JP2003300703A - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JP2003300703A
JP2003300703A JP2002161482A JP2002161482A JP2003300703A JP 2003300703 A JP2003300703 A JP 2003300703A JP 2002161482 A JP2002161482 A JP 2002161482A JP 2002161482 A JP2002161482 A JP 2002161482A JP 2003300703 A JP2003300703 A JP 2003300703A
Authority
JP
Japan
Prior art keywords
reforming
section
temperature unit
shift
selective oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002161482A
Other languages
Japanese (ja)
Other versions
JP4128804B2 (en
Inventor
Keisen So
慶泉 蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Ballard Corp
Original Assignee
Ebara Ballard Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Ballard Corp filed Critical Ebara Ballard Corp
Priority to JP2002161482A priority Critical patent/JP4128804B2/en
Publication of JP2003300703A publication Critical patent/JP2003300703A/en
Application granted granted Critical
Publication of JP4128804B2 publication Critical patent/JP4128804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel reformer which has a relatively simple structure and whose manufacturing cost is low. <P>SOLUTION: This fuel reformer is provided with a combustion chamber 5A where the fuel is combusted, a high temperature unit 2 provided on the outer circumferential surface side of the combustion chamber 5A and having a reforming part 7 where a reforming catalyst is filled annularly, transforming parts (21, 26) which are provided in a side opposed to the side jointed to the high temperature unit 2 and in which a transforming catalyst is filled cylindrically, a middle and low temperature unit 3 provided in a side opposed to the side jointed to the high temperature unit 2 and having a selective oxidation part 36 in which a selective oxidation catalyst is filled cylindrically, a joint flow pipe 19 for supplying a reformed gas passed through the reforming part of the high temperature unit 2 to the transforming part side of the middle and low temperature unit 3, and a vessel integrally housing the high temperature unit 2 and the middle and low temperature unit 3 jointed to each other by the joint flow unit 19. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素系燃料を
改質して水素に富む改質ガスを製造する燃料改質器に関
し、特に構造が比較的シンプルで製造コストが安価な一
体型の燃料改質器に関する。また、本発明は、炭化水素
系燃料として都市ガス、LPGや嫌気性消化ガス等の気
体燃料や灯油やガソリン等の液体燃料等のような各種の
炭化水素系燃料に対処できる、固体高分子型燃料電池に
適した改質ガスを製造する一体型の燃料改質器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel reformer for reforming a hydrocarbon-based fuel to produce a hydrogen-rich reformed gas, and in particular to an integrated type fuel cell having a relatively simple structure and a low manufacturing cost. The present invention relates to a fuel reformer. Further, the present invention is a solid polymer type which can deal with various hydrocarbon fuels such as city gas, gas fuel such as LPG and anaerobic digestion gas, liquid fuel such as kerosene and gasoline as hydrocarbon fuel. The present invention relates to an integrated fuel reformer that produces a reformed gas suitable for a fuel cell.

【0002】[0002]

【従来の技術】近年、地球環境の保全を背景に熱と電気
とを併給できる燃料電池コージェネレーションシステム
が開発されつつある。該システムでは天然ガス等の炭化
水素系燃料を改質装置により水蒸気改質して水素に富む
改質ガスを製造し、製造した改質ガスを燃料電池に供給
して発電するようになっている。そこで、改質装置はシ
ステム全体の経済性とエネルギー効率にとって重要な開
発要素である。
2. Description of the Related Art In recent years, fuel cell cogeneration systems capable of supplying heat and electricity in combination with the protection of the global environment have been developed. In this system, a hydrocarbon-based fuel such as natural gas is steam-reformed by a reformer to produce a hydrogen-rich reformed gas, and the produced reformed gas is supplied to a fuel cell to generate electricity. . Therefore, the reformer is an important development factor for the economic efficiency and energy efficiency of the entire system.

【0003】一般に、燃料電池がリン酸型燃料電池の場
合には、改質装置は、改質熱を供給する燃焼部、炭化水
素を水蒸気との改質反応によって水素とCOに改質する
改質部、並びに改質ガス中のCOを水蒸気との変成反応
によって水素とCO2に変成する変成部とを備えてい
る。また、燃料電池が固体高分子型燃料電池の場合に
は、改質装置は、改質熱を供給する燃焼部、改質部、変
成部、並びにCO変成ガス中の残留COを酸素との選択
的酸化反応により除去する選択酸化部とを備えている。
改質装置のコンパクト化や熱効率向上を図るために、改
質器の各構成部を一体化した一体型改質器が提案されて
おり、例えば多重円筒式改質器や積層平板型改質器等が
開示されている。
Generally, when the fuel cell is a phosphoric acid type fuel cell, the reforming device is a reformer for reforming hydrogen into CO by reforming reaction of hydrocarbons with steam in a combustion section for supplying reforming heat. A quality part and a shift part for transforming CO in the reformed gas into hydrogen and CO2 by a shift reaction with steam. When the fuel cell is a polymer electrolyte fuel cell, the reformer selects a combustion section that supplies reforming heat, a reforming section, a shift conversion section, and CO as residual oxygen in the CO shift gas with oxygen. And a selective oxidation part that is removed by a selective oxidation reaction.
In order to make the reformer compact and improve the thermal efficiency, an integrated reformer in which each component of the reformer is integrated has been proposed. For example, a multi-cylinder reformer or a laminated flat plate reformer is proposed. Etc. are disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
多重円筒型改質器では、高温のバーナー燃焼部と、加熱
が必要な高温吸熱反応を行う改質部と、冷却が必要な中
低温放熱反応を行う変成反応部及び選択酸化部とが同軸
の多重円筒体に配置されているので、構造がかなり複雑
で製造コストが高くなるという課題があった。また、従
来の多重円筒型改質器では、各部を区画する円筒状隔壁
の長さと面積が大きく、且つ各部間における温度差が大
きいことから、各部の連結部に発生する熱応力が大き
く、また隔壁を通過する熱流が大きいという性質があ
る。そこで、各部の温度分布が互いに影響し合っていて
温度制御が難しく、起動時間も長い等の課題がある。ま
た、従来の積層平板型改質器についても、多重円筒型改
質器と基本的に同様な課題を抱えている。
However, in the conventional multi-cylindrical reformer, a high-temperature burner combustion section, a reforming section for performing a high-temperature endothermic reaction requiring heating, and a medium-low temperature heat radiating reaction requiring cooling. Since the transformation reaction section and the selective oxidation section for carrying out are arranged in a coaxial multi-cylinder body, there is a problem that the structure is considerably complicated and the manufacturing cost becomes high. Further, in the conventional multi-cylindrical reformer, since the length and area of the cylindrical partition wall partitioning each part is large, and the temperature difference between each part is large, the thermal stress generated in the connecting part of each part is large, and It has the property that the heat flow through the partition is large. Therefore, there are problems that temperature distribution of each part influences each other, temperature control is difficult, and startup time is long. Further, the conventional laminated flat plate reformer has basically the same problems as those of the multi-cylinder reformer.

【0005】また、従来の改質装置では都市ガスや天然
ガスのような気体燃料と、ガソリン、灯油、メタノール
等の液体燃料の何れか一方に対処している。即ち、気体
燃料に対しては気体燃料の予熱や水蒸気との混合機構が
要求される。他方、液体燃料では、液体燃料の気化機構
が必要となる。そこで、従来の改質装置では気体燃料用
と液体燃料用とを別々に用意することで、顧客の需要に
応えようとしていた。
In the conventional reformer, either a gaseous fuel such as city gas or natural gas or a liquid fuel such as gasoline, kerosene or methanol is dealt with. That is, for the gaseous fuel, preheating of the gaseous fuel and a mixing mechanism with water vapor are required. On the other hand, liquid fuel requires a liquid fuel vaporization mechanism. Therefore, in the conventional reforming apparatus, the gas fuel and the liquid fuel are separately prepared to meet the customer's demand.

【0006】しかし、気体燃料と液体燃料とは供給事業
者が別系列であると共に、揮発油税のような課税に対し
ても異なる取扱いがされている。そこで、燃料電池の使
用者においては、改質装置が気体燃料と液体燃料の何れ
にも対処できれば、経済環境の時々の変動に応じて最適
な燃料を利用できるという利点がある。また、気体燃料
用と液体燃料用の改質装置を別々に製造する場合に比較
して、気体燃料と液体燃料の両方に適用できる改質装置
を製造する場合には、量産効果により改質装置の製造コ
ストが低下する可能性もある。
However, the gas fuel and the liquid fuel are provided by different suppliers, and different treatments are applied to taxation such as gasoline tax. Therefore, there is an advantage for the user of the fuel cell that if the reforming device can handle both the gaseous fuel and the liquid fuel, the optimum fuel can be used according to the temporal fluctuation of the economic environment. Further, compared with the case where the reformer for gas fuel and the reformer for liquid fuel are manufactured separately, when the reformer that can be applied to both gas fuel and liquid fuel is manufactured, the reformer due to mass production effect There is also a possibility that the manufacturing cost of the

【0007】本発明は上記した課題を解決するもので、
第1の目的は、構造が比較的シンプルで製造コストが安
価な燃料改質器を提供することである。第2の目的は、
熱応力の発生が少なくて耐久性に優れる燃料改質器を提
供することである。第3の目的は、燃料改質器各部の最
適温度分布の制御が容易で熱効率が高く、且つ起動時間
も短い燃料改質器を提供することである。第4の目的
は、気体燃料と液体燃料の両方を改質できる燃料改質器
を提供することである。
The present invention solves the above-mentioned problems.
A first object is to provide a fuel reformer having a relatively simple structure and a low manufacturing cost. The second purpose is
It is an object of the present invention to provide a fuel reformer that is less likely to generate thermal stress and has excellent durability. A third object is to provide a fuel reformer in which the optimum temperature distribution of each part of the fuel reformer can be easily controlled, the thermal efficiency is high, and the startup time is short. A fourth object is to provide a fuel reformer capable of reforming both gas fuel and liquid fuel.

【0008】[0008]

【課題を解決するための手段】第1の目的を達成する本
発明の燃料改質器は、図1に示すように、燃料が燃焼す
る燃焼室5Aと、該燃焼室5Aの外周面側に設けられる
と共に、環状に改質触媒を充填した改質部7を有する高
温ユニット2と、高温ユニット2と連結される側に設け
られると共に、筒状又は環状に変成触媒を充填した変成
部(21、26)と、高温ユニット2と連結される側と
は反対側に設けられると共に、筒状又は環状に選択酸化
触媒を充填した選択酸化部36を有する中低温ユニット
3と、高温ユニット2の改質部を通過した改質ガスを、
中低温ユニット3の変成部側に供給する連結流通管19
と、連結流通管19によって連結される高温ユニット2
と中低温ユニット3を一体に収容する容器13とを備え
ている。
As shown in FIG. 1, a fuel reformer of the present invention that achieves the first object is provided with a combustion chamber 5A in which fuel is burned and an outer peripheral surface side of the combustion chamber 5A. A high temperature unit 2 that is provided and has a reforming section 7 that is annularly filled with a reforming catalyst, and a shift section (21) that is provided on the side connected to the high temperature unit 2 and that is tubular or annularly filled with the shift catalyst. , 26) and a medium-low temperature unit 3 provided on the side opposite to the side connected to the high-temperature unit 2 and having a selective oxidation portion 36 filled with a selective oxidation catalyst in a tubular or annular shape, and a modification of the high-temperature unit 2. The reformed gas that has passed through the quality part,
Connection flow pipe 19 for supplying to the shift section side of the low-temperature unit 3
And the high temperature unit 2 connected by the connection flow pipe 19
And a container 13 that houses the medium and low temperature unit 3 integrally.

【0009】燃焼室5Aは、典型的にはバーナー4を内
部に有し、該バーナー4で燃料を燃焼させる。さらに典
型的には、該バーナー4は燃焼室5Aの中心軸に備えら
れている。このように構成された燃料改質器において
は、高温ユニット2では、改質部7の温度が、例えば起
動時の室温程度の状態から定常運転時の運転温度まで昇
温する。中低温ユニット3では変成部(21、26)の
温度が、起動時の室温程度の状態から定常運転時の変成
部温度まで昇温し、選択酸化部36の温度が、起動時の
室温程度の状態から定常運転時の選択酸化部温度まで昇
温する。このように定常状態での稼動温度によって、高
温ユニット2と中低温ユニット3に区分して、連結流通
管19によって改質ガスを改質→変成→選択酸化という
処理の流れに沿って流通するようにしていると共に、容
器13にて一体に収容しているので、構造が簡単で製造
コストが安価になる。好ましくは、高温ユニット2と中
低温ユニット3の軸線は共通とし、断面形状は円形若し
くは長方形(正方形を含む)とすると、顧客の設置場所
に合わせた形状の燃料改質器が提供される。特に、円形
とするとガスの流れが一様となり、製造に必要な材料も
少なくて済む。長方形、特に正方形とすると、設置が容
易になる。
The combustion chamber 5A typically has a burner 4 inside and burns fuel in the burner 4. Further typically, the burner 4 is provided on the central axis of the combustion chamber 5A. In the high-temperature unit 2 in the fuel reformer configured as described above, the temperature of the reforming unit 7 rises from, for example, a room temperature at startup to an operating temperature during steady operation. In the middle-and-low temperature unit 3, the temperature of the shift section (21, 26) rises from the room temperature at the time of startup to the shift section temperature at the time of steady operation, and the temperature of the selective oxidation section 36 becomes about room temperature at the startup. The temperature is raised from the state to the temperature of the selective oxidation part during steady operation. As described above, the high-temperature unit 2 and the low-temperature unit 3 are divided according to the operating temperature in the steady state, and the reformed gas is circulated along the process flow of reforming → metamorphosis → selective oxidation by the connecting flow pipe 19. In addition, since the container 13 is integrally housed, the structure is simple and the manufacturing cost is low. Preferably, if the axes of the high temperature unit 2 and the intermediate temperature unit 3 are common and the cross-sectional shape is circular or rectangular (including square), a fuel reformer having a shape suitable for the customer's installation location is provided. In particular, the circular shape makes the gas flow uniform and requires less material for manufacturing. A rectangle, especially a square, facilitates installation.

【0010】好ましくは、本発明の燃料改質器におい
て、さらに、高温ユニット2及び中低温ユニット3の外
壁と容器13の内壁との間隙に形成された改質添加水流
路40と、該改質添加水流路40の中低温ユニット3の
高温ユニット2と連結される側とは反対側に設けられた
改質添加水注入口41とを備える構成とするとよい。こ
のように構成すると、定常運転時には高温ユニット2及
び中低温ユニット3の外壁を通じて、改質添加水流路4
0を流れる改質添加水と改質ガスとの熱交換が行われ、
熱効率が高まる。
Preferably, in the fuel reformer of the present invention, the reforming additive water passage 40 formed in the gap between the outer wall of the high temperature unit 2 and the medium and low temperature unit 3 and the inner wall of the container 13, and the reformer. It is preferable that the modified water injection port 41 is provided on the opposite side of the medium-low temperature unit 3 of the added water flow path 40 to the side connected to the high temperature unit 2. With this configuration, during steady operation, the reforming-added water flow path 4 passes through the outer walls of the high-temperature unit 2 and the intermediate-low temperature unit 3.
The heat exchange between the reforming additive water flowing through 0 and the reformed gas is performed,
Increases thermal efficiency.

【0011】好ましくは、さらに第4の目的を達成する
ために、本発明の燃料改質器において、さらに、高温ユ
ニット2に改質原料を供給する改質原料供給路50、改
質添加水流路40並びに改質原料供給路50を互いに連
通する混合室44とを備える構成とすると、改質添加水
流路40にて過熱蒸気状態となった改質添加水を用い
て、混合室44内の改質原料に対して、改質部7での改
質反応を円滑に行うための処理がなされる。即ち、改質
原料が液体燃料の場合には燃料の気化が行われ、気体燃
料の場合には燃料の予熱が行われる。
Preferably, in order to further achieve the fourth object, in the fuel reformer of the present invention, a reforming raw material supply passage 50 for supplying a reforming raw material to the high temperature unit 2 and a reforming addition water passage. 40 and the mixing chamber 44 that communicates the reforming raw material supply passage 50 with each other, the reforming additive water in the superheated steam state in the reforming additive water flow passage 40 is used to modify the interior of the mixing chamber 44. The quality raw material is subjected to a treatment for smoothly performing the reforming reaction in the reforming section 7. That is, when the reforming raw material is a liquid fuel, the fuel is vaporized, and when it is a gaseous fuel, the fuel is preheated.

【0012】好ましくは、さらに第3及び第4の目的を
達成するために、本発明の燃料改質器において、さら
に、高温ユニット2に改質原料を供給する改質原料供給
路50と、中低温ユニット3を経由せず、高温ユニット
2に直接改質添加水を供給する第2改質添加水流路45
と、改質添加水流路40、改質原料供給路50並びに第
2改質添加水流路45を互いに連通する混合室44とを
備える構成とするとよい。
Preferably, in order to achieve the third and fourth objects, in the fuel reformer of the present invention, a reforming raw material supply passage 50 for supplying the reforming raw material to the high temperature unit 2 is further provided. The second reforming additive water flow path 45 for directly supplying the reforming additive water to the high temperature unit 2 without passing through the low temperature unit 3.
And a mixing chamber 44 that connects the reforming-added water passage 40, the reforming raw material supply passage 50, and the second reforming-added water passage 45 to each other.

