JP2615790B2 - Phosphoric acid fuel cell power generation system - Google Patents

Phosphoric acid fuel cell power generation system

Info

Publication number
JP2615790B2
JP2615790B2 JP63079128A JP7912888A JP2615790B2 JP 2615790 B2 JP2615790 B2 JP 2615790B2 JP 63079128 A JP63079128 A JP 63079128A JP 7912888 A JP7912888 A JP 7912888A JP 2615790 B2 JP2615790 B2 JP 2615790B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
load
gas
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63079128A
Other languages
Japanese (ja)
Other versions
JPH01251558A (en
Inventor
秀一 松本
明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63079128A priority Critical patent/JP2615790B2/en
Publication of JPH01251558A publication Critical patent/JPH01251558A/en
Application granted granted Critical
Publication of JP2615790B2 publication Critical patent/JP2615790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、リン酸型燃料電池を使用する発電システ
ムの構成に関するものである。
Description: TECHNICAL FIELD The present invention relates to a configuration of a power generation system using a phosphoric acid type fuel cell.

〔従来の技術〕[Conventional technology]

第4図は例えば特開昭62−234871号公報に示された従
来の天然ガス利用リン酸型燃料電池発電システムの系統
図であり、図において、(1)は燃料改質器、(1a)は
改質反応管、(1b)は上記改質反応管(1a)を加熱する
ためのバーナ、(2)は高温CO変成器、(3)は低温CO
変成器、(4)は気水分離器、(5)はリン酸塩型燃料
電池本体、(5a)は上記リン酸型燃料電池本体(5)中
の燃料極、(5b)は上記リン酸型燃料電池本体(5)中
の空気極、(5c)は上記リン酸型燃料電池本体(5)中
の冷却管、(6)は水蒸気分離器、(7)は上記水蒸分
離器(6)中の冷却水を循環させるポンプ、(8)は空
気供給用圧縮機、(9)はタービン、(10)は補助燃焼
機、(11)は原料である天然ガス流量を調節する流量調
節弁、(12)はスチーム流量を調節する流量調節弁、
(13)は天然ガスを上記バーナ(1b)へ供給する流量調
節弁、(14)は空気を上記バーナ(1b)へ供給する流量
調節弁、(15)は改質ガスの流量調節弁、(16)は空気
を上記空気極(5b)へ供給する流量調節弁、(17)は空
気を上記補助燃焼器(10)へ供給する流量調節弁、(1
8)は冷却水の循環流量を調節する流量調節弁、そして
(19a)〜(19e)は熱交換器である。
FIG. 4 is a system diagram of a conventional natural gas utilizing phosphoric acid fuel cell power generation system disclosed in Japanese Patent Application Laid-Open No. 62-234871, wherein (1) is a fuel reformer and (1a) Is a reforming reaction tube, (1b) is a burner for heating the reforming reaction tube (1a), (2) is a high-temperature CO converter, and (3) is a low-temperature CO
A transformer, (4) a steam-water separator, (5) a phosphate-type fuel cell body, (5a) a fuel electrode in the phosphoric acid-type fuel cell body (5), and (5b) a phosphoric acid. The air electrode in the fuel cell main body (5), (5c) is a cooling pipe in the phosphoric acid fuel cell main body (5), (6) is a steam separator, and (7) is a steam separator (6). (8) is a compressor for supplying air, (9) is a turbine, (10) is an auxiliary combustor, and (11) is a flow control valve for controlling the flow rate of natural gas as a raw material. , (12) is a flow control valve that controls the steam flow,
(13) is a flow control valve for supplying natural gas to the burner (1b), (14) is a flow control valve for supplying air to the burner (1b), (15) is a flow control valve for reformed gas, and ( 16) is a flow control valve for supplying air to the air electrode (5b), (17) is a flow control valve for supplying air to the auxiliary combustor (10), (1)
8) is a flow control valve for controlling the circulation flow rate of the cooling water, and (19a) to (19e) are heat exchangers.

