JPH0752649B2 - Fuel reforming method for fuel cell - Google Patents

Fuel reforming method for fuel cell

Info

Publication number
JPH0752649B2
JPH0752649B2 JP63004037A JP403788A JPH0752649B2 JP H0752649 B2 JPH0752649 B2 JP H0752649B2 JP 63004037 A JP63004037 A JP 63004037A JP 403788 A JP403788 A JP 403788A JP H0752649 B2 JPH0752649 B2 JP H0752649B2
Authority
JP
Japan
Prior art keywords
reforming
catalyst layer
reforming catalyst
raw material
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63004037A
Other languages
Japanese (ja)
Other versions
JPH01186570A (en
Inventor
幸雄 久保
芳明 高谷
誠一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP63004037A priority Critical patent/JPH0752649B2/en
Publication of JPH01186570A publication Critical patent/JPH01186570A/en
Publication of JPH0752649B2 publication Critical patent/JPH0752649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、天然ガスなどの炭化水素を主成分とする改質
原料を燃料改質装置(リフォーマー)に供給し水蒸気改
質して、水素リッチな燃料電池用改質ガスを製造する燃
料改質方法において、負荷追従性を著しく向上させるこ
とができる燃料電池用燃料改質方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention supplies a reforming raw material containing a hydrocarbon such as natural gas as a main component to a fuel reforming device (reformer) to perform steam reforming to produce hydrogen. The present invention relates to a fuel reforming method for producing a rich reformed gas for a fuel cell, which can remarkably improve load followability.

〔従来の技術〕[Conventional technology]

従来、燃料電池発電システムの起動方法として特開昭62
−184774号公報に記載されたものが、また燃料電池発電
プラントの燃料システム制御装置として特開昭62−1864
72号公報に記載されたものが知られている。
Conventionally, as a method for starting a fuel cell power generation system, JP-A-62-62
-184774 discloses a fuel system control device for a fuel cell power generation plant.
The one described in Japanese Patent Publication No. 72 is known.

これら従来の燃料電池発電システムでは、リフォーマー
と燃料電池本体との間に、改質ガスのバッファタンクを
設置し、負荷変化時にリフォーマー発生ガス量と燃料電
池本体で消費する量の偏差を補正し、補助燃料の燃焼量
(外部加熱量)をコントロールしながら、反応温度の調
整を行っている。
In these conventional fuel cell power generation systems, a reformed gas buffer tank is installed between the reformer and the fuel cell body, and the deviation between the reformer generated gas amount and the amount consumed by the fuel cell body is corrected when the load changes, The reaction temperature is adjusted while controlling the combustion amount (external heating amount) of the auxiliary fuel.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このため、燃料電池本体に比べて、リフォーマーの負荷
追従性が悪く、これが燃料電池発電システム開発の重要
課題の一つとなっている。
Therefore, the load followability of the reformer is poor as compared with the fuel cell main body, which is one of the important issues in the development of the fuel cell power generation system.

本発明は上記の点に鑑みなされたもので、部分酸化反応
と水蒸気改質反応を行い、燃料電池の負荷増減および起
動・停止時に部分酸化用に添加する酸素量または空気量
を制御することにより、従来の水蒸気改質反応のみのリ
フォーマーでは限界のあった負荷追従性を著しく向上さ
せることができる燃料電池用燃料改質方法の提供を目的
とするものである。
The present invention has been made in view of the above points, by performing a partial oxidation reaction and a steam reforming reaction, and controlling the amount of oxygen or the amount of air added for partial oxidation at the time of increasing / decreasing the load and starting / stopping the fuel cell. An object of the present invention is to provide a fuel reforming method for a fuel cell, which can significantly improve load followability, which has been limited by a conventional reformer only using a steam reforming reaction.

〔問題点を解決するための手段および作用〕 本発明の燃料電池用燃料改質方法は、炭化水素を主成物
とする改質原料ガスを、改質触媒を収納した燃料改質装
置の反応管に供給するとともに、反応管外部から改質触
媒層を加熱し水蒸気改質して、水素リッチな燃料電池用
改質ガスを製造する燃料改質方法において、 改質触媒層入口の改質原料ガス中に酸素または空気を添
加し、原料炭化水素の部分酸化により改質触媒層内部か
ら加熱するとともに、改質触媒層外部から加熱すること
により、改質反応に必要な熱を供給することからなって
いる。
[Means and Actions for Solving Problems] In the fuel reforming method for a fuel cell of the present invention, a reforming raw material gas containing a hydrocarbon as a main product is reacted with a fuel reforming apparatus containing a reforming catalyst. In the fuel reforming method of producing hydrogen-rich reformed gas for fuel cells by heating the reforming catalyst layer from the outside of the reaction tube and steam reforming it while supplying it to the pipe, the reforming raw material at the reforming catalyst layer inlet Since oxygen or air is added to the gas and heating is performed from the inside of the reforming catalyst layer by partial oxidation of the raw material hydrocarbons and by heating from outside the reforming catalyst layer, the heat required for the reforming reaction is supplied. Has become.