【0013】このように構成された燃料改質器の起動時
においては予熱用熱媒としての改質添加水を第2改質添
加水流路45より供給し、燃焼ガスとの熱交換により混
合室44にて、改質添加水の蒸気を発生させる。この発
生した蒸気を改質添加水流路40に逆流させることによ
り、中低温ユニット3を予熱して、中低温ユニット3の
予熱に窒素ガスのような熱媒を用いることなく予熱する
ことで、起動時間を短縮させる。また、中低温ユニット
3を改質ガス導入前に予熱しておくことで、改質ガス導
入時に中低温ユニット3の変成触媒層や選択酸化触媒層
における水の結露を防ぎ、よって触媒寿命を向上させる
ことができる。また、燃料改質器の定常運転時におい
て、改質添加水の総流量を変えることなく、改質添加水
流路40と第2改質添加水流路45の各水量の比率を調
整させるだけで、各部の温度を安定的に制御できる。
When the fuel reformer constructed as described above is started, reforming additive water as a preheating heat medium is supplied from the second reforming additive water passage 45, and heat is exchanged with combustion gas to mix chamber. At 44, steam for reforming addition water is generated. By causing the generated steam to flow back into the reforming-added water flow path 40, the middle- and low-temperature unit 3 is preheated, and the middle- and low-temperature unit 3 is preheated without using a heat medium such as nitrogen gas, thereby starting. Save time. In addition, by preheating the medium-low temperature unit 3 before introducing the reformed gas, it is possible to prevent dew condensation of water in the shift conversion catalyst layer and the selective oxidation catalyst layer of the medium-low temperature unit 3 at the time of introducing the reformed gas, thereby improving the catalyst life. Can be made. Further, at the time of steady operation of the fuel reformer, it is possible to adjust the ratio of the respective water amounts of the reforming-added water passage 40 and the second reformed-addition water passage 45 without changing the total flow rate of the reformed addition water. The temperature of each part can be controlled stably.

【0014】第3の目的を達成する本発明の燃料改質器
は、さらに、高温ユニット2と中低温ユニット3との連
結部間隙に設けられたバッフル板18と、高温ユニット
2と中低温ユニット3との対向面に設けられる熱交換部
24であって、高温ユニット2から中低温ユニット3に
送られる改質ガスと改質添加水との熱交換を行う熱交換
部24とを備える構造とすると、熱交換部24において
高温ユニット2及び中低温ユニット3の外壁を通じて、
改質添加水流路40を流れる改質添加水と改質ガスとの
熱交換が行われ、改質添加水を蒸発させて過熱すると共
に、燃料改質器内部の温度分布が適切なものとなる。
The fuel reformer of the present invention which achieves the third object is further provided with a baffle plate 18 provided in a gap between the connecting portion between the high temperature unit 2 and the low temperature unit 3, the high temperature unit 2 and the low temperature unit. A heat exchange part 24 provided on the surface facing the heat exchanger 3, the heat exchange part 24 performing heat exchange between the reformed gas sent from the high temperature unit 2 to the intermediate / low temperature unit 3 and the reforming added water. Then, in the heat exchange unit 24, through the outer walls of the high temperature unit 2 and the low temperature unit 3,
The reforming additive water flowing through the reforming additive water flow path 40 and the reforming gas are heat-exchanged with each other to evaporate the reforming additive water and superheat it, and the temperature distribution inside the fuel reformer becomes appropriate. .

【0015】第2及び第3の目的を達成する本発明の燃
料改質器は、連結流通管19が、該連結流通管19の軸
方向に伸縮する伸縮部材を有する構造とすると、起動時
のような冷えた状態と定常運転時のように昇温した状態
とで、高温ユニット2、中低温ユニット3並びに容器1
3との間で生じる熱膨張による歪を連結流通管19の伸
縮によって吸収でき、起動/運転を繰り返しても熱応力
の影響が少なくて済む。伸縮部材には、ベローズのよう
に波形断面を有するものと、ダイヤフラムのように曲げ
変形が容易な部材とが含まれる。さらに、伸縮部材の表
面積は直管に比較すると広いため、管内を流れる改質ガ
スと管外を流れる改質添加水との熱交換が効率的に行え
る。
In the fuel reformer of the present invention which achieves the second and third objects, when the connecting flow pipe 19 has a structure which has an expanding and contracting member which expands and contracts in the axial direction of the connecting flow pipe 19, In such a cold state and a state in which the temperature is raised as in the steady operation, the high temperature unit 2, the medium and low temperature unit 3 and the container 1
The strain due to the thermal expansion generated between 3 and 3 can be absorbed by the expansion and contraction of the connecting flow pipe 19, and the influence of the thermal stress can be small even if the startup / operation is repeated. The elastic member includes a member having a corrugated cross section like a bellows and a member such as a diaphragm which is easily bent and deformed. Further, since the surface area of the elastic member is larger than that of the straight pipe, the heat exchange between the reformed gas flowing inside the pipe and the reforming additive water flowing outside the pipe can be efficiently performed.

【0016】本発明の燃料改質器において、高温ユニッ
ト2は上側に配置され、中低温ユニット3は高温ユニッ
ト2の下側に配置されると、改質水添加流路が設けられ
ている場合には、水から水蒸気への相変化と、水と水蒸
気の比重の差と重力方向が一致して自然になる。また、
本発明の燃料改質器において、高温ユニット2は下側に
配置され、中低温ユニット3は高温ユニット2の上側に
配置されると、例えば燃料改質器に対する水の供給や改
質原料の供給に既設配管を利用する場合には、倒立取付
けとすることで、燃料改質器の据付施工面で便利な場合
もある。
In the fuel reformer of the present invention, when the high temperature unit 2 is arranged on the upper side and the medium / low temperature unit 3 is arranged on the lower side of the high temperature unit 2, the reforming water addition flow path is provided. In the natural state, the phase change from water to water vapor, the difference in specific gravity between water and water vapor, and the direction of gravity coincide with each other. Also,
In the fuel reformer of the present invention, when the high temperature unit 2 is arranged on the lower side and the medium / low temperature unit 3 is arranged on the upper side of the high temperature unit 2, for example, the supply of water or the supply of the reforming raw material to the fuel reformer is performed. If existing piping is used, it may be convenient to install the fuel reformer by installing it upside down.

【0017】好ましくは、本発明の燃料改質器におい
て、変成部は、高温ユニット2側に設けられると共に、
筒状又は環状に第1の変成触媒を充填した第1変成部2
1と、選択酸化部36側に設けられると共に、筒状又は
環状に第2の変成触媒を充填した第2変成部26とを有
する構成とすると、変成部における温度分布が最適化さ
れると共に、変成反応に伴う発熱の除熱が容易になる。
また、定常運転時においては、第1変成部21が第2変
成部26に比較して高温になるため、この定常時の温度
にて変成反応が効率良く進行するように、第1の変成触
媒と第2の変成触媒の組成を適切に選択できる。
Preferably, in the fuel reformer of the present invention, the shift conversion section is provided on the high temperature unit 2 side, and
A first shift section 2 in which a first shift catalyst is filled in a tubular or annular shape.
1 and the second shift conversion section 26 provided on the side of the selective oxidation section 36 and having a second shift catalyst filled in a tubular or annular shape, the temperature distribution in the shift conversion section is optimized and It becomes easy to remove the heat generated by the transformation reaction.
Further, during steady-state operation, the first shift conversion section 21 is at a higher temperature than the second shift shift section 26, so that the shift conversion reaction proceeds efficiently at this steady-state temperature. And the composition of the second shift conversion catalyst can be appropriately selected.

【0018】好ましくは、本発明の燃料改質器におい
て、例えば図7に示すように、さらに第2変成部26
は、中低温ユニット3の外壁と同軸に設けられた内円筒
体29と、中低温ユニット3の外壁と同軸であって、該
内円筒体29の外周側に設けられた中円筒体30とを備
え、内円筒体29の内周面によって第1変成部21を通
過した改質ガスのガス導入流路31を形成し、内円筒体
29の外周面と中円筒体30の内周面によって第2変成
部26の触媒充填層25を形成し、中円筒体30の外周
面と中低温ユニット3の内周面によってガス導出流路3
2を形成する構成とするとよい。即ち、第1変成部21
を通過した改質ガスはガス導入流路31を通過し、次に
触媒充填層25を通過し、さらにガス導出流路32を通
過して選択酸化部36へ導かれる。
Preferably, in the fuel reformer of the present invention, as shown in FIG. 7, for example, the second shift section 26 is further provided.
Is an inner cylindrical body 29 provided coaxially with the outer wall of the medium-low temperature unit 3, and an intermediate cylindrical body 30 provided coaxially with the outer wall of the medium-low temperature unit 3 and provided on the outer peripheral side of the inner cylindrical body 29. The inner circumferential surface of the inner cylindrical body 29 forms a gas introduction passage 31 for the reformed gas that has passed through the first shift section 21, and the outer circumferential surface of the inner cylindrical body 29 and the inner circumferential surface of the middle cylindrical body 30 form a first The catalyst-filled layer 25 of the second conversion section 26 is formed, and the gas outlet passage 3 is formed by the outer peripheral surface of the middle cylindrical body 30 and the inner peripheral surface of the low-temperature unit 3.
2 is preferably formed. That is, the first shift unit 21
The reformed gas that has passed through passes through the gas introduction flow path 31, the catalyst packed bed 25, the gas discharge flow path 32, and is guided to the selective oxidation section 36.

【0019】好ましくは、本発明の燃料改質器におい
て、例えば図7に示すように、さらに第2変成部26
は、ガス導入流路31と第2変成部26の触媒充填層2
5とを連通すると共に、内円筒体29の選択酸化部36
側に設けられた第1の開口部33と、第2変成部26の
触媒充填層25とガス導出流路32とを連通すると共
に、中円筒体30の第1変成部21側に設けられた第2
の開口部28と備える構成とするとよい。即ち、第1変
成部21を通過した改質ガスは下向流でガス導入流路3
1を通過し、第1の開口部33で折り返して、上向流で
触媒充填層25を通過する。触媒充填層25を出た改質
ガスは、第2の開口部28にて折り返して、下向流でガ
ス導出流路32を通過して選択酸化部36へ導かれる。
Preferably, in the fuel reformer of the present invention, as shown in FIG. 7, for example, the second shift section 26 is further provided.
Is the catalyst introduction layer 2 of the gas introduction flow path 31 and the second shift conversion section 26.
5 and the selective oxidation part 36 of the inner cylindrical body 29.
The first opening 33 provided on the side, the catalyst filling layer 25 of the second shift conversion section 26, and the gas derivation flow channel 32 communicate with each other, and the first opening 33 is provided on the side of the first shift conversion section 21 of the middle cylindrical body 30. Second
It is preferable to have a configuration including the opening 28. That is, the reformed gas that has passed through the first shift conversion section 21 flows downward in the gas introduction flow path 3
No. 1 and is turned back at the first opening 33, and passes through the catalyst packed bed 25 in an upward flow. The reformed gas that has flowed out of the catalyst-filled layer 25 is turned back at the second opening 28, passes through the gas outlet passage 32 in a downward flow, and is guided to the selective oxidation unit 36.

【0020】好ましくは、本発明の燃料改質器におい
て、例えば図1及び図7に示すように、変成部(21、
26)と選択酸化部36との間隙にバッフル板38を設
け、該バッフル板38の中央開口部の内側に選択酸化用
空気の導入口58を配置すると、変成部にて変成された
改質ガスと選択酸化用空気とが適切に混合されて、選択
酸化部36での選択酸化反応が効果的に進行する。
Preferably, in the fuel reformer of the present invention, as shown in, for example, FIGS.
26) and a selective oxidation part 36 are provided with a baffle plate 38, and an inlet 58 for the selective oxidation air is arranged inside the central opening of the baffle plate 38. And the selective oxidation air are appropriately mixed, and the selective oxidation reaction in the selective oxidation section 36 effectively progresses.

【0021】好ましくは、本発明の燃料改質器におい
て、例えば図7に示すように、選択酸化部36は、中心
部近傍に変成部(21、26)から送られる改質ガスが
通過しないように構成された筒体状中空部36Bが設け
ている構成とすると、改質ガスの流れる量が多くなりが
ちな中心部近傍の流れが抑止されるので、選択酸化部3
6の周縁部に改質ガスが均一に流れ、選択酸化反応が均
一に進行する。そこで、選択酸化部36で充填される選
択酸化触媒の量が最適化されると共に、温度分布も最適
化される。
Preferably, in the fuel reformer of the present invention, as shown in, for example, FIG. 7, the selective oxidation section 36 prevents the reformed gas sent from the shift conversion sections (21, 26) from passing near the center. With the configuration in which the cylindrical hollow portion 36B configured as described above is provided, the flow in the vicinity of the central portion where the amount of reformed gas tends to increase is suppressed, so the selective oxidation portion 3
The reformed gas uniformly flows to the peripheral portion of 6, and the selective oxidation reaction proceeds uniformly. Therefore, the amount of the selective oxidation catalyst filled in the selective oxidation section 36 is optimized and the temperature distribution is also optimized.

【0022】好ましくは、本発明の燃料改質器におい
て、例えば図8に示すように、中低温ユニット3は、高
温ユニット2側に設けられると共に、筒状又は環状に第
1の変成触媒を充填した第1変成部21と、筒状又は環
状に第2の変成触媒を充填した第2変成部26Aとを有
する変成部(21、26A)を備え、第2変成部26A
が選択酸化部36Aに対して同軸円筒状に位置する構成
とすると、第2変成部26Aと選択酸化部36Aが同心
円状に配置されて改質器全体がコンパクトになる。
Preferably, in the fuel reformer of the present invention, as shown in, for example, FIG. 8, the medium / low temperature unit 3 is provided on the high temperature unit 2 side, and is filled with the first shift catalyst in a tubular or annular shape. The second shift conversion section 26A is provided with the shift shift section (21, 26A) including the first shift shift section 21 and the second shift shift section 26A that is filled with the second shift catalyst in a tubular or annular shape.
Is located coaxially with the selective oxidation section 36A, the second shift conversion section 26A and the selective oxidation section 36A are concentrically arranged, and the entire reformer becomes compact.

【0023】好ましくは、本発明の燃料改質器におい
て、例えば図8に示すように、第2変成部26Aは、中
低温ユニット3の外壁と同軸に設けられた内円筒体29
Aと、中低温ユニット3の外壁と同軸であって、内円筒
体29Aの外周側に設けられた中円筒体30Aとを有し
ている。そして、第2変成部26Aの触媒充填層25A
は、内円筒体29Aの外周面と中円筒体30Aの内周面
によって形成された空間に設けられている。選択酸化部
36Aの選択酸化触媒充填層35Aは、中円筒体30A
の外周面と中低温ユニット3の内周面によって形成され
た空間に設けられている。ガス導入流路31Aは、第1
変成部21と第2変成部26Aとの対向部に形成された
もので、第1変成部21を通過した改質ガスを第2変成
部26Aに流入させる。ガス導出流路32Aは、第2変
成部26Aの底面側と、選択酸化部36Aの第1変成部
21対向部とを連絡する管路70Aとで形成され、第2
変成部26Aを通過した改質ガスを選択酸化部36Aに
送る。
Preferably, in the fuel reformer of the present invention, as shown in FIG. 8, for example, the second shift conversion section 26A has an inner cylindrical body 29 provided coaxially with the outer wall of the middle and low temperature unit 3.
A and a middle cylindrical body 30A coaxial with the outer wall of the middle and low temperature unit 3 and provided on the outer peripheral side of the inner cylindrical body 29A. Then, the catalyst packed bed 25A of the second shift conversion section 26A
Is provided in a space formed by the outer peripheral surface of the inner cylindrical body 29A and the inner peripheral surface of the middle cylindrical body 30A. The selective oxidation catalyst packed layer 35A of the selective oxidation section 36A is a medium cylindrical body 30A.
It is provided in the space formed by the outer peripheral surface of and the inner peripheral surface of the low-temperature unit 3. The gas introduction channel 31A has a first
The reformed gas is formed at the facing portion between the shift conversion section 21 and the second shift conversion section 26A, and the reformed gas that has passed through the first shift conversion section 21 flows into the second shift conversion section 26A. 32 A of gas derivation flow paths are formed by 70 A of conduits which connect the bottom face side of the 2nd shift conversion part 26A, and the 1st shift conversion part 21 facing part of 36 A of selective oxidation parts.
The reformed gas that has passed through the shift conversion section 26A is sent to the selective oxidation section 36A.

【0024】このように構成された装置においては、第
1変成部21を通過した改質ガスはガス導入流路31A
を通過し、次に第2変成部26Aを通過し、さらにガス
導出流路32Aを通過して選択酸化部36Aへ導かれ
る。また、選択酸化部36Aは第2変成部26Aを中心
部として環状に位置しているので、改質ガスの流れる量
が多くなりがちな改質器中心部近傍の流れが抑止され、
選択酸化部36Aの周縁部に改質ガスが均一に流れ、選
択酸化反応が均一に進行する。この結果、選択酸化部3
6Aに充填される選択酸化触媒の量が最適化されると共
に、温度分布も最適化される。
In the apparatus constructed as described above, the reformed gas that has passed through the first shift conversion section 21 is supplied with the gas introduction passage 31A.
Through the second shift conversion section 26A, and further through the gas outlet flow path 32A to be guided to the selective oxidation section 36A. Further, since the selective oxidation part 36A is annularly positioned with the second shift conversion part 26A as the center part, the flow near the center part of the reformer where the amount of reformed gas tends to increase is suppressed,
The reformed gas uniformly flows to the peripheral portion of the selective oxidation portion 36A, and the selective oxidation reaction proceeds uniformly. As a result, the selective oxidation unit 3
The amount of the selective oxidation catalyst filled in 6A is optimized, and the temperature distribution is also optimized.

【0025】好ましくは、本発明の燃料改質器におい
て、例えば図8に示すように、さらに、第1変成部21
と第2変成部26Aとの対向部に設けられたバッフル板
27Aを有し、ガス導入流路31Aは、バッフル板27
A、中円筒体30Aの内周面、並びに内円筒体29Aの
外周面によって形成される構成とするとよい。好ましく
は、バッフル板27Aは円環状とし、円環の中心部にガ
ス分散板34Aを設けると、第2変成部26Aに改質ガ
スが均一に流れ、変成反応が均一に進行する。
Preferably, in the fuel reformer of the present invention, as shown in FIG.
And a second baffle plate 27A provided at a portion facing the second shift portion 26A.
A, the inner peripheral surface of the middle cylindrical body 30A, and the outer peripheral surface of the inner cylindrical body 29A are preferably formed. Preferably, the baffle plate 27A has an annular shape, and when the gas dispersion plate 34A is provided at the center of the annular ring, the reformed gas uniformly flows to the second shift conversion section 26A, and the shift reaction proceeds uniformly.

