JP2005190802A - Operation control method of fuel cell generator - Google Patents

Operation control method of fuel cell generator Download PDF

Info

Publication number
JP2005190802A
JP2005190802A JP2003430211A JP2003430211A JP2005190802A JP 2005190802 A JP2005190802 A JP 2005190802A JP 2003430211 A JP2003430211 A JP 2003430211A JP 2003430211 A JP2003430211 A JP 2003430211A JP 2005190802 A JP2005190802 A JP 2005190802A
Authority
JP
Japan
Prior art keywords
fuel cell
reformer
fuel
power generator
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003430211A
Other languages
Japanese (ja)
Other versions
JP4622244B2 (en
Inventor
Makoto Mikami
誠 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003430211A priority Critical patent/JP4622244B2/en
Publication of JP2005190802A publication Critical patent/JP2005190802A/en
Application granted granted Critical
Publication of JP4622244B2 publication Critical patent/JP4622244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method in which an optimum operation is performed under given conditions without stopping the fuel cell generator, even if the variation of the composition of the raw fuel exceeds the upper limit of the raw fuel supply system. <P>SOLUTION: Utilizing the fact that the instruction values of a thermoregulator of a reformer change correspondingly when the methane richness of the raw fuel decreases, the electric output of a fuel cell is controlled according to these instruction values. As a control method, in order to demonstrate the original temperature regulating function based on the variations of the external temperatures, the electric output of the fuel cell is changed for the first time, or changed gradually step by step, when the instruction values deviate from the upper limit or the lower limit for a prescribed time or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、バイオガスのように燃料組成が著しく変動する可能性のある原燃料を改質して水素リッチな改質ガスとし、この改質ガスを燃料として発電作用を行うタイプの燃料電池発電装置における運転制御方法に関する。   The present invention is a fuel cell power generation of a type in which a raw fuel having a fuel composition that may fluctuate significantly, such as biogas, is reformed into a hydrogen-rich reformed gas, and this reformed gas is used as a fuel to generate power. The present invention relates to an operation control method in an apparatus.

燃料電池発電装置において使用される燃料ガスとしては、都市ガス、バイオガスその他が用いられるが、通常、都市ガスはドライであり組成も基本的に安定しているので、都市ガスを原燃料に用いた燃料電池発電装置は、燃料入口部における標準状態(0℃1気圧状態)で補正を行うだけで、発電に必要な発熱量すなわち燃料流量を算出することが可能である。   City gas, biogas, etc. are used as the fuel gas used in the fuel cell power generation system. Usually, city gas is dry and its composition is basically stable. The conventional fuel cell power generator can calculate the amount of heat generation, that is, the fuel flow rate required for power generation, only by performing correction in the standard state (0 ° C., 1 atm state) at the fuel inlet.

一方、原燃料にバイオガスを用いる場合は、発生するバイオガス中のメタン濃度が昼夜および季節によって変化するため、この変化に対応した制御を行う必要がある。   On the other hand, when biogas is used as the raw fuel, the methane concentration in the generated biogas changes depending on the day and night and the season. Therefore, it is necessary to perform control corresponding to this change.

たとえば、特許文献1においては、ビール工場の廃水をメタン発酵処理して得られるバイオガスを燃料として発電する燃料電池プラントを例にとって、バイオガス濃度センサやバイオガス流量センサを用いてバイオガス量を演算により求め、その演算値に基づいて発電負荷を制御する方法を開示している。しかしながら、この従来技術においては、バイオガス処理装置として燃料電池の排ガス(オフガス)を熱源として用いる改質器を利用することやその場合におけるバイオガス変動のもたらす影響等は考慮も検討もされていない。   For example, in Patent Document 1, a fuel cell plant that generates electricity using biogas obtained by methane fermentation treatment of wastewater from a beer factory as a fuel, the amount of biogas is measured using a biogas concentration sensor or a biogas flow sensor. A method is disclosed in which a power generation load is controlled based on a calculation value obtained by calculation. However, in this prior art, the use of a reformer that uses the exhaust gas (off-gas) of a fuel cell as a heat source as a biogas treatment device, and the effect of biogas fluctuations in that case are not considered or studied. .