本発明の方法においては、つぎのような制御方法が適宣
採用される。
In the method of the present invention, the following control method is appropriately adopted.

(1)反応管外部から改質触媒層の加熱に供給する熱量
を一定とし、部分酸化用に改質原料ガス中に添加する酸
素量または空気量を制御することにより、改質触媒層の
反応温度を最適に制御する。
(1) The reaction of the reforming catalyst layer is controlled by controlling the amount of oxygen or air added to the reforming raw material gas for partial oxidation while keeping the amount of heat supplied from the outside of the reaction tube constant for heating the reforming catalyst layer. Optimal temperature control.

(2)燃料電池発電システムの発電負荷に応じて、反応
管外部から改質触媒層の加熱に供給する熱量を比例制御
するとともに、部分酸化用に改質原料ガス中に添加する
酸素量または空気量を制御し、改質触媒層の反応温度を
最適に制御する。
(2) The amount of heat supplied from outside the reaction tube to the heating of the reforming catalyst layer is proportionally controlled according to the power generation load of the fuel cell power generation system, and the amount of oxygen or air added to the reforming raw material gas for partial oxidation is also controlled. The amount is controlled to optimally control the reaction temperature of the reforming catalyst layer.

(3)燃料改質装置の起動時に、改質触媒層入口の改質
原料ガス中に部分酸化用の酸素または空気を添加し、改
質触媒層内部で部分酸化発熱反応を起こさせ、この反応
熱と、反応管外部から改質触媒層への伝熱とを併用し、
燃料改質装置の起動昇温時間を短縮する。
(3) When starting the fuel reformer, oxygen or air for partial oxidation is added to the reforming raw material gas at the inlet of the reforming catalyst layer to cause an exothermic reaction of partial oxidation inside the reforming catalyst layer, and this reaction Using both heat and heat transfer from the outside of the reaction tube to the reforming catalyst layer,
The startup temperature rising time of the fuel reformer is shortened.

(4)燃料電池発電システムの発電負荷急増時に、改質
原料および吸熱量の増加に伴う改質触媒層の反応温度の
降下を防ぎ、温度を一定に維持するため、反応管外部か
らの加熱量の制御以外に、改質原料ガス中に部分酸化用
の酸素または空気を添加し、原料炭化水素の部分酸化発
熱により、改質触媒層を直接加熱し、改質触媒層の反応
温度を最適条件に維持する。
(4) When the power generation load of the fuel cell power generation system suddenly increases, the amount of heat from the outside of the reaction tube is set in order to prevent the reaction temperature of the reforming catalyst layer from decreasing due to the increase of the reforming raw material and the heat absorption amount and to keep the temperature constant. In addition to the above control, oxygen or air for partial oxidation is added to the reforming raw material gas, and the reforming catalyst layer is directly heated by the partial oxidation heat generation of the raw material hydrocarbon, and the reaction temperature of the reforming catalyst layer is set to the optimum condition. To maintain.

(5)燃料電池発電システムの発電負荷急減時に、改質
原料および吸熱量の減少に伴う改質触媒層の反応温度の
上昇を防ぎ、温度を一定に維持するため、反応管外部か
らの加熱量の制御以外に、改質原料ガス中に添加する部
分酸化用の酸素または空気を減じ、原料炭化水素の部分
酸化発熱量を減じることにより、改質触媒層の反応温度
を最適条件に維持する。
(5) When the power generation load of the fuel cell power generation system suddenly decreases, the amount of heat from the outside of the reaction tube is set in order to prevent the reaction temperature of the reforming catalyst layer from increasing due to the decrease of the reforming raw material and the heat absorption amount and to keep the temperature constant. In addition to the control described above, the reaction temperature of the reforming catalyst layer is maintained at the optimum condition by reducing the oxygen or air for partial oxidation added to the reforming raw material gas and reducing the calorific value of the partial oxidation of the raw material hydrocarbon.