次に動作について説明する。外部から供給される天然
ガス等の原燃料は、流量制御弁(11)によつて負荷に応
じた所定の流量に制御されて燃料改質器(1)の改質反
応管(1a)へ供給される。改質反応管(1a)から排出さ
れた水素濃度の高い改質ガスは、熱交換器(19a)→高
温CO変成器(2)→熱交換器(19b)→低温CO変成器
(3)→熱交換器(19c)→熱交換器(19d)を経て一酸
化炭素を除去されると共に温度を下げて水素を主成分と
する燃料ガスに変換された後に、気水分離器(4)によ
り脱水され、さらに熱交換器(19c)を経た後に流量調
節弁(15)で流量を調節されてリン酸型燃料電池本体
(5)中の燃料極(5a)に供給される。燃料極(5a)に
おいて電池出力相当量の水素が消費された後に余剰の水
素を含むガスは燃料極(5a)から排出され、補助燃焼器
(10)へ送られ燃料として使用される。
Next, the operation will be described. Raw fuel such as natural gas supplied from the outside is supplied to the reforming reaction tube (1a) of the fuel reformer (1) by being controlled at a predetermined flow rate according to the load by a flow control valve (11). Is done. The reformed gas having a high hydrogen concentration discharged from the reforming reaction tube (1a) is converted into a heat exchanger (19a) → a high-temperature CO converter (2) → a heat exchanger (19b) → a low-temperature CO converter (3) → Heat exchanger (19c)-> Removes carbon monoxide via heat exchanger (19d) and lowers the temperature to convert it to a fuel gas containing hydrogen as its main component. Then, after passing through a heat exchanger (19c), the flow rate is adjusted by a flow rate control valve (15) and supplied to a fuel electrode (5a) in a phosphoric acid type fuel cell body (5). After hydrogen equivalent to the battery output is consumed at the fuel electrode (5a), excess hydrogen-containing gas is discharged from the fuel electrode (5a), sent to the auxiliary combustor (10), and used as fuel.

一方、酸化剤ガス例えば空気は圧縮機(8)により所
定の圧力まで加圧された後に流量調節弁(16)で所定の
流量に調節されリン酸型燃料電池本体(5)中の空気極
(5b)に供給される。空気極(5b)において電池出力相
当量の酸素が消費された後に排出されたガスは、補助燃
焼器(10)へ燃焼用空気として供給される。
On the other hand, an oxidizing gas such as air is pressurized to a predetermined pressure by a compressor (8), and then adjusted to a predetermined flow rate by a flow control valve (16), and the air electrode in the phosphoric acid type fuel cell body (5) is adjusted. 5b). The gas discharged after the amount of oxygen equivalent to the battery output in the air electrode (5b) is supplied to the auxiliary combustor (10) as combustion air.

燃料改質器(1)のバーナ(1b)への燃料は、外部か
ら供給される天然ガス流量調節弁(13)で所定の流量に
調節して供給され、空気は圧縮機(8)から熱交換器
(19e)を経た後に流量調節弁(14)で流量を調節され
て燃料改質器(1)のバーナ(1b)へ供給される。バー
ナ(1b)から排出されるガスは、熱交換器(19e)を経
た後に補助燃焼器(10)へ供給される。補助燃焼器(1
0)へは圧縮機(8)からの加圧空気も流量調節弁(1
7)を介して供給され、その排出ガスはタービン(9)
を回転させて圧縮機(8)を駆動する。
Fuel to the burner (1b) of the fuel reformer (1) is supplied at a predetermined flow rate by a natural gas flow control valve (13) supplied from the outside, and air is supplied from the compressor (8) to the heat source. After passing through the exchanger (19e), the flow is adjusted by the flow control valve (14) and supplied to the burner (1b) of the fuel reformer (1). The gas discharged from the burner (1b) is supplied to the auxiliary combustor (10) after passing through the heat exchanger (19e). Auxiliary combustor (1
Pressurized air from the compressor (8) is also supplied to the flow control valve (1)
7) and its exhaust gas is supplied to the turbine (9)
Is rotated to drive the compressor (8).

