JP2001325975A - Fuel cell power generation apparatus and its control method - Google Patents

Fuel cell power generation apparatus and its control method

Info

Publication number
JP2001325975A
JP2001325975A JP2000141427A JP2000141427A JP2001325975A JP 2001325975 A JP2001325975 A JP 2001325975A JP 2000141427 A JP2000141427 A JP 2000141427A JP 2000141427 A JP2000141427 A JP 2000141427A JP 2001325975 A JP2001325975 A JP 2001325975A
Authority
JP
Japan
Prior art keywords
fuel gas
steam
raw fuel
fuel cell
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000141427A
Other languages
Japanese (ja)
Inventor
Tadashi Komatsu
正 小松
Masahito Senda
仁人 千田
Haruki Kou
東輝 項
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000141427A priority Critical patent/JP2001325975A/en
Publication of JP2001325975A publication Critical patent/JP2001325975A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell power generation apparatus and its control method which attains an improvement in a controllability of a hydrogen gas supply control accompanied by a load fluctuation of the fuel cell main body, and as a result, an improvement in running efficiency and stability of the running. SOLUTION: In the control method of a fuel cell power plant of adjusting an original fuel-gas amount of supply and a steam amount of supply according to the load fluctuation of the fuel cell body 34, according to measured values of the original fuel-gas supply flow amount and the steam supply flow amount, instruction values of the original fuel-gas supply flow amount and the steam supply flow amount, and a composition of the original fuel-gas, the value of a hydrogen flow 52 in the entrance of the fuel cell body and the S/C (53) in an entrance of reforming equipment are calculated with an operational equipment 60. The original fuel-gas supply flow amount and the steam supply flow amount are adjusted by each control valve 37 and 36, so that a calculated amount of the hydrogen flow and a calculated value of the S/C may turn into the set point of the hydrogen flow amount and the S/C which are set up beforehand according to load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池発電装
置とその制御方法に関する。
The present invention relates to a fuel cell power generator and a control method thereof.

【0002】[0002]

【従来の技術】都市ガスやLPGなどの炭化水素を主成
分とする原燃料ガスを水蒸気により水素リッチな燃料ガ
スに改質し、この改質された燃料ガスおよび酸化剤ガス
(例えば、空気)を燃料極および酸化剤極に連続的に供
給して、燃料のもつエネルギーを電気化学的に電気エネ
ルギーに変換する燃料電池発電装置が周知であり、かか
る燃料電池発電装置は一般に図2に示すようなシステム
が採用されている。
2. Description of the Related Art A raw fuel gas mainly containing a hydrocarbon such as city gas or LPG is reformed into a hydrogen-rich fuel gas by steam, and the reformed fuel gas and oxidant gas (for example, air) A fuel cell power generator is known which continuously supplies the fuel electrode and the oxidant electrode to electrochemically convert the energy of the fuel into electric energy. Such a fuel cell power generator generally has a structure as shown in FIG. System is adopted.

【0003】図2は、従来の燃料電池発電装置の概略シ
ステム系統図の一例を示すもので、燃料電池本体20
は、燃料極21および酸化剤極22を有する単電池を5
から8個積層する毎に冷却水を通流する冷却板を積層し
てなり、燃料極21および酸化剤極22にはそれぞれ燃
料ガスおよび酸化剤ガスが供給されて発電を行う。図2
において燃料ガスは、改質器4から、CO濃度を低下さ
せるためにCO変成器5を介して供給される。
FIG. 2 shows an example of a schematic system diagram of a conventional fuel cell power generator.
Is a cell having a fuel electrode 21 and an oxidant electrode 22
A cooling plate through which cooling water flows is laminated for every eight layers, and a fuel gas and an oxidizing gas are supplied to the fuel electrode 21 and the oxidizing electrode 22, respectively, to generate power. FIG.
, The fuel gas is supplied from the reformer 4 through the CO shift converter 5 to reduce the CO concentration.

【0004】燃料電池は発電に伴って熱を発生するので
発電中は冷却を要し、その冷却水40は水蒸気分離器7
からポンプ50および熱交換器30を経て燃料電池本体
20に供給される。この冷却水の温度は通常、燃料電池
の運転中は約160℃で、加圧水の状態で流れ、水蒸気
分離器7で気液分離される。水蒸気分離器7から出た水
は、熱交換器30で冷却水温度が制御された後、燃料電
池本体20を冷却し、水蒸気分離器7に戻される。
[0004] Since the fuel cell generates heat with power generation, cooling is required during power generation, and its cooling water 40 is supplied to the steam separator 7.
Is supplied to the fuel cell body 20 via the pump 50 and the heat exchanger 30. The temperature of the cooling water is usually about 160 ° C. during the operation of the fuel cell, flows in the state of pressurized water, and is separated into gas and liquid by the steam separator 7. The water that has flowed out of the steam separator 7 cools the fuel cell body 20 after the temperature of the cooling water is controlled by the heat exchanger 30, and is returned to the steam separator 7.

【0005】水蒸気分離器7で気液分離された蒸気は、
蒸気配管9によりエゼクタ3に導入され、原燃料供給ラ
イン8から原燃料(ガス)を前記水蒸気流のエゼクタ吸
引力により吸引して、原燃料と水蒸気の混合物を改質器
4に導入する。原燃料は改質器における改質反応により
水素リッチなガスに改質される。
[0005] The vapor separated by the steam separator 7 is
The raw fuel (gas) is introduced into the ejector 3 by the steam pipe 9, and is sucked from the raw fuel supply line 8 by the ejector suction force of the steam flow, and the mixture of the raw fuel and the steam is introduced into the reformer 4. The raw fuel is reformed into a hydrogen-rich gas by a reforming reaction in a reformer.

