 44 to a predetermined temperature, the temperature of the steam from the evaporator 28 reaches a predetermined temperature, and the steam flows into the raw material gas from the mixer 6a by turning on the switching valve 28a. Supplied to the tube 6. In this state, the reforming raw material gas is supplied and supplied to the raw material gas inflow chamber 5 as the raw material gas mixed with the steam from the raw material gas inflow pipe 6 to start the operation of the apparatus.

この装置の運転時において、原料ガス流入室5に流入した上記原料ガスは、第1の仕切板4aに設けた連通孔15より予備改質・シフト反応部1の二重の環状になっている外側と内側の環状室12,14に入り、この両室に下側から順に充填されている伝熱粒子17,17、予備改質触媒18,18を通過する。その後、改質反応部2の二重の環状になっている外側と内側の環状空間42,43内に入り、両空間内に内装されている改質触媒44,44を通過した後、有底環状筒33の上端部の空間で反転して、この有底環状筒33内で二重の環状になっている両空間42,43の間に設けられた通路45を通って下降し、ついで予備改質・シフト反応部1の上記二重構造の環状室12,14の間に位置する中間の環状室13に入り、この環状室13内に上側から順に内装されている高温シフト触媒20、低温シフト触媒19を通過して酸化室8に入り、ここから改質ガス出口管25を通って排出される。   During operation of this apparatus, the raw material gas that has flowed into the raw material gas inflow chamber 5 has a double annular shape of the pre-reformation / shift reaction unit 1 through the communication hole 15 provided in the first partition plate 4a. It enters the outer and inner annular chambers 12 and 14, and passes through the heat transfer particles 17 and 17 and the pre-reforming catalysts 18 and 18 which are filled in the two chambers in order from the lower side. Thereafter, the reforming reaction part 2 enters the double annular outer and inner annular spaces 42, 43, passes through the reforming catalysts 44, 44 built in both spaces, It reverses in the space of the upper end part of the annular cylinder 33, descends through a passage 45 provided between the spaces 42 and 43 which are double annular in the bottomed annular cylinder 33, and then reserves. A high temperature shift catalyst 20, which enters the middle annular chamber 13 located between the above-described double-structured annular chambers 12, 14 of the reforming / shift reaction section 1, is sequentially installed in the annular chamber 13 from the upper side, It passes through the shift catalyst 19 and enters the oxidation chamber 8, from which it is discharged through the reformed gas outlet pipe 25.

このときにおいて、予備改質・シフト反応部1の中間の環状室13内の高温シフト触媒20は、改質反応部2の改質触媒44を通る間に加熱されたガス流にて高温に加熱され、ついで低温シフト触媒19はこれより低温に加熱される。そしてこのシフト反応部1の二重の環状になっている外側と内側の各環状室12,14内の下側の伝熱粒子17,17は、これの内側と外側から上記低温シフト触媒19により加熱され、上記の予備改質触媒20はこれの内側と外側から上記高温シフト触媒20により加熱される。   At this time, the high temperature shift catalyst 20 in the annular chamber 13 in the middle of the pre-reformation / shift reaction unit 1 is heated to a high temperature by a gas flow heated while passing through the reforming catalyst 44 of the reforming reaction unit 2. Then, the low temperature shift catalyst 19 is heated to a lower temperature. The lower heat transfer particles 17 and 17 in the outer and inner annular chambers 12 and 14 of the shift reaction portion 1 are formed by the low-temperature shift catalyst 19 from the inner and outer sides. The pre-reforming catalyst 20 is heated and heated by the high-temperature shift catalyst 20 from the inside and outside thereof.