【0026】好ましくは、本発明の燃料改質器におい
て、例えば図8に示すように、ガス導出流路32Aは、
中円筒体30Aの底面39、内円筒体29の内周面、並
びに内円筒体29Aの内周面と選択酸化部36Aとを連
絡する管路70Aによって形成されると、コンパクトな
形状の改質器に対して、ガス導出流路32Aが効果的に
配置される。好ましくは、選択酸化用空気の導入口58
が、内円筒体29の中円筒体30Aの底面39側に位置
する第1開口部33Aの内側に配置されると、変成部
(21、26A)にて変成された改質ガスと選択酸化用
空気とが適切に混合されて、選択酸化部36Aでの選択
酸化反応が効果的に進行する。
Preferably, in the fuel reformer of the present invention, the gas outlet passage 32A is, for example, as shown in FIG.
When it is formed by the bottom surface 39 of the middle cylindrical body 30A, the inner peripheral surface of the inner cylindrical body 29, and the conduit 70A that connects the inner peripheral surface of the inner cylindrical body 29A and the selective oxidation portion 36A, a compact shape is reformed. 32A of gas derivation flow paths are effectively arrange | positioned with respect to the container. Preferably, the selective oxidation air inlet port 58 is provided.
Is disposed inside the first opening 33A located on the bottom surface 39 side of the inner cylindrical body 30A of the inner cylindrical body 29A, the reformed gas transformed in the transformation unit (21, 26A) and the selective oxidation The air is appropriately mixed, and the selective oxidation reaction in the selective oxidation unit 36A effectively progresses.

【0027】好ましくは、本発明の燃料改質器におい
て、容器13の外周に真空断熱層60を備えると、改質
器全体がコンパクトになると共に、高温ユニット2、中
低温ユニット3、改質添加水流路40を流れる改質添加
水からの熱損失が少ないので、改質器の熱効率が向上す
る。好ましくは、真空断熱層60を形成する壁面を反射
率の高い材料、例えば銀メッキやアルミメッキにて形成
すると、熱伝導に加えて熱ふく射も減少させることがで
きる。
Preferably, in the fuel reformer of the present invention, when the vacuum heat insulating layer 60 is provided on the outer periphery of the container 13, the entire reformer becomes compact, and the high temperature unit 2, the medium and low temperature unit 3 and the reforming addition are performed. Since the heat loss from the reforming added water flowing through the water flow path 40 is small, the thermal efficiency of the reformer is improved. Preferably, when the wall surface forming the vacuum heat insulating layer 60 is formed of a material having high reflectance, for example, silver plating or aluminum plating, heat radiation can be reduced in addition to heat conduction.

【0028】第3及び第4の目的を達成する本発明の燃
料改質器は、例えば図1に示すように、燃料が燃焼する
燃焼室5Aと、該燃焼室5Aの外周面側に設けられると
共に、改質触媒を充填した改質部7を有する高温ユニッ
ト2と、高温ユニット2の改質部7を通過した改質ガス
を変成する変成部(21、26)と、前記変成部で変成
された改質ガスを選択酸化する選択酸化部36を有する
中低温ユニット3と、改質添加水が中低温ユニット3に
て熱交換可能に配置されると共に、高温ユニット2に対
して前記改質添加水を供給する改質添加水流路40と、
中低温ユニット3を経由せず、高温ユニット2に直接改
質添加水を供給する第2改質添加水流路45と、高温ユ
ニット2に改質原料を供給する改質原料供給路50と、
改質添加水流路40、第2改質添加水流路45並びに改
質原料供給路50を互いに連通する混合室44とを備え
ている。
The fuel reformer of the present invention which achieves the third and fourth objects is provided, for example, as shown in FIG. 1, in a combustion chamber 5A in which fuel burns, and on the outer peripheral surface side of the combustion chamber 5A. At the same time, a high temperature unit 2 having a reforming section 7 filled with a reforming catalyst, a shift section (21, 26) for shifting the reformed gas that has passed through the reforming section 7 of the high temperature unit 2, and a shift section The medium / low temperature unit 3 having a selective oxidation unit 36 for selectively oxidizing the reformed gas, and the reforming additive water are arranged in the medium / low temperature unit 3 so that heat exchange is possible, and the high temperature unit 2 is subjected to the reforming. A modified additive water channel 40 for supplying additive water;
A second reforming additive water channel 45 for directly supplying the reforming additive water to the high temperature unit 2 without passing through the middle-low temperature unit 3, and a reforming raw material supply channel 50 for supplying the reforming raw material to the high temperature unit 2.
The mixing chamber 44 is provided with the reforming-added water passage 40, the second reforming-added water passage 45, and the reforming raw material supply passage 50 communicating with each other.

【0029】このように構成された燃料改質器の起動時
においては予熱用熱媒としての改質添加水を第2改質添
加水流路45より供給し、燃焼ガスとの熱交換により混
合室44にて、改質添加水の蒸気を発生させる。この発
生した蒸気を改質添加水流路40に逆流させることによ
り、中低温ユニット3を予熱して、中低温ユニット3の
予熱に窒素ガスのような熱媒を用いることなく予熱する
ことで、起動時間を短縮させる。また、中低温ユニット
3を改質ガス導入前に予熱しておくことで、改質ガス導
入時に中低温ユニット3の変成触媒層や選択酸化触媒層
における水の結露を防ぎ、よって触媒寿命を向上させる
ことができる。また、燃料改質器の定常運転時におい
て、改質添加水の総流量を変えることなく、改質添加水
流路40と第2改質添加水流路45の各水量の比率を調
整させるだけで、各部の温度を安定的に制御できる。
When the fuel reformer thus constructed is started, reforming additive water as a preheating heat medium is supplied from the second reforming additive water flow passage 45, and heat is exchanged with the combustion gas to mix chamber. At 44, steam for reforming addition water is generated. By causing the generated steam to flow back into the reforming-added water flow path 40, the middle- and low-temperature unit 3 is preheated, and the middle- and low-temperature unit 3 is preheated without using a heat medium such as nitrogen gas, thereby starting. Save time. In addition, by preheating the medium-low temperature unit 3 before introducing the reformed gas, it is possible to prevent dew condensation of water in the shift conversion catalyst layer and the selective oxidation catalyst layer of the medium-low temperature unit 3 at the time of introducing the reformed gas, thereby improving the catalyst life. Can be made. Further, at the time of steady operation of the fuel reformer, it is possible to adjust the ratio of the respective water amounts of the reforming-added water passage 40 and the second reformed-addition water passage 45 without changing the total flow rate of the reformed addition water. The temperature of each part can be controlled stably.

【0030】[0030]

【発明の実施の形態】以下、本発明による改質器の概略
構成を示す断面図を用いて本発明の実施の形態を説明す
る。図1は、本発明による燃料改質器の第1の実施形態
を示す縦断面図である。図において、改質器1は高温ユ
ニットとしての改質器上部2と、中低温ユニットとして
の改質器下部3を備えている。改質器上部2は、燃料を
燃焼させるバーナー4と、バーナー4と同軸に配置され
た燃焼円筒体5と、改質触媒充填層6を収容した円環体
状の改質部7を有している。バーナー4は、燃焼円筒体
5のほぼ中心軸上に設けられている。改質触媒充填層6
に用いる改質触媒は、改質反応を促進するものであれば
何でもよく、例えば触媒の種類としてNi系改質触媒や
Ru系改質触媒などが用いられる。また、改質触媒の形
状として粒状、円柱状、ハニカム状やモノリス状などが
挙げられる。なお、バーナー4の詳細に関する図示は省
略している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to cross-sectional views showing a schematic configuration of a reformer according to the present invention. FIG. 1 is a vertical sectional view showing a first embodiment of a fuel reformer according to the present invention. In the figure, a reformer 1 is provided with a reformer upper portion 2 as a high temperature unit and a reformer lower portion 3 as an intermediate temperature unit. The reformer upper part 2 has a burner 4 for burning fuel, a combustion cylinder 5 arranged coaxially with the burner 4, and an annular reforming section 7 containing a reforming catalyst packed layer 6. ing. The burner 4 is provided substantially on the central axis of the combustion cylinder 5. Reforming catalyst packed bed 6
Any reforming catalyst may be used as long as it promotes the reforming reaction. For example, a Ni-based reforming catalyst or a Ru-based reforming catalyst is used as the type of catalyst. The shape of the reforming catalyst may be granular, columnar, honeycomb-shaped or monolith-shaped. Illustration of details of the burner 4 is omitted.

【0031】燃焼室5Aは、燃焼円筒体5によって周壁
が形成されている。燃焼円筒体5と改質部7との間隙に
は、燃焼ガス流路10とバッフル板11と出口12が設
けられている。隔壁15は、燃焼ガス流路10と改質ガ
ス流路16とを隔離するもので、耐熱性の高い金属材料
等で形成されている。断熱材14は、燃焼室5Aと隔壁
15の間に設けられるもので、改質部7を出た改質ガス
と燃焼ガスとの間の熱伝達を抑制する。バッフル板11
は、燃焼ガス流路10での燃焼ガスの流れ分布を均一化
させるもので、その構造は円環状で、多数の孔が形成さ
れている。
A peripheral wall of the combustion chamber 5A is formed by the combustion cylinder 5. A combustion gas passage 10, a baffle plate 11, and an outlet 12 are provided in the gap between the combustion cylinder 5 and the reforming section 7. The partition wall 15 separates the combustion gas flow passage 10 and the reformed gas flow passage 16 from each other, and is made of a metal material or the like having high heat resistance. The heat insulating material 14 is provided between the combustion chamber 5A and the partition wall 15 and suppresses heat transfer between the reformed gas that has exited the reforming section 7 and the combustion gas. Baffle board 11
Is to make the flow distribution of the combustion gas in the combustion gas passage 10 uniform, and its structure is annular and has a large number of holes.

【0032】改質器下部3は、第1変成触媒充填層20
を収容した円筒体状第1変成部21と、第2変成触媒充
填層25を収容した円筒体状第2変成部26と、選択酸
化触媒充填層35を収容した円筒体状選択酸化部36と
を備えている。第1変成触媒充填層20に用いる第1変
成触媒として、例えばFe−Cr系の高温変成触媒やP
t系の中高温変成触媒などがある。第2変成触媒充填層
25に用いる第2変成触媒として、例えばCu−Zn系
低温変成触媒やPt系低温変成触媒などがある。第1変
成触媒充填層20と第2変成触媒充填層25に用いられ
る触媒の形状としては、粒状、円柱状、ハニカム状やモ
ノリス状などが挙げられる。
The lower part 3 of the reformer comprises a first shift conversion catalyst packed bed 20.
A cylindrical first shift conversion section 21 containing the above, a second cylindrical shift conversion section 26 containing a second shift conversion catalyst packed layer 25, and a cylindrical selective oxidation section 36 containing a selective oxidation catalyst packed layer 35. Is equipped with. As the first shift catalyst used in the first shift catalyst packed bed 20, for example, a Fe—Cr-based high temperature shift catalyst or P
Examples include t-based medium-high temperature shift catalysts. Examples of the second shift catalyst used in the second shift catalyst packed layer 25 include a Cu—Zn low temperature shift catalyst and a Pt low temperature shift catalyst. Examples of the shape of the catalyst used in the first shift conversion catalyst-packed layer 20 and the second shift conversion catalyst-packed layer 25 include a granular shape, a cylindrical shape, a honeycomb shape, and a monolith shape.

【0033】選択酸化触媒充填層35に用いる選択酸化
触媒は、COに対する選択酸化性が高いものであれば何
でもよく、例えばPt系選択酸化触媒、Ru系選択酸化
触媒やPt−Ru系選択酸化触媒などがある。選択酸化
触媒充填層35に用いられる触媒の形状として粒状、円
柱状、ハニカム状やモノリス状などが挙げられる。
The selective oxidation catalyst used in the selective oxidation catalyst packed layer 35 may be any one as long as it has a high selective oxidation property with respect to CO. For example, a Pt-based selective oxidation catalyst, a Ru-based selective oxidation catalyst or a Pt-Ru-based selective oxidation catalyst. and so on. The shape of the catalyst used in the selective oxidation catalyst packed layer 35 may be granular, cylindrical, honeycomb-shaped, monolith-shaped, or the like.

【0034】連結流通管19は、改質器上部2の底面1
7と改質器下部3の上面23を連結するもので、例えば
連結流通管19の軸方向に伸縮するコルゲート形伸縮管
を用いる。ここで、改質器上部2は円筒状の筒体にて周
縁が囲われており、底面17は改質器上部2に対してバ
ケツ状の底板状に設けられると共に、中央部には連結流
通管19に通じる開口部を有している。改質器下部3は
円筒状の筒体にて周縁が囲われており、上面23は改質
器下部3に対して蓋状に設けられると共に、中央部には
連結流通管19に通じる開口部を有している。底面43
は改質器下部3に対してバケツ状の底板状に設けられる
と共に、中央部には改質ガス導出管55に通じる開口部
を有している。
The connecting flow pipe 19 is formed on the bottom surface 1 of the reformer upper portion 2.
7 and the upper surface 23 of the lower reformer 3 are connected, and for example, a corrugated expansion / contraction tube that expands / contracts in the axial direction of the connection flow tube 19 is used. Here, the upper part of the reformer 2 is surrounded by a cylindrical body at its peripheral edge, and the bottom face 17 is provided in a bucket-like bottom plate shape with respect to the upper part 2 of the reformer, and is connected and distributed in the central part. It has an opening leading to the tube 19. The lower part of the reformer 3 is surrounded by a cylindrical body at its periphery, and the upper surface 23 is provided in a lid-like shape with respect to the lower part 3 of the reformer, and the central part thereof has an opening communicating with the connecting flow pipe 19. have. Bottom 43
Is provided in a bucket-like bottom plate shape with respect to the lower portion 3 of the reformer, and has an opening communicating with the reformed gas outlet pipe 55 in the center.

【0035】連結流通管19にコルゲート形伸縮管を用
いる場合には、伸縮管の軸方向の変形によって改質器上
部2と改質器下部3の熱伸縮を吸収可能なので、底面1
7と上面23には剛性の高い材料を用いても良い。また
連結流通管19の底面17と上面23に対する取付け位
置は中央部に限らず、周縁部でもよく、また複数の連結
流通管19を底面17と上面23に設けても良い。連結
流通管19の管路部分に直管を用いる場合には、底面1
7と上面23の曲げ変形によって改質器上部2と改質器
下部3の熱伸縮を吸収可能するために、連結流通管19
の底面17と上面23に対する取付け位置は中央部とす
ると共に、底面17と上面23には改質器上部2、改質
器下部3の他の部分と同材質の鋼板を用いても良い。な
お、底面17と上面23には、コルゲート成形を施せ
ば、さらに曲げ変形が容易になり好ましい。このように
すると、連結流通管19として伸縮性を有しない通常の
パイプを用いることもできる。
When a corrugated expansion tube is used as the connecting flow tube 19, thermal expansion and contraction of the reformer upper part 2 and the reformer lower part 3 can be absorbed by the axial deformation of the expansion tube, so that the bottom surface 1
A material having high rigidity may be used for 7 and the upper surface 23. Further, the attachment position of the connecting flow pipe 19 to the bottom surface 17 and the upper surface 23 is not limited to the central portion, but may be the peripheral portion, or a plurality of connecting flow pipes 19 may be provided on the bottom surface 17 and the upper surface 23. When a straight pipe is used for the conduit portion of the connecting flow pipe 19, the bottom surface 1
In order to absorb the thermal expansion and contraction of the reformer upper part 2 and the reformer lower part 3 by the bending deformation of 7 and the upper surface 23, the connecting flow pipe 19
The bottom 17 and the upper surface 23 may be attached to the central portion, and the bottom 17 and the upper surface 23 may be made of a steel plate made of the same material as the other parts of the upper reformer 2 and the lower reformer 3. It is preferable that the bottom surface 17 and the top surface 23 be subjected to corrugation molding because bending deformation is further facilitated. By doing so, a normal pipe having no elasticity can be used as the connecting flow pipe 19.

【0036】容器13は、連結流通管19によって連結
された改質器上部2と改質器下部3を一体に収容する円
筒体で、底面には第1改質添加水注入口41と改質ガス
導出管55が設けられている。容器13は、円筒状の改
質器上部2と改質器下部3に対して同軸に設けられる。
断熱層60は、容器13の外周及び改質器上部2の上面
に設けられるもので、用いる断熱層としては、例えば真
空断熱層が好適である。ガス分散板22は、改質下部上
面23と第1変成触媒充填層20の間隙に形成された空
間に設けられるもので、連結流通管19から流れてくる
改質ガスが均一に第1変成触媒充填層20に流れるよう
に多孔板が用いられる。ガス分散板37は、第2変成触
媒充填層25の底面と選択酸化触媒充填層35の間隙に
形成された空間であって、円環状バッフル板38の下方
に設けられるもので、円環状バッフル板38の中央開口
部から流れてくる変成ガスが均一に選択酸化触媒充填層
35に流れるように多孔板が用いられる。
The vessel 13 is a cylindrical body that integrally houses the reformer upper portion 2 and the reformer lower portion 3 connected by a connecting flow pipe 19, and has a first reforming additive water inlet 41 and a reformer on the bottom surface. A gas outlet pipe 55 is provided. The container 13 is provided coaxially with the cylindrical upper reformer 2 and the lower reformer 3.
The heat insulating layer 60 is provided on the outer periphery of the container 13 and the upper surface of the reformer upper portion 2, and as the heat insulating layer to be used, for example, a vacuum heat insulating layer is suitable. The gas dispersion plate 22 is provided in the space formed between the upper reforming lower surface 23 and the first shift conversion catalyst packed layer 20, and the reformed gas flowing from the connecting flow pipe 19 is uniformly distributed over the first shift catalyst. A perforated plate is used so as to flow into the packed bed 20. The gas dispersion plate 37 is a space formed in the gap between the bottom surface of the second shift conversion catalyst packed layer 25 and the selective oxidation catalyst packed layer 35, and is provided below the annular baffle plate 38. A perforated plate is used so that the shift gas flowing from the central opening of 38 uniformly flows into the selective oxidation catalyst packed bed 35.