【0006】原燃料供給ライン8は、原燃料供給源15
とエゼクタ3との間に、原燃料遮断弁10,原燃料調節
弁1および脱硫器2を有し、原燃料調節弁1により燃料
電池の負荷に応じて燃料(ガス)供給量が調節される。
都市ガスなどの原燃料は腐臭剤としてイオウ成分を含ん
でいるので、これを除去するために、脱硫器2が設けら
れている。
[0006] The raw fuel supply line 8 is provided with a raw fuel supply source 15.
A fuel and gas shutoff valve 10, a raw fuel control valve 1, and a desulfurizer 2 are provided between the fuel and the ejector 3, and the fuel (gas) supply amount is adjusted by the raw fuel control valve 1 according to the load of the fuel cell. .
Raw fuel such as city gas contains a sulfur component as a deodorant, and therefore a desulfurizer 2 is provided to remove the sulfur component.

【0007】原燃料の一部は、助燃ガス供給ライン14
から改質器4にも供給される。助燃ガス供給ライン14
は、原燃料供給ライン8の前記原燃料遮断弁10と原燃
料調節弁1との間から分岐し,助燃ガス遮断弁13を備
える。改質器4の反応は吸熱反応であるために熱の供給
が必要であり、この熱は、燃料電池で発電反応に消費さ
れなかった燃料ガスのオフガス燃焼により主にまかなわ
れるが、特に燃料電池の起動時は補助燃料が必要であ
り、この補助燃料として、前記助燃ガスが使用される。
[0007] A part of the raw fuel is supplied to the auxiliary combustion gas supply line 14.
Is also supplied to the reformer 4. Auxiliary gas supply line 14
The fuel supply line 8 branches from the raw fuel cutoff valve 10 and the raw fuel control valve 1 in the raw fuel supply line 8 and includes an auxiliary gas shutoff valve 13. Since the reaction of the reformer 4 is an endothermic reaction, heat needs to be supplied. This heat is mainly provided by off-gas combustion of fuel gas not consumed in the power generation reaction in the fuel cell. At the time of startup, auxiliary fuel is required, and the auxiliary combustion gas is used as the auxiliary fuel.

【0008】ところで、上記のような燃料電池発電装置
において、燃料電池本体の負荷が変動した場合、この負
荷の増減に応じて、原燃料調節弁1(以下、原燃料ガス
流量制御弁という。)および図2には図示しないスチー
ム流量制御弁の開度を調節することによって、燃料電池
本体20への水素リッチな燃料ガス流量を増減する制御
が行われる。
In the above-described fuel cell power generator, when the load on the fuel cell body fluctuates, the raw fuel control valve 1 (hereinafter referred to as raw fuel gas flow control valve) is used in accordance with the increase or decrease of the load. By controlling the opening of a steam flow control valve (not shown in FIG. 2), control for increasing or decreasing the flow rate of the hydrogen-rich fuel gas to the fuel cell main body 20 is performed.

【0009】上記制御において、原燃料ガスとスチーム
との混合比は、原燃料ガスの種類に応じて最適な範囲が
あり、この比は、通常S/C(原燃料ガス中の炭素原子
に対するスチームのモル数比)で表示して、都市ガスや
LPGの場合には2.5〜4.0、メタノールの場合に
は1.3〜2.0程度の範囲で運転され、予め所定値に
設定される。
In the above control, the mixing ratio of the raw fuel gas and the steam has an optimum range according to the type of the raw fuel gas. This ratio is usually S / C (steam to carbon atoms in the raw fuel gas). The operation is performed in the range of 2.5 to 4.0 in the case of city gas or LPG, and in the range of 1.3 to 2.0 in the case of methanol, and is set to a predetermined value in advance. Is done.

【0010】[0010]

【発明が解決しようとする課題】燃料電池発電装置の運
転効率を向上し、安定した運転を行うためには、上記の
ように、燃料電池本体の負荷電流に相応した水素の供給
が必要である。
As described above, it is necessary to supply hydrogen corresponding to the load current of the fuel cell main body in order to improve the operation efficiency of the fuel cell power generator and to perform stable operation. .

【0011】燃料電池本体への水素供給量は燃料電池本
体入口で直接計測し、この流量が最適流量となるように
制御することが望ましいが、燃料電池本体入口の改質ガ
スは水分を含み水素濃度が変化するため測定が難しい。
It is desirable that the amount of hydrogen supplied to the fuel cell main body is directly measured at the fuel cell main body inlet, and the flow rate is controlled so as to be an optimum flow rate. Difficult to measure due to changes in concentration.

【0012】なお、水素濃度は、原燃料ガス組成や前記
S/Cで変化し、その変化速度は早いので、ガス分析計
でこの濃度変化を計測することは難しい。従って、前記
直接計測は困難である。
The hydrogen concentration changes depending on the composition of the raw fuel gas and the S / C, and the change speed is fast. Therefore, it is difficult to measure the change in the hydrogen concentration with a gas analyzer. Therefore, the direct measurement is difficult.