(6)燃料電池発電システム停止寺に、改質触媒入口の
改質原料ガス中に添加する部分酸化用の酸素または空気
の供給を停止し、改質触媒層の直接加熱を停止して、停
止時間を短縮する。
(6) At the stop of the fuel cell power generation system, supply of oxygen or air for partial oxidation added to the reforming raw material gas at the reforming catalyst inlet is stopped, and direct heating of the reforming catalyst layer is stopped to stop. Save time.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の方法を実施する装置の一例を示している。
第1図において、1は燃料改質装置(リフォーマー)
で、改質触媒層2を有する反応管3、反応管を加熱する
燃焼器4とからなっている。5はHz極6、電解液7、O2
極8からなる燃料電池である。
Embodiments of the present invention will be described below with reference to the drawings. First
The figure shows an example of an apparatus for carrying out the method of the invention.
In FIG. 1, 1 is a fuel reformer (reformer).
The reaction tube 3 includes the reforming catalyst layer 2 and the combustor 4 that heats the reaction tube. 5 is Hz electrode 6, electrolyte 7 and O 2
It is a fuel cell consisting of poles 8.

第1図を用いて、燃料電池(Fuel Cell、以下、FCと略
す)の負荷増大時(25%→100%)の動作について説明
する。
The operation of the fuel cell (Fuel Cell, hereinafter abbreviated as FC) when the load increases (25% → 100%) will be described with reference to FIG.

FC出力の増加の要請が需要者から発せられると、DC/AC
インバータ10(直流/交流変換器)から出力負荷設定器
11に対し、負荷増大の信号が伝達される。
When a request from the customer to increase the FC output is issued, DC / AC
Output load setter from inverter 10 (DC / AC converter)
A signal of load increase is transmitted to 11.

出力負荷設定器11では、この信号命令に従い、DC/ACイ
ンバータ10の負荷設定を変化させるとともに、リフォー
ミングガス原料である原料天然ガスの流量を増大させ
る。この天然ガス流量変化量は、予め設定された条件と
なるように出力演算器12により計算され、天然ガスの流
量指示・調整器13に信号を伝達し、この調整器13はその
コントロール弁14にて、所定流量に調節する。なお原料
天然ガスは、リフォーマー反応条件圧力まで、ブースタ
ーポンプ15などで昇圧されて供給される。
In accordance with this signal command, the output load setting device 11 changes the load setting of the DC / AC inverter 10 and increases the flow rate of the raw material natural gas that is the reforming gas raw material. The change amount of the natural gas flow rate is calculated by the output calculator 12 so as to satisfy the preset condition, and a signal is transmitted to the natural gas flow rate indicating / adjusting device 13, and the adjusting device 13 is transmitted to the control valve 14 thereof. Adjust to a predetermined flow rate. The raw material natural gas is supplied after being pressurized by the booster pump 15 or the like up to the reformer reaction condition pressure.

原料天然ガスとスチームとは特定の比で混合され、これ
がリフォーミング反応の原料ガスとなり、このスチーム
/カーボン比(S/C)を所定値とするために、天然ガス
変化に応じて流量指示・調整器16は流量指示・調整器13
から発する信号により、スチーム流量を制御する。この
流量制御はコントロール弁17により行われる。
The raw material natural gas and steam are mixed at a specific ratio, and this becomes the raw material gas for the reforming reaction. In order to set this steam / carbon ratio (S / C) to a predetermined value, the flow rate indication / Regulator 16 is a flow rate indicator / regulator 13
The steam flow rate is controlled by the signal emitted from. This flow rate control is performed by the control valve 17.

上記のようにしてリフォーミング原料の制御が行われ
る。しかしFC負荷増大に伴うリフォーミング反応による
改質ガス発生量の増大のためには、この吸熱反応量の増
大に見合う熱源の増大が必要である。なお天然ガスのリ
フォーミング主反応は、CH4+2H2O→CO2+4H2(吸熱)
である。
The reforming raw material is controlled as described above. However, in order to increase the amount of reformed gas generated by the reforming reaction accompanying the increase in FC load, it is necessary to increase the heat source commensurate with the increase in the amount of endothermic reaction. The main reforming reaction of natural gas is CH 4 + 2H 2 O → CO 2 + 4H 2 (endotherm)
Is.

つまり、25%負荷でバランスしていた状態の系に、原料
ガスを100%負荷の分量だけ入れると、吸熱量の増加に
より,改質触媒層2の温度が低下し、系のバランスがく
ずれてしまうことになる。
In other words, if 100% load of the raw material gas is put into the system that is in the state of being balanced at 25% load, the temperature of the reforming catalyst layer 2 will decrease due to the increase of the endothermic amount, and the system will be out of balance. Will end up.