【0037】第1改質添加水流路40は、改質器上部2
の外壁及び改質器下部3の外壁と、容器13の内壁との
間隙に形成されるもので、ここでは改質器上部2と改質
器下部3が容器13と同軸に設けられた円筒であるた
め、断面円環状空間となっている。また、第1改質添加
水流路40は、パイプにて改質器上部2と改質器下部3
を貫通すると共に、熱交換できる管材料にて形成されて
いてもよい。第1改質添加水注入口41は、第1改質添
加水流路40の改質器下部3側の下端に設けられてい
る。第1改質添加水注入流路66は、流量調整弁64と
第1改質添加水注入口41を経由して、第1改質添加水
流路40に改質添加水を供給する管路である。ドレン電
磁弁63は、起動時に開とされて第1改質添加水流路4
0を改質添加水又は水蒸気が逆流することを可能とし、
定常運転時には閉されて、第1改質添加水流路40に供
給された改質添加水が外部に洩れないようにする。
The first reforming-added water channel 40 is provided in the upper part 2 of the reformer.
Is formed in a gap between the outer wall of the reformer and the outer wall of the lower reformer 3 and the inner wall of the container 13. Here, the upper reformer 2 and the lower reformer 3 are cylinders provided coaxially with the container 13. Because of this, it has an annular space in cross section. In addition, the first reforming-added water flow path 40 is formed by a pipe with a reformer upper portion 2 and a reformer lower portion 3
It may be formed of a tube material that penetrates through and can exchange heat. The first reforming-added water inlet 41 is provided at the lower end of the first reforming-added water channel 40 on the reformer lower portion 3 side. The first reformed added water injection flow path 66 is a conduit for supplying the reformed added water to the first reformed added water flow path 40 via the flow rate adjusting valve 64 and the first reformed added water injection port 41. is there. The drain solenoid valve 63 is opened at the time of startup to open the first reforming addition water flow path 4
0 allows the reformed added water or steam to flow backward,
It is closed during steady operation to prevent the reformed additive water supplied to the first reformed additive water flow path 40 from leaking to the outside.

【0038】混合室44は、改質器上部2の上端に設け
られるもので、第1改質添加水流路40、第2改質添加
水流路45、改質原料流路50並びに改質部入口ガス流
路8が連通しており、定常運転時には改質添加水と改質
原料が供給されて、改質添加水と改質原料の混合された
ガスを改質部7に送る。第2改質添加水流路45は、混
合室44の上方に該混合室44と連通されるように設け
られているもので、例えば円環状をしている。第2改質
添加水流路45には、分散板46と注入口47が設けら
れ、第2改質添加水注入流路67に設けられた流量調整
弁65を介して改質添加水が供給される。改質原料供給
路としての改質原料流路50は、第2改質添加水流路4
5の下方であって、混合室44に連通されるように設け
られている円環状の流路である。改質原料流路50は、
分散板51と注入口52が設けられる管路である。
The mixing chamber 44 is provided at the upper end of the upper part 2 of the reformer, and has a first reforming additive water channel 40, a second reforming additive water channel 45, a reforming raw material channel 50 and a reforming section inlet. The gas flow path 8 communicates with each other, and during normal operation, the reforming additive water and the reforming raw material are supplied, and the mixed gas of the reforming additive water and the reforming raw material is sent to the reforming unit 7. The second reformed added water flow path 45 is provided above the mixing chamber 44 so as to communicate with the mixing chamber 44, and has, for example, an annular shape. A dispersion plate 46 and an injection port 47 are provided in the second reformed added water flow passage 45, and the reformed added water is supplied through a flow rate adjusting valve 65 provided in the second reformed added water injection passage 67. It The reforming raw material flow passage 50 as the reforming raw material supply passage is provided with the second reforming added water passage 4
5 is an annular flow path provided below 5 and communicated with the mixing chamber 44. The reforming raw material flow path 50 is
This is a conduit provided with a dispersion plate 51 and an injection port 52.

【0039】円環状バッフル板18は、改質器上部底面
17と改質下部上面23との間隙にが設けられている。
バッフル板18は、第1改質添加水流路40の流れを邪
魔して、連結流通管19側に改質添加水の流れを導くこ
とで、改質添加水の改質器上部底面17と改質下部上面
23との熱交換を効率良くさせている。熱交換部24
は、改質器上部底面17、改質下部上面23、バッフル
板18並びに連結流通管19によって形成される円環状
の空間で、改質ガスと第1改質添加水との熱交換が行わ
れる。
The annular baffle plate 18 is provided in the gap between the reformer upper bottom surface 17 and the reformer lower upper surface 23.
The baffle plate 18 interferes with the flow of the first reforming-added water passage 40 and guides the flow of the reforming-added water to the side of the connecting flow pipe 19 to improve the reforming-added water reformer upper bottom surface 17 and The heat exchange with the lower part upper surface 23 is made efficient. Heat exchange section 24
Is an annular space formed by the reformer upper bottom surface 17, the reformer lower upper surface 23, the baffle plate 18, and the connecting flow pipe 19, and heat exchange between the reformed gas and the first reformed additive water is performed. .

【0040】改質ガス導出管55及び選択酸化用空気導
入管57は、改質器下部3の底面43に二重管状に設け
られている。選択酸化用空気導入口58は、選択酸化用
空気導入管57の第2変成触媒充填層25と選択酸化触
媒充填層35との間隙側に設けられた開口部で、円環状
バッフル板38の中央開口部の内側に設置される。電磁
弁62は、改質ガス導出管55の改質ガス出口に設けら
れたもので、起動時には閉にされると共に、定常運転時
には開にされる。
The reformed gas outlet pipe 55 and the selective oxidation air inlet pipe 57 are provided in a double pipe shape on the bottom surface 43 of the reformer lower portion 3. The selective oxidation air introduction port 58 is an opening provided on the gap side between the second shift conversion catalyst filling layer 25 and the selective oxidation catalyst filling layer 35 of the selective oxidation air introduction pipe 57, and is the center of the annular baffle plate 38. It is installed inside the opening. The solenoid valve 62 is provided at the reformed gas outlet of the reformed gas outlet pipe 55, and is closed at the time of startup and opened at the time of steady operation.

【0041】次に、本発明の燃料改質器の運転方法につ
いて説明する。図2は図1の装置における起動時の運転
手順を説明する流れ図である。図3は図1の装置におけ
る起動時の予熱状態、図4は改質原料の供給開始状態、
図5は第1改質添加水の供給開始状態を説明する縦断面
図である。なお、図3乃至図5において、弁62、6
3、64、65が閉じているときは黒塗りとし、開いて
いるときは白抜きとしている。
Next, a method of operating the fuel reformer of the present invention will be described. FIG. 2 is a flow chart for explaining the operating procedure at the time of startup in the device of FIG. FIG. 3 is a preheating state at the time of startup in the apparatus of FIG. 1, FIG. 4 is a reforming raw material supply start state,
FIG. 5 is a vertical cross-sectional view for explaining a supply start state of the first reformed added water. 3 to 5, the valves 62, 6
When 3, 64 and 65 are closed, they are painted black, and when they are open, they are outlined.

【0042】まず起動時における運転方法を説明する
と、燃焼空気をバーナー4に送りバーナー4と燃焼円筒
体5と燃焼ガス流路10をプレパージして、点火装置を
作動すると同時にバーナー燃料の供給を開始し、バーナ
ー着火を行う(S100)。バーナー着火が確認された
ら、第2改質添加水注入口47より起動時熱媒としての
第2改質添加水を注入し始める(図3参照)。着火後高
温の燃焼ガスが、燃焼円筒体5の底部で折り返し、燃焼
ガス流路10を通過しながら改質触媒充填層6を予熱す
ると共に、第2改質添加水流路45と混合室44を流過
する起動時熱媒としての第2改質添加水を蒸発し過熱す
る。起動時には改質ガス出口の電磁弁62を閉に、第1
改質添加水流路のドレン電磁弁63を開にしているの
で、発生した過熱蒸気が第1改質添加水流路40を逆流
し、改質器下部3を予熱する(S102)。このように
改質器下部3を改質ガス導入前に導入改質ガスの露点以
上に予熱しておくことで改質ガス導入時触媒層における
水の凝縮を防ぎ、よって触媒寿命を向上させることがで
きる。そして、改質触媒充填層6の入口温度が所定温度
に到達したか判断し(S104)、所定温度に到達する
まで改質器下部3の予熱を継続する。この改質触媒充填
層6の入口温度に対する所定温度は、改質する燃料の種
類によって異なるが、例えば450〜550℃の範囲が
好ましい。
First, the operation method at the time of start-up will be described. Combustion air is sent to the burner 4 to pre-purge the burner 4, the combustion cylinder 5 and the combustion gas passage 10, and the ignition device is operated, and at the same time, the supply of burner fuel is started. Then, the burner is ignited (S100). When the burner ignition is confirmed, the injection of the second reforming additive water as the heat medium at startup is started from the second reforming additive water inlet 47 (see FIG. 3). The high-temperature combustion gas after ignition turns back at the bottom of the combustion cylinder 5 and preheats the reforming catalyst filling layer 6 while passing through the combustion gas channel 10, and also causes the second reforming additive water channel 45 and the mixing chamber 44 to flow. The second reforming additive water as the heating medium flowing at the time of start-up is evaporated and superheated. At startup, the solenoid valve 62 at the reformed gas outlet is closed, and the first
Since the drain solenoid valve 63 of the reforming-added water passage is opened, the generated superheated steam flows back through the first reforming-added water passage 40 to preheat the lower reformer 3 (S102). In this way, by preheating the lower part of the reformer 3 above the dew point of the introduced reformed gas before introducing the reformed gas, it is possible to prevent water from condensing in the catalyst layer at the time of introducing the reformed gas and thus improve the catalyst life. You can Then, it is judged whether the inlet temperature of the reforming catalyst packed bed 6 has reached a predetermined temperature (S104), and the preheating of the lower reformer 3 is continued until it reaches the predetermined temperature. The predetermined temperature with respect to the inlet temperature of the reforming catalyst packed bed 6 varies depending on the type of fuel to be reformed, but is preferably in the range of 450 to 550 ° C, for example.

【0043】改質触媒充填層6の入口温度が所定温度に
到達したら、改質ガス出口電磁弁62を開に、第1改質
添加水流路のドレン電磁弁63を閉に切り替える(S1
06)。そして、燃料注入口52と選択酸化用空気導入
口58より定格負荷時の30〜50%程度の改質原料と
しての燃料及び選択酸化用空気をそれぞれ供給し、燃料
の改質を開始する(S108;図4参照)。
When the inlet temperature of the reforming catalyst packed bed 6 reaches a predetermined temperature, the reformed gas outlet solenoid valve 62 is opened and the drain solenoid valve 63 of the first reforming additive water flow passage is closed (S1).
06). Then, about 30 to 50% of the fuel at the rated load and the fuel as the selective oxidizing air and the selective oxidizing air are supplied from the fuel inlet 52 and the selective oxidizing air inlet 58, respectively, and the reforming of the fuel is started (S108). ; See FIG. 4).

【0044】燃料の改質が始まると、後述のように変成
反応及び選択酸化反応が発熱反応なので、第1変成触媒
充填層20と第2変成触媒充填層25と選択酸化触媒充
填層35とが自らの反応発熱によって昇温する。そし
て、定常運転に移行するために律速となる触媒層の温
度、例えば図1の装置においては、昇温に最も時間がか
かる触媒層としての第2変成触媒充填層25の入口温度
が所定温度に到達したか判断する(S110)。第2変
成触媒充填層25の入口温度が所定温度に到達まで、第
2改質添加水による燃料の改質を継続する。第2変成触
媒充填層25の入口温度に対する所定温度は、例えば第
2変成触媒としてCu−Zn系低温変成触媒を用いる場
合には、180〜220℃の範囲が好ましい。
When the reforming of the fuel is started, the shift conversion reaction and the selective oxidation reaction are exothermic reactions as will be described later, so that the first shift conversion catalyst packed bed 20, the second shift conversion catalyst packed bed 25 and the selective oxidation catalyst packed bed 35 are separated from each other. The temperature rises due to the heat generated by the reaction. Then, the temperature of the catalyst layer that becomes the rate-determining value for shifting to the steady operation, for example, in the apparatus of FIG. 1, the inlet temperature of the second shift conversion catalyst packed layer 25 as the catalyst layer that takes the longest time to raise the temperature becomes a predetermined temperature. It is determined whether it has arrived (S110). The reforming of the fuel with the second reforming additive water is continued until the inlet temperature of the second shift conversion catalyst packed bed 25 reaches a predetermined temperature. The predetermined temperature with respect to the inlet temperature of the second shift conversion catalyst packed bed 25 is preferably in the range of 180 to 220 ° C. when a Cu—Zn-based low temperature shift catalyst is used as the second shift catalyst, for example.

【0045】第2変成触媒充填層25の入口温度が所定
温度に到達したら、第1改質添加水注入口41より第1
改質添加水の注入を開始する(S112)と共に、燃料
及び選択酸化用空気の導入量を定格流量まで徐々に増加
させて、起動状態を終了して定常状態に移行する(図5
参照)。また、改質ガス導出管55の出口より排出され
た改質ガスをバーナー4に導き、バーナー燃料として利
用することができる。本発明の燃料改質器の起動時の運
転として、燃料改質器の各触媒充填層を予熱する工程を
設けることにより、起動時間を短縮し起動性を改善する
ことができる。また、本発明によれば改質器の予熱に改
質添加水を熱媒として用い、従来品のように窒素等の熱
媒を用いる必要がないため、燃料改質器を各所に分散配
置する場合の熱媒確保が容易になる。
When the inlet temperature of the second shift conversion catalyst packed bed 25 reaches a predetermined temperature, the first reforming additive water injection port 41
At the same time when the injection of reforming additive water is started (S112), the introduction amount of fuel and air for selective oxidation is gradually increased to the rated flow rate, and the startup state is terminated and a steady state is entered (FIG. 5).
reference). Further, the reformed gas discharged from the outlet of the reformed gas outlet pipe 55 can be guided to the burner 4 and used as burner fuel. As a start-up operation of the fuel reformer of the present invention, by providing a step of preheating each catalyst packed bed of the fuel reformer, the start-up time can be shortened and the startability can be improved. Further, according to the present invention, the reforming additive water is used as the heat medium for preheating the reformer, and it is not necessary to use the heat medium such as nitrogen as in the conventional product. Therefore, the fuel reformers are dispersed and arranged in various places. In this case, it becomes easy to secure the heat medium.

【0046】次に、本実施の形態における燃料改質器の
定常運転時における運転状態を説明する。ここでは、第
1改質添加水、第2改質添加水並びに改質原料が改質器
上部2や改質器下部3の各部で、どのような条件で処理
されて行くかを、図1と図5を参照して説明する。第1
改質添加水注入口41より注入される第1改質添加水
は、改質器下部3の内部を流れる改質ガスと対向流で第
1改質添加水流路40を流過する。第1改質添加水流路
40を流れる第1改質添加水は、選択酸化部36、第2
変成部26及び第1変成部21を冷却すると同時に蒸発
し、熱交換部24にて改質部7を出た高温の改質ガスに
よって過熱され、混合室44に導かれる。燃料注入口5
2より注入される改質原料は、灯油など液体燃料の場合
には混合室44にて第1改質添加水の過熱蒸気によって
気化され、都市ガスなど気体燃料の場合には予熱され
る。ここで、混合室44に入る第1改質添加水過熱蒸気
の温度は、例えば400〜600℃の範囲にすることが
できるので、過熱蒸気は燃料の気化又は予熱の熱源とし
て十分に高い能力を有する。
Next, the operating state of the fuel reformer according to the present embodiment during steady operation will be described. Here, the conditions under which the first reformed additive water, the second reformed additive water and the reforming raw material are treated in the upper part of the reformer 2 and the lower part of the reformer 3 are shown in FIG. Will be described with reference to FIG. First
The first reformed additive water injected from the reformed additive water inlet 41 flows through the first reformed additive water flow passage 40 in a counterflow with the reformed gas flowing inside the lower reformer 3. The first reformed added water flowing through the first reformed added water flow channel 40 is supplied to the selective oxidation unit 36, the second
The shift conversion section 26 and the first shift conversion section 21 are cooled and evaporated at the same time, and are superheated by the high temperature reformed gas discharged from the reforming section 7 in the heat exchanging section 24 and introduced into the mixing chamber 44. Fuel inlet 5
The reforming raw material injected from 2 is vaporized by the superheated steam of the first reforming additive water in the mixing chamber 44 in the case of liquid fuel such as kerosene, and is preheated in the case of gaseous fuel such as city gas. Here, since the temperature of the first reformed addition water superheated steam entering the mixing chamber 44 can be set in the range of 400 to 600 ° C., for example, the superheated steam has a sufficiently high capacity as a heat source for vaporizing or preheating the fuel. Have.