【0013】また、負荷変動を検出した後、直ちに原燃
料ガス流量を増減しても、むだ時間や各種装置や配管等
による制御系の応答遅れがあり、負荷が急変する場合に
は特に制御性に問題が生ずる。この制御系の応答遅れに
ついては、制御弁の開度信号を負荷急変時に切り換え
て、応答遅れをある程度補うことも提案されている(特
開平2−250270号公報参照)が、制御性において
十分ではない。
Even if the flow rate of the raw fuel gas is increased or decreased immediately after detecting the load fluctuation, there is a dead time or a response delay of the control system due to various devices and pipes. Problems arise. Regarding the response delay of the control system, it has been proposed to switch the opening signal of the control valve at the time of a sudden change in load to compensate for the response delay to some extent (see Japanese Patent Application Laid-Open No. 2-250270). Absent.

【0014】この発明は、これらの問題点を解消するた
めになされたもので、この発明の課題は、燃料電池本体
の負荷変動に伴う水素ガス供給制御の制御性の向上、ひ
いては運転の安定性および運転効率の向上を図った燃料
電池発電装置とその制御方法を提供することにある。
The present invention has been made to solve these problems, and an object of the present invention is to improve controllability of hydrogen gas supply control due to load fluctuation of a fuel cell body, and furthermore, to improve operation stability. It is another object of the present invention to provide a fuel cell power generator and a control method for the fuel cell power generator, which improve the operation efficiency.

【0015】[0015]

【課題を解決するための手段】前述の課題を解決するた
め、この発明においては、都市ガスやLPGなどの炭化
水素を主成分とする原燃料ガスを、水蒸気(スチーム)
により、改質器において水素リッチな燃料ガスに改質し
て燃料電池本体に供給し、酸化剤ガスとの電気化学反応
に基づいて発電を行い、前記燃料電池本体の負荷変動に
応じて、原燃料ガス供給量およびスチーム供給量を調節
する燃料電池発電装置の制御方法において、原燃料ガス
供給流量およびスチーム供給流量の測定値と、原燃料ガ
ス供給流量およびスチーム供給流量の指令値と、原燃料
ガス組成とに基づいて、燃料電池本体入口における水素
流量の値と、前記改質器入口におけるS/C(原燃料ガ
ス中の炭素原子に対するスチームのモル数比)とを演算
し、前記水素流量演算値およびS/C演算値が、負荷に
応じて予め設定した水素流量設定値およびS/C設定値
となるように、原燃料ガス供給流量およびスチーム供給
流量を調節することとする(請求項1の発明)。
In order to solve the above-mentioned problems, in the present invention, a raw fuel gas mainly containing a hydrocarbon such as city gas or LPG is converted into steam (steam).
In the reformer, the fuel gas is reformed into a hydrogen-rich fuel gas and supplied to the fuel cell main body, and power is generated based on an electrochemical reaction with the oxidizing gas. In a control method of a fuel cell power generator for adjusting a fuel gas supply amount and a steam supply amount, a measured value of a raw fuel gas supply flow rate and a steam supply flow rate, a command value of the raw fuel gas supply flow rate and a steam supply flow rate, Based on the gas composition, the value of the hydrogen flow rate at the fuel cell main body inlet and the S / C (molar ratio of steam to carbon atoms in the raw fuel gas) at the reformer inlet are calculated, and the hydrogen flow rate is calculated. The raw fuel gas supply flow rate and the steam supply flow rate are adjusted so that the calculated value and the S / C calculated value become the hydrogen flow rate set value and the S / C set value preset according to the load. To (the invention of claim 1).

【0016】前記請求項1の発明を実施するための装置
は、請求項2の発明のように構成する。即ち、都市ガス
やLPGなどの炭化水素を主成分とする原燃料ガスを水
蒸気(スチーム)により水素リッチな燃料ガスに改質す
る改質器と、この改質された燃料ガスと酸化剤ガスとが
供給されて発電を行う燃料電池本体と、改質器に原燃料
ガスおよび水蒸気を供給するための原燃料ガス供給ライ
ンおよびスチーム供給ラインと、前記各ラインに設けら
れた原燃料ガス流量計およびスチーム流量計と、前記各
ラインに設けられた原燃料ガス流量制御弁およびスチー
ム流量制御弁とを備え、さらに、原燃料ガス流量および
スチーム流量の測定値と,原燃料ガス流量制御弁および
スチーム流量制御弁の開度指令値と,原燃料ガス組成と
に基づいて,燃料電池本体入口における水素流量の値
と,前記改質器入口におけるS/C(原燃料ガス中の炭
素原子に対するスチームのモル数比)とを演算し,前記
水素流量演算値およびS/C演算値が,負荷に応じて予
め設定した水素流量設定値およびS/C設定値となるよ
うに,前記原燃料ガス流量制御弁およびスチーム流量制
御弁の開度を調節する機能を有する演算調節装置を備え
たものとする。
An apparatus for carrying out the invention of claim 1 is constructed as in the invention of claim 2. That is, a reformer for reforming a raw fuel gas mainly containing a hydrocarbon such as city gas or LPG into a hydrogen-rich fuel gas by steam (steam); A fuel cell body that is supplied and generates power, a raw fuel gas supply line and a steam supply line for supplying raw fuel gas and steam to the reformer, and a raw fuel gas flow meter provided in each of the lines A steam flow meter, a raw fuel gas flow control valve and a steam flow control valve provided on each of the lines, further comprising a raw fuel gas flow rate and a measured steam flow rate, and a raw fuel gas flow control valve and a steam flow rate Based on the opening command value of the control valve and the raw fuel gas composition, the value of the hydrogen flow rate at the inlet of the fuel cell body and the S / C at the inlet of the reformer (the carbon source in the raw fuel gas) And the calculated hydrogen flow rate and the S / C calculated value are set so that the hydrogen flow rate calculated value and the S / C calculated value become the hydrogen flow rate set value and the S / C set value preset according to the load. It is assumed that an arithmetic and control unit having a function of adjusting the opening of the gas flow control valve and the steam flow control valve is provided.