運転時の原料ガスの流れにおいて、原料ガス流入室5に流入した原料ガスは、予備改質・シフト反応部1の外側と内側の環状室12,14の伝熱粒子17,17を通る間に、低温シフト触媒19にて加熱された加熱分を効率よく吸収して温度が上昇する。ついでその上側の予備改質触媒18を通る間に吸熱反応をして、高温シフト触媒20の発熱反応により温度上昇した熱分を効率よく吸収して、この原料ガスの一部が改質される。このときの伝熱粒子17と予備改質触媒18は、ペレットタイプが用いられることにより原料ガスへの熱伝導は効率よく行われる。   In the flow of the raw material gas during operation, the raw material gas that has flowed into the raw material gas inflow chamber 5 passes through the heat transfer particles 17, 17 in the annular chambers 12, 14 inside and outside the preliminary reforming / shift reaction unit 1. The temperature rises by efficiently absorbing the heat heated by the low temperature shift catalyst 19. Next, an endothermic reaction is performed while passing through the upper pre-reforming catalyst 18 so as to efficiently absorb the heat increased in temperature by the exothermic reaction of the high temperature shift catalyst 20, and a part of the raw material gas is reformed. . The heat transfer particles 17 and the pre-reforming catalyst 18 at this time are efficiently conducted to the raw material gas by using a pellet type.

ついでこの一部改質された原料ガスは、改質反応部2の二重の環状になっている外側と内側の改質触媒44,44を下側から通る間に、急激な吸熱反応を伴った水蒸気改質反応によりHとCOに改質される。そしてこの改質された改質ガスは、両改質触媒44,44を通り抜けてから反転して両改質触媒44,44の間の環状の通路45を通って下降して予備改質・シフト反応部1の高温シフト触媒20、低温シフト触媒19に入り、ここでは発熱を伴ったシフト反応によりCOがHとCOに変換される。 Next, the partially reformed raw material gas undergoes a rapid endothermic reaction while passing from the lower side to the outer side and inner side reforming catalysts 44, 44 of the reforming reaction section 2 in a double annular shape. It is reformed to H 2 and CO by the steam reforming reaction. Then, the reformed reformed gas passes through both reforming catalysts 44, 44 and then reverses, descends through an annular passage 45 between the reforming catalysts 44, 44, and undergoes preliminary reforming / shifting. The high temperature shift catalyst 20 and the low temperature shift catalyst 19 of the reaction unit 1 are entered. Here, CO is converted into H 2 and CO 2 by a shift reaction accompanied by heat generation.

予備改質・シフト反応部1の両シフト触媒20,19による反応が終了した改質ガスは、連絡管16を通って酸化室8内に入り、ここでミキサ22から導入された空気(または酸素)と混合される。このときの空気量はCO除去のために必要な量だけ導入され、ミキサ22にて上記改質ガスと効率よく混合される。そしてその後、冷却器23にてCO選択酸化触媒の作動温度まで冷却される。   The reformed gas that has been reacted by the two shift catalysts 20 and 19 in the preliminary reforming / shift reaction section 1 enters the oxidation chamber 8 through the communication pipe 16, and here air (or oxygen introduced from the mixer 22). ). At this time, an amount of air necessary for CO removal is introduced, and is efficiently mixed with the reformed gas by the mixer 22. After that, the cooler 23 cools to the operating temperature of the CO selective oxidation catalyst.

冷却器23にて所定温度まで冷却された改質ガスは、CO選択酸化触媒24を通る間にCOが除去される。そしてこのCOが除去された改質ガス(水素)が改質ガス出口管25より燃料電池へと供給される。   CO is removed from the reformed gas cooled to a predetermined temperature by the cooler 23 while passing through the CO selective oxidation catalyst 24. The reformed gas (hydrogen) from which the CO has been removed is supplied from the reformed gas outlet pipe 25 to the fuel cell.

本発明装置に用いた改質原料ガスは、炭化水素あるいは脂肪族アルコールであり、具体的には都市ガス、LPG、気化させた灯油、メタン、メタノール、エタノール等が用いられる。この改質原料ガスと水蒸気との混合割合S/C(水蒸気/炭素)の適正値は2.5〜3.5であり、好ましくは2.8〜3.0である。   The reforming raw material gas used in the apparatus of the present invention is a hydrocarbon or an aliphatic alcohol, and specifically, city gas, LPG, vaporized kerosene, methane, methanol, ethanol or the like is used. The appropriate value of the mixing ratio S / C (water vapor / carbon) of the reforming raw material gas and water vapor is 2.5 to 3.5, preferably 2.8 to 3.0.