リン酸型燃料電池本体(5)中の冷却管(5c)へ供給
される冷却水は、水蒸気分離器(6)から冷却水ポンプ
(7)を介して送られ、冷却管(5c)より排出された冷
却水はさらに熱交換器(19a),(19b)および流量調節
弁(18)を経て水蒸気分離器(6)へ戻る閉路を循環す
る。また、水蒸気分離器(6)で分離された水蒸気は、
流量調節弁(12)を介して燃料改質器(1)の改質反応
管(1a)への供給ガスに混入される。
The cooling water supplied to the cooling pipe (5c) in the phosphoric acid type fuel cell body (5) is sent from the steam separator (6) via the cooling water pump (7), and discharged from the cooling pipe (5c). The cooling water thus circulated further passes through heat exchangers (19a), (19b) and a flow control valve (18) and returns to the steam separator (6). The steam separated by the steam separator (6)
It is mixed with the gas supplied to the reforming reaction tube (1a) of the fuel reformer (1) via the flow control valve (12).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来のリン酸型燃料電池発電システムは以上のように
構成されているので、リン酸塩型燃料電池本体の負荷急
増時に、天然ガスの改質ガス等の燃料供給が間に合わず
過渡的にリン酸塩型燃料電池本体を燃料欠乏状態に陥
れ、電極の破壊を招くか、或は、燃料供給が整うまで負
荷増加を待機させる必要があるなどの問題点があつた。
Since the conventional phosphoric acid type fuel cell power generation system is configured as described above, when the load of the phosphate type fuel cell body rapidly increases, the supply of fuel such as a reformed gas of natural gas cannot be performed in time, and the phosphoric acid is transiently phosphoric acid. There have been problems such as that the salt-type fuel cell main body falls into a fuel-deficient state, which leads to destruction of the electrodes, or that it is necessary to wait for a load increase until fuel supply is completed.

この発明は上記のような問題点を解消するためになさ
れたもので、負荷急増に対しリン酸型燃料電池発電シス
テムの応答をリン酸型燃料電池本体の固有応答まで短縮
できるリン酸型燃料電池発電システムを得ることを目的
とする。
The present invention has been made to solve the above-described problems, and a phosphoric acid fuel cell capable of shortening the response of a phosphoric acid fuel cell power generation system to a specific response of a phosphoric acid fuel cell main body in response to a sudden increase in load. The purpose is to obtain a power generation system.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係るリン酸型燃料電池発電システムは、燃
料ガス系統の燃料改質器の後流側でかつCO変成器の入口
付近に接続され、燃料電池本体の負荷急増時に改質ガス
中に液体燃料を噴霧注入する液体燃料供給装置を備えた
ものである。
The phosphoric acid-type fuel cell power generation system according to the present invention is connected to the downstream side of the fuel reformer in the fuel gas system and near the inlet of the CO converter, and the liquid in the reformed gas when the load on the fuel cell body rapidly increases. It is provided with a liquid fuel supply device for spraying and injecting fuel.

〔作用〕[Action]