【0017】また、上記請求項1または2の実施態様と
しては、原燃料ガスの種類に応じて、請求項3または4
が好適に採用し得る。即ち、請求項1または2の方法ま
たは装置において、原燃料ガス組成は、使用される原燃
料ガスに対して予め測定されたガス組成値を用いること
とする(請求項3の発明)。さらに、請求項1または2
の方法または装置において、原燃料ガス組成は、原燃料
ガス供給ラインに設けたガス分析計により、燃料電池発
電装置運転中に測定されたガス組成値を用いることとす
る(請求項4の発明)。
Further, according to the first or second aspect of the present invention, the third or fourth aspect depends on the type of the raw fuel gas.
Can be suitably adopted. That is, in the method or apparatus according to claim 1 or 2, the raw fuel gas composition uses a gas composition value measured in advance for the raw fuel gas to be used (the invention of claim 3). Further, claim 1 or 2
In the above method or apparatus, the raw fuel gas composition uses a gas composition value measured during operation of the fuel cell power generator by a gas analyzer provided in the raw fuel gas supply line (the invention of claim 4). .

【0018】前述のようにこの発明は、原燃料ガス供給
流量およびスチーム供給流量の測定値と、原燃料ガス供
給流量およびスチーム供給流量の指令値と、原燃料ガス
組成とを入力とし、燃料電池本体入口における水素流量
の値と、改質器入口におけるS/Cとを計算モデルを使
って導出し、この計算流量が設定流量となるように演算
調節装置における調節計により、原燃料ガスおよびスチ
ーム用各流量制御弁を制御することによって、燃料電池
に発電電流に相当する水素を供給し安定した電池の発電
を行うもので、これにより、負荷変動に伴う水素ガスの
供給制御は最適化される。従って、運転効率が向上し、
また、水素不足やスチーム不足が生ずる問題もなく運転
の安定性を図ることができる。
As described above, the present invention takes a fuel cell supply flow rate and a steam supply flow rate measured value, a raw fuel gas supply flow rate and a steam supply flow rate command value, and a raw fuel gas composition as inputs, The value of the hydrogen flow rate at the inlet of the main body and the S / C at the inlet of the reformer are derived using a calculation model, and the raw fuel gas and the steam are adjusted by the controller in the arithmetic and control unit so that the calculated flow rate becomes the set flow rate. By controlling each flow rate control valve, hydrogen equivalent to the generated current is supplied to the fuel cell to stably generate the power of the battery, thereby optimizing the control of the supply of hydrogen gas due to load fluctuation. . Therefore, operation efficiency is improved,
In addition, operation stability can be achieved without a problem that hydrogen shortage or steam shortage occurs.

【0019】また、計算モデルには、原燃料ガス組成が
必要であるが、生ゴミからのメタン発酵ガスなどのガス
組成が変化する原燃料ガスでは、発電装置入口のガスを
分析し、このガス組成を計算モデルの入力とすることに
より、燃料電池本体入口の水素流量とS/Cを最適制御
することができる。
The calculation model requires the composition of the raw fuel gas. However, in the case of the raw fuel gas whose gas composition changes, such as methane fermentation gas from garbage, the gas at the inlet of the power generator is analyzed and this gas is analyzed. By using the composition as an input to the calculation model, it is possible to optimally control the hydrogen flow rate and S / C at the fuel cell main body inlet.

【0020】[0020]

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下にのべる。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は、この発明に関わる実施例を示す燃
料電池発電装置のシステム系統図で、図2に示す系統図
を部分的に省略または詳細に示す。また図1において
は、図2の構成と同一の構成要素であっても、かならず
しも同一番号を付してはいない。
FIG. 1 is a system diagram of a fuel cell power generator showing an embodiment according to the present invention. The system diagram shown in FIG. 2 is partially omitted or shown in detail. Also, in FIG. 1, the same components as those in FIG. 2 are not necessarily denoted by the same reference numerals.

【0022】図1において、原燃料ガス供給ライン25
から原燃料ガス流量制御弁37および脱硫器31を介し
て、改質器32に原燃料ガスが供給され、また、スチー
ム供給ライン26からスチーム制御弁36を介して、改
質器32にスチームが供給される。改質器32において
改質されたガスは、CO変成器33を介して、燃料電池
本体34に供給される。
In FIG. 1, a raw fuel gas supply line 25
The raw fuel gas is supplied to the reformer 32 via the raw fuel gas flow control valve 37 and the desulfurizer 31, and steam is supplied to the reformer 32 from the steam supply line 26 via the steam control valve 36. Supplied. The gas reformed in the reformer 32 is supplied to a fuel cell main body 34 via a CO shift converter 33.

【0023】原燃料ガス供給ライン25は、原燃料ガス
流量計38とガス分析計44とを備える。また、スチー
ム供給ライン26は、スチーム流量計39を備える。さ
らに、原燃料ガス流量制御弁37の開度を調節するため
の調節器42と、スチーム制御弁36の開度を調節する
ための調節器43とが設けられ、後述する演算装置60
と前記各調節器42および43とにより、演算調節装置
を構成している。
The raw fuel gas supply line 25 has a raw fuel gas flow meter 38 and a gas analyzer 44. Further, the steam supply line 26 includes a steam flow meter 39. Further, an adjuster 42 for adjusting the opening degree of the raw fuel gas flow control valve 37 and an adjuster 43 for adjusting the opening degree of the steam control valve 36 are provided.
And the adjusters 42 and 43 constitute an arithmetic adjustment device.