S/Cの値が大きくなると投入する水蒸気の量が多くなり、したがってその水蒸気を作るためのエネルギーを多く必要とするためシステム効率が低下してしまう。そのために電池システムでは、水蒸気の供給量を極力下げるようにしている。ただし、S/Cが低くなるとCが析出するために実際の運転では上記好適値の2.8〜3.0で行っている。   When the value of S / C increases, the amount of water vapor to be input increases, and therefore a large amount of energy is required to produce the water vapor, so that the system efficiency decreases. Therefore, in the battery system, the supply amount of water vapor is reduced as much as possible. However, when S / C becomes low, C precipitates, so that the actual operation is performed at the preferable value of 2.8 to 3.0.

また、図1にて示した本発明装置の各部寸法を以下に示す。なお、これらの寸法は実施の形態においての一例を示すものであって、何らこれに限定されるものではない。すなわち、その一例として、予備改質・シフト反応部1の高さLは約360mm、その径Dは約150mmであり、改質反応部2の高さLは約200mm、その径は約220mmであり、全体の容積は約13.5リットルである。また、シフト反応部1の外筒3の外径は106mm、中間筒10,11の外径はそれぞれ92mm、50mmである。 The dimensions of each part of the device of the present invention shown in FIG. 1 are shown below. In addition, these dimensions show an example in the embodiment, and are not limited to these. That is, as an example, the height L 1 of the pre-reformation / shift reaction section 1 is about 360 mm, its diameter D 1 is about 150 mm, the height L 2 of the reforming reaction section 2 is about 200 mm, and its diameter is The total volume is about 13.5 liters. The outer diameter of the outer cylinder 3 of the shift reaction unit 1 is 106 mm, and the outer diameters of the intermediate cylinders 10 and 11 are 92 mm and 50 mm, respectively.

上記実施の形態での各部の温度は、改質原料ガスに炭化水素系を用いた場合において、改質触媒部で650〜750℃、高温シフト触媒部で350〜450℃、低温シフト触媒部で250〜350℃、CO選択酸化触媒部で100〜150℃であった。   The temperature of each part in the above embodiment is 650 to 750 ° C. for the reforming catalyst part, 350 to 450 ° C. for the high temperature shift catalyst part, and 350 to 450 ° C. for the low temperature shift catalyst part when using a hydrocarbon-based reforming raw material gas. It was 100-150 degreeC in 250-350 degreeC and CO selective oxidation catalyst part.

さらに、この本発明装置での処理量は、都市ガスの投入量が3〜5LN/min、供給水量が6〜14cc/minである。   Furthermore, the processing amount in this device of the present invention is 3 to 5 LN / min for city gas input and 6 to 14 cc / min for water supply.

本発明の実施の形態を示す断面図である。It is sectional drawing which shows embodiment of this invention. 粒状触媒とハニカム触媒の温度に対するOC転化率を示す線図である。It is a diagram which shows OC conversion rate with respect to the temperature of a granular catalyst and a honeycomb catalyst.