この発明におけるリン酸型燃料電池発電システムにお
いて、負荷急増時に燃料ガス系統のCO変成器入口付近
で、改質ガス中に直接注入された液体燃料例えばメタノ
ール等の低炭素数アルコールミストは、高温改質ガスお
よび構成部材のために直ちに気化し、CO変成器内の触媒
作用等で、改質ガス中に残存する水蒸気と反応して水素
を生成し、発電システム中の本来の燃料処理系が応答し
て改質ガス流量が増加するまでの間、不足する燃料を補
償する。
In the phosphoric acid fuel cell power generation system according to the present invention, the liquid fuel, for example, a low-carbon alcohol mist such as methanol directly injected into the reformed gas near the inlet of the CO converter of the fuel gas system at the time of a sudden increase in the load increases the temperature of the reformed gas. The fuel gas in the power generation system responds by reacting with the water vapor remaining in the reformed gas to generate hydrogen by the catalytic action in the CO converter, etc. Insufficient fuel is compensated until the reformed gas flow rate increases.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。第1
図において、(20)はメタノール等の液体燃料貯槽、
(21)は液体燃料貯槽(20)に貯えられたメタノール等
の液体燃料を加圧輸送する機構、(22)は加圧された液
体燃料を高温CO変成器(2)の入口近傍の改質ガス中に
直接注入するための液体燃料噴霧ノズル、(23)はメタ
ノール等液体燃料の調節弁、(24)は電気的な負荷、
(25)は燃料電池本体(5)の負荷を検出する負荷検出
手段例えば直流電流計、(26)は直流電流計(23)で検
出された負荷から負荷増加率を算出する負荷増加率算出
手段すなわち変化率演算器、(28)はあらかじめ設定さ
れた負荷に対する負荷増加率の上限等(この例では供給
量および供給時間も含まれる)を格納するデータベー
ス、(27)は現時点のすなわち直流電流計(23)および
変化率演算器(24)で求められた負荷および負荷増加率
とデータベース(26)情報を比較して液体燃料供給の要
否および量を決定する供給決定手段すなわち比較器、
(29)は比較器(27)およびデータベース(28)の出力
をもとに調節弁(23)の開度を演算する弁開度演算器、
(30)はデータベース(28)の情報から指定時間だけ弁
開度演算器(29)の出力を保持するホルダーである。第
1図中のその他の、記号は従来技術の構成の説明で述べ
た第4図と一致する。
An embodiment of the present invention will be described below with reference to the drawings. First
In the figure, (20) is a liquid fuel storage tank such as methanol,
(21) is a mechanism for transporting pressurized liquid fuel such as methanol stored in the liquid fuel storage tank (20), and (22) is reforming the pressurized liquid fuel near the inlet of the high-temperature CO converter (2). Liquid fuel spray nozzle for direct injection into gas, (23) control valve for liquid fuel such as methanol, (24) electrical load,
(25) a load detecting means for detecting a load of the fuel cell body (5), for example, a DC ammeter; and (26) a load increasing rate calculating means for calculating a load increasing rate from the load detected by the DC ammeter (23). That is, the rate-of-change calculator, (28) is a database storing the upper limit of the load increase rate for a preset load (including the supply amount and supply time in this example), and (27) is the current time, that is, the DC ammeter. (23) and a supply determining means, ie, a comparator, which determines the necessity and amount of the liquid fuel supply by comparing the load and the load increase rate obtained by the change rate calculator (24) with the information of the database (26).
(29) a valve opening calculator for calculating the opening of the control valve (23) based on the outputs of the comparator (27) and the database (28);
(30) is a holder for holding the output of the valve opening calculator (29) for a designated time from the information of the database (28). The other symbols in FIG. 1 correspond to those in FIG. 4 described in the description of the configuration of the prior art.

また、変化率演算器(24),比較器(25),データベ
ース(26),弁開度演算器(27),およびホルダー(2
8)は例えば8ビツトのマイクロプロセツサーにより実
現される。
The change rate calculator (24), comparator (25), database (26), valve opening calculator (27), and holder (2
8) is realized by, for example, an 8-bit microprocessor.

液化天然ガス,ナフサ,石炭などの化石燃料を処理
し、水素濃度の高い高温の改質ガスを製造する燃料改質
器(1)からの出口ガスである改質ガスにおいては、そ
の供給流量を迅速に増加する上で、前記燃料改質器
(1)の熱的時定数を最適化する必要がある。改質ガス
製造は通常、大きな吸熱反応であり、製造ガス流量を急
増させるためには、前記燃料改質器(1)の投入熱量を
急速かつ有効に増加させなければならない。これには、
装置構造上の制約が作用し、実際の燃料改質器(1)の
応答は、電池固有の応答(燃料が常時理想的に供給され
る状態)に比較して10倍以上遅れる。
The supply flow rate of the reformed gas that is the outlet gas from the fuel reformer (1) that processes fossil fuels such as liquefied natural gas, naphtha, and coal and produces high-temperature reformed gas with a high hydrogen concentration is controlled. In order to increase rapidly, it is necessary to optimize the thermal time constant of the fuel reformer (1). Reformed gas production is usually a large endothermic reaction, and the amount of heat input to the fuel reformer (1) must be increased quickly and effectively in order to rapidly increase the production gas flow rate. This includes
Due to restrictions on the device structure, the actual response of the fuel reformer (1) is delayed by 10 times or more as compared with the response unique to the battery (a state in which fuel is always ideally supplied).