【0024】演算装置60は、燃料電池発電装置内の電
子計算機に組み込まれており、原燃料ガス供給流量およ
びスチーム供給流量の測定値と、原燃料ガス供給流量お
よびスチーム供給流量の指令値と、原燃料ガス組成とを
入力するように構成されている。また、計算モデルとし
ての演算装置60は、燃料電池発電装置の実機装置(脱
硫器,CO変成器,改質器,燃料電池本体等)とこれら
を接続する配管の容器容積、圧力損失、ガスの混合状態
などがモデル化されている。演算装置60内における各
コンポーネントモデルは、それぞれの部番の末尾にaを
付して、説明を省略する。
The arithmetic unit 60 is incorporated in an electronic computer in the fuel cell power generator, and measures the raw fuel gas supply flow rate and the steam supply flow rate, the raw fuel gas supply flow rate and the steam supply flow rate command value, It is configured to input a raw fuel gas composition. The arithmetic unit 60 as a calculation model includes actual equipment of a fuel cell power generator (desulfurizer, CO converter, reformer, fuel cell main body, etc.) and the vessel volume, pressure loss, and gas volume of the pipes connecting these. The mixed state is modeled. Each component model in the arithmetic device 60 has an a appended to the end of its part number, and the description is omitted.

【0025】次に、図1に示す燃料電池発電装置の動作
について述べる。燃料電池発電装置は、要求負荷に応じ
て、必要な水素量が決まり、原燃料ガス流量制御弁37
の調節器42の水素流量設定値の変更を行う。この設定
値変更によって、調節器42は制御弁37に開閉信号の
変化を与え、バルブ開度が変化することによって原燃料
ガス流量が増減し、流量計38の測定値が変化する。こ
の弁開度と流量変化信号は、演算装置60に入力され、
改質器32a入口の演算S/C(53)と燃料電池34
a入口の水素流量(52)が計算され,調節器42およ
び調節器43にフィードバックされる。
Next, the operation of the fuel cell power generator shown in FIG. 1 will be described. In the fuel cell power generator, the required amount of hydrogen is determined in accordance with the required load.
The set value of the hydrogen flow rate of the controller 42 is changed. By this change of the set value, the controller 42 changes the open / close signal to the control valve 37, and the valve opening degree changes, so that the raw fuel gas flow rate increases and decreases, and the measurement value of the flow meter 38 changes. The valve opening and the flow rate change signal are input to the arithmetic unit 60,
Calculation S / C (53) at the inlet of reformer 32a and fuel cell 34
The hydrogen flow rate (52) at the inlet a is calculated and fed back to the controller 42 and the controller 43.

【0026】原燃料を増減するときは、スチーム流量も
増減する必要がある。スチ−ム流量は、原燃料ガス組成
とS/C設定値で決まるので、演算装置60により原燃
料ガス組成をあらかじめ演算装置60に記憶させておい
て、設定S/Cから設定スチーム量を決めてスチ−ム流
量制御を行ってもよいが、図1の実施例では、ガス分析
計により、原燃料ガス組成を計測し、これに基づき改質
器32入口のS/Cを計算して、この演算S/C(5
3)と設定S/Cとが一致するようにスチーム流量制御
弁36の開度を制御する。
When increasing or decreasing the raw fuel, it is necessary to increase or decrease the steam flow rate. Since the steam flow rate is determined by the raw fuel gas composition and the S / C set value, the raw fuel gas composition is stored in the arithmetic unit 60 in advance by the arithmetic unit 60, and the set steam amount is determined from the set S / C. In the embodiment of FIG. 1, the raw fuel gas composition is measured by the gas analyzer, and the S / C at the reformer 32 inlet is calculated based on the raw fuel gas composition. This operation S / C (5
The opening of the steam flow control valve 36 is controlled so that 3) matches the set S / C.

【0027】上記方法は、原燃料ガス組成の変化が比較
的大きく、また、脱硫器31の入口、出口で原燃料ガス
組成の変化が問題となるような場合に特に有効である。
この場合、脱硫器31におけるガス空間容積は制御系の
遅れ要因となるので、計算モデルにおいて考慮されて演
算がなされる。
The above method is particularly effective when the change in the raw fuel gas composition is relatively large, and the change in the raw fuel gas composition at the inlet and outlet of the desulfurizer 31 is problematic.
In this case, the gas space volume in the desulfurizer 31 causes a delay in the control system, and therefore, the calculation is performed in consideration of the calculation model.

【0028】さらに上記方法は、例えば、原燃料として
都市ガスとプロパンガスを切替える場合のS/C制御に
有効である。この場合、原燃料組成はガス分析計44の
値ではなく、あらかじめ設定された都市ガスとLPGの
ガス組成を計算モデルの原燃料ガス組成として切り替え
て使用することができる。
Further, the above method is effective, for example, for S / C control when switching between city gas and propane gas as raw fuel. In this case, the raw fuel composition is not a value of the gas analyzer 44, but a preset gas composition of city gas and LPG can be switched and used as a raw fuel gas composition of the calculation model.

【0029】なお、演算装置60における計算モデル
は、S/C変化によるガス組成変化計算や負荷変化にお
ける過渡的な改質器32の温度変化を含めて、燃料電池
34入口の水素流量の計算を行うが、制御対象の実機の
改質器32の温度を計算モデルの入力とすれば、計算精
度をさらに向上できる。
The calculation model in the arithmetic unit 60 calculates the hydrogen flow rate at the inlet of the fuel cell 34, including the calculation of the gas composition change due to the S / C change and the transient temperature change of the reformer 32 due to the load change. However, if the temperature of the reformer 32 of the actual machine to be controlled is input to the calculation model, the calculation accuracy can be further improved.

【0030】上記実施例によれば、燃料電池本体入口の
水素流量を計算モデルによって導出し、この水素流量が
最適設定値となるように制御系を構成したので、燃料電
池が水素不足になることなく安定した運転が可能とな
る。
According to the above embodiment, the flow rate of hydrogen at the inlet of the fuel cell body is derived by a calculation model, and the control system is configured so that the flow rate of hydrogen becomes an optimum set value. And stable operation becomes possible.

【0031】また、S/Cは、計算モデルにより原燃料
とスチームの混合点で計算計測値を導出し、この値が一
定になるように制御系を構成したので、スチーム不足に
よる改質器でのカーボン析出や改質ガス組成の悪化を防
止でき、安定した燃料電池の運転ができる。
The S / C derives a calculated measurement value at the mixing point of raw fuel and steam using a calculation model, and a control system is configured so that this value becomes constant. , And deterioration of the reformed gas composition can be prevented, and stable operation of the fuel cell can be achieved.

【0032】また、原燃料ガス組成を入力として計算モ
デルを構成したので、生ゴミからのメタン発酵ガスな
ど、ガス組成が変化する原燃料ガスにおいても、燃料電
池本体入口の水素量と改質器入口のS/Cを最適制御す
ることができ、安定した燃料電池の運転ができる。
Further, since the calculation model is configured using the raw fuel gas composition as an input, even in the case of a raw fuel gas whose gas composition changes, such as methane fermentation gas from garbage, the amount of hydrogen at the inlet of the fuel cell body and the reformer S / C at the inlet can be optimally controlled, and stable fuel cell operation can be achieved.

【0033】[0033]

【発明の効果】上記のとおり、この発明によれば、都市
ガスやLPGなどの炭化水素を主成分とする原燃料ガス
を、水蒸気(スチーム)により、改質器において水素リ
ッチな燃料ガスに改質して燃料電池本体に供給し、酸化
剤ガスとの電気化学反応に基づいて発電を行い、前記燃
料電池本体の負荷変動に応じて、原燃料ガス供給量およ
びスチーム供給量を調節する燃料電池発電装置の制御方
法において、原燃料ガス供給流量およびスチーム供給流
量の測定値と、原燃料ガス供給流量およびスチーム供給
流量の指令値と、原燃料ガス組成とに基づいて、燃料電
池本体入口における水素流量の値と、前記改質器入口に
おけるS/C(原燃料ガス中の炭素原子に対するスチー
ムのモル数比)とを演算し、前記水素流量演算値および
S/C演算値が、負荷に応じて予め設定した水素流量設
定値およびS/C設定値となるように、原燃料ガス供給
流量およびスチーム供給流量を調節することとしたの
で、燃料電池本体の負荷変動に伴う水素ガス供給制御の
制御性の向上、ひいては運転の安定性および運転効率の
向上を図ることができる。
As described above, according to the present invention, a raw fuel gas mainly containing hydrocarbons such as city gas and LPG is converted into a hydrogen-rich fuel gas in a reformer by steam (steam). A fuel cell that supplies the raw fuel gas and steam in accordance with the load fluctuation of the fuel cell body by supplying power to the fuel cell body and generating electricity based on an electrochemical reaction with the oxidizing gas. In the control method of the power generation device, based on the measured values of the raw fuel gas supply flow rate and the steam supply flow rate, the command values of the raw fuel gas supply flow rate and the steam supply flow rate, and the raw fuel gas composition, hydrogen The flow rate value and the S / C at the inlet of the reformer (molar ratio of steam to carbon atoms in the raw fuel gas) are calculated, and the calculated hydrogen flow rate and the calculated S / C value are: Since the raw fuel gas supply flow rate and the steam supply flow rate were adjusted so that the hydrogen flow rate set value and the S / C set value were set in advance according to the load, the hydrogen gas supply rate accompanying the load fluctuation of the fuel cell body was adjusted. It is possible to improve controllability of control, and furthermore, to improve operation stability and operation efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例に関わる燃料電池発電装置の
システム系統図
FIG. 1 is a system diagram of a fuel cell power generator according to an embodiment of the present invention.

【図2】従来の燃料電池発電装置の概略システム系統図FIG. 2 is a schematic system diagram of a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