【0047】一方、第2改質添加水注入口47より注入
される第2改質添加水は、第2改質添加水流路45を流
過しながら燃焼ガスによって加熱されて蒸発し、混合室
44にて第2改質添加水及び改質原料の混合ガスと合流
し、改質部入口ガス流路8を経て改質触媒充填層6に導
かれる。改質触媒充填層6において主に燃料の水蒸気改
質反応が行われる。例えば改質原料がメタンの場合、次
式による水蒸気改質反応が行われる。 CH+HO→CO+3H ・・・(1)
On the other hand, the second reformed added water injected from the second reformed added water inlet 47 is heated by the combustion gas and evaporated while flowing through the second reformed added water flow path 45, and then mixed in the mixing chamber. At 44, the mixed gas of the second reforming added water and the reforming raw material merges, and is introduced into the reforming catalyst packed bed 6 through the reforming section inlet gas flow path 8. In the reforming catalyst packed bed 6, a steam reforming reaction of fuel is mainly performed. For example, when the reforming raw material is methane, a steam reforming reaction according to the following equation is performed. CH 4 + H 2 O → CO + 3H 2 (1)

【0048】炭化水素の水蒸気改質反応は吸熱反応なの
で、反応温度が高いほど炭化水素の改質率が高く反応速
度も速い。しかし、温度をあまり高くすると改質器材料
の耐熱仕様に対する要求が厳しくなり、また、改質器の
放散熱増大などで熱効率が下がる傾向がある。そこで、
改質触媒充填層6の温度分布をガスの流れ方向にて例え
ば550〜800℃にし、改質原料の種類によって最適
の温度分布をさらに限定することができる。また、反応
にかかわる水蒸気の添加量は多い程改質率が高くなる
が、水蒸気を発生するための熱量の増加で熱効率が低下
するので、S/Cとして例えば2.2〜3.5の範囲が
好適である。なお、改質触媒充填層6への改質反応熱の
供給は、燃焼室5Aでのバーナー燃料の燃焼熱を熱源と
して、燃焼円筒体5からの熱輻射と、燃焼ガス流路10
を流過する燃焼ガスからの熱伝達とによって行われる。
Since the hydrocarbon steam reforming reaction is an endothermic reaction, the higher the reaction temperature, the higher the hydrocarbon reforming rate and the faster the reaction rate. However, if the temperature is set too high, the heat resistance specification of the reformer material becomes stricter, and the thermal efficiency tends to decrease due to the increase of heat radiated from the reformer. Therefore,
The temperature distribution of the reforming catalyst packed bed 6 is set to, for example, 550 to 800 ° C. in the gas flow direction, and the optimum temperature distribution can be further limited depending on the type of the reforming raw material. Further, the larger the amount of steam involved in the reaction, the higher the reforming rate, but since the heat efficiency decreases due to the increase in the amount of heat for generating steam, the S / C is, for example, in the range of 2.2 to 3.5. Is preferred. The reforming reaction heat is supplied to the reforming catalyst packed bed 6 by using the combustion heat of the burner fuel in the combustion chamber 5A as a heat source to radiate heat from the combustion cylindrical body 5 and the combustion gas passage 10.
And heat transfer from the combustion gas flowing through it.

【0049】改質部7を出た改質ガスが熱交換部24に
て減温された後、第1変成部21並びに第2変成部26
に導かれ、下式の変成反応が行われる。 CO+HO→CO+H ・・・(2)この変成反
応は発熱反応なので、反応温度を低くすれば、有利な点
として変成後の改質ガスのCO濃度が低くなる点があ
り、不利な点として反応速度が遅くなる点がある。
After the reformed gas exiting the reforming section 7 has been cooled by the heat exchanging section 24, the first shift section 21 and the second shift section 26.
, The transformation reaction of the following formula is carried out. CO + H 2 O → CO 2 + H 2 (2) Since this shift reaction is an exothermic reaction, lowering the reaction temperature is advantageous because the CO concentration of the reformed gas after shift is low. However, there is a point that the reaction speed becomes slow.

【0050】そこで、本実施形態では比較的反応温度の
高い第1変成部21と、反応温度の低い第2変成部26
とを設け、第1変成部21にて反応速度を早くし、第2
変成部26にて改質ガスのCO濃度を低くすることで、
総合的な変成反応の効率を高めている。第1変成触媒充
填層20の温度分布は、例えばガスの流れ方向にて50
0〜280℃、好ましくは450〜300℃にし、第2
変成触媒充填層25の温度分布は、例えばガスの流れ方
向にて280〜170℃、好ましくは250〜190℃
にするのがよい。各部における改質ガスのCO濃度は、
第1変成触媒充填層20の入口で10%程度、第2変成
触媒充填層25の入口で3〜5%程度、第2変成触媒充
填層の出口で0.3〜1%程度である。このように各変
成触媒充填層の温度分布を最適化して変成後改質ガス中
の残留CO濃度を低くすると同時に、変成触媒全体の充
填量を少なくし、改質器のコンパクト化と低コスト化を
図ることができる。
Therefore, in this embodiment, the first shift section 21 having a relatively high reaction temperature and the second shift section 26 having a low reaction temperature.
Is provided to increase the reaction speed in the first shift section 21,
By reducing the CO concentration of the reformed gas in the shift conversion unit 26,
It improves the efficiency of the overall conversion reaction. The temperature distribution of the first shift conversion catalyst packed bed 20 is, for example, 50 in the gas flow direction.
0-280 ℃, preferably 450-300 ℃, the second
The temperature distribution of the shift conversion catalyst packed bed 25 is, for example, 280 to 170 ° C., preferably 250 to 190 ° C. in the gas flow direction.
It is better to The CO concentration of the reformed gas in each part is
It is about 10% at the inlet of the first shift conversion catalyst-packed layer 20, about 3 to 5% at the inlet of the second shift conversion catalyst-packed layer 25, and about 0.3 to 1% at the outlet of the second shift conversion catalyst-packed layer. In this way, the temperature distribution of each shift catalyst packed bed is optimized to lower the residual CO concentration in the reformed reformed gas, and at the same time, the total amount of shift catalyst packed is reduced to make the reformer compact and reduce the cost. Can be achieved.

【0051】第2変成部26を出た改質ガスは選択酸化
部36に導かれ、選択酸化用空気導入口58より導入さ
れた選択酸化用空気との間で下式のCO選択酸化反応が
行われる。 CO+(1/2)O→CO ・・・(3) 選択酸化用空気中の酸素は、反応式(3)により改質ガ
ス中のCOを酸化して除去する他に、改質ガス中の水素
をも酸化し消費するので、改質器の水素製造効率、即ち
熱効率を高くする上で酸素と水素との酸化反応を抑制す
ることが重要である。
The reformed gas leaving the second shift section 26 is guided to the selective oxidation section 36, and the CO selective oxidation reaction of the following formula is performed between the reformed gas and the selective oxidation air introduced from the selective oxidation air introduction port 58. Done. CO + (1/2) O 2 → CO 2 (3) Oxygen in the air for selective oxidation is obtained by oxidizing CO in the reformed gas according to the reaction formula (3) and removing the reformed gas. Since the hydrogen contained therein is also oxidized and consumed, it is important to suppress the oxidation reaction between oxygen and hydrogen in order to improve the hydrogen production efficiency of the reformer, that is, the thermal efficiency.

【0052】本実施形態では、第2変成部26と選択酸
化部36との空隙に円環状バッフル板38を設け、バッ
フル板38の中央開口部に選択酸化用空気導入口58を
配置することで改質ガスと選択酸化用空気とを均一混合
させている。また、選択酸化触媒充填層35の温度分布
は、例えばガスの流れ方向にて200〜100℃、好ま
しくは150〜110℃にしている。選択酸化用空気の
導入量は、選択酸化後改質ガスの残留CO濃度が例えば
100ppm以下、好ましくは10ppm以下となるよ
うに決定すればよい。改質器の水素製造効率を高めるに
は、選択酸化用空気中の酸素と選択酸化部36に導入さ
れる改質ガス中のCOとのモル比(O/CO)とし
て、例えば1.2〜3.0の範囲が望ましく、1.2〜
1.8の範囲がより望ましい。
In the present embodiment, an annular baffle plate 38 is provided in the space between the second shift conversion section 26 and the selective oxidation section 36, and the selective oxidation air introduction port 58 is arranged at the central opening of the baffle plate 38. The reformed gas and the selective oxidation air are uniformly mixed. The temperature distribution of the selective oxidation catalyst packed bed 35 is, for example, 200 to 100 ° C, preferably 150 to 110 ° C in the gas flow direction. The introduction amount of the selective oxidation air may be determined so that the residual CO concentration of the reformed gas after the selective oxidation is, for example, 100 ppm or less, preferably 10 ppm or less. In order to increase the hydrogen production efficiency of the reformer, the molar ratio (O 2 / CO) of oxygen in the selective oxidation air and CO in the reformed gas introduced into the selective oxidation section 36 is, for example, 1.2. ~ 3.0 is desirable, 1.2 ~
The range of 1.8 is more desirable.

【0053】このように選択酸化触媒充填層35の温度
分布を最適化することと、改質ガスと選択酸化用空気と
の混合をよくすることにより、選択酸化後改質ガスのC
O残留濃度を低減すると共に、水素の消費を抑制して改
質器の熱効率を改善することができる。
Thus, by optimizing the temperature distribution of the selective oxidation catalyst packed bed 35 and improving the mixing of the reformed gas and the selective oxidation air, the C of the reformed gas after selective oxidation is improved.
It is possible to reduce the residual concentration of O, suppress the consumption of hydrogen, and improve the thermal efficiency of the reformer.

【0054】なお、第1の実施形態では上述のように選
択酸化部36を1段としているが、選択酸化部36を2
段にして、例えば図1に示す選択酸化部36の下方に第
2の選択酸化部を設けてもよく、また、改質器7の下流
に第2の選択酸化器を設けることもできる。
In the first embodiment, the selective oxidization section 36 has one stage as described above, but the selective oxidization section 36 has two stages.
For example, the second selective oxidation section may be provided below the selective oxidation section 36 shown in FIG. 1, and the second selective oxidation section may be provided downstream of the reformer 7.

【0055】また、選択酸化部36を出た選択酸化後改
質ガスは改質ガス導出管55の出口より得られるが、得
られた改質ガスを燃料電池に供して発電することができ
る(燃料電池の詳細に関する図示は省略している)。一
般に、炭化水素の改質ガスを燃料とする燃料電池発電の
場合、改質ガス中の水素の70〜80%が消費され、残
りの水素がアノードオフガスとして排出される。第1の
実施形態によれば、燃料電池のアノードオフガスをバー
ナー燃料として用いることができる。
Further, although the reformed gas after selective oxidation that has exited the selective oxidation section 36 is obtained from the outlet of the reformed gas outlet pipe 55, the obtained reformed gas can be supplied to a fuel cell to generate electricity ( Illustration of details of the fuel cell is omitted). Generally, in the case of fuel cell power generation using a hydrocarbon reformed gas as a fuel, 70 to 80% of hydrogen in the reformed gas is consumed, and the remaining hydrogen is discharged as an anode off gas. According to the first embodiment, the anode off gas of the fuel cell can be used as the burner fuel.

【0056】また、上記実施の形態においては、バーナ
ー4において、定常運転時のバーナー燃料をアノードオ
フガスだけでまかなうアノードオフガス専焼方式か、又
はアノードオフガスとあわせ補助燃料として改質原料を
供給する混焼方式を用いる構成としてもよい。バーナー
4による燃焼で発生した燃焼ガスは下向流で燃焼円筒体
5を流過し、燃焼円筒体5の下方にて折り返して、上向
流で燃焼ガス流路10を流過し、バッフル板11を経て
燃焼ガス排出口12より排出される。
Further, in the above embodiment, in the burner 4, the burner fuel at the time of steady operation is covered by the anode off-gas only, or the mixed burner system in which the reforming raw material is supplied as the auxiliary fuel together with the anode off-gas. May be used. The combustion gas generated by the combustion by the burner 4 flows downward in the combustion cylinder 5, is folded back below the combustion cylinder 5, flows in the combustion gas flow path 10 in the upward flow, and flows through the baffle plate. It is discharged from the combustion gas discharge port 12 via 11.

【0057】図6は本発明の第2の実施の形態を説明す
る構成ブロック図である。ここでは、図1に示す燃料改
質器の定常状態での運転に適するように、第1改質添加
水流量制御部70と第2改質添加水流量制御部72が設
けられている。第1改質添加水流量制御部70は、入力
計器として改質器上部2や改質器下部3の各部の温度を
測定する熱電対のような温度計T1〜T5と、第1改質
添加水流路40を流れる第1改質添加水の流量を測定す
る第1流量計F1を有すると共に、流量調整弁64に対
して弁開度信号を送っている。改質器上部2には、混合
室44近傍での第1改質添加水の温度を測定する第1温
度計T1や改質部7の温度を測定する第2温度計T2が
設けられている。改質器下部3には、第1変成部21の
温度を測定する第3温度計T3、第2変成部26の温度
を測定する第4温度計T4、並びに選択酸化部36の温
度を測定する第5温度計T5が設けられている。
FIG. 6 is a configuration block diagram for explaining the second embodiment of the present invention. Here, a first reforming addition water flow rate control unit 70 and a second reforming addition water flow rate control unit 72 are provided so as to be suitable for the steady-state operation of the fuel reformer shown in FIG. The first reforming addition water flow rate control unit 70 includes thermometers T1 to T5 such as thermocouples that measure the temperatures of the reformer upper part 2 and the reformer lower part 3 as input meters, and the first reforming addition water. It has a first flow meter F1 for measuring the flow rate of the first reforming added water flowing through the water flow path 40, and sends a valve opening signal to the flow rate adjusting valve 64. The reformer upper part 2 is provided with a first thermometer T1 for measuring the temperature of the first reforming added water near the mixing chamber 44 and a second thermometer T2 for measuring the temperature of the reforming section 7. . In the reformer lower part 3, the third thermometer T3 for measuring the temperature of the first shift conversion section 21, the fourth thermometer T4 for measuring the temperature of the second shift conversion section 26, and the temperature of the selective oxidation section 36 are measured. A fifth thermometer T5 is provided.

【0058】第2改質添加水流量制御部72は、入力計
器として第1改質添加水流路40を流れる第1改質添加
水の流量を測定する第1流量計F1、第2改質添加水流
路45を流れる第2改質添加水の流量を測定する第2流
量計F2、改質原料流路50を流れる改質原料の流量を
測定する第3流量計F3を有すると共に、流量調整弁6
5に対して弁開度信号を送っている。
The second reforming added water flow rate control section 72 is a first flow meter F1 for measuring the flow rate of the first reforming addition water flowing through the first reforming addition water passage 40 as an input instrument, and the second reforming addition water. A second flow meter F2 for measuring the flow rate of the second reforming additive water flowing through the water flow channel 45, a third flow meter F3 for measuring the flow rate of the reforming raw material flowing through the reforming raw material flow channel 50, and a flow rate adjusting valve. 6
5, the valve opening signal is sent to 5.

【0059】第1改質添加水流量制御部70は、改質器
上部2や改質器下部3の各部の温度を、第1温度計T1
〜第5温度計T5により測定し、各部に予め設定された
設定温度よりも低下したときは、流量調整弁64の弁を
閉じて第1改質添加水流量を減少させる。すると、例え
ば第1変成部21等の各部の温度が昇温して、第1改質
添加水流量制御部70によるフィードバック制御にて設
定温度に維持される。第2改質添加水流量制御部72
は、例えば第3流量計F3の流量信号と改質原料の組成
より、改質する改質原料中の炭素量を演算し、次に演算
された炭素量に対して一定の比率をもつ改質添加水量を
演算する(以下、改質添加水と改質原料中炭素とのモル
比率を、「S/C」(Steam/Carbon)にて表す)。そし
て、第2改質添加水流量制御部72は、演算された改質
添加水量から第1流量計F1にて計測された第1改質添
加水の水量を控除して、第2改質添加水として供給すべ
き水量を演算し、流量調整弁65に対して弁開度信号を
送って、第2流量計F2で測定する第2改質添加水の流
量が演算された供給水量になるように制御する。
The first reforming additive water flow rate control unit 70 controls the temperatures of the upper part of the reformer 2 and the lower part of the reformer 3 by the first thermometer T1.
When measured by the fifth thermometer T5 and the temperature is lower than the preset temperature set in each part, the valve of the flow rate adjusting valve 64 is closed to reduce the first reformed additive water flow rate. Then, for example, the temperature of each part such as the first shift conversion part 21 is raised, and is maintained at the set temperature by the feedback control by the first reforming added water flow rate control part 70. Second reforming added water flow rate control unit 72
Is the amount of carbon in the reforming raw material to be reformed, for example, from the flow rate signal of the third flow meter F3 and the composition of the reforming raw material, and the reforming having a constant ratio to the calculated carbon amount. The amount of added water is calculated (hereinafter, the molar ratio of the reforming added water and the carbon in the reforming raw material is represented by "S / C" (Steam / Carbon)). Then, the second reformed added water flow rate control unit 72 subtracts the amount of the first reformed added water measured by the first flow meter F1 from the calculated amount of reformed added water to obtain the second reformed added water. The amount of water to be supplied as water is calculated, and a valve opening signal is sent to the flow rate adjusting valve 65 so that the flow rate of the second reforming additive water measured by the second flow meter F2 becomes the calculated amount of supplied water. To control.

【0060】本実施の形態によれば、第2改質添加水流
量制御部72を設けているので、改質器の定常運転時に
おいて、改質添加水の総流量、即ちS/Cを変えること
なく第1改質添加水と第2改質添加水との流量比率を調
整することができる。そこで、第1改質添加水流量制御
部70により各部の温度を安定的に制御することができ
る。例えば、第1変成部21の温度分布が何らかの原因
で高温側にシフトした場合に、第1改質添加水流量制御
部70と第2改質添加水流量制御部72を連携させて、
第1改質添加水注入流路66上の流量調整弁64と第2
改質添加水注入流路67上の流量調整弁65を操作して
第2改質添加水の流量を適宜減らすと同時に、第1改質
添加水の流量を増やすことにより、第1変成部21の温
度分布を適正の温度分布に戻すことができる。かくして
各運転負荷における最適のS/Cを常に保持することで
改質の熱効率を改善することができる。
According to the present embodiment, since the second reforming addition water flow rate control unit 72 is provided, the total flow rate of reforming addition water, that is, S / C is changed during the steady operation of the reformer. The flow rate ratio of the first reforming additive water and the second reforming additive water can be adjusted without the need. Therefore, the temperature of each part can be stably controlled by the first reformed added water flow rate control part 70. For example, when the temperature distribution of the first shift converter 21 shifts to the high temperature side for some reason, the first reformed added water flow rate control unit 70 and the second reformed added water flow rate control unit 72 are linked,
The flow rate adjusting valve 64 on the first reforming added water injection channel 66 and the second
By operating the flow rate adjusting valve 65 on the reforming added water injection flow channel 67 to appropriately reduce the flow rate of the second reforming added water and at the same time increase the flow rate of the first reforming added water, the first shift conversion unit 21 The temperature distribution of can be returned to an appropriate temperature distribution. Thus, the thermal efficiency of reforming can be improved by always maintaining the optimum S / C in each operating load.