本実施例では、高温CO変成器(2)の入口で改質ガス
に直接注入された液体燃料例えばメタノール等低炭素数
アルコールは、直ちに気化する。その後、高温CO変成器
(2)内での変成触媒の作用により、改質ガス中に含有
される水蒸気と以下の反応を進行させる。
In the present embodiment, the liquid fuel directly injected into the reformed gas at the inlet of the high-temperature CO converter (2), for example, a low-carbon alcohol such as methanol evaporates immediately. Then, by the action of the shift catalyst in the high-temperature CO shift converter (2), the following reaction with steam contained in the reformed gas proceeds.

CH3OH→CO+2H2 (1) CO+H2O→CO2+H2 (2) この反応により前記燃料改質器(1)が追随するまで
の時間、過渡的に不足する燃料を補償することができ、
リン酸型燃料電池の負荷を瞬時に増加させることも可能
となる。
CH 3 OH → CO + 2H 2 (1) CO + H 2 O → CO 2 + H 2 (2) This reaction makes it possible to compensate for the transient shortage of fuel during the time until the fuel reformer (1) follows. ,
It is also possible to instantaneously increase the load on the phosphoric acid type fuel cell.

次に実際の動作について説明する。 Next, the actual operation will be described.

リン酸型燃料電池本体(5)の負荷に直接接続された
直流電流計(25)の出力は、データベース(28),比較
器(27)および変化率演算器(26)に入力される。さら
に、変化率演算器(26)はリン酸型燃料電池電流の変化
率を演算し、その結果をデータベース(28)および比較
器(27)に出力する。比較器(27)は、変化率演算器
(26)の結果から負荷上昇か下降かを判断、負荷上昇の
場合、あらかじめ測定されたシステムデータを格納した
データベース(28)に基づき、その上昇率が、燃料供給
を要求する限界値以上か否かを判断し、その結果および
現時点の状態を弁開度演算器(29)に出力する。弁開度
演算器(29)は比較器(27)の指令によりデータベース
(28)情報から要求される弁開度およびその開度保持時
間を決定しホルダー(30)へ出力する。ホルダーは弁開
度演算器(29)の指令により調節弁(23)およびポンプ
(21)を操作する。
The output of the DC ammeter (25) directly connected to the load of the phosphoric acid fuel cell body (5) is input to the database (28), the comparator (27), and the change rate calculator (26). Further, the change rate calculator (26) calculates the change rate of the phosphoric acid fuel cell current, and outputs the result to the database (28) and the comparator (27). The comparator (27) determines whether the load increases or decreases from the result of the change rate calculator (26). In the case of a load increase, the rate of increase is determined based on a database (28) storing system data measured in advance. Then, it is determined whether or not it is equal to or more than a limit value for requesting fuel supply, and the result and the current state are output to the valve opening calculator (29). The valve opening calculator (29) determines the valve opening required from the information of the database (28) and the holding time of the opening according to the command of the comparator (27) and outputs the determined valve opening to the holder (30). The holder operates the control valve (23) and the pump (21) according to a command from the valve opening calculator (29).

