JPH01251558A - Phosphate type fuel cell power generating system - Google Patents

Phosphate type fuel cell power generating system

Info

Publication number
JPH01251558A
JPH01251558A JP63079128A JP7912888A JPH01251558A JP H01251558 A JPH01251558 A JP H01251558A JP 63079128 A JP63079128 A JP 63079128A JP 7912888 A JP7912888 A JP 7912888A JP H01251558 A JPH01251558 A JP H01251558A
Authority
JP
Japan
Prior art keywords
fuel
load
fuel cell
gas
liquid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63079128A
Other languages
Japanese (ja)
Other versions
JP2615790B2 (en
Inventor
Shuichi Matsumoto
秀一 松本
Akira Sasaki
明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63079128A priority Critical patent/JP2615790B2/en
Publication of JPH01251558A publication Critical patent/JPH01251558A/en
Application granted granted Critical
Publication of JP2615790B2 publication Critical patent/JP2615790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To accelerate the responsiveness of a power generating system when a load is quickly increased by providing a liquid fuel feeding device spraying and injecting liquid fuel into reformed gas. CONSTITUTION:This system has a fuel reformer 1, a high-temperature CO transformer 2, a low-temperature CO transformer 3, a phosphate type fuel cell main body 5, a liquid fuel storage tank 25, and a valve opening arithmetic unit 29. A liquid fuel feeding device is provided which is connected on the downstream side of the fuel reformer 1 of a fuel gas system and near the inlet of the CO transformer 2 and sprays and injects liquid fuel into reformed gas when the load 24 of the cell main body 5 is quickly increased. The liquid fuel injected into the reformed gas near the inlet of the CO transformer 2 when the load is quickly increased is immediately gasified due to the high-temperature reformed gas and constituting members, it is then reacted with the steam remaining in the reformed gas to generate hydrogen by the catalyst action in the CO transformer 2. The response of the power generating system to the quick increase of the load can be shortened to the inherent response of the cell main body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、リン酸型燃料電池を使用する発電システム
の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the configuration of a power generation system using a phosphoric acid fuel cell.

〔従来の技術〕[Conventional technology]