符号の説明Explanation of symbols

1…予備改質・シフト反応部、2…改質反応部、3…外筒、4a,4b…仕切板、5…原料ガス流入室、6…原料ガス流入管、6a…ミキサ、7a,7b…端板、8…酸化室、9…内筒、10,11…中間筒、12,13,14…外側・中間・内側の環状室、15…連通孔、16…連絡管、17…伝熱粒子、18…予備改質触媒、19…低温シフト触媒、20…高温シフト触媒、21…中間支持体、22…ミキサ、23…冷却器、24…CO選択酸化触媒、25…改質ガス出口管、26…給水管、27…連絡管、28…蒸発器、28a…切換弁、29…燃焼器、29a…バーナ部、30…空気供給管、31…バーナ燃料供給管、32…点火プラグ、33…有底環状筒、34…燃焼室、35…断熱材、36…伝熱粒子、37…蒸発室、38…通路、39…排気口、40,41…中間筒、42.43…外側・内側の環状空間、44…改質触媒、45…通路、46…熱電対、47…断熱材。   DESCRIPTION OF SYMBOLS 1 ... Preliminary reforming | shifting reaction part, 2 ... Reforming reaction part, 3 ... Outer cylinder, 4a, 4b ... Partition plate, 5 ... Raw material gas inflow chamber, 6 ... Raw material gas inflow pipe, 6a ... Mixer, 7a, 7b ... end plate, 8 ... oxidation chamber, 9 ... inner cylinder, 10, 11 ... intermediate cylinder, 12, 13, 14 ... outer / intermediate / inner annular chamber, 15 ... communication hole, 16 ... communication pipe, 17 ... heat transfer Particles, 18 ... preliminary reforming catalyst, 19 ... low temperature shift catalyst, 20 ... high temperature shift catalyst, 21 ... intermediate support, 22 ... mixer, 23 ... cooler, 24 ... CO selective oxidation catalyst, 25 ... reformed gas outlet pipe , 26 ... water supply pipe, 27 ... communication pipe, 28 ... evaporator, 28a ... switching valve, 29 ... combustor, 29a ... burner section, 30 ... air supply pipe, 31 ... burner fuel supply pipe, 32 ... spark plug, 33 ... bottomed annular cylinder, 34 ... combustion chamber, 35 ... heat insulating material, 36 ... heat transfer particles, 37 ... evaporation chamber, 38 ... communication , 39 ... exhaust port, 40, 41 ... middle tube, 42.43 ... outer-inner annular space, 44 ... reforming catalyst, 45 ... passage, 46 ... thermocouple, 47 ... insulation.

Claims (8)