また、特許文献2においては、燃料電池システムの運転状態に依存して排改質ガスの成分濃度が変化し、この結果改質器の燃焼器での発熱量が変化するため、結果的に燃焼器出口温度が乱れてシステム全体のバランスを崩してしまうとの認識の下に、所定のパラメータを用いた演算によって燃料電池本体の排改質ガス成分濃度を推定し、この推定値に基づいて排改質ガスの成分濃度変化に伴う外乱の影響を抑制する制御を行わせている。しかしながら、この制御方法は、メタノールなどのある程度安定した濃度の原料を改質することを前提としているため、バイオガスのように成分濃度の変動が極端に大きいガスを利用するシステムにおいては、適用することができない。   Further, in Patent Document 2, the component concentration of the exhaust reformed gas changes depending on the operating state of the fuel cell system. As a result, the amount of heat generated in the combustor of the reformer changes. Recognizing that the reactor outlet temperature is disturbed and the balance of the entire system is lost, the exhaust reforming gas component concentration in the fuel cell main body is estimated by calculation using predetermined parameters, and the exhaust gas is discharged based on this estimated value. Control is performed to suppress the influence of disturbance caused by changes in the component concentration of the reformed gas. However, since this control method is based on the premise that a raw material having a somewhat stable concentration such as methanol is reformed, the control method is applied to a system that uses a gas having extremely large component concentration fluctuations such as biogas. I can't.

そこで、一般に、バイオガスを燃料とする燃料電池発電設備においては、燃料電池のオフガスを燃料として使用している改質器の温度調節器の指令値に着目して、この指令値に基づいて原燃料の流量を調整している。   Therefore, in general, in a fuel cell power generation facility using biogas as fuel, attention is paid to a command value of a temperature controller of a reformer that uses off-gas of the fuel cell as fuel, and based on this command value. The fuel flow is adjusted.

そして、メタン発酵ガスのメタン濃度が下がり、原燃料の発熱量が低下した場合、この組成変動を改質器の温度調節器の指令値にフィードバックさせることで、原燃料を増やし、改質器から燃料電池に供給される水素量を多くして、燃料電池における水素不足、いわゆるガス欠を防止している。このガス欠が生じると燃料電池セルに電気化学的反応分の水素が供給されず、セルに損傷を与えることになる。   When the methane concentration of the methane fermentation gas decreases and the calorific value of the raw fuel decreases, the raw fuel is increased by feeding back this composition variation to the command value of the temperature controller of the reformer. The amount of hydrogen supplied to the fuel cell is increased to prevent hydrogen shortage, so-called gas shortage, in the fuel cell. When this gas shortage occurs, hydrogen for the electrochemical reaction is not supplied to the fuel cell, and the cell is damaged.

ところが、原燃料流量を調整するこの方法には欠点がある。それは、流量計、原燃料バルブ、原燃料系配管、脱硫装置において原燃料を流せる上限が機械的に決まってしまうため、原燃料の組成変動が大きい場合は、原燃料供給が頭打ちになり、改質器から燃料電池に供給される水素量が少なくなり、燃料電池におけるガス欠が発生する危険性があることである。   However, this method of adjusting the raw fuel flow has drawbacks. This is because the upper limit of the flow rate of the raw fuel is mechanically determined in the flow meter, raw fuel valve, raw fuel system piping, and desulfurization device. The amount of hydrogen supplied from the mass device to the fuel cell is reduced, and there is a risk that the fuel cell will run out of gas.

また、燃料電池で水素を消費したオフガスは改質器に戻し、燃焼して改質に必要な熱になるが、水素不足でこの熱量が低下すると、改質器の温度が低下し改質反応を維持できなくなる。   In addition, the off-gas that has consumed hydrogen in the fuel cell is returned to the reformer and burned to become the heat required for reforming. However, if this amount of heat decreases due to insufficient hydrogen, the reformer temperature decreases and the reforming reaction occurs. Cannot be maintained.

