JP2003288936A - Fuel cell power generating system and its operation method - Google Patents

Fuel cell power generating system and its operation method

Info

Publication number
JP2003288936A
JP2003288936A JP2002091424A JP2002091424A JP2003288936A JP 2003288936 A JP2003288936 A JP 2003288936A JP 2002091424 A JP2002091424 A JP 2002091424A JP 2002091424 A JP2002091424 A JP 2002091424A JP 2003288936 A JP2003288936 A JP 2003288936A
Authority
JP
Japan
Prior art keywords
water
fuel cell
fuel
cell power
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002091424A
Other languages
Japanese (ja)
Other versions
JP2003288936A5 (en
Inventor
Masahito Senda
仁人 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002091424A priority Critical patent/JP2003288936A/en
Publication of JP2003288936A publication Critical patent/JP2003288936A/en
Publication of JP2003288936A5 publication Critical patent/JP2003288936A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive fuel cell power generating system and its operation method, capable of normally conducting water self sustaining with recovered water, and replenishing high purity water without using a water treatment device even in a special case where the self sustaining is impossible for a short time. <P>SOLUTION: This fuel cell power generating system is equipped with a fuel cell 10 generating electricity based on electrochemical reaction of fuel obtained by steam-reformed hydrocarbon-based fuel gas with air acting as oxidizing agent gas, a fuel reforming apparatus 20; a cooling water apparatus 50, a water recovering apparatus 30 recovering water in exhaust air of the fuel cell and combustion gas of a fuel reformer. The water recovering apparatus is equipped with a recovered water tank 31, a sprinkling device installed in the upper part inside the recovered water tank, a recovered water cooler 34, a level gauge 37 detecting a liquid level inside the recovered water tank, and a purified water bottle 38 replenishing purified water according to a liquid level measured result of the level gauge. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、炭化水素系原燃
料を水蒸気改質して得られた燃料ガスと酸化剤ガス(空
気)との電気化学反応に基づいて電気を発生する燃料電
池と、燃料改質系機器と、燃料電池の冷却水系機器と、
燃料電池の排空気および燃料改質器の燃焼排ガス中の水
を回収する回収水系機器とを有する燃料電池発電装置と
その運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell that generates electricity based on an electrochemical reaction between a fuel gas obtained by steam reforming a hydrocarbon-based raw fuel and an oxidant gas (air), A fuel reforming system device, a fuel cell cooling water system device,
The present invention relates to a fuel cell power generation device having a recovery water system device that recovers water in exhaust air of a fuel cell and combustion exhaust gas of a fuel reformer, and an operating method thereof.

【0002】[0002]

【従来の技術】燃料電池発電装置に組み込まれる燃料電
池としては、電解質の種類、改質原料の種類等によって
異なる種々のタイプがあるが、例えば、固体高分子膜を
電解質として用い、その運転温度が約80℃と比較的低
いタイプの燃料電池として、固体高分子電解質型燃料電
池がよく知られている。
2. Description of the Related Art There are various types of fuel cells incorporated in a fuel cell power generator, which vary depending on the type of electrolyte, the type of reforming raw material, and the like. For example, a solid polymer membrane is used as an electrolyte and its operating temperature is A solid polymer electrolyte fuel cell is well known as a fuel cell of a relatively low temperature of about 80 ° C.

【0003】この固体高分子電解質型燃料電池は、リン
酸型燃料電池と同様に、例えばメタンガス(都市ガス)
等の炭化水素系原燃料を水蒸気改質して得られた燃料ガ
ス中の水素と空気中の酸素とを、燃料電池の燃料極およ
び空気極にそれぞれ供給し、電気化学反応に基づいて発
電を行うものである。
This solid polymer electrolyte fuel cell is similar to the phosphoric acid fuel cell, for example, methane gas (city gas).
Hydrogen in the fuel gas and oxygen in the air obtained by steam reforming a hydrocarbon-based raw fuel such as is supplied to the fuel electrode and air electrode of the fuel cell, respectively, to generate electricity based on an electrochemical reaction. It is something to do.

【0004】また、原燃料を燃料ガスへ改質するに際し
ては、原燃料に水蒸気を加え燃料改質器で触媒により改
質を促進する方法が採られているが、改質を定常的に行
なうには所要の水蒸気量を定常的に補給する必要があ
り、水蒸気の供給装置には、これに対応した水を常時補
給する必要がある。なお、使用する水は高純度の水であ
ることが必要であり、イオン交換式の水処理装置で不純
物を除去したイオン交換水が用いられるのが通例であ
る。
Further, when reforming raw fuel into fuel gas, a method is adopted in which steam is added to raw fuel to promote reforming by a catalyst in a fuel reformer, but reforming is carried out constantly. It is necessary to constantly replenish the required amount of water vapor, and it is necessary to constantly replenish the water vapor supply device with water corresponding thereto. The water used must be highly pure water, and ion-exchanged water from which impurities have been removed by an ion-exchange water treatment device is usually used.