改質原料に水蒸気を混合した原料ガスを、外熱にて加熱される改質反応部とシフト反応部とCO酸化部を通過させ、この間の水蒸気改質反応とシフト反応により水素に改質する外熱式水素製造装置において、
改質反応部の上流側に予備改質部を設け、この予備改質部を二重の環状にすると共に、この予備改質部の間の環状の空間内に一端部を改質反応部の下流側に連通させた環状のシフト反応部を設け、
予備改質部の上流側に原料ガス流入管を接続し、シフト反応部の下流側をCO選択酸化部を介して改質ガス排出管に接続してなる
ことを特徴とする外熱式水素製造装置。
The raw material gas in which steam is mixed with the reforming raw material is passed through the reforming reaction section, shift reaction section, and CO oxidation section that are heated by external heat, and reformed to hydrogen by the steam reforming reaction and shift reaction between them. In an externally heated hydrogen production system,
A pre-reforming part is provided upstream of the reforming reaction part, and this pre-reforming part is made into a double annular shape, and one end of the reforming reaction part is placed in the annular space between the pre-reforming parts. An annular shift reaction part communicating with the downstream side is provided,
Externally heated hydrogen production characterized in that a raw material gas inflow pipe is connected to the upstream side of the preliminary reforming section, and a downstream side of the shift reaction section is connected to a reformed gas discharge pipe through a CO selective oxidation section. apparatus.
改質反応部、シフト反応部,CO選択酸化部のそれぞれに環状型のハニカム触媒を用いたことを特徴とする請求項1記載の外熱式水素製造装置。   2. The externally heated hydrogen production apparatus according to claim 1, wherein an annular honeycomb catalyst is used for each of the reforming reaction section, the shift reaction section, and the CO selective oxidation section. 予備改質部が原料ガス流入室からの原料ガスの流れ方向に順に充填した伝熱粒子と予備改質触媒からなり、シフト反応部が改質反応部からの改質ガスの流れ方向から順に装入した高温シフト触媒と低温シフト触媒からなることを特徴とする請求項1,2のいずれか1項記載の外熱式水素製造装置。   The pre-reforming section is composed of heat transfer particles and pre-reforming catalyst that are sequentially filled in the flow direction of the raw material gas from the raw material gas inflow chamber, and the shift reaction section is installed in order from the flow direction of the reformed gas from the reforming reaction section. The externally heated hydrogen production apparatus according to any one of claims 1 and 2, characterized by comprising a high temperature shift catalyst and a low temperature shift catalyst. 改質反応部の内側中心部に改質反応に必要な顕熱を供給するためのバーナ部を、改質反応部との間に伝熱粒子を介在させて設けたことを特徴とする請求項1,2,3のいずれか1項記載の外熱式水素製造装置。   The burner section for supplying sensible heat required for the reforming reaction to the inner central part of the reforming reaction section is provided with heat transfer particles interposed between the reforming reaction section and the reforming reaction section. The externally heated hydrogen production apparatus according to any one of 1, 2, and 3. 改質反応部の周囲にバーナ部からの燃焼ガスが通る蒸発室を設け、この蒸発室内に蒸発器を内装し、この蒸発器にて発生した水蒸気を改質原料ガスに混合して原料ガスとすることを特徴とする請求項1,2,3,4のいずれか1項記載の外熱式水素製造装置。   An evaporation chamber through which the combustion gas from the burner section passes is provided around the reforming reaction section, and an evaporator is provided in the evaporation chamber. Water vapor generated in the evaporator is mixed with the reforming source gas, and the source gas and The externally heated hydrogen production apparatus according to any one of claims 1, 2, 3 and 4. CO選択酸化触媒の上流側に酸化用ガスを流入するミキサを設けたことを特徴とする請求項1,2,3,4,5のいずれか1項記載の外熱式水素製造装置。   The externally heated hydrogen production apparatus according to any one of claims 1, 2, 3, 4 and 5, wherein a mixer for introducing an oxidizing gas is provided upstream of the CO selective oxidation catalyst. 酸化用ガス流入用のミキサとCO選択酸化触媒の間に流水式の冷却器を設け、この冷却器の下流側を改質反応部の蒸発室内に設けた蒸発器の入口側に接続したことを特徴とする請求項6記載の外熱式水素製造装置。   A flowing water type cooler is provided between the mixer for inflow of oxidizing gas and the CO selective oxidation catalyst, and the downstream side of this cooler is connected to the inlet side of the evaporator provided in the evaporation chamber of the reforming reaction section. The externally heated hydrogen production apparatus according to claim 6, wherein 請求項1から7のいずれか1項記載の外熱式水素製造装置の改質ガス出口管を燃料電池の燃料供給部に接続したことを特徴とする燃料電池発電システム。   A fuel cell power generation system, wherein the reformed gas outlet pipe of the externally heated hydrogen production apparatus according to any one of claims 1 to 7 is connected to a fuel supply unit of the fuel cell.
JP2008128416A 2008-05-15 2008-05-15 Externally heated hydrogen production apparatus and fuel cell power generation system using the same Active JP5145566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008128416A JP5145566B2 (en) 2008-05-15 2008-05-15 Externally heated hydrogen production apparatus and fuel cell power generation system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008128416A JP5145566B2 (en) 2008-05-15 2008-05-15 Externally heated hydrogen production apparatus and fuel cell power generation system using the same

Publications (2)

Publication Number Publication Date
JP2009274919A true JP2009274919A (en) 2009-11-26
JP5145566B2 JP5145566B2 (en) 2013-02-20

Family

ID=41440683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008128416A Active JP5145566B2 (en) 2008-05-15 2008-05-15 Externally heated hydrogen production apparatus and fuel cell power generation system using the same

Country Status (1)