これを解決するためには、原燃料機器の容量を増加させ、改質器への供給原燃料を増やす必要があるが、設備コストの増加や装置の大型化を招くおそれがあり、実用上の問題が多い。
特開2000−90953号公報(第5頁第7欄第28行以下) 特開2001−229941号公報(第3頁第3欄第20行以下)
In order to solve this, it is necessary to increase the capacity of the raw fuel equipment and increase the raw fuel supplied to the reformer. However, there is a risk of increasing the equipment cost and the size of the apparatus. There are many problems.
JP 2000-90953 A (page 5, column 7, line 28 and below) Japanese Patent Laid-Open No. 2001-229941 (page 3, column 3, line 20 and below)

この発明は、原燃料組成の変動が原燃料供給系の上限を上回っても、燃料電池発電装置を停止することなく、与えられた条件下で最適な運転ができる制御方法を提供するものである。   The present invention provides a control method capable of optimal operation under given conditions without stopping the fuel cell power generation device even if the fluctuation of the raw fuel composition exceeds the upper limit of the raw fuel supply system. .

上記課題を解決するために、この発明は、原燃料を改質して水素リッチな改質ガスを生成する改質器と、この改質ガスと酸化剤とを電気化学的に反応させて発電する燃料電池とを備えた燃料電池発電装置の運転制御方法において、改質器の温度調節器の指令値によって、燃料電池出力電力を変更することにより、原燃料流量を制御することを特徴とする。   In order to solve the above problems, the present invention provides a reformer that reforms a raw fuel to generate a hydrogen-rich reformed gas, and an electrochemical reaction between the reformed gas and an oxidant to generate power. In the operation control method of the fuel cell power generation apparatus including the fuel cell, the raw fuel flow rate is controlled by changing the fuel cell output power according to the command value of the temperature regulator of the reformer. .

この運転方法によれば、原燃料濃度が低下した際、改質器での改質ガス水素濃度が下がり、改質器に戻る電池オフガス中の水素が減るので、改質器は温度が低下する方向になり、改質器の温度調節器は温度を上げる方向に指令値が動き、原燃料流量を増やしにいく。   According to this operation method, when the raw fuel concentration is lowered, the reformed gas hydrogen concentration in the reformer is lowered and the hydrogen in the battery off-gas returning to the reformer is reduced, so that the temperature of the reformer is lowered. The command value moves in the direction of increasing the temperature of the reformer temperature controller, and the raw fuel flow rate is increased.

そして、原燃料の供給量が上限に到達する前に発電負荷を下げるようにする。かくして、改質器の温度調節器の指令値によって、燃料組成変動を燃料電池電気出力にフィードバックした制御系とすることができる。   The power generation load is reduced before the supply amount of raw fuel reaches the upper limit. Thus, it is possible to provide a control system in which the fuel composition variation is fed back to the fuel cell electrical output according to the command value of the temperature controller of the reformer.

燃料電池発電装置の負荷が変動しない定常時においては、外気温の変動により燃焼用空気温度や改質器の放熱量が変化し、改質器の温度変動をもたらすため、これを防ぐように改質器の温度調節器が働かなければならない。   At steady times when the load of the fuel cell power generator does not fluctuate, the temperature of the combustion air and the amount of heat dissipated by the reformer change due to fluctuations in the outside air temperature, resulting in temperature fluctuations of the reformer. The temperature controller of the quality device must work.

従って、これらの定常時における温度変動要素に影響されることなく原燃料の組成変動による影響を補償するためには、改質器の温度調節器の指令値が、上限値又は下限値を所定時間以上継続したときに、燃料電池電気出力を変更するのがよい(請求項2の発明)。   Therefore, in order to compensate for the effects of fluctuations in the composition of the raw fuel without being affected by these temperature fluctuation factors in the steady state, the command value of the reformer temperature controller is set to the upper limit value or the lower limit value for a predetermined time. When the operation is continued, the fuel cell electrical output is preferably changed (the invention of claim 2).