【0005】一方、燃料電池の電気化学反応では発電生
成水が生じ、また燃料改質器では吸熱反応である水蒸気
改質反応を定常的に行なうための触媒加熱用の燃焼に伴
い燃焼生成水が生じるが、これらの生成水は通常の水道
水に比べて不純物が少なく、これらの生成水を原水とし
て用いれば、水処理装置の負荷を軽減することができる
ため、回収水タンクおよび排ガス冷却器を付加して、こ
れらの生成水を回収して改質水蒸気発生用の供給水とす
る方法が、通常採用されている。
On the other hand, power generation water is generated in the electrochemical reaction of the fuel cell, and in the fuel reformer, combustion water is generated with combustion for heating the catalyst for constantly performing the steam reforming reaction which is an endothermic reaction. However, these generated waters have less impurities than ordinary tap water, and if these generated waters are used as raw water, it is possible to reduce the load on the water treatment device. A method in which these generated waters are additionally collected and used as feed water for generating reformed steam is usually adopted.

【0006】また、燃料電池の電気化学反応では反応に
伴って熱が発生し、この排熱エネルギーの一部は、貯湯
槽に温水として貯え、給湯もしくは暖房に供される。
Further, in the electrochemical reaction of the fuel cell, heat is generated along with the reaction, and a part of this exhaust heat energy is stored as hot water in the hot water storage tank and used for hot water supply or heating.

【0007】図2は、都市ガスを原燃料とする従来の固
体高分子電解質型燃料電池発電装置の一例を示す系統図
である。
FIG. 2 is a system diagram showing an example of a conventional solid polymer electrolyte fuel cell power generator using city gas as a raw fuel.

【0008】図2において、模式的に示した燃料電池1
0は、燃料極10aと空気極10bとを有する単位セル
を複数個重ねる毎に冷却管または冷却溝を有する図示し
ない冷却板を配設,積層することにより構成されてい
る。
A fuel cell 1 schematically shown in FIG.
0 is configured by disposing and stacking a cooling plate or a cooling plate (not shown) having a cooling groove each time a plurality of unit cells having the fuel electrode 10a and the air electrode 10b are stacked.

【0009】原燃料はまず改質用水蒸気とともに改質器
11に供給され、以下の反応により、水素と一酸化炭素
に改質される。改質用の触媒としては、貴金属系触媒ま
たはニッケル系触媒が用いられる。
The raw fuel is first supplied to the reformer 11 together with the reforming steam, and is reformed into hydrogen and carbon monoxide by the following reaction. As the reforming catalyst, a noble metal catalyst or a nickel catalyst is used.

【0010】CH4+H2O→3H2+CO (吸熱反応) その後、この改質ガスは、CO変成器12に供給され、
以下の反応により、改質ガス中の―酸化炭素は1%程度
まで低減される。CO変成用触媒としては、貴金属系触
媒または銅−亜鉛系触媒が用いられる。
CH 4 + H 2 O → 3H 2 + CO (Endothermic reaction) Thereafter, this reformed gas is supplied to the CO shift converter 12,
By the following reaction, carbon dioxide in the reformed gas is reduced to about 1%. A noble metal catalyst or a copper-zinc catalyst is used as the CO conversion catalyst.

【0011】CO+H2O→H2+CO2 (発熱反応) その後、さらにCO除去器13に供給され、ブロアによ
って供給された空気によりCOを選択酸化する以下の反
応により、改質ガス中の一酸化炭素は10ppm程度まで低
減された後、燃料電池の燃料極10aに供給される。
CO + H 2 O → H 2 + CO 2 (exothermic reaction) After that, the monooxidation in the reformed gas is performed by the following reaction in which CO is selectively oxidized by the air supplied to the CO remover 13 and supplied by the blower. After the carbon is reduced to about 10 ppm, it is supplied to the fuel electrode 10a of the fuel cell.

【0012】CO+1/2O2→CO2 (発熱反応) 上記の如く、改質器11において改質反応を行う場合、
水蒸気を供給する必要があり、固体高分子型燃料電池発
電装置では、その熱源として改質器11の燃焼排ガスの
顕熱,CO変成器12及びCO除去器13の反応熱を利
用するのが一般的である。そのため、ポンプ54にて供
給される改質用水を、CO変成器12,CO除去器1
3,水蒸気発生器14の各反応器を直列に順次流すため
の改質用水蒸気供給ライン15を設け、前記各反応器か
ら熱を受けて水蒸気とし、この水蒸気と原燃料とを混合
して、改質用水蒸気供給ライン15から改質器11へ導
入する構成としている。なお、図2においては、CO変
成器12,CO除去器13への前記改質用水の通流ライ
ンを省略している。
CO + 1 / 2O 2 → CO 2 (exothermic reaction) As described above, when the reforming reaction is carried out in the reformer 11,
It is necessary to supply water vapor, and in the polymer electrolyte fuel cell power generator, it is common to use the sensible heat of the combustion exhaust gas of the reformer 11 and the reaction heat of the CO shift converter 12 and the CO remover 13 as its heat source. Target. Therefore, the reforming water supplied by the pump 54 is supplied to the CO shift converter 12 and the CO remover 1.
3, a reforming steam supply line 15 for sequentially flowing each reactor of the steam generator 14 in series is provided, receives heat from each of the reactors to be steam, and mixes the steam with the raw fuel, It is configured to be introduced from the reforming steam supply line 15 to the reformer 11. Note that, in FIG. 2, the flow line of the reforming water to the CO shift converter 12 and the CO remover 13 is omitted.