そこで従来技術では、この熱量を補うために、改質触媒
層2を収納する反応管3の外部を加熱する燃焼器4(バ
ーナー)の燃焼量を増加させるために、助熱用天然ガス
流量を増加させ、反応温度を一定に維持するようなシス
テムが構成されている。
Therefore, in the prior art, in order to compensate for this heat quantity, in order to increase the combustion quantity of the combustor 4 (burner) that heats the outside of the reaction tube 3 accommodating the reforming catalyst layer 2, the natural gas flow rate for auxiliary heat is increased. The system is configured to increase and keep the reaction temperature constant.

ところが、このような反応管3外部からの間接的な加熱
では、負荷変化に対する応答速度は、燃焼ガスと改質触
媒層2とが反応管3を介して熱移動(熱交換)を行うた
め、伝熱速度に律速されてしまい、あまり迅速な負荷変
化が期待できない。
However, in such indirect heating from outside the reaction tube 3, the response speed to the load change is that the combustion gas and the reforming catalyst layer 2 perform heat transfer (heat exchange) through the reaction tube 3, It is limited by the heat transfer rate, and it is not possible to expect a very rapid load change.

そこで本発明の方法では、上記のような従来の外部加熱
に加え、以下に説明する部分酸化発熱反応を改質触媒層
2内部または触媒自身の表面上で行わせ、その発熱量を
ダイレクトにリフォーミング吸熱反応に用い、迅速な負
荷変化応答性を有するように構成するものである。
Therefore, in the method of the present invention, in addition to the conventional external heating as described above, the partial oxidation exothermic reaction described below is performed inside the reforming catalyst layer 2 or on the surface of the catalyst itself, and the calorific value is directly read. It is used for a forming endothermic reaction and is configured to have a quick load change responsiveness.

部分酸化反熱というのは、リフォーミング原料に少量の
O2(空気)を入れ、下記のような、一種の触媒酸化(燃
焼)反応を併発させるものである。
Partial oxidation heat is a small amount of reforming raw material.
O 2 (air) is added to cause a kind of catalytic oxidation (combustion) reaction as described below.

CH4+2O2→CO2+2H2O CO+1/2O2→CO2 H2+1/2O2→H2O この部分酸化用O2は、空気コンプレッサー18により供給
され、O2富化装置20によりO2リッチガスとするか、また
はO2富化装置を設けずにそのまま空気として熱交換器21
により昇温した後、流量指示・調整器22およびそのコン
トロール弁23により、所定量をリフォーマーの改質触媒
層2に供給する。
CH 4 + 2O 2 → CO 2 + 2H 2 O CO + 1 / 2O 2 → CO 2 H 2 + 1 / 2O 2 → H 2 O This partial oxidation O 2 is supplied by the air compressor 18 and O 2 enricher 20 2 As a rich gas, or as air without using an O 2 enrichment device, heat exchanger 21
After the temperature is raised by, a predetermined amount is supplied to the reforming catalyst layer 2 of the reformer by the flow rate indicator / regulator 22 and its control valve 23.

この供給量は、改質触媒層2に接続された温度指示・調
整器24の出力信号、天然ガス原料ラインの流量指示・調
整器13の出力信号を受けて、演算器25により適正なO2
量または空気流量を供給するように、流量指示・調整器
22に信号を入力する。
This supply amount is received by the computing unit 25 to obtain an appropriate O 2 by receiving the output signal of the temperature instruction / regulator 24 connected to the reforming catalyst layer 2 and the output signal of the flow rate indicator / regulator 13 of the natural gas feed line. Flow rate indicator / regulator to supply flow rate or air flow rate
Input the signal to 22.

ここで、システムの制御は、温度指示・調整器24を一定
に維持するという基本パターンのもとに第3図および第
4図に示す比較例、実施例を示したが,反応温度を最適
条件に変化させながら、FC負荷変化に対応するパターン
も可能である。
Here, for the control of the system, the comparative example and the example shown in FIGS. 3 and 4 are shown based on the basic pattern of keeping the temperature indicating / regulator 24 constant. It is also possible to change the pattern to correspond to the change in FC load.

このようにして、リフォーマーで発生する改質ガス(H2
を主成分とし、CO、CO2、未反応CH4、H2Oを含むガス)
を流量指示・調整器26およびコントロール弁27により、
FCの必要量だけFCのH2極6に供給する。
In this way, the reformed gas (H 2
Gas containing CO, CO 2 , unreacted CH 4 , and H 2 O as the main component)
With the flow rate indicator / regulator 26 and control valve 27,
Supply only the required amount of FC to H 2 pole 6 of FC.