具体的には、改質器の温度調節器の指令値が、上限、下限値を1〜10分以上継続したときに、原燃料濃度定数を変更制御することが望ましい(請求項3の発明)。   Specifically, it is desirable to change and control the raw fuel concentration constant when the command value of the temperature controller of the reformer continues the upper limit and lower limit values for 1 to 10 minutes or longer (invention of claim 3). .

また、原燃料濃度定数のステップ幅を連続的に変更することで、原燃料流量の変動幅を小さくし安定した制御とすることができる(請求項4の発明)。   In addition, by continuously changing the step width of the raw fuel concentration constant, the fluctuation range of the raw fuel flow rate can be reduced and stable control can be achieved (invention of claim 4).

この変動幅は例えば1〜5%刻みとすることが目的にかなっている(請求項5の発明)。   The purpose of the fluctuation range is, for example, in increments of 1 to 5% (the invention of claim 5).

また、改質器の温度調節器の制御定数(PID定数)を変化させて、指令値を直接的に燃料電池出力の増減に作用させ、改質器の温度に連動した制御をさせることもできる (請求項6の発明)。   It is also possible to change the control constant (PID constant) of the temperature regulator of the reformer so that the command value directly affects the increase / decrease of the fuel cell output, and to perform control linked to the temperature of the reformer. (Invention of Claim 6).

この発明によって、改質器の温度調節器の指令値から燃料電池電気出力を制御するようにしたので、運転中の原燃料組成が原燃料供給限界を上回っても、原燃料流量を含む燃料電池の制御系(蒸気、空気、水)が適正に制御され、燃料電池における水素不足によるセル損傷を防止でき、改質器の適正な温度制御に伴う設備の安定運転が可能な燃料電池発電装置を提供することができる。   According to the present invention, the fuel cell electrical output is controlled from the command value of the temperature controller of the reformer. Therefore, even if the raw fuel composition during operation exceeds the raw fuel supply limit, the fuel cell including the raw fuel flow rate is included. A fuel cell power generator that can properly control the control system (steam, air, water), prevent cell damage due to hydrogen shortage in the fuel cell, and enable stable operation of the equipment accompanying proper temperature control of the reformer Can be provided.

本発明の実施例を説明する前に、バイオガスを改質して燃料電池の燃料とする燃料電池発電システムの全体構成の一例を図3にて説明する。   Before explaining an embodiment of the present invention, an example of the overall configuration of a fuel cell power generation system that reforms biogas and uses it as fuel for a fuel cell will be described with reference to FIG.