第2図に上記制御動作を具体的にフローチヤートで示
す。図において、ENTER(300)で開始された処理は、ま
ずメモリ更新(31)で、前々回の電流検出値in-1をin-2
に退避すると共に前回の電流検出値inをin-1退避する。
次に現時点の電流値を電流値読込(32)にてinに入力す
る。変化率(勾配)計算(33)にて、例えば3点近似法
により電流値の変化率Δinを計算する。inからデータベ
ース検索(34)により変化率上限ΔiTi(i=I〜K:Kは
データベース中のデータ総数)、供給量MDi(i=I〜
K)、および供給時間TDi(i=I〜K)を抽出する。
次に、比較機能(35)で現時点の変化率Δinと現時点の
電流値inにもとずく変化率上限ΔiTiとを比較し、もし
Δin>ΔiTiなら弁開度演算機能(36)にて前記供給量M
Diにより弁固有の関数fから必要増分ΔMVを計算、現時
点の弁開度MVに加算することで新しい弁開度MVを求め
る。さらに、操作出力(37)にて弁開度情報MVおよびデ
ータベース検索結果である供給時間TDiをホルダー(3
0)から制御弁(23)およびポンプ(21)へ出力し、RET
URN(38)にて処理を終了する。もしΔin≦ΔiTiなら何
も操作出力せず、RETURN(38)にて処理を終了する。
FIG. 2 is a flowchart specifically showing the above control operation. In FIG, ENTER is process started with (300), first memory update (31), the current detection value of the before-last i n-1 a i n-2
I n-1 saves the last current detection value i n with retracted to.
Then inputs the current value of the current at current value reading (32) i n. At a changing rate (gradient) calculation (33), calculating the change rate .DELTA.i n of a current value, for example, by three-point approximation. i Database Search n (34) by a change rate upper limit Δi Ti (i = I~K: K is the total number data in the database), the supply amount M Di (i = I through
K) and the supply time T Di (i = I to K) are extracted.
Then, the current value i n of the current change rate .DELTA.i n and the current comparison function (35) compares the original Nuisance change rate upper limit .DELTA.i Ti, if Δi n> Δi Ti if the valve opening degree calculation function (36 ) At the supply amount M
The required increment ΔMV is calculated from the valve-specific function f by Di, and is added to the current valve opening MV to obtain a new valve opening MV. Further, in the operation output (37), the valve opening degree information MV and the supply time T Di which is the database search result are stored in the holder (3).
0) to the control valve (23) and pump (21)
The process ends at URN (38). If nothing if Δi n ≦ Δi Ti also without operating output, the process is ended in a RETURN (38).

なお、上記実施例では、液体燃料注入箇所を高温CO変
成器(2)入口付近における改質ガス系統配管に設けた
ものをしめしたが、第3図のように低温CO変成器(3)
の入口付近における改質ガス系統配管に設置してもよ
い。
In the above embodiment, the liquid fuel injection point is provided in the reformed gas system piping near the inlet of the high-temperature CO converter (2). However, as shown in FIG.
May be installed in the reformed gas system piping near the inlet of the gas.

また、液体燃料を気水分離器(4)や燃料電池本体
(5)の燃料極(5a)の入口付近に噴霧注入することも
考えられるが、これらの部材は温度が低く液体燃料が気
化しにくい上に液体燃料を水素ガスに変えるのに役立つ
触媒も無い。さらに、リン酸型燃料電池本体(5)にと
つては非常に不都合な一酸化炭素が未反応で残存する可
能性もある。
It is also conceivable to spray liquid fuel near the inlet of the fuel electrode (5a) of the steam-water separator (4) or the fuel cell body (5). However, these members have low temperature and the liquid fuel is vaporized. It is difficult and there is no catalyst to help convert liquid fuel to hydrogen gas. Furthermore, very inconvenient carbon monoxide may remain unreacted in the phosphoric acid type fuel cell body (5).

また、負荷検出量としてリン酸型燃料電池直流電流値
を用いたが、電圧値でも同様の構成が可能で、さらに負
荷指令が前もつて与えられる場合は、負荷指令情報を直
接、弁開度演算器(29)に入力できる。
In addition, although the phosphoric acid fuel cell DC current value was used as the load detection amount, a similar configuration is possible with a voltage value. Further, when a load command is given in advance, the load command information is directly input to the valve opening degree. It can be input to the arithmetic unit (29).

なお参考として、液体燃料を燃料ガス中に噴霧注入す
る代りに、ボンベ等に収納された水素などの燃料ガスを
注入する事も考えられるが、この場合、水素ガスは大量
に必要であり、ボンベ等の収納に場所をとられることに
なる。
As a reference, instead of spraying liquid fuel into fuel gas, it is conceivable to inject a fuel gas such as hydrogen stored in a cylinder or the like. It will take up space for storing such as.