【0013】又、上記の各反応器は触媒による化学反応
を行うため、燃料電池発電装置の起動時には、適正な温
度に予め昇温する必要がある。各反応器の適正な温度は
以下のとおりである。改質器:500〜700℃、CO変成
器:200〜300℃、CO除去器:100〜250゜Cである。
Further, since each of the above reactors performs a chemical reaction by a catalyst, it is necessary to raise the temperature to an appropriate temperature in advance when the fuel cell power generator is started. The proper temperature of each reactor is as follows. Reformer: 500 to 700 ° C, CO shifter: 200 to 300 ° C, CO remover: 100 to 250 ° C.

【0014】このため、改質器11は、燃料電池の排水
素供給ライン19から供給される水素を改質器内に設置
されているバーナで燃焼させることで、通常時は加熱さ
れているが、起動時には原燃料をバーナで燃焼させるこ
とにより昇温している。また、改質器の燃焼排ガスによ
り水蒸気発生器14も昇温している。一方、CO変成器
12とCO除去器13とは、それぞれが個々に備える図
示しない電気ヒータにより昇温している。前記バーナに
は、燃焼空気ブロア18により、燃焼用空気が導入され
る。なお、18aは、燃料電池本体の空気極に反応用の
空気およびCO除去器におけるCO選択酸化用の空気を
供給するための反応空気ブロアである。
Therefore, the reformer 11 is normally heated by burning the hydrogen supplied from the exhaust hydrogen supply line 19 of the fuel cell with the burner installed in the reformer. During startup, the temperature is raised by burning the raw fuel with a burner. The steam generator 14 is also heated by the combustion exhaust gas from the reformer. On the other hand, each of the CO shift converter 12 and the CO remover 13 is heated by an electric heater (not shown) provided individually. Combustion air is introduced into the burner by a combustion air blower 18. Reference numeral 18a is a reaction air blower for supplying reaction air and CO selective oxidation air in the CO remover to the air electrode of the fuel cell body.

【0015】また、都市ガスは、都市ガス昇圧ブロア1
7により、まず脱硫器16へ導入され、都市ガス内に含
まれる硫黄成分が除去された後、改質器11の触媒反応
器へ導入され、前記燃焼排ガスにより熱の供給を受けな
がら改質され、水素リッチな燃料ガスとなる。
The city gas is a city gas booster blower 1
7, the sulfur component contained in the city gas is first introduced into the desulfurizer 16 and then introduced into the catalytic reactor of the reformer 11 and reformed while being supplied with heat by the combustion exhaust gas. , Becomes hydrogen-rich fuel gas.

【0016】次に、図2における燃料電池の冷却水系機
器50および回収水系機器30について以下に述べる。
冷却水系機器50は、電池冷却水冷却器51と、カソー
ドオフガス冷却器52と、燃焼排ガスの排ガス冷却器5
3と、純水タンク55と、電池冷却水循環ポンプ54、
その他配管等を含む。
Next, the cooling water system device 50 and the recovery water system device 30 of the fuel cell in FIG. 2 will be described below.
The cooling water system device 50 includes a battery cooling water cooler 51, a cathode off-gas cooler 52, and an exhaust gas cooler 5 for combustion exhaust gas.
3, a pure water tank 55, a battery cooling water circulation pump 54,
Including other piping.

【0017】燃料電池10は、前述のように約80℃で
運転され、前記電池冷却水循環ポンプ54によって、純
水タンク55から通流される水によって冷却され、電池
冷却水冷却器51によって除熱される。電池冷却水冷却
器51には、図2には図示しない貯湯槽に接続される循
環水導出ライン56から供給される、例えば約50℃の
水が導入され、ここで電池冷却水を冷却した水は、その
後、カソードオフガス冷却器52および燃焼排ガスの排
ガス冷却器53を経由して、例えば約60℃に昇温され
て、循環水導出ライン57から前記貯湯槽に還流する。
前記純水タンク55には、液面計が設けてあり、液面が
下限に到達した際には、後述する回収水が、水処理装置
35を介して、間歇的に補給される。
As described above, the fuel cell 10 is operated at about 80 ° C., cooled by the cell cooling water circulation pump 54 by the water flowing from the pure water tank 55, and removed by the cell cooling water cooler 51. . The battery cooling water cooler 51 is supplied with water at a temperature of, for example, about 50 ° C., which is supplied from a circulating water outlet line 56 connected to a hot water storage tank (not shown in FIG. 2). After that, the temperature is raised to, for example, about 60 ° C. via the cathode off-gas cooler 52 and the exhaust gas cooler 53 for the combustion exhaust gas, and is returned to the hot water storage tank from the circulating water outlet line 57.
A liquid level gauge is provided in the pure water tank 55, and when the liquid level reaches the lower limit, recovered water, which will be described later, is intermittently supplied through the water treatment device 35.

【0018】次に、回収水系機器30について述べる。
回収水系機器30は、回収水タンク31と、回収水ポン
プ33と、回収水冷却器34等からなる。前記回収水タ
ンク31の上部には、カソードオフガス冷却器52およ
び燃焼排ガスの排ガス冷却器53により冷却されたオフ
空気および燃焼排ガスが導入され、空気およびガス中の
含有水分を、上部に設けた散水装置から冷却水を散布す
ることにより凝縮して、回収水タンク31の下部に回収
する。この回収水を、回収水冷却器34により冷却し
て、前記散水装置に導入する。この散水装置の後段に
は、ラシヒリング等の充填層を備えた冷却水直接接触式
凝縮器を設ける場合もある。
Next, the recovered water system device 30 will be described.
The recovered water system device 30 includes a recovered water tank 31, a recovered water pump 33, a recovered water cooler 34, and the like. Off-air and combustion exhaust gas cooled by a cathode off-gas cooler 52 and a combustion exhaust gas exhaust gas cooler 53 are introduced to the upper part of the recovered water tank 31, and the water content in the air and the gas is sprayed on the upper part. The cooling water is sprayed from the device to be condensed and collected in the lower part of the collected water tank 31. The recovered water is cooled by the recovered water cooler 34 and introduced into the sprinkler. In some cases, a cooling water direct contact condenser equipped with a packed bed such as Raschig rings may be provided at the subsequent stage of this water sprinkler.