図3は、燃料電池発電システムの酸化剤(空気)と燃料の流れにのみ着目して描いてあるため、たとえば燃料電池30からは発電反応を行わせるために必要な電解質マトリックス等は省略してある。燃料電池30の空気極にはブロワを介して酸化剤としての空気31が供給され、燃料極には原燃料32が必要な処理を加えたのちに供給される。すなわち、原燃料32は流量調節弁33を通して脱硫器34に送られ、ここで硫黄分を除かれてエゼクタ35の吸入口に達する。エゼクタ35の駆動蒸気としては、例えば燃料電池30の冷却板を通流することにより加熱された冷却水を水蒸気分離器36にて汽水分離して得られる水蒸気が流量調節弁37を介して供給され、脱硫された原燃料と水蒸気とがエゼクタ35において混合された状態で改質器38に送りこまれる。改質器38には例えば燃料電池の燃料極から排出される排ガス(オフガス)を燃焼させる炉39が付属しており、この炉における燃焼熱が、原燃料に含まれるメタン成分と水蒸気との吸熱反応を促進して、原燃料を水素成分に富んだ(いわゆる水素リッチな)燃料ガスに改質させる。この燃料ガスには燃料電池の触媒を被毒させる一酸化炭素が含まれるため、CO変成器40にてこれを無害な二酸化炭素に変成してから燃料電池30に供給する。燃料電池の直流発電電力はたとえばインバータ等を介して交流電力に変換して利用することができる。   Since FIG. 3 is drawn with attention paid only to the oxidant (air) and fuel flow of the fuel cell power generation system, for example, the electrolyte matrix necessary for causing the power generation reaction from the fuel cell 30 is omitted. is there. Air 31 as an oxidant is supplied to the air electrode of the fuel cell 30 through a blower, and raw fuel 32 is supplied to the fuel electrode after performing necessary processing. That is, the raw fuel 32 is sent to the desulfurizer 34 through the flow control valve 33, where the sulfur content is removed and reaches the suction port of the ejector 35. As the driving steam of the ejector 35, for example, steam obtained by steam separation of the cooling water heated by flowing through the cooling plate of the fuel cell 30 by the steam separator 36 is supplied via the flow control valve 37. The desulfurized raw fuel and water vapor are sent to the reformer 38 in a state where they are mixed in the ejector 35. The reformer 38 is attached with a furnace 39 for combusting exhaust gas (off gas) discharged from the fuel electrode of the fuel cell, for example, and the combustion heat in the furnace absorbs heat of methane components and water vapor contained in the raw fuel. The reaction is promoted to reform the raw fuel into a fuel gas rich in hydrogen components (so-called hydrogen-rich). Since this fuel gas contains carbon monoxide that poisons the catalyst of the fuel cell, it is converted into harmless carbon dioxide by the CO converter 40 and then supplied to the fuel cell 30. The DC generated power of the fuel cell can be used after being converted into AC power via an inverter or the like, for example.

図3の燃料電池システムはそれ自体公知のものであり、本発明に直接関係しない機器、たとえばエゼクタなどは同等の他の機器にて代用可能である。   The fuel cell system shown in FIG. 3 is known per se, and equipment that is not directly related to the present invention, such as an ejector, can be replaced by another equivalent equipment.

さて、図3に一例を示すような燃料電池システムにおいて、本発明を適用するための二つの実施例を以下に説明する。   Now, two embodiments for applying the present invention in a fuel cell system as shown in FIG. 3 will be described below.

図1は、燃料電池の出力をステップ的に増減する場合における本発明の実施例の制御ブロック図であって、PID調節計とすることができる改質器温度調節器1に、改質器温度2と改質器温度設定値3を入力することにより、改質器温度指令値4が出力される。この改質器温度指令値4から、たとえば関数発生器5により改質器温度指令値(横軸)に対する燃料電池電気出力増減値(縦軸)を導き出す。例えば、改質器温度指令値4が10%以下を一定時間継続した時に燃料電池電気出力を5KW減少させ、この動作後も10%以下が一定時間継続した場合には、再度5KW減少させる。この動作を下限値40KWまでおこなう。同じように改質器温度指令値4が90%以上を一定時間継続した時に燃料電池電気出力を5KW増加させ、この動作後も90%以上が一定時間継続した場合、再度5KW増加させる。この動作は燃料電池出力が上限値に到達するまで行う。即ち、関数発生器5で求めた燃料電他出力増減値6を燃料電池出力設定値7に補正値として加えて燃料電池出力指令値8を求める。この燃料電池電力指令値8により燃料電池負荷を増減させ、この結果として原燃料流量9が制御され、改質器温度にフィードバックされる。この燃料電池出力増減処理により、供給される実原燃料の組成が変化するので、仮に電池オフガス中の水素が減り改質器の温度が低下する方向になっても、負荷を減少させて改質器の温度を制御することが可能となる。   FIG. 1 is a control block diagram of an embodiment of the present invention in a case where the output of a fuel cell is increased or decreased stepwise, and a reformer temperature controller 1 which can be a PID controller is connected to a reformer temperature. By inputting 2 and the reformer temperature set value 3, the reformer temperature command value 4 is output. From this reformer temperature command value 4, for example, the function generator 5 derives a fuel cell electrical output increase / decrease value (vertical axis) with respect to the reformer temperature command value (horizontal axis). For example, when the reformer temperature command value 4 continues below 10% for a certain period of time, the fuel cell electrical output is decreased by 5 KW, and after this operation, if 10% or less continues for a certain period of time, it is decreased again by 5 KW. This operation is performed up to the lower limit of 40 KW. Similarly, when the reformer temperature command value 4 continues 90% or more for a certain period of time, the fuel cell electrical output is increased by 5 kW. If 90% or more continues for a certain period after this operation, the reformer temperature command value 4 is increased again by 5 kW. This operation is performed until the fuel cell output reaches the upper limit value. That is, the fuel cell other output increase / decrease value 6 obtained by the function generator 5 is added to the fuel cell output set value 7 as a correction value to obtain the fuel cell output command value 8. The fuel cell load is increased or decreased by the fuel cell power command value 8, and as a result, the raw fuel flow rate 9 is controlled and fed back to the reformer temperature. This fuel cell output increase / decrease process changes the composition of the actual raw fuel that is supplied, so even if the hydrogen in the cell off-gas decreases and the reformer temperature decreases, the load is reduced and reforming is performed. The temperature of the vessel can be controlled.