【0061】次に、本発明による燃料改質器の第3の実
施形態を説明する。図7は、第3の実施形態による燃料
改質器の縦断面図である。なお、図7において、前記図
1と同一又は対応する部材又は要素は、同一の符号を付
し、重複する説明を省略する。
Next, a third embodiment of the fuel reformer according to the present invention will be described. FIG. 7 is a vertical cross-sectional view of the fuel reformer according to the third embodiment. In FIG. 7, members or elements which are the same as or correspond to those in FIG. 1 are designated by the same reference numerals, and duplicate explanations are omitted.

【0062】図において、内円筒体29と中円筒体30
は、第2変成部26の改質器下部3の外壁と同軸に設け
られたもので、内円筒体29が中心側、中円筒体30が
周縁側に設けられている。ガス導入流路31は、内円筒
体29の中心側に形成される空間であって、内円筒体2
9の第1変成部21側の端部には円環状バッフル板27
の開口部が接続されている。第2変成触媒充填層25
は、内円筒体29の周縁側と中円筒体30の中心側の間
に形成された空間で、第2変成触媒が充填されている。
ガス導出流路32は、中円筒体30の周縁側と改質器下
部3の外壁、並びに第1変成部21と第2変成部26と
の間隙に設置された円環状バッフル板27と第2変成部
の底面39によって形成された空間である。ガス導入流
路31と第2変成触媒充填層25とは、内円筒体29の
第1の開口部としての下端開口部33によって連通され
ている。第2変成触媒充填層25とガス導出流路32と
は、中円筒体30の第2の開口部としての上端開口部2
8によって連通されている。
In the figure, the inner cylinder 29 and the middle cylinder 30 are shown.
Is provided coaxially with the outer wall of the reformer lower portion 3 of the second shift conversion unit 26, and the inner cylindrical body 29 is provided on the center side and the intermediate cylindrical body 30 is provided on the peripheral side. The gas introduction flow path 31 is a space formed on the center side of the inner cylindrical body 29, and
An annular baffle plate 27 is provided at the end of the first metamorphicing unit 21 side of 9
The openings are connected. Second shift conversion catalyst packed bed 25
Is a space formed between the peripheral side of the inner cylindrical body 29 and the center side of the middle cylindrical body 30, and is filled with the second shift conversion catalyst.
The gas outlet passage 32 is provided with a circular baffle plate 27 and a second annular baffle plate 27, which are installed in the peripheral side of the middle cylindrical body 30 and the outer wall of the lower reformer 3, and in the gap between the first shift conversion section 21 and the second shift conversion section 26. It is a space formed by the bottom surface 39 of the metamorphic portion. The gas introduction flow path 31 and the second shift conversion catalyst packed layer 25 are communicated with each other by a lower end opening 33 as a first opening of the inner cylindrical body 29. The second shift conversion catalyst packed layer 25 and the gas outlet flow path 32 are formed by the upper end opening 2 serving as the second opening of the middle cylindrical body 30.
It is connected by 8.

【0063】このように構成された第2変成部26にお
いては、第1変成部21を出た改質ガスは下向流でガス
導入流路31を通過して、内円筒体29の下端開口部3
3にて折り返し、上向流で第2変成触媒充填層25を通
過し、そして、第2変成触媒充填層25を出た改質ガス
は中円筒体30の上端開口部28にて折り返し、下向流
でガス導出流路32を通過し、選択酸化部36へ導かれ
るようになっている。選択酸化部36には、選択酸化部
36の中心部に改質ガスが通過できない円筒体状中空部
36Bが設けてある。円筒体状中空部36Bを設ける
と、選択酸化部36の触媒充填量及び温度分布が最適化
される。かくして本実施形態にかかる燃料改質器の変成
部及び選択酸化部における温度分布を最適化し、改質器
の性能をさらに向上させることができる。なお、本実施
形態にかかる燃料改質器の運転方法については、前述し
た第1実施形態と同じなので、説明を省略する。
In the second shift section 26 thus configured, the reformed gas exiting the first shift section 21 passes through the gas introduction flow path 31 in a downward flow to open the lower end of the inner cylindrical body 29. Part 3
3 and then passes upward through the second shift conversion catalyst-packed layer 25, and the reformed gas that exits the second shift catalyst-packed layer 25 is folded back at the upper end opening 28 of the middle cylinder 30 and moves downward. The gas flows in a counterflow through the gas outlet channel 32 and is guided to the selective oxidation section 36. The selective oxidation section 36 is provided with a cylindrical hollow section 36B at the center of the selective oxidation section 36, through which reformed gas cannot pass. When the cylindrical hollow portion 36B is provided, the catalyst filling amount and the temperature distribution of the selective oxidation portion 36 are optimized. Thus, the temperature distribution in the shift conversion section and the selective oxidation section of the fuel reformer according to the present embodiment can be optimized, and the performance of the reformer can be further improved. The operation method of the fuel reformer according to the present embodiment is the same as that of the first embodiment described above, and thus the description thereof is omitted.

【0064】次に、本発明による燃料改質器の第4の実
施形態を説明する。図8は、第4の実施形態による燃料
改質器の縦断面図である。なお、図8において、前記図
1と同一又は対応する部材又は要素は、同一の符号を付
し、重複する説明を省略する。図において、中低温ユニ
ット3には、筒状に第1の変成触媒を充填した第1変成
部21と、環状に第2の変成触媒を充填した第2変成部
26Aと、第2変成部26Aの外周に沿って同軸円筒状
に位置する選択酸化部36Aが設けられている。
Next, a fourth embodiment of the fuel reformer according to the present invention will be described. FIG. 8 is a vertical cross-sectional view of the fuel reformer according to the fourth embodiment. In FIG. 8, members or elements that are the same as or correspond to those in FIG. 1 are designated by the same reference numerals, and redundant description will be omitted. In the figure, the medium-low temperature unit 3 includes a first shift portion 21 in which a first shift catalyst is cylindrically filled, a second shift portion 26A in which a second shift catalyst is annularly filled, and a second shift portion 26A. A selective oxidation part 36A located in a coaxial cylindrical shape is provided along the outer circumference of the.

【0065】第2変成部26Aには、中低温ユニット3
の外壁と同軸に設けられた内円筒体29Aと、中低温ユ
ニット3の外壁と同軸であって、内円筒体29Aの外周
側に設けられた中円筒体30Aとが設けられている。第
2変成部26Aの触媒充填層25Aは、第2変成触媒が
収容される円環状の空間で、内円筒体29Aの外周面と
中円筒体30Aの内周面によって形成されている。円環
状バッフル板27Aは、第1変成部21と第2変成部2
6Aとの間隙に設置されるもので、円環の中心部にガス
分散板34Aが設けられている。
In the second shift section 26A, the low temperature unit 3
The inner cylindrical body 29A is provided coaxially with the outer wall of the inner cylindrical body 29A, and the inner cylindrical body 30A is provided coaxially with the outer wall of the middle and low temperature unit 3 and is provided on the outer peripheral side of the inner cylindrical body 29A. The catalyst packed layer 25A of the second shift conversion section 26A is an annular space in which the second shift catalyst is housed, and is formed by the outer peripheral surface of the inner cylindrical body 29A and the inner peripheral surface of the middle cylindrical body 30A. The annular baffle plate 27A includes a first shift portion 21 and a second shift portion 2
It is installed in a gap with 6A, and a gas dispersion plate 34A is provided at the center of the ring.

【0066】ガス導入流路31Aは、円環状バッフル板
27A、選択酸化部36Aの内側に位置する中円筒体3
0Aの第1変成部21側の内周面、並びに内円筒体29
の第1変成部21側の外周面によって形成された空間
で、第1変成部21を通過した改質ガスを第2変成部2
6Aに導入する流路である。ガス導出流路32Aは、中
円筒体30Aの底面43側の内周面、第2変成部26A
の底面39、内円筒体29Aの内周面、並びに選択酸化
部36Aの第1変成部21対向部とを連絡する管路70
Aによって形成された空間で、第2変成部26Aを通過
した改質ガスを選択酸化部36Aに導入する流路であ
る。管路70Aは、内円筒体29Aの一端と接続され、
中円筒体30Aを貫通する円形断面や矩形断面の筒体
で、ガス導入流路31Aの流れを阻害しない程度の管径
となっている。管路70Aは、ガス導入流路71A側に
設けられた第2の開口部28Aを有している。第1の開
口部33Aは、中円筒体30Aの底面39側に位置する
内円筒体29の一端に設けられている。選択酸化用空気
の導入口58は、第1の開口部33Aの近傍に配置され
ており、好ましくは第1の開口部33Aの内側に若干挿
入された態様で配置されているとよい。選択酸化用空気
の導入口58が第1の開口部33Aの近傍に設置されて
いるので、第2変成部26Aにて変成された改質ガスと
選択酸化用空気とが適切に混合されて、選択酸化部36
Aでの選択酸化反応が効果的に進行する。
The gas introduction flow path 31A has a circular cylindrical baffle plate 27A and a middle cylindrical body 3 located inside the selective oxidation section 36A.
0A inner peripheral surface of the first conversion portion 21 side, and the inner cylindrical body 29
In the space formed by the outer peripheral surface of the first shift portion 21 side, the reformed gas that has passed through the first shift portion 21 is transferred to the second shift portion 2
6A is a flow path to be introduced. The gas outlet flow path 32A is provided with the inner peripheral surface of the middle cylindrical body 30A on the bottom surface 43 side, the second shift portion 26A.
70 for connecting the bottom surface 39 of the inner cylindrical body 29A, the inner peripheral surface of the inner cylindrical body 29A, and the facing portion of the first oxidization portion 21 of the selective oxidation portion 36A.
In the space formed by A, it is a flow path for introducing the reformed gas that has passed through the second shift conversion section 26A into the selective oxidation section 36A. The conduit 70A is connected to one end of the inner cylindrical body 29A,
The tubular body has a circular cross section or a rectangular cross section that passes through the middle cylindrical body 30A, and has a tube diameter that does not hinder the flow of the gas introduction flow path 31A. The conduit 70A has a second opening 28A provided on the gas introduction flow path 71A side. The first opening 33A is provided at one end of the inner cylindrical body 29 located on the bottom surface 39 side of the middle cylindrical body 30A. The selective oxidation air introduction port 58 is arranged in the vicinity of the first opening 33A, and is preferably arranged slightly inserted inside the first opening 33A. Since the inlet port 58 for the selective oxidation air is installed in the vicinity of the first opening 33A, the reformed gas transformed by the second shift conversion unit 26A and the selective oxidation air are appropriately mixed, Selective oxidation unit 36
The selective oxidation reaction at A effectively proceeds.

【0067】選択酸化部36Aは、中低温ユニット3の
内周面と中円筒体30Aの外周面によって形成された選
択酸化触媒充填層35Aを有しており、更にガス導入流
路71Aとガス導出流路72Aが設けられている。ガス
導入流路71Aは、中低温ユニット3の内周面、中円筒
体30の外周面、円環状バッフル板27Aによって形成
される空間で、第2変成部26Aを通過した改質ガスを
選択酸化触媒充填層35Aに導く。ガス分散板37A
は、ガスの流れを均質化するもので、ガス導入流路71
Aに設けられている。ガス導出流路72Aは、中低温ユ
ニット3の内周面、中円筒体30Aの外周面、第2変成
部26Aの底面39、中低温ユニット3の底面43、並
びに改質ガス導出管55の内周面によって形成される空
間で、選択酸化触媒充填層35Aを通過した改質ガスを
改質ガス導出管55に導く構成となっている。
The selective oxidation section 36A has a selective oxidation catalyst packed layer 35A formed by the inner peripheral surface of the intermediate and low temperature unit 3 and the outer peripheral surface of the intermediate cylindrical body 30A, and further has a gas introduction flow passage 71A and gas derivation. A flow path 72A is provided. The gas introduction flow path 71A is a space formed by the inner peripheral surface of the middle-and-low temperature unit 3, the outer peripheral surface of the middle cylindrical body 30, and the annular baffle plate 27A, and selectively oxidizes the reformed gas that has passed through the second shift section 26A. Lead to the catalyst packed bed 35A. Gas dispersion plate 37A
For homogenizing the flow of gas,
It is provided in A. The gas outlet passage 72A includes the inner peripheral surface of the middle-low temperature unit 3, the outer peripheral surface of the middle cylindrical body 30A, the bottom surface 39 of the second shift section 26A, the bottom surface 43 of the middle-low temperature unit 3, and the reformed gas outlet pipe 55. In the space formed by the peripheral surface, the reformed gas that has passed through the selective oxidation catalyst packed layer 35A is guided to the reformed gas outlet pipe 55.

【0068】このように構成された第2変成部26Aに
おいては、第1変成部21を通過した改質ガスは、下向
流でガス導入流路31Aとガス分散板34Aを通過し、
次に触媒充填層25Aを通過する。そして、第2変成触
媒充填層25Aを通過した改質ガスは、第1の開口部3
3Aで折り返して、上向流でガス導出流路32Aを通過
し、第2の開口部28Aを通過して、ガス導入流路71
Aを経由して選択酸化部36Aへ導かれる。即ち、第2
変成部26Aを通過した改質ガスは、ガス導入流路71
Aとガス分散板37Aを通過し、次に選択酸化触媒充填
層35Aを下向流で通過し、さらにガス導出流路72A
を通過して系外へ導かれる。
In the second shift conversion section 26A thus constructed, the reformed gas passing through the first shift conversion section 21 passes downward through the gas introduction passage 31A and the gas dispersion plate 34A,
Next, it passes through the catalyst packed bed 25A. Then, the reformed gas that has passed through the second shift conversion catalyst-packed layer 25A is discharged into the first opening 3
It turns back at 3 A, passes through the gas outlet passage 32 A in an upward flow, passes through the second opening 28 A, and passes through the gas inlet passage 71.
It is led to the selective oxidation part 36A via A. That is, the second
The reformed gas that has passed through the shift conversion section 26A is supplied to the gas introduction passage 71.
A through the gas dispersion plate 37A, then through the selective oxidation catalyst packed bed 35A in a downward flow, and further through the gas outlet passage 72A.
Is led to the outside of the system.

【0069】このように第2変成部26Aと選択酸化部
36Aを同心円状に構成すると、改質ガスの流れる量が
多くなりがちな中心部に第2変成部26Aが位置してい
るので、第2変成部26Aの外周縁部に位置する選択酸
化部36Aに対して改質ガスが均一に流れ、選択酸化反
応が均一に進行する。そこで、選択酸化部36Aに充填
される選択酸化触媒の量が最適化されると共に、温度分
布も最適化される。
When the second shift conversion section 26A and the selective oxidation section 36A are concentrically arranged in this manner, the second shift conversion section 26A is located in the central portion where the amount of the reformed gas tends to increase. The reforming gas uniformly flows to the selective oxidization portion 36A located at the outer peripheral edge of the two-transition portion 26A, and the selective oxidation reaction proceeds uniformly. Therefore, the amount of the selective oxidation catalyst filled in the selective oxidation section 36A is optimized, and the temperature distribution is also optimized.

【0070】なお、上記第1乃至第4実施の形態におい
ては、高温ユニットとしての改質器上部2が上側に配置
され、中低温ユニットとしての改質器下部3が下側に配
置される燃料改質器を説明したが、本発明はこれに限定
されるものではなく、燃料改質器を上下反転させて用い
ることもできる。
In the first to fourth embodiments described above, the reformer upper part 2 as the high temperature unit is arranged on the upper side, and the reformer lower part 3 as the middle and low temperature unit is arranged on the lower side. Although the reformer has been described, the present invention is not limited to this, and the fuel reformer can be used upside down.

【0071】また、上記第1乃至第4実施の形態におい
ては、改質器上部2と改質器下部3との連結部間隙に円
環状バッフル板18を設け、改質器上部2の底面、改質
器下部3の上面、並びに連結流通管19によって改質ガ
スと改質添加水との熱交換部24を形成する場合を示し
ているが、本発明はこれに限定されるものではなく、要
するに第1改質添加水を蒸発し過熱すると共に、各部の
最適温度分布を達成することができればよい。
In the first to fourth embodiments, an annular baffle plate 18 is provided in the gap between the upper part of the reformer 2 and the lower part of the reformer 3, and the bottom surface of the upper part of the reformer 2 is The case where the heat exchange part 24 between the reformed gas and the reforming added water is formed by the upper surface of the reformer lower part 3 and the connecting flow pipe 19 is shown, but the present invention is not limited to this. In short, it suffices that the first reforming addition water is evaporated and superheated, and at the same time, the optimum temperature distribution of each part can be achieved.