さらに、上記実施例では開度を調整可能な制御弁(2
1)を用いて弁(21)の開度および開放時間を制御する
場合について説明したが、開放するか遮断するかのみを
選択できる遮断弁を用いてもよく、この場合は、所定時
間毎に負荷を検出し、その都度遮断弁の開閉を制御する
ことで上記実施例と同様の効果が得られる。
Further, in the above embodiment, the control valve (2
Although the case where the opening degree and the opening time of the valve (21) are controlled using 1) has been described, a shutoff valve that can select only to open or shut off may be used. By detecting the load and controlling the opening and closing of the shut-off valve each time, the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、燃料ガス系統の燃
料改質器の後流側でかつCO変成器の入口付近に接続さ
れ、燃料電池本体の負荷急増時に改質ガス中に液体燃料
を噴霧注入する液体燃料供給装置を備えたので、負荷急
増時の過渡的な燃料ガス補償が可能となり、リン酸型燃
料電池発電システムの応答性を速めることができる効果
がある。
As described above, according to the present invention, the liquid fuel is connected to the downstream side of the fuel reformer of the fuel gas system and near the inlet of the CO converter, and the liquid fuel is introduced into the reformed gas when the load on the fuel cell body is rapidly increased. Since the liquid fuel supply device for spray injection is provided, it is possible to perform transient fuel gas compensation at the time of a sudden increase in load, and it is possible to increase the response of the phosphoric acid type fuel cell power generation system.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例によるリン酸型燃料電池発
電システムを示す系統図、第2図は第1図のものの液体
燃料供給の制御動作を説明するフローチヤート図、第3
図はこの発明の他の実施例によるリン酸型燃料電池発電
システムを示す系統図、第4図は従来のリン酸型燃料電
池発電システムを示す系統図である。 図において、(1)……燃料改質器、(2)……高温CO
変成器、(3)……低温CO変成器、(4)……気水分離
器、(5)……リン酸型燃料電池本体、(5a)……燃料
極、(5b)……空気極、(5c)……冷却管、(8)……
空気供給用圧縮機、(9)……タービン、(11)〜(1
8)……流量調節弁、(19a)〜(19e)……熱交換器、
(20)……液体燃料貯槽、(21)……液体燃料加圧輸送
機構、(22)……液体燃料噴霧ノズル、(23)……圧力
調節弁、(24)……負荷、(25)……直流電流計、(2
6)……変化率演算器、(27)……比較器、(28)……
データベース、(29)……弁開度演算器、(30)……ホ
ルダーである。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a system diagram showing a phosphoric acid type fuel cell power generation system according to one embodiment of the present invention, FIG. 2 is a flowchart showing a control operation of a liquid fuel supply of FIG. 1, FIG.
FIG. 4 is a system diagram showing a phosphoric acid fuel cell power generation system according to another embodiment of the present invention, and FIG. 4 is a system diagram showing a conventional phosphoric acid fuel cell power generation system. In the figure, (1) ... fuel reformer, (2) ... high temperature CO
Transformer, (3) Low-temperature CO transformer, (4) Steam-water separator, (5) Phosphoric acid fuel cell body, (5a) Fuel electrode, (5b) Air electrode , (5c) ... cooling tube, (8) ...
Air supply compressor, (9) Turbine, (11) to (1)
8) Flow control valve (19a) to (19e) Heat exchanger
(20) ... Liquid fuel storage tank, (21) ... Liquid fuel pressurized transport mechanism, (22) ... Liquid fuel spray nozzle, (23) ... Pressure control valve, (24) ... Load, (25) …… DC ammeter, (2
6) Change rate calculator (27) Comparator (28)
Database, (29) ... valve opening degree calculator, (30) ... holder. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料ガス中の水素と酸化剤ガス中の酸素と
を電気化学的に反応させて直流電力を発生する燃料電池
本体、原燃料を水素濃度の高い改質ガスへ変換する燃料
改質器と上記改質ガス中の一酸化炭素を除去して燃料ガ
スを得るCO変成器とを有し上記燃料ガスを上記燃料電池
本体に供給する燃料ガス系統、および上記酸化剤ガスを
上記燃料電池本体に供給する酸化剤ガス系統を備えるリ
ン酸型燃料電池発電システムにおいて、上記燃料ガス系
統の燃料改質器の後流側でかつCO変成器の入口付近に接
続され、上記燃料電池本体の負荷急増時に改質ガス中に
液体燃料を噴霧注入する液体燃料供給装置を備えたこと
を特徴とするリン酸型燃料電池発電システム。
1. A fuel cell body for generating DC power by electrochemically reacting hydrogen in a fuel gas with oxygen in an oxidant gas, and a fuel reformer for converting raw fuel into a reformed gas having a high hydrogen concentration. A fuel gas system for supplying the fuel gas to the fuel cell body, comprising a fuel cell and a CO converter for obtaining a fuel gas by removing carbon monoxide in the reformed gas; and In a phosphoric acid fuel cell power generation system including an oxidizing gas system that supplies a battery body, the fuel gas system is connected to a downstream side of a fuel reformer and near an inlet of a CO converter, and is connected to the fuel cell body. A phosphoric acid fuel cell power generation system comprising a liquid fuel supply device for spraying liquid fuel into a reformed gas when a load suddenly increases.
【請求項2】燃料電池本体の負荷を検出する負荷検出手
段、検出された負荷から負荷増加率を算出する負荷増加
率算出手段、上記負荷および負荷増加率をあらかじめ定
められた負荷に対する負荷増加率の上限と比較して液体
燃料の供給の要否を決定する供給決定手段、および供給
決定手段の決定に基づき液体燃料供給装置を制御する制
御手段を備えた特許請求の範囲第1項記載のリン酸型燃
料電池発電システム。
2. A load detecting means for detecting a load on the fuel cell body, a load increasing rate calculating means for calculating a load increasing rate from the detected load, and a load increasing rate for the load and the load increasing rate with respect to a predetermined load. 2. The phosphorus according to claim 1, further comprising: supply determining means for determining whether or not the supply of the liquid fuel is necessary compared with the upper limit of the fuel supply, and control means for controlling the liquid fuel supply device based on the determination of the supply determining means. Acid fuel cell power generation system.
JP63079128A 1988-03-30 1988-03-30 Phosphoric acid fuel cell power generation system Expired - Lifetime JP2615790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63079128A JP2615790B2 (en) 1988-03-30 1988-03-30 Phosphoric acid fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63079128A JP2615790B2 (en) 1988-03-30 1988-03-30 Phosphoric acid fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH01251558A JPH01251558A (en) 1989-10-06
JP2615790B2 true JP2615790B2 (en) 1997-06-04