【0019】この場合、水蒸気を含むオフ空気と燃焼排
ガスを、図2には図示しない充填層下部から上方に通流
し、一方、上部から回収水冷却器34で冷却された40
℃程度の回収水を散水して、充填層部分でガスと冷却水
を直接接触させながら、空気およびガス中の水蒸気分を
凝縮・回収するものであり、簡単な構造で、回収効率が
向上する利点がある。
In this case, the off-air containing the steam and the combustion exhaust gas are made to flow upward from the lower part of the packed bed (not shown in FIG. 2), while being cooled by the recovered water cooler 34 from the upper part.
It collects recovered water at about ℃ and directly condenses the gas and cooling water in the packed bed while condensing and recovering the water vapor content in the air and gas. With a simple structure, recovery efficiency is improved. There are advantages.

【0020】上記回収水は、前述のように、水処理装置
で純化され補給水として用いられる。なお、回収水タン
ク31の下部にも液面計が設けられ、回収水タンク内の
水が不足した場合には、補給水として市水(水道水)が
供給され、この市水は水処理装置で純化される。
As mentioned above, the recovered water is purified by the water treatment device and used as makeup water. A liquid level gauge is also provided under the collected water tank 31, and when the water in the collected water tank is insufficient, city water (tap water) is supplied as makeup water, and this city water is a water treatment device. Will be purified in.

【0021】[0021]

【発明が解決しようとする課題】ところで、前述のよう
に補給水として市水を用い水処理装置で純化を行なう従
来の燃料電池発電装置においては、下記のような問題点
があった。
By the way, the conventional fuel cell power generation device in which city water is used as makeup water and purification is performed in the water treatment device as described above has the following problems.

【0022】前記水処理装置は、イオン交換樹脂の寿命
が短く、イオン交換樹脂の交換作業を含めたメンテナン
ス費用が高い。この費用の燃料電池発電装置のランニン
グコストを含めた全コストに占める割合が大きいので、
燃料電池発電装置の採否に当って、経済性の観点におけ
るネックの一つとなっている。
In the water treatment device, the life of the ion exchange resin is short, and the maintenance cost including the exchange work of the ion exchange resin is high. Since this cost accounts for a large proportion of the total cost including the running cost of the fuel cell power plant,
This is one of the bottleneck in terms of economic efficiency when adopting a fuel cell power generator.

【0023】また、前記水処理装置は、燃料電池の運転
中においても系内から熱の供給がないので、寒冷地にお
いては、凍結の恐れがあり、凍結防止対策も、全体コス
トを増大する一つの要因ともなっている。
Further, since the water treatment device does not supply heat from the inside of the system even during operation of the fuel cell, there is a risk of freezing in cold regions, and anti-freezing measures also increase the overall cost. It is also one of the factors.

【0024】本来、燃料電池の電気化学反応では発電生
成水が生じ、また燃料改質器においても燃焼に伴い燃焼
生成水が生じ、前述のように、これらの生成水を回収し
て改質水蒸気発生用の供給水とすれば、必要な供給水に
比較して回収水の方が勝り、通常、回収水を回収水タン
クからオーバーフローさせている。さらに、前記回収水
は通常の水道水に比べて不純物が少ない上、固体高分子
型燃料電池は、リン酸型燃料電池のように回収水中にリ
ン酸分が存在しないので、水処理装置がなくとも、自立
運転が可能なはずである。
Originally, power generation water is generated in the electrochemical reaction of the fuel cell, and combustion water is also generated in the fuel reformer due to combustion. As described above, these water are collected and reformed steam is generated. As for the supply water for generation, the recovered water is superior to the necessary supply water, and the recovered water usually overflows from the recovered water tank. Further, the recovered water has less impurities than normal tap water, and the polymer electrolyte fuel cell does not have a phosphoric acid component in the recovered water unlike the phosphoric acid fuel cell, and therefore has no water treatment device. Both should be able to operate independently.

【0025】ところが、例えば夏季において、外気温が
35℃以上となった場合には、回収水冷却器34の性能
が低下し、空気およびガス中の水蒸気が凝縮できず、直
接接触式熱交換器の性能が低下して回収水が不足する事
態が生ずる。また、外気温が35℃以下であっても、長
時間運転において、前述のラシヒリング等の充填層にス
ライム等が付着したり、また、散水装置のノズルが水垢
等により詰まったような場合においても、直接接触式熱
交換器の性能が低下して回収水が不足する事態が生ず
る。この場合には、純度の低い市水を補給することにな
るので、水処理装置は不可欠である。
However, in the summer, for example, when the outside air temperature is 35 ° C. or higher, the performance of the recovered water cooler 34 deteriorates, and the steam in the air and gas cannot be condensed, and the direct contact heat exchanger is used. There will be a situation where the performance of the product deteriorates and the amount of recovered water becomes insufficient. Even when the outside air temperature is 35 ° C. or lower, when slime adheres to the packed bed such as Raschig rings described above or the nozzle of the sprinkler is clogged with water stains or the like during long-term operation. However, the performance of the direct contact heat exchanger deteriorates, and the situation may occur where the recovered water becomes insufficient. In this case, since the city water of low purity is replenished, the water treatment device is indispensable.