【0072】例えば、第1変成部21の底面と第2変成
部26の上面とを連結流通管によって連結し、該連結部
の間隙に円環状バッフル板を設ける構成とし、第1変成
部21の底面、第2変成部26の上面、並びに連結流通
管によって改質ガスと第1改質添加水との熱交換を行う
第2の熱交換部を設けてもよい。さらに、第2変成部2
6の底面と選択酸化部36の上面とを連結流通管によっ
て連結し、該連結部の間隙に円環状バッフル板を設ける
構成とし、第2変成部26の底面、選択酸化部36の上
面、並びに連結流通管によって改質ガスと第1改質添加
水との熱交換を行う第3の熱交換部を設けることもでき
る。また、第3熱交換部を設ける場合には、第2変成部
26の底面と選択酸化部36の上面とを連結した連結流
通管の内側に、選択酸化用空気の導入口を設置すること
もできる。
For example, the bottom surface of the first shift portion 21 and the top surface of the second shift portion 26 are connected by a connecting flow pipe, and an annular baffle plate is provided in the gap between the connecting portions, so that the first shift portion 21 You may provide the 2nd heat exchange part which exchanges heat between a reformed gas and a 1st reforming addition water with a bottom face, the upper surface of the 2nd shift conversion part 26, and a connection distribution pipe. Furthermore, the second shift unit 2
The bottom surface of 6 and the top surface of the selective oxidation portion 36 are connected by a connecting flow pipe, and an annular baffle plate is provided in the gap between the connection portions. The bottom surface of the second shift portion 26, the top surface of the selective oxidation portion 36, and It is also possible to provide a third heat exchanging section for exchanging heat between the reformed gas and the first reformed added water by the connecting flow pipe. In addition, when the third heat exchange section is provided, an inlet for the selective oxidation air may be installed inside the connection flow pipe that connects the bottom surface of the second shift conversion section 26 and the upper surface of the selective oxidation section 36. it can.

【0073】[0073]

【発明の効果】本発明の燃料改質器によれば、燃料が燃
焼する燃焼室と、該燃焼室の外周面側に設けられると共
に、環状に改質触媒を充填した改質部を有する高温ユニ
ットと、前記高温ユニットと連結される側に設けられる
と共に、筒状又は環状に変成触媒を充填した変成部と、
前記高温ユニットと連結される側とは反対側に設けられ
ると共に、筒状又は環状に選択酸化触媒を充填した選択
酸化部を有する中低温ユニットを有する構造としている
ので、高温と低温の二つのユニットに大きく2分割され
て組成されており、一体型の燃料改質器の構造を簡単化
し、製造コストの低下と熱効率の向上を図ることができ
る。また、本発明の燃料改質器によれば、高温ユニット
の改質部を通過した改質ガスを、中低温ユニットの変成
部側に供給する連結流通管と、当該連結流通管によって
連結される前記高温ユニットと前記中低温ユニットを一
体に収容する容器とを備えているので、熱応力の発生を
著しく軽減し、燃料改質器の耐久性を向上させることが
できる。
EFFECTS OF THE INVENTION According to the fuel reformer of the present invention, a high temperature having a combustion chamber in which fuel burns and a reforming section provided on the outer peripheral surface side of the combustion chamber and annularly filled with a reforming catalyst. A unit and a shift section provided on the side connected to the high temperature unit, and a shift section filled with a shift catalyst in a tubular or annular shape;
Since it is provided on the side opposite to the side connected to the high temperature unit and has a structure having an intermediate and low temperature unit having a selective oxidation section filled with a selective oxidation catalyst in a tubular or annular shape, it has two units of high temperature and low temperature. The structure is largely divided into two, and the structure of the integrated fuel reformer can be simplified, and the manufacturing cost can be reduced and the thermal efficiency can be improved. Further, according to the fuel reformer of the present invention, the reformed gas that has passed through the reforming section of the high-temperature unit is connected to the connecting flow tube that supplies the shift section side of the low-temperature unit to the connecting flow tube. Since the container that integrally houses the high temperature unit and the medium and low temperature unit is provided, the occurrence of thermal stress can be significantly reduced, and the durability of the fuel reformer can be improved.

【0074】また、本発明の燃料改質器によれば、さら
に高温ユニット及び中低温ユニットの外壁と容器の内壁
との間隙に形成された改質添加水流路と、高温ユニット
に改質原料を供給する改質原料供給路と、改質添加水流
路と改質原料供給路を互いに連通する混合室を設ける構
成とすると、改質添加水流路と高温ユニット及び中低温
ユニットとの熱交換によって改質添加水を改質ガスの顕
熱で蒸発、過熱し、発生した改質添加水の高温過熱蒸気
を用いて混合室にて気体燃料の場合燃料を予熱し、液体
燃料の場合燃料を気化することができる。かくして本発
明の燃料改質器を都市ガス、LPGや嫌気性消化ガス等
の気体燃料にも、灯油やナフサ等の液体燃料にも適用す
ることができる。
Further, according to the fuel reformer of the present invention, the reforming additive water channel formed in the gap between the outer wall of the high temperature unit and the medium and low temperature unit and the inner wall of the container, and the reforming raw material to the high temperature unit. If a configuration is provided in which the reforming raw material supply channel for supplying and the mixing chamber for connecting the reforming additive water channel and the reforming raw material supplying channel are provided, the reforming additive water channel is improved by heat exchange between the high temperature unit and the low temperature unit. Quality additive water is evaporated and overheated by the sensible heat of the reformed gas, and the high temperature superheated steam of the reformed additive water generated is used to preheat the fuel in the case of gaseous fuel and vaporize the fuel in the case of liquid fuel. be able to. Thus, the fuel reformer of the present invention can be applied to gas fuels such as city gas, LPG and anaerobic digestion gas, and to liquid fuels such as kerosene and naphtha.

【0075】また、本発明の燃料改質器によれば、さら
に高温ユニットに改質原料を供給する改質原料供給路
と、中低温ユニットを経由せず、前記高温ユニットに直
接改質添加水を供給する第2改質添加水流路と、改質添
加水流路、前記改質原料供給路並びに前記第2改質添加
水流路を互いに連通する混合室を設ける構成とすると、
起動時間を大幅に短縮すると共に各反応部の温度制御を
容易にすることができる。
Further, according to the fuel reformer of the present invention, the reforming raw material supply passage for supplying the reforming raw material to the high temperature unit and the reforming additive water directly to the high temperature unit without passing through the middle and low temperature unit. And a mixing chamber that connects the reforming-added water channel, the reforming raw material supply channel, and the second reforming-added water channel to each other.
The start-up time can be greatly shortened and the temperature control of each reaction part can be facilitated.

【0076】また、本発明の燃料改質器によれば、前記
中低温ユニットは、前記高温ユニット側に設けられると
共に、筒状又は環状に第1の変成触媒を充填した第1変
成部と、筒状又は環状に第2の変成触媒を充填した第2
変成部とを有する変成部を備え、前記第2変成部が前記
選択酸化部に対して同軸円筒状に位置する構成とする
と、第2変成部と選択酸化部が同心円状に配置されて改
質器全体がコンパクトになる。
Further, according to the fuel reformer of the present invention, the medium-low temperature unit is provided on the high-temperature unit side, and the first shift conversion section is filled with the first shift catalyst in a tubular or annular shape, A second cylinder-shaped or annularly packed second metamorphic catalyst
If a configuration is provided in which a metamorphic portion having a metamorphic portion is provided, and the second metamorphic portion is positioned coaxially with the selective oxidization portion, the second metamorphic portion and the selective oxidization portion are concentrically arranged and reformed. The whole vessel becomes compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施の形態の基本構成を示す
縦断面図である。
FIG. 1 is a vertical sectional view showing a basic configuration of a first embodiment of the present invention.

【図2】 図1の装置における起動時の運転手順を説明
する流れ図である。
FIG. 2 is a flow chart illustrating an operating procedure at the time of startup in the device of FIG.

【図3】 図1の装置における起動時の予熱状態を説明
する縦断面図である。
FIG. 3 is a vertical sectional view for explaining a preheating state at the time of startup in the apparatus of FIG.

【図4】 図1の装置における改質原料の供給開始状態
を説明する縦断面図である。
FIG. 4 is a vertical cross-sectional view illustrating a supply start state of a reforming raw material in the apparatus of FIG.

【図5】 図1の装置における第1改質添加水の供給開
始状態を説明する縦断面図である。
5 is a vertical cross-sectional view for explaining a supply start state of the first reforming additive water in the apparatus of FIG.

【図6】 本発明の第2の実施の形態を説明する構成ブ
ロック図である。
FIG. 6 is a configuration block diagram illustrating a second embodiment of the present invention.

【図7】 本発明の第3の実施の形態を示す縦断面図で
ある。
FIG. 7 is a vertical cross-sectional view showing a third embodiment of the present invention.

【図8】 本発明の第4の実施の形態を示す縦断面図で
ある。
FIG. 8 is a vertical cross-sectional view showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 改質器 2 改質器上部(高温ユニット) 3 改質器下部(中低温ユニット) 4 バーナー 5 燃焼円筒体 6 改質触媒充填層 7 改質部 8 改質部入口ガス流路 10 燃焼ガス流路 13 容器 14 断熱材 15 隔壁 16 改質ガス流路 17 改質器上部底面 18 バッフル板 19 コルゲート形伸縮管(連結流通管) 20 第1変成触媒充填層 21 第1変成部 24 熱交換部 25、25A 第2変成触媒充填層 26、26A 第2変成部 28、28A 中円筒体上端開口部(第2の開口部) 29、29A 内円筒体 30、30A 中円筒体 31、31A ガス導入流路 32、32A ガス導出流路 33、33A 内円筒体下端開口部(第1の開口部) 35、35A 選択酸化触媒充填層 36、36A 選択酸化部 40 第1改質添加水流路(改質添加水流路) 44 混合室 45 第2改質添加水流路 50 燃料流路(改質原料供給路) 1 reformer 2 Upper part of reformer (high temperature unit) 3 Lower reformer (mid-low temperature unit) 4 burners 5 Combustion cylinder 6 Reforming catalyst packed bed 7 reforming section 8 reforming section inlet gas flow path 10 Combustion gas flow path 13 containers 14 Insulation 15 partitions 16 Reformed gas flow path 17 Top reformer bottom 18 baffle board 19 Corrugated expansion / contraction pipe (connecting distribution pipe) 20 First shift catalyst packed bed 21 First Metamorphosis Department 24 heat exchange section 25, 25A Second shift catalyst packed bed 26, 26A Second metamorphic part 28, 28A Middle cylinder upper end opening (second opening) 29, 29A inner cylinder 30, 30A Medium cylindrical body 31, 31A gas introduction flow path 32, 32A gas outlet channel 33, 33A Inner cylinder lower end opening (first opening) 35, 35A selective oxidation catalyst packed bed 36, 36A Selective oxidation part 40 First reforming water channel (reforming water channel) 44 mixing chamber 45 Second reforming addition water channel 50 Fuel flow path (reforming material supply path)

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 燃料が燃焼する燃焼室と、該燃焼室の外
周面側に設けられると共に、環状に改質触媒を充填した
改質部を有する高温ユニットと;前記高温ユニットと連
結される側に設けられると共に、筒状又は環状に変成触
媒を充填した変成部と、前記高温ユニットと連結される
側とは反対側に設けられると共に、筒状又は環状に選択
酸化触媒を充填した選択酸化部を有する中低温ユニット
と;前記高温ユニットの改質部を通過した改質ガスを、
前記中低温ユニットの変成部側に供給する連結流通管
と;当該連結流通管によって連結される前記高温ユニッ
トと前記中低温ユニットを一体に収容する容器と;を備
えることを特徴とする燃料改質器。
1. A combustion chamber in which fuel burns, and a high temperature unit provided on the outer peripheral surface side of the combustion chamber and having a reforming section annularly filled with a reforming catalyst; a side connected to the high temperature unit. And a selective oxidization unit that is provided on the side opposite to the side connected to the high-temperature unit and that is provided with a selective oxidation catalyst that is tubular or annular and that is provided with a selective oxidation catalyst that is tubular or annular. And a reformed gas that has passed through the reforming section of the high temperature unit,
A fuel reformer, comprising: a connection flow pipe that is supplied to the shift section side of the low-temperature unit, and a container that integrally houses the high-temperature unit and the low-temperature unit that are connected by the connection flow pipe. vessel.
【請求項2】 請求項1に記載の燃料改質器において、
さらに;前記高温ユニット及び前記中低温ユニットの外
壁と前記容器の内壁との間隙に形成された改質添加水流
路と;該改質水添加流路の前記中低温ユニットの前記高
温ユニットと連結される側とは反対側に設けられた改質
添加水注入口と;を備える燃料改質器。
2. The fuel reformer according to claim 1, wherein:
A reforming additive water channel formed in a gap between an outer wall of the high temperature unit and the middle and low temperature unit and an inner wall of the container; and connected to the high temperature unit of the middle and low temperature unit of the reforming water adding channel. A reformer-added water inlet provided on the opposite side of the fuel reformer side;
【請求項3】 請求項2に記載の燃料改質器において、
さらに;前記高温ユニットに改質原料を供給する改質原
料供給路と;前記改質添加水流路と前記改質原料供給路
を互いに連通する混合室と;を備える燃料改質器。
3. The fuel reformer according to claim 2, wherein:
A fuel reformer further comprising: a reforming raw material supply passage for supplying a reforming raw material to the high temperature unit; and a mixing chamber for communicating the reforming additive water passage and the reforming raw material supply passage with each other.
【請求項4】 請求項2に記載の燃料改質器において、
さらに;前記高温ユニットに改質原料を供給する改質原
料供給路と;前記中低温ユニットを経由せず、前記高温
ユニットに直接改質添加水を供給する第2改質添加水流
路と;前記改質添加水流路、前記改質原料供給路並びに
前記第2改質添加水流路を互いに連通する混合室と;を
備える燃料改質器。
4. The fuel reformer according to claim 2, wherein:
A reforming raw material supply path for supplying a reforming raw material to the high temperature unit; a second reforming addition water flow path for directly supplying the reforming addition water to the high temperature unit without passing through the middle and low temperature unit; And a mixing chamber that connects the reforming raw material supply passage and the second reforming added water passage to each other.
【請求項5】 前記高温ユニットと前記中低温ユニット
との連結部間隙に設けられたバッフル板と;前記高温ユ
ニットと前記中低温ユニットとの対向面に設けられる熱
交換部であって、前記高温ユニットから前記中低温ユニ
ットに送られる改質ガスと前記改質添加水との熱交換を
行う前記熱交換部と;を備える請求項2乃至請求項4の
何れか1項に記載の燃料改質器。
5. A baffle plate provided in a gap between a connecting portion between the high-temperature unit and the medium-low temperature unit; a heat exchange unit provided on a facing surface between the high-temperature unit and the medium-low temperature unit, 5. The fuel reformer according to any one of claims 2 to 4, further comprising: a heat exchange section that exchanges heat between a reformed gas sent from a unit to the low-temperature unit and the reforming additive water. vessel.
【請求項6】 前記連結流通管は、該連結流通管の軸方
向に伸縮する伸縮部材を有することを特徴とする請求項
1乃至請求項5の何れか1項に記載の燃料改質器。
6. The fuel reformer according to claim 1, wherein the connection flow pipe has an elastic member that expands and contracts in the axial direction of the connection flow pipe.
【請求項7】 前記変成部は、前記高温ユニット側に設
けられると共に、筒状又は環状に第1の変成触媒を充填
した第1変成部と、前記選択酸化部側に設けられると共
に、筒状又は環状に第2の変成触媒を充填した第2変成
部とを有する請求項1乃至請求項6の何れか1項に記載
の燃料改質器。
7. The shift conversion section is provided on the high temperature unit side, and is provided on the side of the selective oxidation section and a first shift section filled with a first shift conversion catalyst in a tubular shape or an annular shape, and a tubular shape. Alternatively, the fuel reformer according to any one of claims 1 to 6, further comprising: a second shift conversion section in which a second shift conversion catalyst is annularly filled.
【請求項8】 さらに前記第2変成部は;前記中低温ユ
ニットの外壁と同軸に設けられた内円筒体と;前記中低
温ユニットの外壁と同軸であって、該内円筒体の外周側
に設けられた中円筒体と;を備え、前記内円筒体の内周
面によって前記第1変成部を通過した改質ガスのガス導
入流路を形成し;前記内円筒体の外周面と前記中円筒体
の内周面によって第2変成部の触媒充填層を形成し;前
記中円筒体の外周面と前記中低温ユニットの内周面によ
ってガス導出流路を形成する請求項7に記載の燃料改質
器。
8. The second metamorphic portion further includes: an inner cylindrical body provided coaxially with an outer wall of the middle and low temperature unit; and an outer cylindrical side coaxial with the outer wall of the middle and low temperature unit. A middle cylindrical body provided; and an inner peripheral surface of the inner cylindrical body forms a gas introduction flow path for the reformed gas that has passed through the first shift portion; and an outer peripheral surface of the inner cylindrical body and the middle cylindrical body. The fuel according to claim 7, wherein the inner peripheral surface of the cylindrical body forms a catalyst packed layer of the second shift conversion section; and the outer peripheral surface of the middle cylindrical body and the inner peripheral surface of the low-temperature unit form a gas outlet passage. Reformer.
【請求項9】 さらに前記第2変成部は;前記ガス導入
流路と前記第2変成部の触媒充填層とを連通すると共
に、前記内円筒体の選択酸化部側に設けられた第1の開
口部と;前記第2変成部の触媒充填層と前記ガス導出流
路とを連通すると共に、前記中円筒体の第1変成部側に
設けられた第2の開口部と;を備える請求項8に記載の
燃料改質器。
9. The first shift conversion section further comprises: a first communication section that connects the gas introduction flow path to the catalyst packed bed of the second shift conversion section and is provided on the side of the selective oxidation section of the inner cylindrical body. An opening; and a second opening provided on the side of the first shift section of the middle cylindrical body while connecting the catalyst packed layer of the second shift section and the gas outlet channel. 8. The fuel reformer according to item 8.
【請求項10】 前記変成部と前記選択酸化部との間隙
にバッフル板を設け、該バッフル板の中央開口部の内側
に選択酸化用空気の導入口を配置したことを特徴とする
請求項1乃至請求項9の何れか1項に記載の燃料改質
器。
10. A baffle plate is provided in a gap between the shift conversion section and the selective oxidation section, and an introduction port for the selective oxidation air is arranged inside a central opening of the baffle plate. The fuel reformer according to claim 9.
【請求項11】 前記選択酸化部は、中心部近傍に前記
変成部から送られる改質ガスが通過しないように構成さ
れた筒体状中空部が設けてあることを特徴とする請求項
1乃至請求項10の何れか1項に記載の燃料改質器。
11. The selective oxidization section is provided with a cylindrical hollow section arranged in the vicinity of the central section so as not to pass the reformed gas sent from the shift conversion section. The fuel reformer according to claim 10.
【請求項12】 前記中低温ユニットは、前記高温ユニ
ット側に設けられると共に、筒状又は環状に第1の変成
触媒を充填した第1変成部と、筒状又は環状に第2の変
成触媒を充填した第2変成部とを有する変成部を備え;
前記第2変成部が前記選択酸化部に対して同軸円筒状に
位置する請求項1乃至請求項6の何れか1項に記載の燃
料改質器。
12. The medium-low temperature unit is provided on the high-temperature unit side, and comprises a first shift conversion section in which a first shift catalyst is filled in a tubular or annular shape and a second shift shift catalyst in a tubular or annular shape. A metamorphic part having a filled second metamorphic part;
The fuel reformer according to any one of claims 1 to 6, wherein the second shift conversion section is positioned coaxially with the selective oxidation section.
【請求項13】 前記第2変成部は、前記中低温ユニッ
トの外壁と同軸に設けられた内円筒体と、前記中低温ユ
ニットの外壁と同軸であって、該内円筒体の外周側に設
けられた中円筒体とを有し;前記内円筒体の外周面と前
記中円筒体の内周面によって形成された空間に設けられ
た、前記第2変成部の触媒充填層と;前記中円筒体の外
周面と前記中低温ユニットの内周面によって形成された
空間に設けられた、前記選択酸化部の選択酸化触媒充填
層と;前記第1変成部と前記第2変成部との対向部に形
成された、前記第1変成部を通過した改質ガスを前記第
2変成部に流入させるガス導入流路と;前記第2変成部
の底面側と、前記選択酸化部の前記第1変成部対向部と
を連絡する流路であって、前記第2変成部を通過した改
質ガスのガス導出流路と;を備える請求項12に記載の
燃料改質器。
13. The second shift section is provided on an inner cylindrical body provided coaxially with an outer wall of the middle and low temperature unit, and on an outer peripheral side of the inner cylindrical body coaxial with an outer wall of the middle and low temperature unit. An inner cylindrical body provided with the catalyst; a catalyst packed layer of the second shift section provided in a space formed by an outer peripheral surface of the inner cylindrical body and an inner peripheral surface of the inner cylindrical body; A selective oxidation catalyst filling layer of the selective oxidation section, which is provided in a space formed by the outer peripheral surface of the body and the inner peripheral surface of the low-temperature unit; and an opposing section between the first shift conversion section and the second shift conversion section. A gas introduction flow path for allowing the reformed gas that has passed through the first shift conversion section to flow into the second shift conversion section; and a bottom surface side of the second shift conversion section and the first shift conversion of the selective oxidation section. Flow path for communicating with the part facing part, which is a gas discharge flow of the reformed gas that has passed through the second shift conversion part. A fuel reformer according to claim 12, comprising:
【請求項14】 さらに、前記第1変成部と前記第2変
成部との対向部に設けられたバッフル板を有し;前記ガ
ス導入流路は、前記バッフル板、前記中円筒体の内周
面、並びに前記内円筒体の外周面によって形成される請
求項13に記載の燃料改質器。
14. A baffle plate provided at an opposing portion of the first shift portion and the second shift portion; the gas introduction flow passage has an inner circumference of the baffle plate and the middle cylindrical body. The fuel reformer according to claim 13, which is formed by a surface and an outer peripheral surface of the inner cylindrical body.
【請求項15】 前記ガス導出流路は、前記中円筒体の
底面、前記内円筒体の内周面、並びに前記内円筒体の内
周面と前記選択酸化部とを連絡する管路によって形成さ
れる請求項13に記載の燃料改質器。
15. The gas outlet channel is formed by a bottom surface of the middle cylindrical body, an inner peripheral surface of the inner cylindrical body, and a conduit connecting the inner peripheral surface of the inner cylindrical body and the selective oxidation section. The fuel reformer according to claim 13, wherein
【請求項16】 前記容器の外周に真空断熱層を備えた
ことを特徴とする請求項1乃至15の何れか1項に記載
の燃料改質器。
16. The fuel reformer according to claim 1, further comprising a vacuum heat insulating layer provided on an outer circumference of the container.
【請求項17】 燃料が燃焼する燃焼室と、該燃焼室の
外周面側に設けられると共に、改質触媒を充填した改質
部を有する高温ユニットと;前記高温ユニットの改質部
を通過した改質ガスを変成する変成部と、前記変成部で
変成された改質ガスを選択酸化する選択酸化部を有する
中低温ユニットと;改質添加水が前記中低温ユニットに
て熱交換可能に配置されると共に、前記高温ユニットに
対して前記改質添加水を供給する改質添加水流路と;前
記中低温ユニットを経由せず、前記高温ユニットに直接
改質添加水を供給する第2改質添加水流路と;前記高温
ユニットに改質原料を供給する改質原料供給路と;前記
改質添加水流路、前記第2改質添加水流路並びに当該改
質原料供給路を互いに連通する混合室と;を備えること
を特徴とする燃料改質器。
17. A combustion chamber in which fuel burns, and a high temperature unit provided on the outer peripheral surface side of the combustion chamber and having a reforming section filled with a reforming catalyst; passing through the reforming section of the high temperature unit. A low-temperature unit having a shift section for transforming the reformed gas and a selective oxidation section for selectively oxidizing the reformed gas transformed in the shift section; And a reforming-added water flow path for supplying the reforming-added water to the high-temperature unit; and a second reforming for directly supplying the reforming-added water to the high-temperature unit without passing through the intermediate-low temperature unit. An additive water flow path; a reforming raw material supply path for supplying a reforming raw material to the high temperature unit; a reforming additive water flow path, the second reforming additive water flow path, and a mixing chamber for communicating the reforming raw material supply path with each other And; Pawn.
JP2002161482A 2002-02-05 2002-06-03 Fuel reformer Expired - Lifetime JP4128804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161482A JP4128804B2 (en) 2002-02-05 2002-06-03 Fuel reformer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-28794 2002-02-05
JP2002028794 2002-02-05
JP2002161482A JP4128804B2 (en) 2002-02-05 2002-06-03 Fuel reformer