Family

ID=13681306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63079128A Expired - Lifetime JP2615790B2 (en) 1988-03-30 1988-03-30 Phosphoric acid fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2615790B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2807733B2 (en) * 1988-09-02 1998-10-08 日本電信電話株式会社 Fuel cell generator
JP3071207B2 (en) * 1990-03-01 2000-07-31 富士電機株式会社 Fuel cell power generator
JP4835273B2 (en) * 2006-06-06 2011-12-14 パナソニック株式会社 Hydrogen generator and fuel cell system

Also Published As

Publication number Publication date
JPH01251558A (en) 1989-10-06

Similar Documents

Publication Publication Date Title
US6838062B2 (en) Integrated fuel processor for rapid start and operational control
US6926748B2 (en) Staged lean combustion for rapid start of a fuel processor
US4365006A (en) Fuel cell system for mobile applications
JP3614110B2 (en) Fuel cell system
EP1276163B1 (en) Solid polymer fuel cell
US6436561B1 (en) Methanol tailgas combustor control method
JP2002124287A (en) Fuel cell system
JP2003123818A (en) Fuel cell system and complex power generating system
Carre et al. Feed-forward control of a solid oxide fuel cell system with anode offgas recycle
US6602628B2 (en) Control system for fuel cell
JPH10308230A (en) Power generating device for fuel cell
JPH07230816A (en) Internally modified solid electrolyte fuel cell system
JP2004047438A (en) Operation control method of fuel cell generator
JP2615790B2 (en) Phosphoric acid fuel cell power generation system
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JP2001325975A (en) Fuel cell power generation apparatus and its control method
EP1369946A1 (en) Warm-up device for catalytic reactor
JP7176263B2 (en) FUEL CELL SYSTEM AND METHOD OF CONTROLLING FUEL CELL SYSTEM
JPH1064571A (en) Fuel cell power generating system
WO2008016217A1 (en) Fuel cell system
JP2003077517A (en) Fuel cell system
JPH0547401A (en) Fuel changeover method of fuel cell and its apparatus
JP2004185961A (en) Operation method of fuel cell power generation device
JPS6266578A (en) Air cooling type fuel cell power generating system
KR101993914B1 (en) Power generator and power generation method using fuel cell