H2極6では、改質ガスのうち約70%〜80%が発電のため
の電気科学反応に利用されるが、残りのFCオフガス
(H2、CO、CO2、H2Oを含むガス)は、リフォーマー加熱
用燃料ガスとして、コントロール弁28を有するラインで
リフォーマーの燃焼器4に戻され、空気が加えられて燃
焼し、リフォーミング反応熱源として利用される。
In the H 2 electrode 6, about 70% to 80% of the reformed gas is used for the electrochemical reaction for power generation, but the remaining FC off gas (gas containing H 2 , CO, CO 2 , H 2 O) ) Is returned to the reformer combustor 4 as a reformer heating fuel gas in a line having a control valve 28, and is burned by adding air, and is used as a reforming reaction heat source.

第2図は、燃焼器4の燃料として、FCオフガスのみを用
い、天然ガスは用いない場合を示している。
FIG. 2 shows a case where only the FC off gas is used as the fuel of the combustor 4 and the natural gas is not used.

リフォーマーの冷態起動時には、改質触媒層2の反応温
度(温度指示・調整器24の指示温度)を触媒酸化反応が
起こり得る温度(400℃程度)まで、助燃用天然ガスま
たは/およびFCオフガスの燃焼による加熱などの方法で
昇温した後、原料天然ガスおよび部分酸化用O2または空
気を改質触媒層2に供給し、改質触媒層2内部からも熱
を供給して昇温時間を短縮する。
When the reformer starts cold, the reaction temperature of the reforming catalyst layer 2 (the temperature indicated by the temperature indicator / regulator 24) is brought to a temperature (about 400 ° C.) at which the catalytic oxidation reaction can occur, and the natural gas for assisting combustion and / or the FC off gas. After the temperature is raised by a method such as heating by combustion of, the raw material natural gas and O 2 or air for partial oxidation are supplied to the reforming catalyst layer 2, and heat is also supplied from inside the reforming catalyst layer 2 to raise the temperature. To shorten.

上記の予熱昇温時には、改質触媒層2を温N2またはその
他の不活性ガスの循環により昇温することができる。30
はターボコンプレッサー、31は空気予熱器、32は空気コ
ンプレッサー、33は蒸気発生器である。
During the above preheating temperature rise, the temperature of the reforming catalyst layer 2 can be raised by circulating the temperature N 2 or other inert gas. 30
Is a turbo compressor, 31 is an air preheater, 32 is an air compressor, and 33 is a steam generator.

第3図は第1図に示す装置を用いて負荷増加時・起動時
のみ部分酸化を行った場合の結果と、従来法による結果
とを示している。第3図において、実線は本発明におけ
る場合を示し、破線は従来法における場合を示してい
る。リフォーマー触媒反応温度が負荷変動時に安定に達
する時間は、本発明の方法では従来法の1/10〜1/20に短
縮された。
FIG. 3 shows the results when partial oxidation is performed only when the load is increased and when the apparatus shown in FIG. 1 is used, and the results obtained by the conventional method. In FIG. 3, the solid line shows the case of the present invention, and the broken line shows the case of the conventional method. In the method of the present invention, the time required for the reformer catalyst reaction temperature to stabilize when the load fluctuates was shortened to 1/10 to 1/20 of that in the conventional method.