図2は、燃料電池の出力を連続的に増減する場合における本発明の実施例の制御ブロック図であって、PID調節計とすることができる改質器温度調節器11に、改質器温度12と改質器温度設定値13を入力することにより、改質器温度指令値14が出力される。この改質器温度指令値14から関数発生器15にて燃料電池電気出力増減値16を導き出す。以下は図1の実施例と同様に燃料電他出力増減値16を燃料電池出力設定値17に補正値として加えて燃料電池出力指令値18を求める。この燃料電池電力指令値18により燃料電池負荷を増減させ、この結果として原燃料流量19が制御され、改質器温度にフィードバックされる。この燃料電池出力増減処理により、供給される実原燃料の組成が変化するので、仮に電池オフガス中の水素が減り改質器の温度が低下する方向になっても、負荷を減少させて改質器の温度を制御することが可能となる。     FIG. 2 is a control block diagram of an embodiment of the present invention in the case where the output of the fuel cell is continuously increased or decreased. The reformer temperature controller 11 which can be a PID controller is connected to the reformer temperature. 12 and the reformer temperature set value 13 are input, the reformer temperature command value 14 is output. A fuel cell electrical output increase / decrease value 16 is derived by the function generator 15 from the reformer temperature command value 14. In the following, as in the embodiment of FIG. 1, the fuel cell other output increase / decrease value 16 is added to the fuel cell output set value 17 as a correction value to obtain the fuel cell output command value 18. The fuel cell load is increased / decreased by the fuel cell power command value 18, and as a result, the raw fuel flow rate 19 is controlled and fed back to the reformer temperature. This fuel cell output increase / decrease process changes the composition of the actual raw fuel that is supplied, so even if the hydrogen in the cell off-gas decreases and the reformer temperature decreases, the load is reduced and reforming is performed. The temperature of the vessel can be controlled.

このように、本発明によれば、改質器の温度調節器の出力である温度指令値に着目して原燃料の流量ではなく燃料電池の電気出力の制御を行うようにしたので、室温の変化その他改質器への外乱も加味した制御を行うことが可能となる。   Thus, according to the present invention, focusing on the temperature command value that is the output of the temperature regulator of the reformer, the electric output of the fuel cell is controlled rather than the flow rate of the raw fuel. It is possible to perform control in consideration of changes and other disturbances to the reformer.

本発明の実施例の制御ブロック図Control block diagram of an embodiment of the present invention 本発明の他の実施例の制御ブロック図Control block diagram of another embodiment of the present invention 本発明の実施の対象例としての燃料電池発電システムの構成図Configuration diagram of a fuel cell power generation system as an example of implementation of the present invention

符号の説明Explanation of symbols

1,11 改質器温度調節器
2,12 改質器温度
3,13 改質器温度設定値
4,14 改質器温度指令値
5,15 関数発生器
6,16 燃料電池出力増減値
7,17 燃料電池出力設定値
8,18 燃料電池出力指令値
9,19 原燃料流量
DESCRIPTION OF SYMBOLS 1,11 Reformer temperature controller 2,12 Reformer temperature 3,13 Reformer temperature set value 4,14 Reformer temperature command value 5,15 Function generator 6,16 Fuel cell output increase / decrease value 7, 17 Fuel cell output set value 8, 18 Fuel cell output command value 9, 19 Raw fuel flow rate

Claims (6)

バイオガスを主成分とする原燃料を改質して水素成分に富む改質ガスを生成する改質器と、この改質ガスと酸化剤とを電気化学的に反応させて発電する燃料電池とを備えた燃料電池発電装置において、バイオガスの濃度の変化によって変動する改質器の温度調節器の指令値によって燃料電池の電気出力を制御することを特徴とする燃料電池発電装置の運転制御方法。   A reformer that reforms a raw fuel mainly composed of biogas to produce a reformed gas rich in hydrogen components, and a fuel cell that generates electricity by electrochemically reacting the reformed gas and an oxidant. In the fuel cell power generator equipped with the fuel cell power generator, the electric output of the fuel cell is controlled by the command value of the temperature controller of the reformer that varies according to the change in the biogas concentration. . 改質器の温度調節器の指令値が、上限値又は下限値を所定時間以上継続したときに、燃料電池電気出力を変更することを特徴とする請求項1記載の燃料電池発電装置の運転制御方法。   2. The operation control of a fuel cell power generator according to claim 1, wherein when the command value of the temperature controller of the reformer continues the upper limit value or the lower limit value for a predetermined time or longer, the fuel cell electrical output is changed. Method. 改質器の温度調節器の指令値が、上限値又は下限値を1〜10分以上継続したときに、燃料電池電気出力を変更することを特徴とする請求項2記載の燃料電池発電装置の運転制御方法。   3. The fuel cell power generator according to claim 2, wherein when the command value of the temperature controller of the reformer continues the upper limit value or the lower limit value for 1 to 10 minutes or longer, the fuel cell electrical output is changed. Operation control method. 燃料電池電気出力変動幅を連続的に変更させることを特徴とする請求項1記載の燃料電池発電装置の運転制御方法。   2. The operation control method for a fuel cell power generator according to claim 1, wherein the fluctuation range of the fuel cell electric output is continuously changed. 燃料電池電気出力変動幅を、1〜5%刻みで連続的に変更させることを特徴とする請求項4記載の燃料電池発電装置の運転制御方法。   5. The operation control method for a fuel cell power generator according to claim 4, wherein the fluctuation range of the fuel cell electric output is continuously changed in increments of 1 to 5%. 改質器の温度調節器の制御定数(PID定数)を変化させて、指令値を直接的に燃料電池出力の増減に作用させることを特徴とする請求項1記載の燃料電池発電装置の運転制御方法。
2. The operation control of the fuel cell power generator according to claim 1, wherein the control value (PID constant) of the temperature regulator of the reformer is changed, and the command value directly affects the increase or decrease of the fuel cell output. Method.
JP2003430211A 2003-12-25 2003-12-25 Operation control method of fuel cell power generator Expired - Lifetime JP4622244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430211A JP4622244B2 (en) 2003-12-25 2003-12-25 Operation control method of fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430211A JP4622244B2 (en) 2003-12-25 2003-12-25 Operation control method of fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2005190802A true JP2005190802A (en) 2005-07-14
JP4622244B2 JP4622244B2 (en) 2011-02-02