Publications (2)

Publication Number Publication Date
JP2003300703A true JP2003300703A (en) 2003-10-21
JP4128804B2 JP4128804B2 (en) 2008-07-30

Family

ID=29404858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161482A Expired - Lifetime JP4128804B2 (en) 2002-02-05 2002-06-03 Fuel reformer

Country Status (1)

Country Link
JP (1) JP4128804B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000737A1 (en) * 2003-06-27 2005-01-06 Ebara Ballard Corporation Fuel reformer
JP2005193135A (en) * 2004-01-06 2005-07-21 Tokyo Gas Co Ltd Catalytic reactor
JP2005306717A (en) * 2003-12-09 2005-11-04 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus
JP2005340111A (en) * 2004-05-31 2005-12-08 Ebara Ballard Corp Liquid fuel vaporizer, liquid fuel processing apparatus and fuel cell power generation system
EP1717197A1 (en) * 2004-02-17 2006-11-02 Matsushita Electric Industrial Co., Ltd. Hydrogen producing device and fuel cell system with the same
JP2007084404A (en) * 2005-09-26 2007-04-05 Casio Comput Co Ltd Reactor
JP2007091546A (en) * 2005-09-29 2007-04-12 Casio Comput Co Ltd Reactor
JP2007273176A (en) * 2006-03-30 2007-10-18 Ihi Corp Co removing device for fuel cell power generator
JP2007269541A (en) * 2006-03-31 2007-10-18 Aisin Seiki Co Ltd Reformer
JP2008037708A (en) * 2006-08-08 2008-02-21 Air Water Inc Apparatus and method for generating hydrogen
JP2008044831A (en) * 2006-08-17 2008-02-28 Samsung Sdi Co Ltd Fuel reformer, method of operating the same and fuel cell system
JP2008059872A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor device, fuel cell system, and electronic equipment
JP2008522942A (en) * 2004-12-09 2008-07-03 フュエルセル エナジー, インコーポレイテッド High-performance internal reformer for high-temperature fuel cells
JP2008189502A (en) * 2007-02-02 2008-08-21 Idemitsu Kosan Co Ltd Reforming unit and fuel cell system
JP2008280209A (en) * 2007-05-10 2008-11-20 Nippon Oil Corp Carbon monoxide remover and hydrogen production apparatus
JP2009067634A (en) * 2007-09-13 2009-04-02 Nippon Oil Corp Reforming unit
JP2009073709A (en) * 2007-09-21 2009-04-09 Nippon Oil Corp Reforming apparatus and hydrogen-producing apparatus
JP2009091187A (en) * 2007-10-05 2009-04-30 Nippon Oil Corp Hydrogen producing apparatus
JP2009091230A (en) * 2007-09-21 2009-04-30 Nippon Oil Corp Apparatus for removing carbon monoxide and apparatus for producing hydrogen
US7572417B2 (en) 2005-09-29 2009-08-11 Casio Computer Co., Ltd. Reactor
JP2009234864A (en) * 2008-03-27 2009-10-15 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
JP2009242162A (en) * 2008-03-31 2009-10-22 Aisin Seiki Co Ltd Reforming apparatus for fuel cell
JP2009274919A (en) * 2008-05-15 2009-11-26 Univ Of Yamanashi External heat type hydrogen production apparatus and fuel cell power system using the same
JP2009286676A (en) * 2008-05-30 2009-12-10 Panasonic Corp Hydrogen generation apparatus
JP2010513835A (en) * 2006-12-14 2010-04-30 テキサコ ディベラップメント コーポレイション Hybrid combustor for fuel processing applications
JP2010100494A (en) * 2008-10-24 2010-05-06 Renaissance Energy Research:Kk Hydrogen production apparatus
US7713317B2 (en) 2005-09-08 2010-05-11 Casio Computer Co., Ltd. Reformer for power supply of a portable electronic device
US7754161B2 (en) 2005-06-09 2010-07-13 Casio Computer Co., Ltd. Reactor to reform fuel, including a low temperature reaction unit, a high temperature reaction unit, and a communicating tube via which the low and high temperature reaction units communicate with each other
JP2010228983A (en) * 2009-03-27 2010-10-14 Jx Nippon Oil & Energy Corp Kerosene reformer
US7887606B2 (en) 2004-02-12 2011-02-15 Ishikawajima-Harima Heavy Industries Co., Ltd. Fuel reforming apparatus and method for starting said fuel reforming apparatus
US8038959B2 (en) 2005-09-08 2011-10-18 Casio Computer Co., Ltd. Reacting device
JP2011207705A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system
JP2012006774A (en) * 2010-06-23 2012-01-12 Rinnai Corp Reformer unit
US8226736B2 (en) 2006-08-11 2012-07-24 Samsung Sdi Co., Ltd. Fuel processor having desulfurizer with sulfer sensor, fuel cell system including the fuel processor, and method of operating the fuel cell system
US8382865B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
US8382866B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
JP2014530159A (en) * 2012-02-09 2014-11-17 パナソニック株式会社 Fuel processor

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000737A1 (en) * 2003-06-27 2005-01-06 Ebara Ballard Corporation Fuel reformer
US7635399B2 (en) 2003-06-27 2009-12-22 Ebara Corporation Fuel reformer
JP2005306717A (en) * 2003-12-09 2005-11-04 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus
JP2005193135A (en) * 2004-01-06 2005-07-21 Tokyo Gas Co Ltd Catalytic reactor
US7887606B2 (en) 2004-02-12 2011-02-15 Ishikawajima-Harima Heavy Industries Co., Ltd. Fuel reforming apparatus and method for starting said fuel reforming apparatus
EP1717197A1 (en) * 2004-02-17 2006-11-02 Matsushita Electric Industrial Co., Ltd. Hydrogen producing device and fuel cell system with the same
EP1717197A4 (en) * 2004-02-17 2011-07-06 Panasonic Corp Hydrogen producing device and fuel cell system with the same
JP4638693B2 (en) * 2004-05-31 2011-02-23 Jx日鉱日石エネルギー株式会社 Liquid fuel vaporizer, liquid fuel processor, and fuel cell power generation system
JP2005340111A (en) * 2004-05-31 2005-12-08 Ebara Ballard Corp Liquid fuel vaporizer, liquid fuel processing apparatus and fuel cell power generation system
JP2008522942A (en) * 2004-12-09 2008-07-03 フュエルセル エナジー, インコーポレイテッド High-performance internal reformer for high-temperature fuel cells
US7754161B2 (en) 2005-06-09 2010-07-13 Casio Computer Co., Ltd. Reactor to reform fuel, including a low temperature reaction unit, a high temperature reaction unit, and a communicating tube via which the low and high temperature reaction units communicate with each other
US8038959B2 (en) 2005-09-08 2011-10-18 Casio Computer Co., Ltd. Reacting device
US7713317B2 (en) 2005-09-08 2010-05-11 Casio Computer Co., Ltd. Reformer for power supply of a portable electronic device
JP2007084404A (en) * 2005-09-26 2007-04-05 Casio Comput Co Ltd Reactor
JP2007091546A (en) * 2005-09-29 2007-04-12 Casio Comput Co Ltd Reactor
US7572417B2 (en) 2005-09-29 2009-08-11 Casio Computer Co., Ltd. Reactor
JP2007273176A (en) * 2006-03-30 2007-10-18 Ihi Corp Co removing device for fuel cell power generator
JP2007269541A (en) * 2006-03-31 2007-10-18 Aisin Seiki Co Ltd Reformer
JP2008037708A (en) * 2006-08-08 2008-02-21 Air Water Inc Apparatus and method for generating hydrogen
US8226736B2 (en) 2006-08-11 2012-07-24 Samsung Sdi Co., Ltd. Fuel processor having desulfurizer with sulfer sensor, fuel cell system including the fuel processor, and method of operating the fuel cell system
JP2008044831A (en) * 2006-08-17 2008-02-28 Samsung Sdi Co Ltd Fuel reformer, method of operating the same and fuel cell system
US8142529B2 (en) 2006-08-17 2012-03-27 Samsung Sdi Co., Ltd. Fuel processor having carbon monoxide removing unit and method of operating the same
JP4733067B2 (en) * 2006-08-17 2011-07-27 三星エスディアイ株式会社 Fuel reformer, fuel reformer operation method, and fuel cell system
US8382866B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
JP2008059872A (en) * 2006-08-30 2008-03-13 Kyocera Corp Reactor device, fuel cell system, and electronic equipment
US8382865B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
JP2010513835A (en) * 2006-12-14 2010-04-30 テキサコ ディベラップメント コーポレイション Hybrid combustor for fuel processing applications
JP2008189502A (en) * 2007-02-02 2008-08-21 Idemitsu Kosan Co Ltd Reforming unit and fuel cell system
JP2008280209A (en) * 2007-05-10 2008-11-20 Nippon Oil Corp Carbon monoxide remover and hydrogen production apparatus
JP2009067634A (en) * 2007-09-13 2009-04-02 Nippon Oil Corp Reforming unit
JP2009073709A (en) * 2007-09-21 2009-04-09 Nippon Oil Corp Reforming apparatus and hydrogen-producing apparatus
JP2009091230A (en) * 2007-09-21 2009-04-30 Nippon Oil Corp Apparatus for removing carbon monoxide and apparatus for producing hydrogen
JP2009091187A (en) * 2007-10-05 2009-04-30 Nippon Oil Corp Hydrogen producing apparatus
JP2009234864A (en) * 2008-03-27 2009-10-15 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
JP2009242162A (en) * 2008-03-31 2009-10-22 Aisin Seiki Co Ltd Reforming apparatus for fuel cell
JP2009274919A (en) * 2008-05-15 2009-11-26 Univ Of Yamanashi External heat type hydrogen production apparatus and fuel cell power system using the same
JP2009286676A (en) * 2008-05-30 2009-12-10 Panasonic Corp Hydrogen generation apparatus
JP2010100494A (en) * 2008-10-24 2010-05-06 Renaissance Energy Research:Kk Hydrogen production apparatus
JP2010228983A (en) * 2009-03-27 2010-10-14 Jx Nippon Oil & Energy Corp Kerosene reformer
JP2011207705A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system
JP2012006774A (en) * 2010-06-23 2012-01-12 Rinnai Corp Reformer unit
JP2014530159A (en) * 2012-02-09 2014-11-17 パナソニック株式会社 Fuel processor

Also Published As

Publication number Publication date
JP4128804B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP4128804B2 (en) Fuel reformer
US7635399B2 (en) Fuel reformer
US6932958B2 (en) Simplified three-stage fuel processor
US6481207B2 (en) Single-pipe cylinder type reformer and method of operating the same
US7520907B2 (en) Highly integrated fuel processor for distributed hydrogen production
JP5185493B2 (en) Fuel conversion reactor
CN100446324C (en) Reformer of fuel cell system
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
US7700053B2 (en) Reforming device
KR20060063351A (en) Small-sized reformer of cylinder type
JP2002187705A (en) Single tube cylindrical reformer
JP2009096705A (en) Reforming apparatus for fuel cell
JP2005015292A (en) Fuel reformer
JP2004059415A (en) Fuel reformer and fuel cell power generation system
KR100761945B1 (en) Gas fuel processor
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP5111040B2 (en) Fuel cell reformer
JP5140361B2 (en) Fuel cell reformer
JP3763092B2 (en) Hydrogen production equipment for fuel cells
WO2012029322A1 (en) Hydrogen generation device and fuel cell system equipped with same
JP2009084077A (en) Reforming apparatus for fuel cell
CN116986552A (en) Compact steam reformer
JP2003081609A (en) Reforming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4128804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term