25:原燃料ガス供給ライン、26:スチーム供給ライ
ン、31:脱硫器、32:改質器、33:CO変成器、
34:燃料電池本体、36:スチーム制御弁、37:原
燃料ガス流量制御弁、38:原燃料ガス流量計、39:
スチーム流量計、42,43:調節器、60:演算装
置。
25: raw fuel gas supply line, 26: steam supply line, 31: desulfurizer, 32: reformer, 33: CO shifter,
34: fuel cell body, 36: steam control valve, 37: raw fuel gas flow control valve, 38: raw fuel gas flow meter, 39:
Steam flow meter, 42, 43: controller, 60: arithmetic unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 項 東輝 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5H027 AA06 BA06 BA17 KK21 KK25 KK31 KK52 MM09 MM14  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Section Toki 1-1, Tanabe-Shinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term in Fuji Electric Co., Ltd. 5H027 AA06 BA06 BA17 KK21 KK25 KK31 KK52 MM09 MM14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 都市ガスやLPGなどの炭化水素を主成
分とする原燃料ガスを、水蒸気(スチーム)により、改
質器において水素リッチな燃料ガスに改質して燃料電池
本体に供給し、酸化剤ガスとの電気化学反応に基づいて
発電を行い、前記燃料電池本体の負荷変動に応じて、原
燃料ガス供給量およびスチーム供給量を調節する燃料電
池発電装置の制御方法において、原燃料ガス供給流量お
よびスチーム供給流量の測定値と、原燃料ガス供給流量
およびスチーム供給流量の指令値と、原燃料ガス組成と
に基づいて、燃料電池本体入口における水素流量の値
と、前記改質器入口におけるS/C(原燃料ガス中の炭
素原子に対するスチームのモル数比)とを演算し、前記
水素流量演算値およびS/C演算値が、負荷に応じて予
め設定した水素流量設定値およびS/C設定値となるよ
うに、原燃料ガス供給流量およびスチーム供給流量を調
節することを特徴とする燃料電池発電装置の制御方法。
1. A raw fuel gas mainly containing a hydrocarbon such as city gas or LPG is reformed into a hydrogen-rich fuel gas in a reformer by steam (steam) and supplied to a fuel cell main body. In a control method for a fuel cell power generator, which generates electric power based on an electrochemical reaction with an oxidizing gas and adjusts a raw fuel gas supply amount and a steam supply amount according to a load change of the fuel cell main body, The measured values of the supply flow rate and the steam supply flow rate, the command values of the raw fuel gas supply flow rate and the steam supply flow rate, and the value of the hydrogen flow rate at the fuel cell main body inlet based on the raw fuel gas composition, and the reformer inlet And the S / C (molar ratio of steam to carbon atoms in the raw fuel gas) is calculated, and the calculated value of the hydrogen flow rate and the calculated value of the S / C are used to determine the hydrogen flow rate set in advance according to the load. A method for controlling a fuel cell power generator, comprising adjusting a raw fuel gas supply flow rate and a steam supply flow rate so as to be a constant value and an S / C set value.
【請求項2】 都市ガスやLPGなどの炭化水素を主成
分とする原燃料ガスを水蒸気(スチーム)により水素リ
ッチな燃料ガスに改質する改質器と、この改質された燃
料ガスと酸化剤ガスとが供給されて発電を行う燃料電池
本体と、改質器に原燃料ガスおよび水蒸気を供給するた
めの原燃料ガス供給ラインおよびスチーム供給ライン
と、前記各ラインに設けられた原燃料ガス流量計および
スチーム流量計と、前記各ラインに設けられた原燃料ガ
ス流量制御弁およびスチーム流量制御弁とを備え、さら
に、原燃料ガス流量およびスチーム流量の測定値と,原
燃料ガス流量制御弁およびスチーム流量制御弁の開度指
令値と,原燃料ガス組成とに基づいて,燃料電池本体入
口における水素流量の値と,前記改質器入口におけるS
/C(原燃料ガス中の炭素原子に対するスチームのモル
数比)とを演算し,前記水素流量演算値およびS/C演
算値が,負荷に応じて予め設定した水素流量設定値およ
びS/C設定値となるように,前記原燃料ガス流量制御
弁およびスチーム流量制御弁の開度を調節する機能を有
する演算調節装置を備えたことを特徴とする燃料電池発
電装置。
2. A reformer for reforming a raw fuel gas containing hydrocarbons such as city gas or LPG as a main component into a hydrogen-rich fuel gas with steam (steam). A fuel cell main body that is supplied with a chemical gas to generate power, a raw fuel gas supply line and a steam supply line for supplying raw fuel gas and steam to the reformer, and raw fuel gas provided in each of the lines. A flow meter and a steam flow meter, a raw fuel gas flow control valve and a steam flow control valve provided on each of the lines, further comprising a raw fuel gas flow rate and a measured steam flow rate, and a raw fuel gas flow control valve Based on the opening command value of the steam flow control valve and the raw fuel gas composition, the value of the hydrogen flow rate at the inlet of the fuel cell main body and the value of S at the reformer inlet.
/ C (molar ratio of steam to carbon atoms in the raw fuel gas), and the calculated hydrogen flow rate and the calculated S / C value are used as the hydrogen flow set value and the S / C calculated in advance according to the load. A fuel cell power generator, comprising: a calculation adjusting device having a function of adjusting the opening of the raw fuel gas flow control valve and the steam flow control valve so as to be set values.
【請求項3】 請求項1または2の方法または装置にお
いて、原燃料ガス組成は、使用される原燃料ガスに対し
て予め測定されたガス組成値を用いることを特徴とする
燃料電池発電装置の制御方法または燃料電池発電装置。
3. The method according to claim 1, wherein the raw fuel gas composition uses a gas composition value measured in advance for the raw fuel gas to be used. Control method or fuel cell power generator.
【請求項4】 請求項1または2の方法または装置にお
いて、原燃料ガス組成は、原燃料ガス供給ラインに設け
たガス分析計により、燃料電池発電装置運転中に測定さ
れたガス組成値を用いることを特徴とする燃料電池発電
装置の制御方法または燃料電池発電装置。
4. The raw fuel gas composition according to claim 1, wherein the raw fuel gas composition uses a gas composition value measured during operation of the fuel cell power generator by a gas analyzer provided in the raw fuel gas supply line. A method of controlling a fuel cell power generator or a fuel cell power generator.
JP2000141427A 2000-05-15 2000-05-15 Fuel cell power generation apparatus and its control method Pending JP2001325975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141427A JP2001325975A (en) 2000-05-15 2000-05-15 Fuel cell power generation apparatus and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141427A JP2001325975A (en) 2000-05-15 2000-05-15 Fuel cell power generation apparatus and its control method