第4図は例えば特開昭62−234871号公報に示さ
れた従来の天然ガス利用リン酸型燃料電池発電システム
の系、読図であり、図において、(1)は燃料改質器、
(1’)は改質反応管、(1b)は上記改質反応管(1
&)を加熱するためのバーナ、(2)は高温CO変成器
、C3)は低温aO変成器、(4)は気水分離器、(5
1はリン酸塩型燃料電池本体、(5&)は上記リン酸型
燃料電池本体(5)中の燃料極、(5b)は上記リン酸
型燃料電池本体(5)中の空気極、(5(1)は上記リ
ン酸型燃料電池本体(5)中の冷却管、(6)は水蒸気
分離器、(7)は上記水蒸分離器(6)中の冷却水を循
環させるポンプ、(8)は空気供給用圧縮機、(9)は
タービン、GOは補助燃焼器、αυは原料である天然ガ
ス流量を調節する流量調節弁、しはスチーム流量を調節
する流量調節弁、■は天然ガスを上記バーナ(1b)へ
供給する流量調節弁、α4は空気を上記バーナ(1′b
)へ供給する流量調節弁、(至)は改質ガスの流量調節
弁、(至)は空気を上記空気極(5b)へ供給する流量
調節弁、α力は空気を上記補助燃焼器αOへ供給する流
量調節弁、(至)は冷却水の循環流量を調節する流量調
節弁、そして(19−)〜(19e)は熱交換器である
0次に動作について説明するO外部から供給される天然
ガス等の原燃料は、流量制御弁Iによって負荷に応じた
所定の流量に制御されて燃料改質器(1)の改質反応管
(1&)へ供給される。改質反応管(la)から排出さ
れた水素濃度の高い改質ガスは、熱交換器(19a)→
高温CO変成器(2)→熱交換器(19b)→低温CO
変成器+3)→熱交換器(19o)→熱交換器(19a
)を経て一酸化炭素を除失されると共に温度を下げて水
素を主成分とする燃料ガスに変換された後に、気水分離
器(4)により脱水され、さらに熱交換器(19o )
を経た後に流量調節弁09で流量を調節されてリン酸型
燃料電池本体(5)中の燃料極(5a)に供給される。
FIG. 4 shows a system and diagram of a conventional phosphoric acid fuel cell power generation system using natural gas, as disclosed in, for example, Japanese Patent Application Laid-Open No. 62-234871. In the figure, (1) is a fuel reformer,
(1') is the reforming reaction tube, (1b) is the reforming reaction tube (1
&), (2) is a high-temperature CO shift converter, C3) is a low-temperature aO shift converter, (4) is a steam/water separator, (5)
1 is a phosphate fuel cell main body, (5 &) is a fuel electrode in the phosphoric acid fuel cell main body (5), (5b) is an air electrode in the phosphoric acid fuel cell main body (5), (5 (1) is a cooling pipe in the phosphoric acid fuel cell main body (5), (6) is a steam separator, (7) is a pump that circulates cooling water in the steam separator (6), (8) ) is the air supply compressor, (9) is the turbine, GO is the auxiliary combustor, αυ is the flow rate control valve that adjusts the flow rate of natural gas, which is the raw material, shi is the flow rate control valve that adjusts the steam flow rate, ■ is natural gas α4 is a flow control valve that supplies air to the burner (1b).
), (To) is a flow rate adjustment valve for reformed gas, (To) is a flow rate adjustment valve for supplying air to the air electrode (5b), and α is for supplying air to the auxiliary combustor αO. The supplied flow rate control valve, (to) is a flow rate control valve that adjusts the circulating flow rate of cooling water, and (19-) to (19e) are heat exchangers supplied from the outside. Raw fuel such as natural gas is controlled by a flow rate control valve I to a predetermined flow rate depending on the load, and is supplied to the reforming reaction tube (1&) of the fuel reformer (1). The reformed gas with high hydrogen concentration discharged from the reforming reaction tube (la) is transferred to the heat exchanger (19a) →
High temperature CO transformer (2) → heat exchanger (19b) → low temperature CO
Transformer +3) → Heat exchanger (19o) → Heat exchanger (19a)
) where carbon monoxide is removed and the temperature is lowered to convert it into a fuel gas mainly composed of hydrogen, which is then dehydrated through a steam separator (4) and further into a heat exchanger (19o).
After passing through, the flow rate is adjusted by a flow rate control valve 09 and the fuel is supplied to the fuel electrode (5a) in the phosphoric acid fuel cell main body (5).

燃料極(5a)において電池出力相当量の水素を含むガ
スは燃料極(5a)から排出され、補助燃焼器α0へ送
られ燃料として使用される。
Gas containing hydrogen in an amount equivalent to the cell output is discharged from the fuel electrode (5a), sent to the auxiliary combustor α0, and used as fuel.

一方、酸化剤ガス例えば空気は圧縮機で8)により所定
の圧力まで加圧された後に流量調節弁■で所定の流量に
調節されリン酸型燃料電池本体(5)中の空気極(5b
)に供給される。空気極(5b)において電池出力相当
量の酸素が消費された後に排出されたガスは、補助燃焼
器COへ燃焼用空気として供給される。
On the other hand, an oxidizing gas such as air is pressurized to a predetermined pressure by a compressor 8), and then adjusted to a predetermined flow rate by a flow rate control valve ■.
). Gas discharged after an amount of oxygen equivalent to the battery output is consumed at the air electrode (5b) is supplied to the auxiliary combustor CO as combustion air.

燃料改質器(1)のバーナ(1b)への燃料は、外部か
ら供給される天然ガスを流量調節弁0で所定の流量に調
節して供給され、空気は圧縮機(8)から熱交換器(1
9e)を経た後に流量調節弁α4)で流量を調節されて
燃料改質器(1)のバーナ(1b)へ供給される。
Fuel is supplied to the burner (1b) of the fuel reformer (1) by adjusting natural gas supplied from the outside to a predetermined flow rate using a flow rate control valve 0, and air is supplied from the compressor (8) through heat exchange. Vessel (1
After passing through 9e), the flow rate is adjusted by a flow rate control valve α4), and the fuel is supplied to the burner (1b) of the fuel reformer (1).