【0026】この発明は、上記問題点に鑑みてなされた
もので、この発明の課題は、常時は回収水による水自立
運転を可能とし、自立運転が不可能な短時間特殊ケース
においても、水処理装置なしに純度の高い水の補給を行
なうことが可能にしてかつ安価な燃料電池発電装置とそ
の運転方法を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to enable water self-sustaining operation with recovered water at all times, and even in a short-time special case where self-sustaining operation is impossible. It is an object of the present invention to provide an inexpensive fuel cell power generation device and a method of operating the same, which makes it possible to supply high-purity water without a treatment device.

【0027】[0027]

【課題を解決するための手段】前述の課題を解決するた
めに、この発明においては、炭化水素系原燃料ガスを水
蒸気改質して得られた燃料ガスと酸化剤ガスとしての空
気との電気化学反応に基づいて電気を発生する燃料電池
と、燃料改質系機器と、燃料電池の冷却水系機器と、燃
料電池の排空気および燃料改質器の燃焼排ガス中の水を
回収する回収水系機器とを有する燃料電池発電装置にお
いて、前記回収水系機器は、回収水タンクと、この回収
水タンク内上部に設けた散水装置と、回収水冷却器と、
回収水タンク内の液面を検出する液面計と、この液面計
の液位計測結果に基づき精製水を補給する精製水補給容
器とを備えたものとする(請求項1の発明)。
In order to solve the above-mentioned problems, according to the present invention, electricity of a fuel gas obtained by steam reforming a hydrocarbon-based raw fuel gas and air as an oxidant gas is used. A fuel cell that generates electricity based on a chemical reaction, a fuel reforming system device, a cooling water system device of the fuel cell, and a recovery water system device that collects water in the exhaust air of the fuel cell and the combustion exhaust gas of the fuel reformer. In the fuel cell power generator having the above, the recovered water system device includes a recovered water tank, a sprinkler device provided in an upper part of the recovered water tank, and a recovered water cooler,
A liquid level gauge for detecting the liquid level in the recovered water tank and a purified water supply container for supplying purified water based on the liquid level measurement result of the liquid level gauge are provided (the invention of claim 1).

【0028】上記請求項1の発明によれば、後述するよ
うに、定常運転時には、精製水を補給することなく回収
水による水自立運転を行ない、液位計測結果により、水
自立運転の不可能の事態が判明した際には、精製水補給
容器から精製水を補給して運転を継続することができ
る。精製水補給容器としては、薬局等で市販されている
安価な精製水ボトル(例えば、350mlのボトルで9
8円)が利用できる。また、精製水補給用タンクに、購
入した精製水を貯水することもできる。
According to the first aspect of the present invention, as will be described later, during steady operation, the water self-sustaining operation is performed by the recovered water without supplementing the purified water, and the water self-sustaining operation is impossible due to the liquid level measurement result. When the situation is found, the purified water can be replenished from the purified water supply container to continue the operation. As a purified water supply container, an inexpensive purified water bottle commercially available at a pharmacy or the like (for example, a 350 ml bottle is 9
8 yen) is available. In addition, the purified water purchased can be stored in the purified water supply tank.

【0029】前記請求項1の発明の実施態様としては、
下記請求項2ないし3の発明が好ましい。また、運転方
法としては、下記請求項4ないし5の発明が好ましい。
上記請求項2ないし5の発明の作用効果については、前
記従来の技術の項等の記載において、大略説明したとお
りである。なお、細部については、後述する実施例にお
いて補足して説明する。
As an embodiment of the invention of claim 1,
The inventions of claims 2 to 3 below are preferable. Further, as an operating method, the inventions of claims 4 to 5 below are preferable.
The operation and effect of the inventions of claims 2 to 5 are as roughly explained in the description of the prior art and the like. Note that details will be supplementarily described in Examples described later.

【0030】即ち、前記請求項1に記載の燃料電池発電
装置において、前記回収水タンクは、回収水タンク内上
部における散水装置と排空気導入口および燃焼排ガス導
入口との間に、冷却水直接接触式凝縮器としてのラシヒ
リング等の充填層を備えたものとする(請求項2の発
明)。
That is, in the fuel cell power generator according to claim 1, the recovered water tank is such that cooling water is directly provided between the sprinkler device and the exhaust air introduction port and the combustion exhaust gas introduction port in the upper part of the recovered water tank. A packed bed such as Raschig rings as a contact type condenser is provided (the invention of claim 2).

【0031】また、前記請求項1または2に記載の燃料
電池発電装置において、前記回収水タンクは、過剰な回
収水を排出するためのオーバーフロー管を備えたものと
する(請求項3の発明)。
Further, in the fuel cell power generator according to claim 1 or 2, the recovered water tank is provided with an overflow pipe for discharging excess recovered water (invention of claim 3). .