Publications (1)

Publication Number Publication Date
JP2001325975A true JP2001325975A (en) 2001-11-22

Family

ID=18648544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141427A Pending JP2001325975A (en) 2000-05-15 2000-05-15 Fuel cell power generation apparatus and its control method

Country Status (1)

Country Link
JP (1) JP2001325975A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026596A (en) * 2002-06-27 2004-01-29 Nippon Soken Inc Fuel reformer
JP2004055192A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Operation method and system for solid electrolyte fuel cell
WO2005018035A1 (en) * 2003-08-19 2005-02-24 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, method of detecting deterioration degree of reformer for the system, and fuel cell power generation method
JP2006049056A (en) * 2004-08-04 2006-02-16 Tokyo Gas Co Ltd Fuel cell system and control method
JP2009196834A (en) * 2008-02-20 2009-09-03 Panasonic Corp Hydrogen generating device and fuel cell system
FR2929452A3 (en) * 2008-03-26 2009-10-02 Renault Sas Power module for motor vehicle, has electronic control unit with estimation unit estimating hydrogen quantity produced by reforming reactor, from values measured by humidity sensor and constituted by static estimator or dynamic estimator
JP2012216420A (en) * 2011-03-31 2012-11-08 Osaka Gas Co Ltd Fuel cell system
JP2013030356A (en) * 2011-07-28 2013-02-07 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and fuel cell power generation system control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260203A (en) * 1993-03-05 1994-09-16 Fuji Electric Co Ltd Control system of fuel reformer for fuel cell
JPH08153532A (en) * 1994-11-29 1996-06-11 Mitsubishi Electric Corp Controlling method for operation of fuel cell power system
JPH10144335A (en) * 1996-11-06 1998-05-29 Tokyo Gas Co Ltd Fuel cell apparatus and driving method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260203A (en) * 1993-03-05 1994-09-16 Fuji Electric Co Ltd Control system of fuel reformer for fuel cell
JPH08153532A (en) * 1994-11-29 1996-06-11 Mitsubishi Electric Corp Controlling method for operation of fuel cell power system
JPH10144335A (en) * 1996-11-06 1998-05-29 Tokyo Gas Co Ltd Fuel cell apparatus and driving method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026596A (en) * 2002-06-27 2004-01-29 Nippon Soken Inc Fuel reformer
JP2004055192A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Operation method and system for solid electrolyte fuel cell
JP4678115B2 (en) * 2002-07-17 2011-04-27 三菱マテリアル株式会社 Operation method and operation system of solid oxide fuel cell
WO2005018035A1 (en) * 2003-08-19 2005-02-24 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, method of detecting deterioration degree of reformer for the system, and fuel cell power generation method
JP2006049056A (en) * 2004-08-04 2006-02-16 Tokyo Gas Co Ltd Fuel cell system and control method
JP2009196834A (en) * 2008-02-20 2009-09-03 Panasonic Corp Hydrogen generating device and fuel cell system
FR2929452A3 (en) * 2008-03-26 2009-10-02 Renault Sas Power module for motor vehicle, has electronic control unit with estimation unit estimating hydrogen quantity produced by reforming reactor, from values measured by humidity sensor and constituted by static estimator or dynamic estimator
JP2012216420A (en) * 2011-03-31 2012-11-08 Osaka Gas Co Ltd Fuel cell system
JP2013030356A (en) * 2011-07-28 2013-02-07 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and fuel cell power generation system control method

Similar Documents

Publication Publication Date Title
US6783879B2 (en) Dynamic fuel processor mechanization and control
JP4619753B2 (en) Fuel cell operation control method and system therefor
KR100826351B1 (en) Power source system and control method thereof
US20010024746A1 (en) Control system for fuel cell
JP4325270B2 (en) Operation control method of fuel cell power generator
US20180006317A1 (en) Fuel cell system and method for operating the same
JP2001325975A (en) Fuel cell power generation apparatus and its control method
JP4296741B2 (en) Cogeneration system
US6607855B2 (en) Control system for fuel cell
JP2006049056A (en) Fuel cell system and control method
JP3738888B2 (en) FUEL CELL POWER GENERATION DEVICE HAVING RAW FUEL SWITCHING FACILITY AND METHOD
JPH09180748A (en) Fuel cell power generation device device
JP2001338671A (en) Controller for fuel cell
JPH09298065A (en) Fuel cell generating device
JPS58119166A (en) Fuel cell device incorporating fuel reformer
JP2814706B2 (en) Fuel cell generator
JP2001283882A (en) Generating device utilizing fuel cell
JP2009117170A (en) Hydrogen and power generating system, and load following power generation method therein
JP2004185961A (en) Operation method of fuel cell power generation device
JP4622244B2 (en) Operation control method of fuel cell power generator
JPS63310573A (en) Fuel line control system of fuel cell power generating facilities
JP2615790B2 (en) Phosphoric acid fuel cell power generation system
JP3471513B2 (en) Fuel cell power generator and fuel switching test method thereof
JP7315507B2 (en) FUEL CELL SYSTEM AND FUEL CELL SYSTEM OPERATING METHOD
JP2009080944A (en) Device for generating fuel cell power

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406