また第4図は第1図に示す装置を用いて負荷変化追従パ
ターンを測定した結果(実線で示す)と、従来法による
結果(破線で示す)とを示している。この場合も、本発
明の方法では、リフォーマー触媒反応温度が安定に達す
る時間が従来法の1/10〜1/20に短縮された。
Further, FIG. 4 shows the result of measuring the load change following pattern (shown by the solid line) using the apparatus shown in FIG. 1 and the result of the conventional method (shown by the broken line). Also in this case, in the method of the present invention, the time required for the reformer catalyst reaction temperature to reach a stable temperature was shortened to 1/10 to 1/20 of that in the conventional method.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の方法は、従来のリフォー
マーが改質触媒層外部の燃焼ガスからの伝熱のみで、反
応熱を供給するのに対し、改質触媒層内部で原料炭化水
素の部分酸化による熱を同一触媒層の水蒸気改質(吸
熱)反応に利用するため、部分酸化用の酸素添加量また
は空気添加量を制御することにより、(1)負荷追従性
が向上する。(2)バッファタンクが不用となりコンパ
クト化を図ることができる。(3)起動・停止時におい
ても、部分酸化を併用した改質触媒層内部の熱供給によ
り、起動・停止時間が大幅に短縮できる、などの効果を
有している。
As explained above, in the method of the present invention, the conventional reformer supplies the reaction heat only by the heat transfer from the combustion gas outside the reforming catalyst layer, while the reformer catalyst layer contains the raw hydrocarbons. Since the heat of partial oxidation is used for the steam reforming (endothermic) reaction of the same catalyst layer, (1) load followability is improved by controlling the amount of oxygen addition or air addition for partial oxidation. (2) The buffer tank is unnecessary and can be made compact. (3) Even at the time of start-up / shutdown, there is an effect that the start-up / shutdown time can be greatly shortened by the heat supply inside the reforming catalyst layer that also uses partial oxidation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の燃料電池用燃料改質方法を実施する装
置の一例を示すフローシート、第2図は本発明の方法を
実施する装置の他の例を示すフローシート、第3図は第
1図に示す装置を用いて負荷増加時・起動時のみ部分酸
化を行った場合の結果と、従来法による結果と示す説明
図、第4図は第1図に示す装置を用いて負荷変化追従パ
ターンを測定した結果と、従来法による結果とを示す説
明図である。 1……燃料改質装置(リフォーマー)、2……改質触媒
層、3……反応管、4……燃焼器、5……燃料電池、6
……H2極、7……電解液、8……O2極、10……DC/ACイ
ンバータ、11……出力負荷設定器、12……出力演算器、
13、16、22、26……流量指示・調整器、14、17、23、2
7、28……コントロール弁、15……ブースターポンプ、1
8、32……空気コンプレッサー、20……O2富化装置、21
……熱交換器、24……温度指示・調節器、25……演算
器、30……ターボコンプレッサー、31……空気予熱器、
33……蒸気発生器
FIG. 1 is a flow sheet showing an example of an apparatus for carrying out the fuel reforming method for a fuel cell of the present invention, FIG. 2 is a flow sheet showing another example of an apparatus for carrying out the method of the present invention, and FIG. FIG. 4 is an explanatory view showing the results of partial oxidation only when the load is increased / started using the apparatus shown in FIG. 1 and the results obtained by the conventional method. FIG. 4 is a load change using the apparatus shown in FIG. It is explanatory drawing which shows the result of measuring a following pattern, and the result by the conventional method. 1 ... Fuel reformer (reformer), 2 ... Reforming catalyst layer, 3 ... Reaction tube, 4 ... Combustor, 5 ... Fuel cell, 6
…… H 2 poles, 7 …… electrolyte, 8 …… O 2 poles, 10 …… DC / AC inverter, 11 …… output load setter, 12 …… output calculator,
13, 16, 22, 26 ... Flow rate indicator / regulator, 14, 17, 23, 2
7, 28 …… Control valve, 15 …… Booster pump, 1
8, 32 …… Air compressor, 20 …… O 2 enrichment device, 21
...... Heat exchanger, 24 …… Temperature indicator / regulator, 25 …… Calculator, 30 …… Turbo compressor, 31 …… Air preheater,
33 ... Steam generator