バーナ(1b)から排出されるガスは、熱交換器(19
e)を経た後に補助燃焼器noへ供給される。補助燃焼
器QQへは圧縮機(8)からの加圧空気も流量調節弁α
りを介して供給され、その排出ガスはタービン(9)を
回転させて圧縮@ (8)を駆動する◎リン酸型燃料電
池本体(5)中の冷却管(5C)へ供給される冷却水は
、水蒸気分離器(6)から冷却水ポンプ(7)を介して
送られ、冷却管(50)より排出された冷却水はさらに
熱交換器(19a) 、 (19b)および流量調節弁
(至)を経て水蒸気分離器(6)へ戻る閉路を循環する
。また、水蒸気分離器(6)で分離された水蒸気は、流
量調節弁@を介して燃料改質器(1)の改質反応管(1
&)への供給ガスに混入される。
The gas discharged from the burner (1b) is transferred to the heat exchanger (19
After passing through e), it is supplied to the auxiliary combustor no. Pressurized air from the compressor (8) is also sent to the auxiliary combustor QQ through the flow control valve α.
The exhaust gas rotates the turbine (9) and drives the compressor (8). Cooling water is supplied to the cooling pipe (5C) in the phosphoric acid fuel cell body (5). The cooling water is sent from the steam separator (6) via the cooling water pump (7), and the cooling water discharged from the cooling pipe (50) is further passed through the heat exchangers (19a), (19b) and the flow rate control valve (to ) and back to the steam separator (6). In addition, the steam separated by the steam separator (6) is transferred to the reforming reaction tube (1) of the fuel reformer (1) via the flow rate control valve@
&) is mixed into the feed gas.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のリン酸型燃料電池発電システムは以上のように構
成されているので、リン酸塩型燃料電池本体の負荷急増
時に、天然ガスの改質ガス等の燃料供給が間に合わず過
渡的にリン酸塩型燃料電池本体を燃料欠乏状態に陥れ、
電極の破壊を招くか、或は、燃料供給が整うまで負荷増
加を待機させる必要があるなどの問題点があった。
Conventional phosphoric acid fuel cell power generation systems are configured as described above, so when there is a sudden increase in the load on the phosphate fuel cell itself, the supply of fuel such as reformed natural gas is not in time and phosphoric acid is temporarily lost. Putting the salt fuel cell body into a fuel starvation state,
There are problems such as damage to the electrodes or the need to wait until the fuel supply is ready before increasing the load.

この発明は上記のような問題点を解消するためになされ
たもので、負荷急増に対しリン酸型燃料電池発電システ
ムの応答をリン酸型燃料電池本体の固有応答まで短縮で
きるリン酸型燃料電池発電システムを得ることを目的と
する0 〔課題を解決するための手段〕 この発明に係るリン酸型燃料電池発電システムは、燃料
ガス系統の燃料改質器の後流側でかつCO変成器の入口
付近に接続され、燃料電池本体の負荷急増時に改質ガス
中に液体燃料を噴霧注入する液体燃料供給装置を備えた
ものである。
This invention was made to solve the above-mentioned problems, and it is a phosphoric acid fuel cell that can shorten the response of a phosphoric acid fuel cell power generation system to the unique response of the phosphoric acid fuel cell itself in response to a sudden increase in load. [Means for Solving the Problems] A phosphoric acid fuel cell power generation system according to the present invention is provided on the downstream side of a fuel reformer in a fuel gas system and on the downstream side of a CO transformer. It is equipped with a liquid fuel supply device that is connected near the inlet and sprays liquid fuel into the reformed gas when the load on the fuel cell main body increases rapidly.

〔作用〕[Effect]