Family

ID=34788645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430211A Expired - Lifetime JP4622244B2 (en) 2003-12-25 2003-12-25 Operation control method of fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4622244B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181825A (en) * 2008-01-31 2009-08-13 Fuji Electric Holdings Co Ltd Fuel cell power generation device
WO2009131010A1 (en) * 2008-04-24 2009-10-29 新日本石油株式会社 Method for operating indirect internal reforming solid oxide fuel cell system
JP2011159473A (en) * 2010-01-29 2011-08-18 Toshiba Corp Fuel cell
JP2013030356A (en) * 2011-07-28 2013-02-07 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and fuel cell power generation system control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146264A (en) * 1987-12-03 1989-06-08 Toshiba Corp Control method for fuel electrode supply gas flow rate
JP2000036313A (en) * 1998-07-21 2000-02-02 Mitsubishi Electric Corp Phosphoric acid fuel cell power generation set
JP2002289226A (en) * 2001-03-27 2002-10-04 Osaka Gas Co Ltd Reformer temperature control system for fuel cell power generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146264A (en) * 1987-12-03 1989-06-08 Toshiba Corp Control method for fuel electrode supply gas flow rate
JP2000036313A (en) * 1998-07-21 2000-02-02 Mitsubishi Electric Corp Phosphoric acid fuel cell power generation set
JP2002289226A (en) * 2001-03-27 2002-10-04 Osaka Gas Co Ltd Reformer temperature control system for fuel cell power generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181825A (en) * 2008-01-31 2009-08-13 Fuji Electric Holdings Co Ltd Fuel cell power generation device
WO2009131010A1 (en) * 2008-04-24 2009-10-29 新日本石油株式会社 Method for operating indirect internal reforming solid oxide fuel cell system
JP2009266541A (en) * 2008-04-24 2009-11-12 Nippon Oil Corp Method for operating indirect internal reforming solid oxide fuel cell system
JP2011159473A (en) * 2010-01-29 2011-08-18 Toshiba Corp Fuel cell
JP2013030356A (en) * 2011-07-28 2013-02-07 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and fuel cell power generation system control method

Also Published As

Publication number Publication date
JP4622244B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP7050461B2 (en) Fuel cell system and how to stop it
JP4325270B2 (en) Operation control method of fuel cell power generator
JP2008234869A (en) Fuel cell system
JP2008300251A (en) Fuel cell cogeneration device
JP4622244B2 (en) Operation control method of fuel cell power generator
JP2008254942A (en) Hydrogen production method and hydrogen production system
JP3722868B2 (en) Fuel cell system
JP5379353B2 (en) Temperature control system of reformer in fuel cell device
JP2011187391A (en) Fuel cell system, and electric current control method thereof
JP3738888B2 (en) FUEL CELL POWER GENERATION DEVICE HAVING RAW FUEL SWITCHING FACILITY AND METHOD
JP4450563B2 (en) Fuel cell reformer
KR100798452B1 (en) Fuel cell system
JP2007200771A (en) Reforming catalyst temperature control system and control method of fuel cell power generator
JP2001325975A (en) Fuel cell power generation apparatus and its control method
JP3808636B2 (en) Fuel cell power generation system and power generation system
JP3585249B2 (en) Fuel cell power generator
JP4442204B2 (en) Fuel cell power generation system
JP2004185961A (en) Operation method of fuel cell power generation device
JP2007026998A (en) Fuel cell temperature control method for fused carbonate type fuel cell power generator, and device for the same
JP2009080944A (en) Device for generating fuel cell power
JP7315507B2 (en) FUEL CELL SYSTEM AND FUEL CELL SYSTEM OPERATING METHOD
JP7315506B2 (en) FUEL CELL SYSTEM AND FUEL CELL SYSTEM OPERATING METHOD
JPS58133783A (en) Fuel cell power generating system
KR100987175B1 (en) Fuel Cell System and Fuel Supply Method Thereof
JP2005150044A (en) Control method of water flow rate for reforming steam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term