Country Link
JP (1) JP5145566B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060649A (en) * 2014-09-16 2016-04-25 大日機械工業株式会社 Hydrogen production system for hydrogen station
WO2019093158A1 (en) * 2017-11-09 2019-05-16 エア・ウォーター株式会社 Hydrogen generator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183401A (en) * 1988-01-12 1989-07-21 Hitachi Ltd Fuel reformer
JPH035303A (en) * 1989-06-01 1991-01-11 Tokyo Gas Co Ltd Method and device for production of reformed gas having hydrogen as main component
JPH11292503A (en) * 1997-12-05 1999-10-26 Dbb Fuel Cell Engines Gmbh Steam reformer for hydrocarbon and steam-reforming method using the same
WO2002025762A1 (en) * 2000-09-20 2002-03-28 Kabushiki Kaisha Toshiba Fuel reforming device for solid high polymer fuel cell
JP2003300703A (en) * 2002-02-05 2003-10-21 Ebara Ballard Corp Fuel reformer
JP2004288434A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
JP2005231968A (en) * 2004-02-20 2005-09-02 T Rad Co Ltd Steam reforming system
JP2005239525A (en) * 2004-02-27 2005-09-08 T Rad Co Ltd Steam reformer
JP2006096623A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Primary reformer integrated with thermal desulfurizer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183401A (en) * 1988-01-12 1989-07-21 Hitachi Ltd Fuel reformer
JPH035303A (en) * 1989-06-01 1991-01-11 Tokyo Gas Co Ltd Method and device for production of reformed gas having hydrogen as main component
JPH11292503A (en) * 1997-12-05 1999-10-26 Dbb Fuel Cell Engines Gmbh Steam reformer for hydrocarbon and steam-reforming method using the same
WO2002025762A1 (en) * 2000-09-20 2002-03-28 Kabushiki Kaisha Toshiba Fuel reforming device for solid high polymer fuel cell
JP2003300703A (en) * 2002-02-05 2003-10-21 Ebara Ballard Corp Fuel reformer
JP2004288434A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
JP2005231968A (en) * 2004-02-20 2005-09-02 T Rad Co Ltd Steam reforming system
JP2005239525A (en) * 2004-02-27 2005-09-08 T Rad Co Ltd Steam reformer
JP2006096623A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Primary reformer integrated with thermal desulfurizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060649A (en) * 2014-09-16 2016-04-25 大日機械工業株式会社 Hydrogen production system for hydrogen station
WO2019093158A1 (en) * 2017-11-09 2019-05-16 エア・ウォーター株式会社 Hydrogen generator
CN111344249A (en) * 2017-11-09 2020-06-26 爱沃特株式会社 Hydrogen generating apparatus
US11485635B2 (en) 2017-11-09 2022-11-01 Air Water Inc. Hydrogen generator
CN111344249B (en) * 2017-11-09 2023-04-04 爱沃特株式会社 Hydrogen generating apparatus

Also Published As

Publication number Publication date
JP5145566B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP4718069B2 (en) Compact, lightweight methanol fuel gas autothermal reformer
JP4643027B2 (en) Compact and lightweight self-heating reformer
CA2465253C (en) Microcombustors, microreformers, and methods for combusting and for reforming fluids
JP5042853B2 (en) Oxidation autothermal reformer and oxidation autothermal reforming method using the same
JP2004288434A (en) Hydrogen production apparatus and fuel cell system
JPWO2002098790A1 (en) Cylindrical steam reformer
JP2002187705A (en) Single tube cylindrical reformer
JP2003506306A (en) Compact reactor
US7247258B2 (en) Compact partial oxidation reactor assemblage with fast start-up capability
EP2198951B1 (en) Reformer
JP2008521184A (en) Equipment for carrying out chemical reactions
JP2015517175A (en) Catalytically heated fuel processor including a replaceable structured support for supporting a catalyst for a fuel cell
JP3440551B2 (en) Fuel reformer and method of operating fuel reformer
KR100857703B1 (en) Reaction vessel and reaction device
JP5145566B2 (en) Externally heated hydrogen production apparatus and fuel cell power generation system using the same
US20070072019A1 (en) Catalyst for partial oxidation reforming of fuel and fuel reforming apparatus and method using the catalyst
RU2286308C2 (en) Radial type device for production of the synthesis gas
KR102315289B1 (en) Steam Reformer with Multi Reforming Reactor
RU113729U1 (en) PROCESSOR FOR CONVERSION OF HYDROCARBON FUELS IN SYNTHESIS-GAS FOR APPLICATION IN SOLID-OXIDE FUEL ELEMENTS
RU138423U1 (en) DEVICE FOR PRODUCING A GAS MIXTURE ENHANCED WITH HYDROGEN
JP2010001187A (en) Reforming apparatus
KR101608855B1 (en) CO gas reformer and manufacturing method for CO gas using the same
JP2006036567A (en) Steam reforming method and mixed catalyst
JP2004067454A (en) Fuel reforming apparatus and hydrogen generation method
RU2446092C2 (en) Onboard synthesis gas generator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5145566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250