【0032】さらに、前記請求項1ないし3のいずれか
に記載の燃料電池発電装置の運転方法であって、前記液
面計の液位計測結果が所定レベル(L)より高位を示す
定常運転時には、精製水を補給することなく回収水によ
る水自立運転を行ない、前記液位計測結果が所定レベル
(L)に到達した際には、精製水補給容器から精製水を
所定レベル(H)まで補給して運転を継続する(請求項
4の発明)。
Further, in the operating method of the fuel cell power generator according to any one of claims 1 to 3, during steady operation in which the liquid level measurement result of the liquid level gauge is higher than a predetermined level (L). When the water level measurement result reaches a predetermined level (L) by performing water self-sustaining operation with the recovered water without supplying the purified water, the purified water is supplied from the purified water supply container to the predetermined level (H). Then, the operation is continued (the invention of claim 4).

【0033】さらにまた、前記請求項4に記載の運転方
法において、何らかの原因で前記水自立運転が不可能と
なって、前記液面計の液位計測結果が所定の最下限レベ
ル(LL)に到達した際には、精製水の補給を停止し、
かつ燃料電池発電装置の運転を停止する(請求項5の発
明)。
Furthermore, in the operating method according to claim 4, the water self-sustaining operation becomes impossible for some reason, and the liquid level measurement result of the liquid level gauge reaches a predetermined minimum level (LL). When it arrives, stop supplying purified water,
In addition, the operation of the fuel cell power generator is stopped (the invention of claim 5).

【0034】[0034]

【発明の実施の形態】図面に基づき、本発明の実施例に
ついて以下にのべる。
Embodiments of the present invention will be described below with reference to the drawings.

【0035】図1は、この発明に関わる実施例を示す系
統図であり、図2と同じ機能を有する部材には同一の番
号を付して説明を省略する。また、図1においては、説
明の便宜上、図2に示したシステム系統の内、回収水系
機器30を主体として、一部追加変更して示し、燃料電
池,燃料改質系機器,電池冷却水系等の他の系統は省略
して示す。
FIG. 1 is a system diagram showing an embodiment according to the present invention. Members having the same functions as those in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 1, for the sake of convenience of explanation, in the system system shown in FIG. 2, mainly the recovered water system device 30 is shown with some additional modifications, such as a fuel cell, a fuel reforming system device, and a battery cooling water system. The other lines of are omitted.

【0036】図1と図2との相違点は、図1における回
収水タンク31は、散水装置32と排空気導入口および
燃焼排ガス導入口との間に設けた充填層36と、液面計
37と、精製水ボトル38と、この液面計の液位計測結
果に基づき精製水の補給制御を行うための開閉制御弁3
9と、過剰な回収水を排出するためのオーバーフロー管
40とを備える点である。
The difference between FIG. 1 and FIG. 2 is that the recovered water tank 31 in FIG. 1 has a filling layer 36 provided between the sprinkler 32 and the exhaust air inlet and the combustion exhaust gas inlet, and a liquid level gauge. 37, a purified water bottle 38, and an open / close control valve 3 for controlling the supply of purified water based on the liquid level measurement result of this level gauge.
9 and an overflow pipe 40 for discharging excess recovered water.

【0037】前記液面計37は、図1に示すH,L,L
Lの3段階の液位を、図示しない制御装置に出力して、
後述する精製水の補給や装置の停止等の制御を行うよう
に構成されている。即ち、前述のように、液面計37の
液位計測結果により、所定レベル(L)より高位を示す
定常運転時には、開閉制御弁39は閉とし、精製水を補
給することなく回収水による水自立運転を行なう。ま
た、前記液位計測結果が所定レベル(L)に到達した際
には、開閉制御弁39を開とし、精製水ボトル38から
精製水を所定レベル(H)まで補給して運転を継続す
る。
The liquid level gauge 37 includes H, L and L shown in FIG.
Output the liquid level of three stages of L to the control device (not shown),
It is configured to control the supply of purified water and the stop of the device described later. That is, as described above, the open / close control valve 39 is closed during the steady operation in which the liquid level is measured by the liquid level gauge 37 and is higher than the predetermined level (L), and the recovered water is used without supplementing the purified water. Perform independent operation. When the liquid level measurement result reaches a predetermined level (L), the open / close control valve 39 is opened, and purified water is supplied from the purified water bottle 38 to a predetermined level (H) to continue the operation.

【0038】さらに、何らかの原因で前記水自立運転が
不可能となって、液面計37の液位計測結果が所定の最
下限レベル(LL)に到達した際には、開閉制御弁39
は閉として精製水の補給を停止し、かつ燃料電池発電装
置の運転を停止する。
Further, when the water self-sustaining operation becomes impossible for some reason and the liquid level measurement result of the liquid level gauge 37 reaches a predetermined minimum level (LL), the opening / closing control valve 39
Closed to stop the supply of purified water and stop the operation of the fuel cell power generator.

【0039】ところで、回収水による水自立運転を長期
間継続した場合に、水処理装置におけるイオン交換樹脂
により、系内の水が純化されないので、系内の水の電気
伝導率が徐々に増大することが考えられる。この点に関
し、実施例に関して追跡調査したところ、約48時間経
過後は、飽和状態(約10μS/cm以内で飽和)に達
することが判明した。従って、例えば4万時間の運転後
(約5年に一度)系内の水を純水で置換する等の対処に
より、回収水による水自立運転は、問題なく長期間継続
できる。
By the way, when the water self-sustaining operation with the recovered water is continued for a long period of time, since the water in the system is not purified by the ion exchange resin in the water treatment device, the electric conductivity of the water in the system gradually increases. It is possible. In this regard, a follow-up investigation was conducted on the examples, and it was found that a saturation state (saturation within about 10 μS / cm) was reached after about 48 hours. Therefore, the water self-sustaining operation with the recovered water can be continued for a long time without any problems by, for example, replacing the water in the system with pure water after the operation for 40,000 hours (about once every five years).