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】炭化水素を主成物とする改質原料ガスを、
改質触媒を収納した燃料改質装置の反応管に供給すると
ともに、反応管外部から改質触媒層を加熱し水蒸気改質
して、水素リッチな燃料電池用改質ガスを製造する燃料
改質方法において、 改質触媒層入口の改質原料ガス中に酸素または空気を添
加し、原料炭化水素の部分酸化により改質触媒層内部か
ら加熱するとともに、改質触媒層外部から加熱すること
により、改質反応に必要な熱を供給することを特徴とす
る燃料電池用燃料改質方法。
1. A reforming raw material gas containing hydrocarbon as a main product,
A fuel reformer that produces a hydrogen-rich reformed gas for a fuel cell by supplying the reforming catalyst to the reaction tube of the fuel reformer and heating the reforming catalyst layer from the outside of the reaction tube to perform steam reforming. In the method, by adding oxygen or air to the reforming raw material gas at the inlet of the reforming catalyst layer and heating from the inside of the reforming catalyst layer by partial oxidation of the raw material hydrocarbon, and heating from the outside of the reforming catalyst layer, A fuel reforming method for a fuel cell, comprising supplying heat necessary for a reforming reaction.
【請求項2】反応管外部から改質触媒層の加熱に供給す
る熱量を一定とし、部分酸化用に改質原料ガス中に添加
する酸素量または空気量を制御することにより、改質触
媒層の反応温度を最適に制御する請求項1記載の燃料電
池用燃料改質方法。
2. The reforming catalyst layer by controlling the amount of oxygen or air added to the reforming raw material gas for partial oxidation while keeping the amount of heat supplied from outside the reaction tube for heating the reforming catalyst layer constant. The fuel reforming method for a fuel cell according to claim 1, wherein the reaction temperature is controlled optimally.
【請求項3】燃料電池発電システムの発電負荷に応じ
て、反応管外部から改質触媒層の加熱に供給する熱量を
比例制御するとともに、部分酸化用に改質原料ガス中に
添加する酸素量または空気量を制御し、改質触媒層の反
応温度を最適に制御する請求項1記載の燃料電池用燃料
改質方法。
3. The amount of oxygen supplied from outside the reaction tube to the heating of the reforming catalyst layer is proportionally controlled according to the power generation load of the fuel cell power generation system, and the amount of oxygen added to the reforming raw material gas for partial oxidation. Alternatively, the fuel reforming method for a fuel cell according to claim 1, wherein the amount of air is controlled to optimally control the reaction temperature of the reforming catalyst layer.
【請求項4】燃料改質装置の起動時に、改質触媒層入口
の改質原料ガス中に部分酸化用の酸素または空気を添加
し、改質触媒層内部で部分酸化発熱反応を起こさせ、こ
の反応熱と、反応管外部から改質触媒層への伝熱とを併
用し、燃料改質装置の起動昇温時間を短縮する請求項1
記載の燃料電池用燃料改質方法。
4. When starting the fuel reformer, oxygen or air for partial oxidation is added to the reforming raw material gas at the inlet of the reforming catalyst layer to cause an exothermic reaction of partial oxidation inside the reforming catalyst layer, The reaction heat is used in combination with the heat transfer from the outside of the reaction tube to the reforming catalyst layer to shorten the startup temperature rising time of the fuel reformer.
A fuel reforming method for a fuel cell as described.
【請求項5】燃料電池発電システムの発電負荷急増時
に、改質原料および吸熱量の増加に伴う改質触媒層の反
応温度の降下を防ぎ、温度を一定に維持するため、反応
管外部からの加熱量の制御以外に、改質原料ガス中に部
分酸化用の酸素または空気を添加し、原料炭化水素の部
分酸化発熱により、改質触媒層を直接加熱し、改質触媒
層の反応温度を最適条件に維持する請求項1記載の燃料
電池用燃料改質方法。
5. When the power generation load of the fuel cell power generation system is suddenly increased, the reaction temperature of the reforming catalyst layer is prevented from lowering due to the increase of the reforming raw material and the heat absorption amount, and the temperature is kept constant to prevent the reaction temperature from being constant from outside the reaction tube. In addition to controlling the heating amount, oxygen or air for partial oxidation is added to the reforming raw material gas to heat the reforming catalyst layer directly by the partial oxidation exothermic heat of the raw material hydrocarbon, and to change the reaction temperature of the reforming catalyst layer. The fuel reforming method for a fuel cell according to claim 1, which is maintained under optimum conditions.
【請求項6】燃料電池発電シスシムの発電負荷急減時
に、改質原料および吸熱量の減少に伴う改質触媒層の反
応温度の上昇を防ぎ、温度を一定に維持するため、反応
管外部からの加熱量の制御以外に、改質原料ガス中に添
加する部分酸化用の酸素または空気を減じ、原料炭化水
素の部分酸化発熱量を減じることにより、改質触媒層の
反応温度を最適条件に維持する請求項1記載の燃料電池
用燃料改質方法。
6. When the power generation load of the fuel cell power generation system is suddenly reduced, the reaction temperature of the reforming catalyst layer is prevented from rising due to the reduction of the reforming raw material and the endothermic amount, and the temperature is maintained constant so as to keep the temperature constant from the outside of the reaction tube. In addition to controlling the heating amount, the oxygen or air for partial oxidation added to the reforming raw material gas is reduced, and the calorific value of the partial oxidation of the raw material hydrocarbon is reduced to maintain the reaction temperature of the reforming catalyst layer at optimum conditions. The fuel reforming method for a fuel cell according to claim 1.
【請求項7】燃料電池発電システム停止時に、改質触媒
層入口の改質原料ガス中に添加する部分酸化用の酸素ま
たは空気の供給を停止し、改質触媒層の直接加熱を停止
して、停止時間を短縮する請求項1記載の燃料電池用燃
料改質方法。
7. When the fuel cell power generation system is stopped, the supply of oxygen or air for partial oxidation added to the reforming raw material gas at the inlet of the reforming catalyst layer is stopped, and direct heating of the reforming catalyst layer is stopped. The fuel reforming method for a fuel cell according to claim 1, wherein the stop time is shortened.
JP63004037A 1988-01-12 1988-01-12 Fuel reforming method for fuel cell Expired - Fee Related JPH0752649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004037A JPH0752649B2 (en) 1988-01-12 1988-01-12 Fuel reforming method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004037A JPH0752649B2 (en) 1988-01-12 1988-01-12 Fuel reforming method for fuel cell