この発明におけるリン酸型燃料電池発電システムにおい
て、負荷急増時に燃料ガス系統のCO変成器入口付近で
、改質ガス中に直接注入された液体ffi料例えばメタ
ノール等の低炭素数アルコールミストは、高温改質ガス
および構成部材のために直ちに気化し、CO変成器内の
触媒作用等で、改質ガス中に残存する水蒸気と反応して
水素を生成し、発電システム中の本来の燃料処理系が応
答して改質ガス流量が増加するまでの間、不足する燃料
を補償する。
In the phosphoric acid fuel cell power generation system of the present invention, when the load suddenly increases, the liquid ffi fuel, for example, a mist of low carbon number alcohol such as methanol, is directly injected into the reformed gas near the inlet of the CO shift converter in the fuel gas system. The reformed gas and components are immediately vaporized and reacted with the water vapor remaining in the reformed gas through the catalytic action in the CO shift converter to generate hydrogen, and the original fuel processing system in the power generation system is activated. The fuel shortage is compensated for until the reformed gas flow rate is increased in response.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明するO第1図
において、釦はメタノール等の液体燃料貯槽、勾は液体
燃料貯槽ωに貯えられたメタノール等の液体燃料を加圧
輸送する機構、のは加圧された液体燃料を高温CO変成
器(2)の入口近傍の改質ガス中に直接注入するための
液体燃料噴霧ノズル、(ハ)はメタノール等液体燃料の
調節弁、(ハ)は電気的な負荷、@は燃料電池本体(5
)の負荷を検出する負荷検出手段例えば直流電流計、翰
は直流電流計(ハ)で検出された負荷から負荷増加率を
算出する負荷増加率算出手段すなわち変化率演算器、翰
はあらかじめ設定された負荷に対する負荷増加率の上限
等(この例では供給量および供給時間も含まれる)を格
納するデータベース、勿は現時点のすなわち直流電流計
のおよび変化率演算器(ハ)で求められた負荷および負
荷増加率とデータベース翰情報を比較して液体燃料供給
の要否および量を決定する供給決定手段すなわち比較器
、翰は比較器勿およびデータベース2杓の出力をもとに
調節弁(至)の開度を演算する弁開度演算器、(至)は
データベース(ハ)の情報から指定時間だけ弁開度演算
器−の出力を保持するホルダーである。第1図中のその
他の、記号は従来技術の構成の説明で述べた第4図と一
致する◇ また、変化率演算器(ハ)、比較器@、データベース翰
、弁開度演算器勿、およびホルダー(ハ)は例えは8ピ
ツトのマイクロプロセッサ−により実現されるO 液化天然ガス、ナフサ、石炭などの化石燃料を処理し、
水素濃度の高い高温の改質ガスを製造する燃料改質器(
1)からの出口ガスである改質ガスにおいては、その供
給流量を迅速に増加する上で、前記燃料改質器(1)の
熱的時定数を最適化する必要がある。改質ガス製造は通
常、大きな吸熱反応であり、製造ガス流量を急増させる
ためには、前記燃料改質器(1)の投入熱量を急速かつ
有効に増加させなければならない0これには、装置構造
上の制約が作用し、実際の燃料改質器(1)の応答は、
電池固有の応答(燃料が常時理想的に供給される状態)
に比較して10倍以上遅れる。
An embodiment of the present invention will be described below with reference to the drawings. In Fig. 1, the button indicates a storage tank for liquid fuel such as methanol, and the button indicates a mechanism for pressurized transport of liquid fuel such as methanol stored in the liquid fuel storage tank ω. (c) is a liquid fuel spray nozzle for directly injecting pressurized liquid fuel into the reformed gas near the inlet of the high-temperature CO shift converter (2), (c) is a control valve for liquid fuel such as methanol, and (c) is a control valve for liquid fuel such as methanol. Electrical load, @ is the fuel cell main body (5
) Load detection means for detecting the load of the DC ammeter (c), for example, a load increase rate calculation means for calculating the load increase rate from the load detected by the DC ammeter (c); A database that stores the upper limit of the load increase rate, etc. (in this example, the supply amount and supply time are also included) for the load calculated, of course, the current load and the load calculated by the DC ammeter and rate of change calculator (c). A supply determining means, that is, a comparator, which compares the load increase rate and the database information to determine the necessity and amount of liquid fuel supply. The valve opening degree calculator (to) that calculates the opening degree is a holder that holds the output of the valve opening degree calculator for a specified time from the information in the database (c). Other symbols in FIG. 1 are the same as those in FIG. 4 described in the explanation of the configuration of the prior art. ◇ Also, the rate of change calculator (c), comparator @, database handle, valve opening calculator, The holder (c) is realized by an 8-pit microprocessor, for example.
A fuel reformer that produces high-temperature reformed gas with a high hydrogen concentration (
In order to rapidly increase the supply flow rate of the reformed gas, which is the exit gas from the fuel reformer (1), it is necessary to optimize the thermal time constant of the fuel reformer (1). Production of reformed gas is usually a large endothermic reaction, and in order to rapidly increase the flow rate of produced gas, the amount of heat input to the fuel reformer (1) must be rapidly and effectively increased. Due to structural constraints, the actual response of the fuel reformer (1) is:
Battery-specific response (condition where fuel is constantly and ideally supplied)
It is more than 10 times slower than .

本実施例では、高温OO変成器(2)の入口で改質ガス
に直接注入された液体燃料例えばメタノール等低炭素数
アルコールは、直ちに気化する。その後、高温OO変成
器(2)内での変成触媒の作用により、改質ガス中に含
有される水蒸気と以下の反応を進行させる〇 0H30H→ CO   +2H2(1)CO+H20
→ ao2  +  H2(2)この反応により前記燃
料改質器(1)が追随するまでの時間、過渡的に不足す
る燃料を補償することができ、リン酸型燃料電池の負荷
を瞬時に増加させることも可能となる。
In this embodiment, the liquid fuel, such as a low carbon number alcohol such as methanol, which is directly injected into the reformed gas at the inlet of the high temperature OO shift converter (2), is immediately vaporized. After that, by the action of the shift catalyst in the high-temperature OO shift converter (2), the following reaction with water vapor contained in the reformed gas proceeds 〇0H30H→ CO +2H2 (1) CO + H20
→ ao2 + H2 (2) This reaction can compensate for the transient fuel shortage until the fuel reformer (1) follows suit, and instantly increases the load on the phosphoric acid fuel cell. It also becomes possible.

次に実際の動作について説明する。Next, the actual operation will be explained.

リン酸型燃料電池本体(5)の負荷に直接接続された直
流電流計翰の出力は、データベース恍均、比較器勿およ
び変化率演算器−に入力される。さらに1変化率演算器
□□□はリン酸型燃料電池電流の変化率を演算し、その
結果をデータベース(ハ)および比較器鰭に出力する。
The output of the DC ammeter directly connected to the load of the phosphoric acid fuel cell main body (5) is input to the database balance, comparator, and rate of change calculator. Furthermore, the rate-of-change calculating unit □□□ calculates the rate of change of the phosphoric acid fuel cell current, and outputs the result to the database (c) and the comparator fin.

比較器勿は、変化率演算器艷の結果から負荷上昇か下降
かを判断、負荷上昇の場合、あらかじめ測定されたシス
テムデータを格納したデータベース□□□に基づき、そ
の上昇率が、燃料供給を要求する限界値以上か否かを判
断し、その結果および現時点の状態を弁開度演算器−に
出力する。弁開度演算器−は比較器雰の指令によりデー
タベース銘情報から要求される弁開度およびその開度保
持時間を決定しホルダー(至)へ出力する。
The comparator determines whether the load is increasing or decreasing based on the result of the rate of change calculator. If the load is increasing, the rate of increase determines whether the fuel supply It is determined whether or not the required limit value is exceeded, and the result and the current state are output to the valve opening degree calculator. The valve opening degree calculator determines the required valve opening degree and the opening holding time from the database name information according to the command from the comparator, and outputs it to the holder.

ホルダーは弁開度演算器−の指令により調節弁(ハ)お
よびポンプ(財)を操作する。
The holder operates the control valve (c) and the pump (pump) according to commands from the valve opening calculator.

第2図に上記制御動作を具体的に70−チャートで示す
。図において、1CN T z R(3CO)で開始さ
れた処理は、まずメモリ更新C3℃で、前々回の電流検
出値1.−1  を1n−2に退避すると共に前回の電
流検出値工。をLn−1に退避する。次に現時点の電流
値を電流値読込(財)にて1nに入力する。変化率(勾
配)計算(至)にて、例えば3点近似法により電流値の
変化率Δ1nを計算する。1nからデータベース検索−
によυ変化率上限Δ1Tt(1−工〜に二にはデータベ
ース中のデータ総数)、供給量MDL (i−工〜K)
%および供給時間Tni (i−工〜k)を抽出する。
FIG. 2 specifically shows the above control operation in a 70-chart. In the figure, the process started at 1CN T z R (3CO) first updates the memory at C3°C, and updates the current detection value 1 from the previous time. -1 to 1n-2 and edit the previous current detection value. is saved to Ln-1. Next, input the current value into 1n using the current value read function. In the rate of change (gradient) calculation (end), the rate of change Δ1n of the current value is calculated by, for example, a three-point approximation method. Database search from 1n-
yυ change rate upper limit Δ1Tt (total number of data in the database for 1-to-2), supply amount MDL (i-to-K)
% and supply time Tni (i-k to k) are extracted.

次に、比較機能(至)で現時点の変化率Δ1nと現時点
の電流値1ユにもとず〈変化率上限ΔiTiとを比較し
、もしΔ1!l〉ΔiTiなら弁開度演算機能(至)に
て前記供給ffiMpiによシ弁固有の関数fから必要
増分ΔMYを計算、現時点の弁開度MVに加算すること
で新しい弁開度MYを求める。さらに1操作出力(支)
にて弁開度情報M’7およびデータベース検索結果であ
る供給時間TDiをホルダー■から制御弁のおよびポン
プ@へ出力し、RETURN(至)にて処理を終了する
0もしΔiユ≦Δi’riなら何も操作出力せず、RK
TσRN@にて処理を終了する@なお、上記実施例では
、液体燃料注入箇所を高温CO変成器(2)入口付近に
おける改質ガス系統配管に設けたものをしめしたが、第
S図のように低温CO変成器(3)の入口付近における
改質ガス系統配管に設けたものをしめしたが、第3図の
ように低温qO変成器(3)の入口付近における改質ガ
ス系統配管に設置してもよい。
Next, the comparison function (to) compares the current rate of change Δ1n with the current rate of change ΔiTi based on the current value of 1U, and if Δ1! If l>ΔiTi, the valve opening calculation function (to) calculates the necessary increment ΔMY from the valve-specific function f based on the supply ffiMpi, and adds it to the current valve opening MV to obtain a new valve opening MY. . 1 more operation output (support)
Outputs the valve opening information M'7 and the supply time TDi, which is the database search result, from the holder ■ to the control valve and pump @, and ends the process with RETURN. Then, without any operation output, RK
Finish the process at TσRN@ In the above example, the liquid fuel injection point was installed in the reformed gas system piping near the inlet of the high-temperature CO shift converter (2). The one installed in the reformed gas system piping near the inlet of the low temperature CO shift converter (3) is shown in Figure 3, but as shown in Figure 3, the one installed in the reformed gas system piping near the inlet of the low temperature qO shift converter (3) You may.

また、液体燃料を気水分離器(4)や燃料電池本体(5
)の燃料極(5&)の入口付近に噴霧注入することも考
えられるが1これらの部材は温度が低く液体燃料が気化
しにくい上に液体燃料を水素ガスに変えるのに役立つ触
媒も無い。さらに、リン酸型燃料電池本体(5)にとっ
ては非常に不都合な一酸化炭素が未反応で残存する可能
性もある。
In addition, the liquid fuel can be transferred to the steam/water separator (4) or the fuel cell body (5).
) may be considered to be injected near the inlet of the fuel electrode (5 &), but the temperature of these members is low, making it difficult for the liquid fuel to vaporize, and there is no catalyst to help convert the liquid fuel into hydrogen gas. Furthermore, there is a possibility that carbon monoxide, which is very inconvenient for the phosphoric acid fuel cell main body (5), remains unreacted.

また、負荷検出証としてリン醗型燃料電池直流電流値を
用いたが、電圧値でも同様の構成が可能で、さらに負荷
指令が前もって与えられる場合は、負荷指令情報を直接
、弁開度演算器−に入力できる。
In addition, although we used the DC current value of the phosphor-type fuel cell as the load detection certificate, a similar configuration is possible with the voltage value, and furthermore, if the load command is given in advance, the load command information can be directly transmitted to the valve opening calculator. - can be entered.

なお参考として、液体燃料を燃料ガス中に噴霧注入する
代シに、ボンベ等に収納された水素などの燃料ガスを注
入する事も考えられるが、この場合、水素ガスは大量に
必要であり、ボンベ等の収納に場所をとられることにな
る。
For reference, instead of spraying liquid fuel into fuel gas, it is also possible to inject fuel gas such as hydrogen stored in a cylinder, etc., but in this case, a large amount of hydrogen gas is required. This will take up space for storing cylinders, etc.

さらに、上記実施例では開度をIIIJI可能な制御弁
0を用いて弁■の開度および開放時間を制御する場合に
ついて説明したが、開放するか遮断するかのみを選択で
きる遮断弁を用いてもよく、この場合は、所定時間毎に
負荷を検出し、その都度遮断弁のM閉を制御することで
上記実施例と同様の効果が得られる。
Furthermore, in the above embodiment, a case has been described in which the opening degree and opening time of valve (2) are controlled using control valve 0, which can control the opening degree. In this case, the same effect as in the above embodiment can be obtained by detecting the load at predetermined time intervals and controlling the M closing of the shutoff valve each time.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、燃料ガス系統の燃料
改質器の後流側でかつCO変成器の入口付近に接続され
、燃料電池本体の負荷急増時に改質ガス中に液体燃料を
噴霧注入する液体燃料供給装置を備えたので、負荷急増
時の過渡的な燃料ガス補償が可能となり、リン酸型燃料
電池発電システムの応答性を速めることができる効果が
ある。
As described above, according to the present invention, the liquid fuel is connected to the downstream side of the fuel reformer in the fuel gas system and near the inlet of the CO transformer, and liquid fuel is injected into the reformed gas when the load on the fuel cell body increases. Since a liquid fuel supply device for spray injection is provided, it is possible to perform transient fuel gas compensation when the load suddenly increases, which has the effect of speeding up the responsiveness of the phosphoric acid fuel cell power generation system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるリン酸型燃料電池発
電システムを示す系統図、第2図は第1図のものの液体
燃料供給の制御動作を説明するフローチャート図、第3
図はこの発明の他の実施例によるリン酸型燃料電池発電
システムを示す′系統図、第4図は従来のリン酸型燃料
電池発電システムを示す系統図である。 図において、(1)・・・燃料改質器、(2)・・・高
温aO変成器%(3)・・°低温CO変成器%(4)・
・・気水分離器、(5)・・・リン酸型燃料電池本体、
(5m)・・・燃料極、(5b)・・・空気極、(50
)・・・冷MJ管、(8)・・・空気供給用圧縮機、(
9)・・・タービン、αυ〜妨・・・流量調節弁、(1
9&)〜(19−)・・・熱交換器、ω・・・液体燃料
貯槽、(ハ)・・・液体燃料加圧輸送機構、■・・・液
体燃料噴霧/ズル、υ・・・圧力調節弁、(ハ)・・・
負荷、@・・・直流電流計、噛・・・変化率演算器、勿
・・・比較器、(ハ)・・・データベース、翰・・・弁
開度演算器、(至)・・・ホルダーである。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a system diagram showing a phosphoric acid fuel cell power generation system according to an embodiment of the present invention, FIG. 2 is a flowchart explaining the liquid fuel supply control operation of the system shown in FIG.
FIG. 4 is a system diagram showing a phosphoric acid fuel cell power generation system according to another embodiment of the present invention, and FIG. 4 is a system diagram showing a conventional phosphoric acid fuel cell power generation system. In the figure, (1)...Fuel reformer, (2)...High temperature aO shift converter% (3)...°Low temperature CO shift converter% (4)...
...Steam water separator, (5)...phosphoric acid fuel cell body,
(5m)... Fuel electrode, (5b)... Air electrode, (50
)...Cold MJ pipe, (8)...Air supply compressor, (
9) Turbine, αυ ~ flow control valve, (1
9&) ~ (19-)...Heat exchanger, ω...Liquid fuel storage tank, (c)...Liquid fuel pressurized transport mechanism, ■...Liquid fuel spray/slip, υ...Pressure Control valve (c)...
Load, @...DC ammeter, bit...rate of change calculator, of course...comparator, (c)...database, wire...valve opening calculator, (to)... It is a holder. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)燃料ガス中の水素と酸化剤ガス中の酸素とを電気
化学的に反応させて直流電力を発生する燃料電池本体、
原燃料を水素濃度の高い改質ガスへ変換する燃料改質器
と上記改質ガス中の一酸化炭素を除去して燃料ガスを得
るCO変成器とを有し上記燃料ガスを上記燃料電池本体
に供給する燃料ガス系統、および上記酸化剤ガスを上記
燃料電池本体に供給する酸化剤ガス系統を備えるリン酸
型燃料電池発電システムにおいて、上記燃料ガス系統の
燃料改質器の後流側でかつCO変成器の入口付近に接続
され、上記燃料電池本体の負荷急増時に改質ガス中に液
体燃料を噴霧注入する液体燃料供給装置を備えたことを
特徴とするリン酸型燃料電池発電システム。
(1) A fuel cell body that generates DC power by electrochemically reacting hydrogen in fuel gas and oxygen in oxidant gas;
A fuel reformer converts raw fuel into reformed gas with a high hydrogen concentration, and a CO shift converter removes carbon monoxide from the reformed gas to obtain fuel gas, and converts the fuel gas into the fuel cell main body. In a phosphoric acid fuel cell power generation system comprising a fuel gas system that supplies the oxidizing gas to the fuel cell body, and an oxidizing gas system that supplies the oxidizing gas to the fuel cell main body, A phosphoric acid fuel cell power generation system comprising: a liquid fuel supply device connected near an inlet of a CO transformer to spray and inject liquid fuel into reformed gas when the load on the fuel cell main body increases rapidly.
(2)燃料電池本体の負荷を検出する負荷検出手段、検
出された負荷から負荷増加率を算出する負荷増加率算出
手段、上記負荷および負荷増加率をあらかじめ定められ
た負荷に対する負荷増加率の上限と比較して液体燃料の
供給の要否を決定する供給決定手段、および供給決定手
段の決定に基づき液体燃料供給装置を制御する制御手段
を備えた特許請求の範囲第1項記載のリン酸型燃料電池
発電システム。
(2) Load detection means for detecting the load on the fuel cell main body, load increase rate calculation means for calculating the load increase rate from the detected load, and the upper limit of the load increase rate for the load and load increase rate determined in advance. The phosphoric acid type fuel according to claim 1, further comprising: a supply determining means for determining whether or not to supply liquid fuel by comparing the fuel to the liquid fuel; and a control means for controlling the liquid fuel supply device based on the determination by the supply determining means. Fuel cell power generation system.
JP63079128A 1988-03-30 1988-03-30 Phosphoric acid fuel cell power generation system Expired - Lifetime JP2615790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63079128A JP2615790B2 (en) 1988-03-30 1988-03-30 Phosphoric acid fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63079128A JP2615790B2 (en) 1988-03-30 1988-03-30 Phosphoric acid fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH01251558A true JPH01251558A (en) 1989-10-06
JP2615790B2 JP2615790B2 (en) 1997-06-04

Family

ID=13681306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63079128A Expired - Lifetime JP2615790B2 (en) 1988-03-30 1988-03-30 Phosphoric acid fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2615790B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268864A (en) * 1988-09-02 1990-03-08 Nippon Telegr & Teleph Corp <Ntt> Generator of fuel cell
JPH03252062A (en) * 1990-03-01 1991-11-11 Fuji Electric Co Ltd Fuel cell power generating device
JP2007326725A (en) * 2006-06-06 2007-12-20 Matsushita Electric Ind Co Ltd Apparatus for producing hydrogen and fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268864A (en) * 1988-09-02 1990-03-08 Nippon Telegr & Teleph Corp <Ntt> Generator of fuel cell
JPH03252062A (en) * 1990-03-01 1991-11-11 Fuji Electric Co Ltd Fuel cell power generating device
JP2007326725A (en) * 2006-06-06 2007-12-20 Matsushita Electric Ind Co Ltd Apparatus for producing hydrogen and fuel cell system

Also Published As

Publication number Publication date
JP2615790B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US7052787B2 (en) Solid high polymer type fuel cell power generating device
US4464444A (en) Fuel cell power generation system and method of operating the same
US5187024A (en) Fuel cell generating system
JP2001338670A (en) Fuel cell system for mobile body and its control method
JP2002124287A (en) Fuel cell system
US6797418B1 (en) Fuel processor for fuel cell
JP2001338665A (en) Fuel cell system
JPH07230816A (en) Internally modified solid electrolyte fuel cell system
JPH01251558A (en) Phosphate type fuel cell power generating system
JP3240840B2 (en) Method of adjusting cooling water temperature of fuel cell power generator
JPH1092455A (en) Produced water recovering device for fuel cell generating device
JPH0249359A (en) Fuel cell power generating system
JP2004196611A (en) Fuel reforming apparatus and fuel cell system
JP4610875B2 (en) Fuel cell system
JP3994324B2 (en) Fuel cell power generator
JP2003288936A (en) Fuel cell power generating system and its operation method
JP2008529228A (en) Fuel cell system and related control method
JP2004185961A (en) Operation method of fuel cell power generation device
JPH0817455A (en) Exhaust heat recovery device for fuel cell generating unit
JP2002100387A (en) Reforming system
JP2002100382A (en) Fuel cell power generator
JP3670467B2 (en) Fuel cell power generation system
JPH05198309A (en) Fuel cell power generating system
JPS6334862A (en) Fuel cell power generation system
JPS58133783A (en) Fuel cell power generating system