【0040】[0040]

【発明の効果】上記のとおり、この発明によれば、炭化
水素系原燃料ガスを水蒸気改質して得られた燃料ガスと
酸化剤ガスとしての空気との電気化学反応に基づいて電
気を発生する燃料電池と、燃料改質系機器と、燃料電池
の冷却水系機器と、燃料電池の排空気および燃料改質器
の燃焼排ガス中の水を回収する回収水系機器とを有する
燃料電池発電装置において、前記回収水系機器は、回収
水タンクと、この回収水タンク内上部に設けた散水装置
と、回収水冷却器と、回収水タンク内の液面を検出する
液面計と、この液面計の液位計測結果に基づき精製水を
補給する精製水補給容器とを備えるものとしたので、常
時は回収水による水自立運転を可能とし、自立運転が不
可能な短時間特殊ケースにおいても、水処理装置なしに
純度の高い水の補給を行なうことが可能にしてかつ安価
な燃料電池発電装置とその運転方法を提供することがで
きる。
As described above, according to the present invention, electricity is generated based on an electrochemical reaction between a fuel gas obtained by steam reforming a hydrocarbon-based raw fuel gas and air as an oxidant gas. In a fuel cell power generation device having a fuel cell, a fuel reforming system device, a cooling water system device for the fuel cell, and a recovery water system device for recovering the exhaust air of the fuel cell and the water in the combustion exhaust gas of the fuel reformer The collected water system device includes a collected water tank, a sprinkler provided in an upper portion of the collected water tank, a collected water cooler, a liquid level gauge for detecting a liquid level in the collected water tank, and a liquid level gauge. Since it is equipped with a purified water supply container that supplies purified water based on the liquid level measurement results of the Supplement of high-purity water without treatment equipment And then it can be performed cheaper fuel cell power generation system and an operation method thereof can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の燃料電池発電装置の実施例に関わる
主に回収水系機器の系統図
FIG. 1 is a system diagram of mainly recovered water system equipment related to an embodiment of a fuel cell power generator of the present invention.

【図2】従来の燃料電池発電装置の一例を示す系統図FIG. 2 is a system diagram showing an example of a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

10:燃料電池、20:改質系機器、30:回収水系機
器、31:回収水タンク、32:散水装置、33:回収
水ポンプ、34:回収水冷却器、36:充填層、37:
液面計、38:精製水ボトル、39:開閉制御弁、4
0:オーバーフロー管、50:冷却水系機器。
10: fuel cell, 20: reforming system device, 30: recovered water system device, 31: recovered water tank, 32: sprinkler device, 33: recovered water pump, 34: recovered water cooler, 36: packed bed, 37:
Liquid level gauge, 38: Purified water bottle, 39: Open / close control valve, 4
0: overflow pipe, 50: cooling water system device.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素系原燃料ガスを水蒸気改質して
得られた燃料ガスと酸化剤ガスとしての空気との電気化
学反応に基づいて電気を発生する燃料電池と、燃料改質
系機器と、燃料電池の冷却水系機器と、燃料電池の排空
気および燃料改質器の燃焼排ガス中の水を回収する回収
水系機器とを有する燃料電池発電装置において、 前記回収水系機器は、回収水タンクと、この回収水タン
ク内上部に設けた散水装置と、回収水冷却器と、回収水
タンク内の液面を検出する液面計と、この液面計の液位
計測結果に基づき精製水を補給する精製水補給容器とを
備えたことを特徴とする燃料電池発電装置。
1. A fuel cell for generating electricity based on an electrochemical reaction between a fuel gas obtained by steam reforming a hydrocarbon-based raw fuel gas and air as an oxidant gas, and a fuel reforming apparatus. And a cooling water system device for the fuel cell, and a recovery water system device for recovering water in the exhaust air of the fuel cell and the combustion exhaust gas of the fuel reformer, wherein the recovery water system device is a recovery water tank. , A sprinkler installed in the upper part of the recovered water tank, a recovered water cooler, a level gauge for detecting the liquid level in the recovered water tank, and purified water based on the level measurement result of this level gauge. A fuel cell power generation device comprising: a purified water supply container for supply.
【請求項2】 請求項1に記載の燃料電池発電装置にお
いて、前記回収水タンクは、回収水タンク内上部におけ
る散水装置と排空気導入口および燃焼排ガス導入口との
間に、冷却水直接接触式凝縮器としてのラシヒリング等
の充填層を備えことを特徴とする燃料電池発電装置。
2. The fuel cell power generator according to claim 1, wherein the recovered water tank is in direct contact with cooling water between the sprinkler device and the exhaust air introduction port and the combustion exhaust gas introduction port in the upper part of the recovered water tank. A fuel cell power generation device comprising a packed bed such as Raschig rings as an electric condenser.
【請求項3】 請求項1または2に記載の燃料電池発電
装置において、前記回収水タンクは、過剰な回収水を排
出するためのオーバーフロー管を備えたことを特徴とす
る燃料電池発電装置。
3. The fuel cell power generator according to claim 1, wherein the recovered water tank includes an overflow pipe for discharging excess recovered water.
【請求項4】 請求項1ないし3のいずれかに記載の燃
料電池発電装置の運転方法であって、前記液面計の液位
計測結果が所定レベル(L)より高位を示す定常運転時
には、精製水を補給することなく回収水による水自立運
転を行ない、前記液位計測結果が所定レベル(L)に到
達した際には、精製水補給容器から精製水を所定レベル
(H)まで補給して運転を継続することを特徴とする燃
料電池発電装置の運転方法。
4. The method for operating the fuel cell power generator according to claim 1, wherein the liquid level measurement result of the liquid level gauge is higher than a predetermined level (L) during steady operation. The water self-sustaining operation by the recovered water is performed without supplying the purified water, and when the liquid level measurement result reaches the predetermined level (L), the purified water is supplied from the purified water supply container to the predetermined level (H). A method for operating a fuel cell power generation device, characterized by continuously operating the fuel cell power generator.
【請求項5】 請求項4に記載の運転方法において、何
らかの原因で前記水自立運転が不可能となって、前記液
面計の液位計測結果が所定の最下限レベル(LL)に到
達した際には、精製水の補給を停止し、かつ燃料電池発
電装置の運転を停止することを特徴とする燃料電池発電
装置の運転方法。
5. The operating method according to claim 4, wherein the water self-sustaining operation is disabled for some reason, and the liquid level measurement result of the liquid level gauge reaches a predetermined minimum level (LL). In this case, the method for operating the fuel cell power generator is characterized in that the supply of purified water is stopped and the operation of the fuel cell power generator is stopped.
JP2002091424A 2002-03-28 2002-03-28 Fuel cell power generating system and its operation method Pending JP2003288936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091424A JP2003288936A (en) 2002-03-28 2002-03-28 Fuel cell power generating system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091424A JP2003288936A (en) 2002-03-28 2002-03-28 Fuel cell power generating system and its operation method

Publications (2)

Publication Number Publication Date
JP2003288936A true JP2003288936A (en) 2003-10-10
JP2003288936A5 JP2003288936A5 (en) 2005-07-07

Family

ID=29236509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091424A Pending JP2003288936A (en) 2002-03-28 2002-03-28 Fuel cell power generating system and its operation method

Country Status (1)

Country Link
JP (1) JP2003288936A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129381A (en) * 2003-10-24 2005-05-19 Matsushita Electric Ind Co Ltd Water treatment apparatus of fuel cell system
JP2005310615A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Fuel cell system
JP2009252594A (en) * 2008-04-08 2009-10-29 Ebara Ballard Corp Fuel cell system
JP2010033884A (en) * 2008-07-29 2010-02-12 Fuji Electric Systems Co Ltd Method of operating fuel cell power generation system
JP2014032843A (en) * 2012-08-03 2014-02-20 Panasonic Corp Fuel cell system
JP2014154283A (en) * 2013-02-06 2014-08-25 Toyota Industries Corp Fuel battery-powered industrial vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129381A (en) * 2003-10-24 2005-05-19 Matsushita Electric Ind Co Ltd Water treatment apparatus of fuel cell system
JP2005310615A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Fuel cell system
JP2009252594A (en) * 2008-04-08 2009-10-29 Ebara Ballard Corp Fuel cell system
JP2010033884A (en) * 2008-07-29 2010-02-12 Fuji Electric Systems Co Ltd Method of operating fuel cell power generation system
JP2014032843A (en) * 2012-08-03 2014-02-20 Panasonic Corp Fuel cell system
JP2014154283A (en) * 2013-02-06 2014-08-25 Toyota Industries Corp Fuel battery-powered industrial vehicle

Similar Documents

Publication Publication Date Title
US7201979B2 (en) SORFC system and method with an exothermic net electrolysis reaction
US7781112B2 (en) Combined energy storage and fuel generation with reversible fuel cells
JP2007131513A (en) Reformer and fuel cell system utilizing the same
KR102044766B1 (en) High Efficiency Fuel Cell System Improved Thermal Efficiency and Performance of the Maintenance
JP2003282114A (en) Stopping method of fuel cell power generating device
KR101355238B1 (en) Solid oxide fuel cell system and method of operating the same
JP5127395B2 (en) Fuel cell power generation system
JP6974402B2 (en) Plants that consume reformed gas and methods for reforming raw material gas
JP2003288936A (en) Fuel cell power generating system and its operation method
JP2005063697A (en) Fuel cell power generating system
JP4304975B2 (en) Fuel cell power generator
JP2005327513A (en) Hot standby method for solid oxide fuel cell and system for the same
JP2005093127A (en) Fuel cell cogeneration system and its operation method
JP3994324B2 (en) Fuel cell power generator
JP2001176527A (en) Fuel cell system and fuel cell cogeneration system
JP5389520B2 (en) Fuel cell reformer
JP2001313053A (en) Fuel cell system
JP5502521B2 (en) Fuel cell system
JP4161264B2 (en) Fuel cell power generator
JP3997476B2 (en) Fuel cell power generator
JP5282472B2 (en) Operation method of fuel cell power generation system
JP2003288933A (en) Fuel cell power generating system
JP2005071740A (en) Fuel cell power generation system and its operation method
JP4072725B2 (en) Operation method of fuel cell power generator
JP4003130B2 (en) Fuel cell power generator and its operation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071122