Publications (2)

Publication Number Publication Date
JPH01186570A JPH01186570A (en) 1989-07-26
JPH0752649B2 true JPH0752649B2 (en) 1995-06-05

Family

ID=11573763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004037A Expired - Fee Related JPH0752649B2 (en) 1988-01-12 1988-01-12 Fuel reforming method for fuel cell

Country Status (1)

Country Link
JP (1) JPH0752649B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2631244B2 (en) * 1990-10-19 1997-07-16 川崎重工業株式会社 Method and apparatus for producing hydrogen for fuel cells
DE19605404C1 (en) * 1996-02-14 1997-04-17 Daimler Benz Ag Fuel cell system operating method
JPH09315801A (en) * 1996-03-26 1997-12-09 Toyota Motor Corp Fuel reforming method, fuel reformer and fuel-cell system provided with the reformer
NL1003862C2 (en) * 1996-08-23 1998-02-26 Univ Delft Tech A method of operating a molten carbonate fuel cell, a fuel cell, and a fuel cell stack.
WO2000002812A1 (en) 1998-07-08 2000-01-20 Toyota Jidosha Kabushiki Kaisha Apparatus for reforming of fuel
JP4130302B2 (en) 2000-12-22 2008-08-06 本田技研工業株式会社 Fuel gas generator for fuel cell
JP2002326805A (en) * 2001-04-27 2002-11-12 Daikin Ind Ltd Reformer and fuel cell system which is equipped with this
SE526163C2 (en) * 2003-02-03 2005-07-19 Volvo Ab Arrangement and procedure for compressed air systems for vehicles
KR100786462B1 (en) * 2006-05-17 2007-12-17 삼성에스디아이 주식회사 reformer with oxygen supplier and fuel cell system using the same
JP2008074657A (en) * 2006-09-21 2008-04-03 Hitachi Zosen Corp Method for starting self-heating reforming reaction at a low temperature
JP2009023873A (en) * 2007-07-19 2009-02-05 Hitachi Zosen Corp Method for increasing temperature of reforming type hydrogen generation apparatus to startup temperature
JP5243858B2 (en) * 2008-06-27 2013-07-24 Jx日鉱日石エネルギー株式会社 Operation method of oxidation autothermal reformer
JP5248935B2 (en) * 2008-06-27 2013-07-31 Jx日鉱日石エネルギー株式会社 Operation method of oxidation autothermal reformer

Also Published As

Publication number Publication date
JPH01186570A (en) 1989-07-26

Similar Documents

Publication Publication Date Title
US6306531B1 (en) Combustor air flow control method for fuel cell apparatus
US3607419A (en) Fuel cell system control
JPH0752649B2 (en) Fuel reforming method for fuel cell
JPS59213601A (en) Control device of reforming reaction
US6818336B2 (en) Fuel control for fuel-processor steam generation in low temperature fuel cell power plant
US7192458B1 (en) Process, control system and apparatus for the distribution of air in a fuel cell/fuel processor system
JP3722868B2 (en) Fuel cell system
JPH11144749A (en) Method of controlling generation of fuel cell
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JPH03167759A (en) Catalyst temperature controller of fuel reformer for use in fuel cell
JPH07106881B2 (en) Fuel cell reformer device
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JP3758070B2 (en) Operation method of fuel cell power generator
WO2006007319A2 (en) Maintaining oxygen/carbon ratio with temperature controlled valve
JPH0647441B2 (en) Fuel reformer for fuel cell
JPH07105240B2 (en) Temperature control method for reformer in fuel cell power generation system
JPH05303971A (en) Molten carbonate fuel cell generating system
JPH0556628B2 (en)
JP2005190802A (en) Operation control method of fuel cell generator
JPH07169474A (en) Methanol switching type fuel cell system
JP2000178001A (en) Controller for reformer
JP2006294464A (en) Fuel cell power generation system
JPH01253167A (en) Fuel cell power generator
JPH10302820A (en) Fuel cell power generating facility
JPS6345764A (en) Operating controller of fuel cell power generating plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees