JP2005093127A - Fuel cell cogeneration system and its operation method - Google Patents

Fuel cell cogeneration system and its operation method Download PDF

Info

Publication number
JP2005093127A
JP2005093127A JP2003321821A JP2003321821A JP2005093127A JP 2005093127 A JP2005093127 A JP 2005093127A JP 2003321821 A JP2003321821 A JP 2003321821A JP 2003321821 A JP2003321821 A JP 2003321821A JP 2005093127 A JP2005093127 A JP 2005093127A
Authority
JP
Japan
Prior art keywords
hot water
fuel cell
storage tank
heat
dwelling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003321821A
Other languages
Japanese (ja)
Inventor
Takuto Koike
拓人 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003321821A priority Critical patent/JP2005093127A/en
Publication of JP2005093127A publication Critical patent/JP2005093127A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell cogeneration system with a higher heat utilization rate than a prior art but more simplified, and easy to propagate in various houses including existing ones, to be installed in a given region or in apartment houses, as well as its operation method. <P>SOLUTION: The system comprises a dwelling-unit hot water storage tank 61 for storing exhaust heat of a fuel cell power generation device as hot water through a heat-collection circulating water pipe 62, a common hot water storage tank 77 installed inside a given area or an apartment house, a pipe 76 branching from the heat-collection circulating water pipe and guiding circulating water for heat collection above the common hot water storage tank, a pipe 82 for flowing back the circulating water for heat collection from lower part of the common hot water storage tank to a lower part of each dwelling-unit hot water storage tank, and a pipe 79 for flowing back the circulating water for heat collection from upper part of the common hot water storage tank to an upper part of each dwelling-unit hot water storage tank. When hot water temperature in each dwelling-unit hot water storage tank reaches a given value, the hot water is circulated form the heat-collection circulating water pipe to the common hot water storage tank to radiate heat through the common hot water storage tank, and the hot water inside the common hot water storage tank is effectively utilized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、所定地域内または共同住宅内に設置する燃料電池コジェネレーションシステムとその運転方法に関する。   The present invention relates to a fuel cell cogeneration system installed in a predetermined area or an apartment house and an operation method thereof.

燃料電池発電装置の排熱を給湯に有効利用する燃料電池コジェネレーションシステムの普及が近年期待されている。燃料電池発電装置に組み込まれる燃料電池としては、電解質の種類、改質原料の種類等によって異なる種々のタイプがあるが、例えば、固体高分子膜を電解質として用い、その運転温度が約80℃と比較的低いタイプの燃料電池として、固体高分子電解質型燃料電池がよく知られている。   In recent years, the spread of a fuel cell cogeneration system that effectively uses the exhaust heat of a fuel cell power generator for hot water supply is expected. There are various types of fuel cells incorporated in the fuel cell power generator, depending on the type of electrolyte, the type of reforming raw material, and the like. For example, a solid polymer membrane is used as the electrolyte, and the operating temperature is about 80 ° C. A solid polymer electrolyte fuel cell is well known as a relatively low type fuel cell.

この固体高分子電解質型燃料電池は、リン酸型燃料電池と同様に、例えばメタンガス(都市ガス)等の炭化水素系原燃料を水蒸気改質して得られた燃料ガス中の水素と空気中の酸素とを、燃料電池の燃料極および空気極にそれぞれ供給し、電気化学反応に基づいて発電を行うものである。また、原燃料を燃料ガスへ改質するに際しては、原燃料に水蒸気を加え燃料改質器で触媒により改質を促進する方法が採用されている(前記基本的システム構成は、例えば、特許文献1参照)。   This solid polymer electrolyte fuel cell is similar to a phosphoric acid fuel cell, for example, in hydrogen and air in a fuel gas obtained by steam reforming a hydrocarbon-based raw fuel such as methane gas (city gas). Oxygen is supplied to the fuel electrode and the air electrode of the fuel cell, respectively, and electricity is generated based on the electrochemical reaction. Further, when reforming raw fuel into fuel gas, a method is adopted in which steam is added to the raw fuel and reforming is promoted by a catalyst in a fuel reformer (the basic system configuration is, for example, Patent Document 1).

前記改質を定常的に行なうには、所要の水蒸気量を定常的に補給する必要があり、水蒸気の供給装置には、これに対応した水を常時補給する必要がある。なお、使用する水は高純度の水であることが必要であり、イオン交換式の水処理装置で不純物を除去したイオン交換水が用いられるのが通例である。   In order to perform the reforming constantly, it is necessary to constantly replenish the required amount of water vapor, and it is necessary to constantly replenish the water vapor supply device with water corresponding thereto. The water to be used needs to be high-purity water, and ion-exchanged water from which impurities have been removed by an ion-exchange type water treatment device is usually used.

一方、燃料電池の電気化学反応では発電生成水が生じ、また燃料改質器では吸熱反応である水蒸気改質反応を定常的に行なうための触媒加熱用の燃焼に伴い燃焼生成水が生じるが、これらの生成水は通常の水道水に比べて不純物が少なく、これらの生成水を原水として用いれば、水処理装置の負荷を軽減することができるため、回収水タンクおよび排ガス冷却器を付加して、これらの生成水を回収して改質水蒸気発生用の供給水とする方法が、通常採用されている。   On the other hand, in the electrochemical reaction of the fuel cell, power generation product water is generated, and in the fuel reformer, combustion product water is generated with the combustion for catalyst heating for performing the steam reforming reaction which is an endothermic reaction constantly. These generated waters have fewer impurities than normal tap water, and if these generated waters are used as raw water, the load on the water treatment device can be reduced. Therefore, a recovery water tank and an exhaust gas cooler are added. A method of recovering these generated waters to obtain supply water for generating reformed steam is usually employed.

また、燃料電池の電気化学反応では反応に伴って熱が発生し、この排熱エネルギーの一部は、貯湯槽に温水として貯え、給湯もしくは暖房に供される。   Further, in the electrochemical reaction of the fuel cell, heat is generated along with the reaction, and a part of the exhaust heat energy is stored as hot water in a hot water storage tank and supplied for hot water supply or heating.

図3は、都市ガスを原燃料とする従来の固体高分子電解質型燃料電池発電装置の一例を示す系統図であり、特許文献1に開示されたものに対して、電池冷却水系機器や回収水機器等々を追加して、より詳細なシステム構成を示す。   FIG. 3 is a system diagram showing an example of a conventional solid polymer electrolyte fuel cell power generation apparatus using city gas as a raw fuel. Compared with that disclosed in Patent Document 1, battery cooling water system equipment and recovered water are shown. A more detailed system configuration is shown by adding devices and the like.

図3において、模式的に示した燃料電池1は、燃料極1aと空気極1bとを有する単位セルを複数個重ねる毎に、図示しない冷却管または冷却溝を有する冷却板1cを配設,積層することにより構成されている。   In FIG. 3, the fuel cell 1 schematically shown includes a cooling plate 1c having a cooling pipe or a cooling groove (not shown) arranged and stacked each time a plurality of unit cells each having a fuel electrode 1a and an air electrode 1b are stacked. It is comprised by doing.

原燃料はまず改質用水蒸気とともに改質器3に供給され、以下の反応により、水素と一酸化炭素に改質される。改質用の触媒としては、貴金属系触媒またはニッケル系触媒が用いられる。   The raw fuel is first supplied to the reformer 3 together with the reforming steam, and reformed into hydrogen and carbon monoxide by the following reaction. As the reforming catalyst, a noble metal catalyst or a nickel catalyst is used.

CH4+H2O→3H2+CO (吸熱反応)
その後、この改質ガスは、CO変成器4に供給され、以下の反応により、改質ガス中の―酸化炭素は1%程度まで低減される。CO変成用触媒としては、貴金属系触媒または銅−亜鉛系触媒が用いられる。
CH 4 + H 2 O → 3H 2 + CO (endothermic reaction)
Thereafter, the reformed gas is supplied to the CO converter 4, and the carbon dioxide in the reformed gas is reduced to about 1% by the following reaction. As the CO conversion catalyst, a noble metal catalyst or a copper-zinc catalyst is used.

CO+H2O→H2+CO2 (発熱反応)
その後、さらにCO除去器5に供給され、図示しない選択酸化空気ブロアによって供給された空気によりCOを選択酸化する以下の反応により、改質ガス中の一酸化炭素は10ppm程度まで低減された後、燃料電池の燃料極1aに供給される。
CO + H 2 O → H 2 + CO 2 (exothermic reaction)
After that, carbon monoxide in the reformed gas is reduced to about 10 ppm by the following reaction that is further supplied to the CO remover 5 and selectively oxidized with air supplied by a selective oxidizing air blower (not shown). It is supplied to the fuel electrode 1a of the fuel cell.

CO+1/2O2→CO2 (発熱反応)
上記の如く、改質器3において改質反応を行う場合、水蒸気を供給する必要があり、固体高分子型燃料電池発電装置では、その熱源として改質器3の燃焼排ガスの顕熱,CO変成器4及びCO除去器5の反応熱を利用するのが一般的である。そのため、電池冷却水循環ポンプ54にて供給される改質用水を、CO変成器4,CO除去器5,水蒸気発生器24の各反応器を直列に順次流すための改質用水蒸気供給ライン25を設け、前記各反応器から熱を受けて水蒸気とし、この水蒸気と原燃料とを混合して、改質用水蒸気供給ライン25から改質器3へ導入する構成としている。なお、図3においては、CO変成器4,CO除去器5への前記改質用水の通流ラインを省略している。
CO + 1 / 2O 2 → CO 2 (exothermic reaction)
As described above, when the reforming reaction is performed in the reformer 3, it is necessary to supply water vapor. In the polymer electrolyte fuel cell power generator, the sensible heat of the combustion exhaust gas from the reformer 3 and CO conversion are used as the heat source. In general, the heat of reaction of the vessel 4 and the CO remover 5 is used. Therefore, the reforming water supply line 25 for sequentially flowing the reforming water supplied by the battery cooling water circulation pump 54 through the reactors of the CO converter 4, the CO remover 5, and the steam generator 24 in series is provided. It is configured to receive heat from each of the reactors into steam, mix the steam and raw fuel, and introduce the steam into the reformer 3 from the reforming steam supply line 25. In FIG. 3, the reforming water flow line to the CO converter 4 and the CO remover 5 is omitted.

又、上記の各反応器は触媒による化学反応を行うため、燃料電池発電装置の起動時には、適正な温度に予め昇温する必要がある。
各反応器の適正な温度は以下のとおりである。改質器:500〜700℃、CO変成器:200〜300℃、CO除去器:100〜250℃である。
In addition, since each of the reactors performs a chemical reaction using a catalyst, it is necessary to raise the temperature to an appropriate temperature in advance when the fuel cell power generator is started.
Appropriate temperatures for each reactor are as follows. Reformer: 500-700 ° C, CO converter: 200-300 ° C, CO remover: 100-250 ° C.

このため、改質器3は、燃料電池の排水素供給ライン19から供給される水素を改質器内に設置されているバーナで燃焼させることで、通常時は加熱されているが、起動時には原燃料をバーナで燃焼させることにより昇温している。また、改質器の燃焼排ガスにより水蒸気発生器24も昇温している。一方、CO変成器4とCO除去器5とは、それぞれが個々に備える図示しない電気ヒータにより昇温している。前記バーナには、燃焼空気ブロア6により、燃焼用空気が導入される。なお、7は、燃料電池本体の空気極に反応用の空気およびCO除去器におけるCO選択酸化用の空気を供給するための反応空気ブロアである。   For this reason, the reformer 3 is normally heated by burning the hydrogen supplied from the exhaust hydrogen supply line 19 of the fuel cell with a burner installed in the reformer. The temperature is raised by burning the raw fuel with a burner. In addition, the steam generator 24 is also heated by the combustion exhaust gas from the reformer. On the other hand, the temperature of the CO transformer 4 and the CO remover 5 is raised by an electric heater (not shown) provided individually. Combustion air is introduced into the burner by a combustion air blower 6. Reference numeral 7 denotes a reaction air blower for supplying reaction air and CO selective oxidation air in the CO remover to the air electrode of the fuel cell main body.

また、都市ガスは、都市ガス昇圧ブロア27により、まず脱硫器2へ導入され、都市ガス内に含まれる硫黄成分が除去された後、改質器3の触媒反応器へ導入され、前記燃焼排ガスにより熱の供給を受けながら改質され、水素リッチな燃料ガスとなる。   Further, the city gas is first introduced into the desulfurizer 2 by the city gas booster 27, and after the sulfur component contained in the city gas is removed, the city gas is introduced into the catalytic reactor of the reformer 3, and the combustion exhaust gas. As a result, the fuel gas is reformed while being supplied with heat, and becomes a hydrogen-rich fuel gas.

次に、図3における燃料電池の冷却水系機器50および回収水系機器30について以下に述べる。冷却水系機器50は、電池冷却水冷却器51と、カソードオフガス冷却器52と、燃焼排ガスの排ガス冷却器53と、純水タンク55と、電池冷却水循環ポンプ54、その他配管等を含む。   Next, the cooling water system device 50 and the recovered water system device 30 of the fuel cell in FIG. 3 will be described below. The coolant system device 50 includes a battery coolant cooler 51, a cathode offgas cooler 52, an exhaust gas cooler 53 for combustion exhaust gas, a pure water tank 55, a battery coolant circulating pump 54, and other piping.

燃料電池1は、前述のように約80℃で運転され、前記電池冷却水循環ポンプ54によって、純水タンク55から通流される水によって冷却され、電池冷却水冷却器51によって除熱される。電池冷却水冷却器51には、図3には図示しない貯湯槽に接続される循環水導出ライン56から供給される、例えば約50℃の水が導入され、ここで電池冷却水を冷却した水は、その後、カソードオフガス冷却器52および燃焼排ガスの排ガス冷却器53を経由して、例えば約60℃〜70℃に昇温されて、循環水導入ライン57から前記貯湯槽に還流する。前記純水タンク55には、液面計が設けてあり、液面が下限に到達した際には、後述する回収水が、水処理装置35を介して、間歇的に補給される。   The fuel cell 1 is operated at about 80 ° C. as described above, cooled by the water flowing from the pure water tank 55 by the battery cooling water circulation pump 54, and removed by the battery cooling water cooler 51. The battery cooling water cooler 51 is supplied with, for example, about 50 ° C. water supplied from a circulating water lead-out line 56 connected to a hot water storage tank (not shown in FIG. 3). Thereafter, the temperature is raised to, for example, about 60 ° C. to 70 ° C. via the cathode off-gas cooler 52 and the exhaust gas cooler 53 of the combustion exhaust gas, and is refluxed from the circulating water introduction line 57 to the hot water storage tank. The pure water tank 55 is provided with a liquid level gauge. When the liquid level reaches the lower limit, recovered water described later is intermittently replenished via the water treatment device 35.

次に、回収水系機器30について述べる。回収水系機器30は、回収水タンク31と、回収水ポンプ33と、回収水冷却器34等からなる。前記回収水タンク31の上部には、カソードオフガス冷却器52および燃焼排ガスの排ガス冷却器53により冷却されたオフ空気および燃焼排ガスが導入され、空気およびガス中の含有水分を、上部に設けた散水装置から冷却水を散布することにより凝縮して、回収水タンク31の下部に回収する。この回収水を、回収水冷却器34により冷却して、前記散水装置に導入する。この散水装置の後段には、ラシヒリング等の充填層を備えた冷却水直接接触式凝縮器を設ける場合もある。   Next, the recovered water system device 30 will be described. The recovered water system device 30 includes a recovered water tank 31, a recovered water pump 33, a recovered water cooler 34, and the like. Off-air and combustion exhaust gas cooled by the cathode off-gas cooler 52 and the combustion exhaust gas cooler 53 are introduced into the upper part of the recovered water tank 31, and the water content contained in the air and gas is sprinkled in the upper part. By condensing the cooling water from the apparatus, it is condensed and recovered in the lower part of the recovered water tank 31. The recovered water is cooled by the recovered water cooler 34 and introduced into the watering device. A cooling water direct contact type condenser having a packed bed such as a Raschig ring may be provided at the subsequent stage of the watering device.

この場合、水蒸気を含むオフ空気と燃焼排ガスを、図3には図示しない充填層下部から上方に通流し、一方、上部から回収水冷却器34で冷却された40℃程度の回収水を散水して、充填層部分でガスと冷却水を直接接触させながら、空気およびガス中の水蒸気分を凝縮・回収するものであり、簡単な構造で、回収効率が向上する利点がある。   In this case, off-air containing steam and combustion exhaust gas are allowed to flow upward from the lower portion of the packed bed (not shown in FIG. 3), while the recovered water at about 40 ° C. cooled by the recovered water cooler 34 is sprinkled from above. Thus, the gas and the cooling water are brought into direct contact with each other in the packed bed portion, and the water and the water vapor in the gas are condensed and recovered, and there is an advantage that the recovery efficiency is improved with a simple structure.

上記回収水は、前述のように、水処理装置で純化され補給水として用いられる。なお、回収水タンク31の下部にも液面計が設けられ、回収水タンク内の水が不足した場合には、補給水として市水(水道水)が供給され、この市水は水処理装置で純化される。   As described above, the recovered water is purified by a water treatment device and used as makeup water. A liquid level gauge is also provided at the bottom of the recovered water tank 31, and when the water in the recovered water tank is insufficient, city water (tap water) is supplied as make-up water. It is purified by.

ところで、近年、新エネルギー政策促進の観点から、小容量固体高分子型燃料電池発電装置の開発が急速に進展し、家庭や小規模事業所等に設置する検討が進められている。これらの設置先では,小容量固体高分子型燃料電池発電装置が電力を発生する際に付随して生じる約70℃の温水を、貯湯槽に蓄熱し浴場や厨房に給湯するコージェネレーションを行つて、経済メリットを発生させるのが一般的である。   By the way, in recent years, from the viewpoint of promoting a new energy policy, development of a small-capacity polymer electrolyte fuel cell power generation device has progressed rapidly, and studies are being conducted to install it in homes, small-scale offices, and the like. At these installation locations, cogeneration is performed to store hot water of about 70 ° C that accompanies the generation of electric power by the small-capacity polymer electrolyte fuel cell power generator in the hot water storage tank and supply it to the bathhouse or kitchen. It is common to generate economic benefits.

図2は従来の各住戸に設置される貯湯槽を備えた燃料電池コジェネレーションシステムの概略システム構成を示す図であって、前記図3と同様のシステムに関して、本発明の説明の便宜上、貯湯槽の系統に着目した概略図である。図2において、図3に示した構成部材と同一機能を示す部材には、同一番号を付してその詳細説明を省略する。   FIG. 2 is a diagram showing a schematic system configuration of a conventional fuel cell cogeneration system provided with a hot water storage tank installed in each dwelling unit. For convenience of explanation of the present invention, the hot water storage tank is related to the system similar to FIG. It is the schematic which paid its attention to the system | strain. In FIG. 2, members having the same functions as those shown in FIG. 3 are given the same reference numerals, and detailed descriptions thereof are omitted.

市水配管73から市水の供給を受ける各住戸貯湯槽61は、熱回収用水を、温水ポンプ63により循環水導出ライン56から導出し、熱回収用循環水配管62を介して、循環水導入ライン57から前記各住戸貯湯槽61に還流する。この熱回収用水は、燃料電池冷却水66,燃料電池排空気68及び改質器燃焼排ガス70から、それぞれ熱交換器51,52,53を介して各排熱を受け取り、温水となる。この温水は、通常は、循環水導入ライン57から導入されて住戸貯湯槽61に貯湯され、給湯配管74を介して、給湯される。   Each dwelling hot water tank 61 that receives the city water supply from the city water pipe 73 derives the heat recovery water from the circulating water outlet line 56 by the hot water pump 63 and introduces the circulating water through the heat recovery circulation water pipe 62. It returns to each said residence hot water storage tank 61 from the line 57. FIG. This heat recovery water receives each exhaust heat from the fuel cell cooling water 66, the fuel cell exhaust air 68, and the reformer combustion exhaust gas 70 through the heat exchangers 51, 52, and 53, and becomes hot water. This hot water is usually introduced from the circulating water introduction line 57, stored in the dwelling hot water storage tank 61, and hot water is supplied via the hot water supply pipe 74.

上記システムにおいて、発電継続中に、各住戸貯湯槽61の温水温度レベルが一定値以上に達したことを貯湯槽循環水温度検出器としての温度計91が検知した場合には、切替弁としての三方調節弁71により、熱回収用循環水配管62の熱回収用水の経路をバイパスライン72に通流する経路に切り替え、さらに温水冷却器64を作動して熱回収用水を冷却し、燃料電池発電装置が適正温度で運転できるように制御される。   In the above system, when the thermometer 91 as the hot water tank circulating water temperature detector detects that the hot water temperature level of each dwelling hot water tank 61 has reached a certain value or more during power generation, The three-way control valve 71 switches the heat recovery water path of the heat recovery circulating water pipe 62 to a path that passes through the bypass line 72, and further operates the hot water cooler 64 to cool the heat recovery water, thereby The device is controlled so that it can be operated at an appropriate temperature.

上記のように、従来の貯湯槽を備えた燃料電池コジェネレーションシステムにおいては、給湯の需要が比較的少なく、燃料電池発電装置の排熱が余剰となった場合に、この燃料電池発電装置の排熱を温水冷却器64で放出する必要があり、このような無駄な放熱に加え、前記温水冷却器64を稼動させるエネルギの無駄もあり、全体として熱利用効率が悪い問題があった。   As described above, in a fuel cell cogeneration system equipped with a conventional hot water storage tank, when the demand for hot water supply is relatively small and the exhaust heat of the fuel cell power generator becomes excessive, the exhaust of the fuel cell power generator is reduced. It is necessary to release heat by the hot water cooler 64. In addition to such wasteful heat radiation, there is also a waste of energy for operating the hot water cooler 64, and there is a problem that the heat utilization efficiency is poor as a whole.

上記熱利用効率を改善するためのコジェネレーションシステムとして、特許文献2に記載されたものが知られている。特許文献2に開示されたシステムは、同公報の記載によれば、「電力会社から供給される商用電力と、分散型発電装置から発生する電力とを併用する一方、該分散型発電装置からの廃熱を給湯に利用するコジェネレーションシステムであって、ガス会社から供給されるガスをエネルギー源として使用する、前記分散型発電装置、前記分散型発電装置及び商用電力からの電力の供給を制御する電力コントローラ、ガス会社からのガスの供給を制御するガスコントローラ、前記分散型発電装置からの廃熱により得られた湯を貯蔵する貯湯槽、及び、前記分散型発電装置、電力コントローラ及びガスコントローラを制御する、システムコントローラを備えている、コジェネレーションシステム。」である。   As a cogeneration system for improving the heat utilization efficiency, the one described in Patent Document 2 is known. According to the description of the publication, the system disclosed in Patent Document 2 states that “commercial power supplied from an electric power company and electric power generated from a distributed power generator are used in combination, while A cogeneration system that uses waste heat for hot water supply, which uses gas supplied from a gas company as an energy source, and controls supply of electric power from the distributed generator, the distributed generator, and commercial power A power controller, a gas controller for controlling the supply of gas from a gas company, a hot water storage tank for storing hot water obtained by waste heat from the distributed power generator, and the distributed power generator, the power controller and the gas controller A cogeneration system with a system controller to control. "

しかしながら、特許文献2に開示されたシステムの場合、システムコントローラによって、対象とする各家庭の電力,ガス,給湯の全てを集中的に監視することにより、全体として経済性を重視したコントロールを行う集中管理方式を採用しているので、設備規模が大きく、かつ制御システムが複雑である。また、前記集中管理方式のために、集中管理設備と各住戸とのユーティリティの接続を考えると、この集中管理方式のシステムは、既存住宅には適用し難い面がある。   However, in the case of the system disclosed in Patent Document 2, the system controller centrally monitors all the electric power, gas, and hot water supply of each target household, thereby performing control that emphasizes economy as a whole. Since the management system is adopted, the equipment scale is large and the control system is complicated. In addition, considering the utility connection between the central management facility and each dwelling unit for the centralized management system, this centralized management system is difficult to apply to existing houses.

即ち、上記システムは、小容量の燃料電池コジェネレーションシステムの各住戸への普及を考えた場合、普及のハードルが高い問題がある。
特開2002−124288号公報(第2−3頁、図3) 特開2002−281568号公報(第2−5頁、図1,図2)
That is, the above system has a problem that the hurdles for dissemination are high when considering the diffusion of small-capacity fuel cell cogeneration systems to each unit.
JP 2002-124288 A (page 2-3, FIG. 3) JP 2002-281568 A (page 2-5, FIGS. 1 and 2)

この発明は上記の点に鑑みてなされたもので、本発明の課題は、従来よりは熱利用効率が高いが単純化されたシステムで、かつ既存住宅を含めた各住戸への普及が容易な、所定地域内または共同住宅内に設置する燃料電池コジェネレーションシステムとその運転方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is a simplified system that has higher heat utilization efficiency than before, and is easy to spread to each dwelling unit including existing houses. Another object of the present invention is to provide a fuel cell cogeneration system installed in a predetermined area or apartment house and an operation method thereof.

上記課題は、以下により達成される。即ち、請求項1の発明によれば、燃料電池発電装置の排熱を、熱回収用循環水配管を介して貯湯槽に供給し、貯湯槽内の温水温度が所定値に到達した際には、放熱器を介して放熱する前記燃料電池発電装置を、所定地域内または共同住宅内の各住戸に設置してなる燃料電池コジェネレーションシステムの運転方法において、前記所定地域内または共同住宅内に、前記各住戸に設置された各貯湯槽(各住戸貯湯槽)と配管接続された共同貯湯槽を設け、前記各住戸貯湯槽内の温水温度が所定値に達した際には、前記熱回収用循環水配管又は前記各住戸貯湯槽から共同貯湯槽に温水を供給して、前記温水の熱を該住戸以外で利用可能としたことを特徴とする。   The above-mentioned subject is achieved by the following. That is, according to the first aspect of the present invention, when the exhaust heat of the fuel cell power generator is supplied to the hot water storage tank via the heat recovery circulating water pipe, and the hot water temperature in the hot water storage tank reaches a predetermined value, In the operation method of the fuel cell cogeneration system in which the fuel cell power generation device that radiates heat through a radiator is installed in each dwelling unit in a predetermined area or apartment house, in the predetermined area or apartment house, Each hot water tank installed in each dwelling unit (each dwelling hot water tank) is provided with a joint hot water tank connected by piping, and when the hot water temperature in each dwelling hot water tank reaches a predetermined value, Hot water is supplied to the common hot water storage tank from the circulating water pipe or each of the above-mentioned hot water storage tanks, and the heat of the hot water can be used outside the dwelling unit.

また、上記請求項1の発明の実施態様としては、下記請求項2の発明が好ましい。即ち、請求項1に記載の運転方法において、前記共同貯湯槽内の温水温度と各住戸貯湯槽内の温度温度とを比較して、共同貯湯槽内の温水温度が高い場合には、共同貯湯槽内の温水を各住戸貯湯槽を介して各住戸で有効利用可能としたことを特徴とする。   As an embodiment of the invention of claim 1, the invention of claim 2 is preferable. That is, in the operation method according to claim 1, when the hot water temperature in the common hot water storage tank is compared with the temperature temperature in each of the dwelling hot water tanks, The hot water in the tank can be effectively used in each dwelling unit via each dwelling hot water tank.

上記のように、共同貯湯槽内の温水を各住戸貯湯槽を介して各住戸で有効利用可能とすれば、所定地域内または共同住宅内全体として熱利用効率が向上する。また、各住戸間の共同貯湯槽を介した熱の授受は無償とすれば、制御システムが極めてシンプルとなり、従来よりは熱利用効率が高いが単純化されたシステムとなり、既存住宅を含めた各住戸への普及が容易となる。詳細は後述する。   As described above, if the hot water in the common hot water tank can be effectively used in each dwelling unit via each dwelling hot water tank, the heat utilization efficiency is improved as a whole in the predetermined area or in the common housing. In addition, if the transfer of heat between each unit through the shared hot water tank is free, the control system becomes extremely simple, and the heat utilization efficiency is higher than before, but the system becomes a simplified system. Dissemination to dwelling units becomes easy. Details will be described later.

さらに、前記運転方法を実施するための装置としては、下記請求項3ないし4の発明が好ましい。即ち、請求項2に記載の運転方法を実施するための燃料電池コジェネレーションシステムであって、燃料電池発電装置の排熱を、熱回収用循環水配管を介して供給し温水として蓄熱する各住戸貯湯槽と、前記所定地域内または共同住宅内に設けた共同貯湯槽と、前記熱回収用循環水配管から分岐して熱回収用循環水を共同貯湯槽の上方に導入する配管と、前記共同貯湯槽の下方から各住戸貯湯槽の下方に熱回収用循環水を還流する配管と、前記共同貯湯槽の上方から各住戸貯湯槽の上方に熱回収用循環水を還流する配管とを備え、さらに、前記請求項2に記載の運転方法を制御するための温度計,切替弁および制御装置とを備えたことを特徴とする(請求項3)。   Further, as an apparatus for carrying out the operation method, the inventions of the following claims 3 to 4 are preferable. That is, a fuel cell cogeneration system for carrying out the operation method according to claim 2, wherein each dwelling unit supplies the exhaust heat of the fuel cell power generation device via a heat recovery circulating water pipe and stores it as hot water. A hot water storage tank, a common hot water tank provided in the predetermined area or apartment house, a pipe branched from the heat recovery circulating water pipe and introducing the heat recovery circulating water above the common hot water tank, and the joint A pipe that circulates the circulating water for heat recovery from below the hot water storage tank to the lower part of each hot water storage tank, and a pipe that circulates the circulating water for heat recovery from above the joint hot water tank to the upper part of each hot water storage tank, Furthermore, a thermometer, a switching valve, and a control device for controlling the operation method according to claim 2 are provided (claim 3).

また、前記請求項3に記載の燃料電池コジェネレーションシステムにおいて、前記制御装置は、前記共同貯湯槽の温水温度が所定値に達した際には、共同貯湯槽の温水を排出して放熱する機能を備えたことを特徴とする(請求項4)。   The fuel cell cogeneration system according to claim 3, wherein the control device discharges heat by discharging the hot water in the common hot water tank when the hot water temperature in the common hot water tank reaches a predetermined value. (Claim 4).

上記請求項4の発明によれば、共同貯湯槽の温水を排出して必要な放熱が可能となるので、従来システムにおける温水冷却器(図2の64)を省略することができる。従って、各住戸に設ける装置が簡略化されると共に、所定地域内または共同住宅内全体として熱利用効率の向上が図れる。なお、温水冷却器を設けないシステムの場合、排出した温水は、単純に外部へ排水せずに、季節にもよるが、プールや池等の加熱に用いるなどの有効利用を図ることができる。   According to the fourth aspect of the invention, the hot water in the common hot water tank can be discharged and necessary heat radiation can be performed, so that the hot water cooler (64 in FIG. 2) in the conventional system can be omitted. Therefore, the apparatus provided in each dwelling unit is simplified, and the heat utilization efficiency can be improved as a whole in the predetermined area or the apartment house. In the case of a system that does not include a hot water cooler, the discharged hot water is not simply drained to the outside, but can be used effectively for heating a pool, a pond, etc., depending on the season.

この発明によれば、従来各住戸に設置されていた貯湯槽の温水需要が飽和して、所定の温水温度に到達した場合でも、排熱を無駄にすることなく発電を継続することができ、かつ、共同貯湯槽に温水を貯めることにより、各住戸の貯湯槽で温水が不足した場合に、共同貯湯槽から温水の供給を受けることにより給湯が可能になる。また、共同貯湯槽から必要な放熱を行うようにすることにより、各住戸に設置される温水冷却器を省略することも可能となる。   According to this invention, even when the hot water demand of hot water storage tanks conventionally installed in each dwelling unit is saturated and reaches a predetermined hot water temperature, power generation can be continued without wasting waste heat, In addition, by storing hot water in the common hot water storage tank, when hot water is insufficient in the hot water storage tank of each dwelling unit, hot water can be supplied by receiving supply of hot water from the common hot water storage tank. Moreover, it becomes possible to abbreviate | omit the hot water cooler installed in each dwelling unit by performing required heat dissipation from a common hot water storage tank.

上記により、従来よりは熱利用効率が高いが単純化されたシステムとなり、既存住宅を含めた各住戸への普及が容易な、所定地域内または共同住宅内に設置する燃料電池コジェネレーションシステムとその運転方法が提供できる。   As described above, a fuel cell cogeneration system installed in a predetermined area or apartment house that has a higher heat utilization efficiency than the conventional one, but is simplified, and can be easily spread to each dwelling unit including existing houses, and its Driving method can be provided.

次に、この発明の実施形態に関して、図1に基いて説明する。図1は、この発明の実施形態に関わる燃料電池コジェネレーションシステムの概略システム系統図である。なお、図1において、図2に示した部材と同一機能部材には、同一番号を付してその詳細説明を省略する。   Next, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of a fuel cell cogeneration system according to an embodiment of the present invention. In FIG. 1, members having the same functions as those shown in FIG.

図1において、図2と異なる主な点は、共同貯湯槽77と、熱回収用循環水配管62から分岐して熱回収用循環水を共同貯湯槽77の上方に導入する配管76と、共同貯湯槽77の下方から各住戸貯湯槽61の下方に熱回収用循環水を還流する配管82と、共同貯湯槽77の上方から各住戸貯湯槽61の上方に熱回収用循環水を還流する配管79とを設けた点である。なお、配管の配置に上下の差を設ける理由は、各貯湯槽内の温水に、自然対流に基づく上下の温度分布が存在するからである。例えば、共同貯湯槽77内の下方の温度の低い水が、各住戸貯湯槽61内の上方の温度の高い温水と混合しないように配管構成を行う。   1, main points different from FIG. 2 are a common hot water tank 77, a pipe 76 that branches from the heat recovery circulating water pipe 62 and introduces the heat recovery circulating water above the common hot water tank 77, and a joint. A pipe 82 for returning the circulating water for heat recovery from the lower side of the hot water tank 77 to the lower side of each of the hot water tanks 61 and a pipe for returning the circulating water for heat recovery from the upper side of the common hot water tank 77 to the upper side of each of the hot water tanks 61. 79 is provided. In addition, the reason for providing a vertical difference in the arrangement of the pipes is that there is an upper and lower temperature distribution based on natural convection in the hot water in each hot water storage tank. For example, the piping configuration is performed such that the lower temperature water in the common hot water storage tank 77 does not mix with the higher temperature hot water in each dwelling hot water tank 61.

また、図1においては、前記請求項2に記載の運転方法を制御するための温度計(92および93),切替弁(75および81)および図示しない制御装置とを備える。さらに、必要に応じて、ポンプ(78および83)を設ける。なお、部番80は、図1に示した住戸とは異なる住戸への共同貯湯槽77からの温水供給配管を示す。   Further, FIG. 1 includes thermometers (92 and 93), switching valves (75 and 81), and a control device (not shown) for controlling the operation method according to claim 2. In addition, pumps (78 and 83) are provided as necessary. In addition, the part number 80 shows the hot water supply piping from the common hot water storage tank 77 to the dwelling unit different from the dwelling unit shown in FIG.

図1の構成によれば、切替弁75によって配管76に切り替えることにより、温水の貯湯先を各住戸貯湯槽61から共同貯湯槽77に切り替える。これにより、各住戸貯湯槽61の温水温度が所定温度に到達した場合でも、温水は共同貯湯槽77に貯湯され、排熱を温水冷却器64で捨てる必要がなくなり、従ってシステム全体として熱利用効率が向上する。   According to the configuration of FIG. 1, the hot water storage destination is switched from each dwelling hot water storage tank 61 to the common hot water storage tank 77 by switching to the pipe 76 by the switching valve 75. Thereby, even when the hot water temperature of each dwelling hot water storage tank 61 reaches a predetermined temperature, the hot water is stored in the common hot water storage tank 77, and it is not necessary to throw away the exhaust heat in the hot water cooler 64. Will improve.

また、各住戸の貯湯槽で温水が不足した場合であって、温度計93の計測値が温度計92の計測値より高い場合、共同貯湯槽77に貯湯された温水がポンプ78により配管79から各住戸貯湯槽の上方へ供給される。これにより、共同貯湯槽77の温水が、各住戸で有効利用できる。   Further, when the hot water is insufficient in the hot water storage tanks of each dwelling unit and the measurement value of the thermometer 93 is higher than the measurement value of the thermometer 92, the hot water stored in the common hot water storage tank 77 is supplied from the pipe 79 by the pump 78. It is supplied above each dwelling hot water tank. Thereby, the hot water of the common hot water tank 77 can be effectively used in each dwelling unit.

さらに、共同貯湯槽77から必要な放熱を行うようにすることにより、各住戸に設置される温水冷却器64を省略することが可能となる。   Furthermore, by performing necessary heat radiation from the common hot water tank 77, the hot water cooler 64 installed in each dwelling unit can be omitted.

この発明の実施形態に関わる燃料電池コジェネレーションシステムの概略システム系統図。1 is a schematic system diagram of a fuel cell cogeneration system according to an embodiment of the present invention. 従来の燃料電池コジェネレーションシステムの概略システム系統図。Schematic system diagram of a conventional fuel cell cogeneration system. 従来の固体高分子電解質型燃料電池発電装置の一例を示す系統図。The system diagram which shows an example of the conventional solid polymer electrolyte type fuel cell power generation device.

符号の説明Explanation of symbols

61 各住戸貯湯槽
62 熱回収用循環水配管
64 温水冷却器
71,75,81 切替弁
76,79,82 配管
77 共同貯湯槽
91,92,93 温度計
61 Each hot water storage tank 62 Circulating water piping for heat recovery 64 Hot water cooler 71, 75, 81 Switching valve 76, 79, 82 Piping 77 Joint hot water storage tank 91, 92, 93 Thermometer

Claims (4)

燃料電池発電装置の排熱を、熱回収用循環水配管を介して貯湯槽に供給し、貯湯槽内の温水温度が所定値に到達した際には、放熱器を介して放熱する前記燃料電池発電装置を、所定地域内または共同住宅内の各住戸に設置してなる燃料電池コジェネレーションシステムの運転方法において、
前記所定地域内または共同住宅内に、前記各住戸に設置された各貯湯槽(各住戸貯湯槽)と配管接続された共同貯湯槽を設け、前記各住戸貯湯槽内の温水温度が所定値に達した際には、前記熱回収用循環水配管又は前記各住戸貯湯槽から共同貯湯槽に温水を供給して、前記温水の熱を該住戸以外で利用可能としたことを特徴とする燃料電池コジェネレーションシステムの運転方法。
The fuel cell is configured to supply exhaust heat from the fuel cell power generator to a hot water storage tank through a heat recovery circulating water pipe, and to radiate heat through a radiator when the temperature of the hot water in the hot water storage tank reaches a predetermined value. In a method of operating a fuel cell cogeneration system in which a power generator is installed in each dwelling unit in a predetermined area or apartment house,
In each of the predetermined areas or apartment houses, a common hot water tank connected to each hot water tank (each hot water tank) installed in each of the dwelling units is provided, and the hot water temperature in each of the dwelling hot water tanks reaches a predetermined value. When the temperature reaches, the hot water is supplied from the circulating water piping for heat recovery or each hot water storage tank to the common hot water tank so that the heat of the hot water can be used outside the living room. How to operate the cogeneration system.
請求項1に記載の運転方法において、前記共同貯湯槽内の温水温度と各住戸貯湯槽内の温水温度とを比較して、共同貯湯槽内の温水温度が高い場合には、共同貯湯槽内の温水を各住戸貯湯槽を介して各住戸で有効利用可能としたことを特徴とする燃料電池コジェネレーションシステムの運転方法。   The operation method according to claim 1, wherein the hot water temperature in the common hot water tank is compared with the hot water temperature in each of the dwelling hot water tanks, and when the hot water temperature in the common hot water tank is high, Method of operating a fuel cell cogeneration system, wherein each hot water can be effectively used at each dwelling unit through each dwelling hot water tank. 請求項2に記載の運転方法を実施するための燃料電池コジェネレーションシステムであって、燃料電池発電装置の排熱を、熱回収用循環水配管を介して供給し温水として蓄熱する各住戸貯湯槽と、前記所定地域内または共同住宅内に設けた共同貯湯槽と、前記熱回収用循環水配管から分岐して熱回収用循環水を共同貯湯槽の上方に導入する配管と、前記共同貯湯槽の下方から各住戸貯湯槽の下方に熱回収用循環水を還流する配管と、前記共同貯湯槽の上方から各住戸貯湯槽の上方に熱回収用循環水を還流する配管とを備え、さらに、前記請求項2に記載の運転方法を制御するための温度計,切替弁および制御装置とを備えたことを特徴とする燃料電池コジェネレーションシステム。   A fuel cell cogeneration system for carrying out the operation method according to claim 2, wherein each of the dwelling hot water tanks stores the exhaust heat of the fuel cell power generation device through a circulating water pipe for heat recovery and stores it as hot water. A common hot water tank provided in the predetermined area or the apartment house, a pipe branched from the heat recovery circulating water pipe and introducing the circulating water for heat recovery above the common hot water tank, and the common hot water tank A pipe that circulates the circulating water for heat recovery from below the dwelling hot water tank, and a pipe that circulates the circulating water for heat recovery from above the joint hot water tank to the upper side of each dwelling hot water tank, A fuel cell cogeneration system comprising a thermometer, a switching valve, and a control device for controlling the operation method according to claim 2. 請求項3に記載の燃料電池コジェネレーションシステムにおいて、前記制御装置は、前記共同貯湯槽の温水温度が所定値に達した際には、共同貯湯槽の温水を排出して放熱する機能を備えたことを特徴とする燃料電池コジェネレーションシステム。

4. The fuel cell cogeneration system according to claim 3, wherein the control device has a function of discharging the hot water in the joint hot water tank to dissipate heat when the hot water temperature in the common hot water tank reaches a predetermined value. 5. A fuel cell cogeneration system.

JP2003321821A 2003-09-12 2003-09-12 Fuel cell cogeneration system and its operation method Pending JP2005093127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321821A JP2005093127A (en) 2003-09-12 2003-09-12 Fuel cell cogeneration system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321821A JP2005093127A (en) 2003-09-12 2003-09-12 Fuel cell cogeneration system and its operation method

Publications (1)

Publication Number Publication Date
JP2005093127A true JP2005093127A (en) 2005-04-07

Family

ID=34453381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321821A Pending JP2005093127A (en) 2003-09-12 2003-09-12 Fuel cell cogeneration system and its operation method

Country Status (1)

Country Link
JP (1) JP2005093127A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331680A (en) * 2005-05-23 2006-12-07 Honda Motor Co Ltd Fuel cell system and operation method of the same
KR100824826B1 (en) 2006-09-11 2008-04-23 에스케이에너지 주식회사 Fuel sell system of apartment house and control method thereof
JP2010014286A (en) * 2008-07-01 2010-01-21 Keita Ogami Waste heat utilizing system for commercial kitchen
JP2013057435A (en) * 2011-09-07 2013-03-28 Osaka Gas Co Ltd Heat supply system
JP2013057436A (en) * 2011-09-07 2013-03-28 Osaka Gas Co Ltd Heat supply system
JP2015073367A (en) * 2013-10-02 2015-04-16 大阪瓦斯株式会社 Distributed power source system
JP2017109885A (en) * 2015-12-14 2017-06-22 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
CN116031436A (en) * 2023-03-31 2023-04-28 合肥工业大学 Household hydrogen fuel cell heat recovery system and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331680A (en) * 2005-05-23 2006-12-07 Honda Motor Co Ltd Fuel cell system and operation method of the same
JP4726200B2 (en) * 2005-05-23 2011-07-20 本田技研工業株式会社 Fuel cell system and operation method thereof
US8795916B2 (en) 2005-05-23 2014-08-05 Honda Motor Co., Ltd. Fuel cell system having heat exchanger and preliminary reformer and method of operating the fuel cell system
KR100824826B1 (en) 2006-09-11 2008-04-23 에스케이에너지 주식회사 Fuel sell system of apartment house and control method thereof
JP2010014286A (en) * 2008-07-01 2010-01-21 Keita Ogami Waste heat utilizing system for commercial kitchen
JP2013057435A (en) * 2011-09-07 2013-03-28 Osaka Gas Co Ltd Heat supply system
JP2013057436A (en) * 2011-09-07 2013-03-28 Osaka Gas Co Ltd Heat supply system
JP2015073367A (en) * 2013-10-02 2015-04-16 大阪瓦斯株式会社 Distributed power source system
JP2017109885A (en) * 2015-12-14 2017-06-22 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
CN116031436A (en) * 2023-03-31 2023-04-28 合肥工业大学 Household hydrogen fuel cell heat recovery system and method

Similar Documents

Publication Publication Date Title
KR20020086641A (en) Solid high polymer type fuel cell power generating device
KR102044766B1 (en) High Efficiency Fuel Cell System Improved Thermal Efficiency and Performance of the Maintenance
JP4927324B2 (en) Fuel cell system
KR102503068B1 (en) Preferential oxidation reactor with internal heat exchange structure and fuel cell system using the same
US20110180396A1 (en) Hydrogen generator system for a catalytic hydrogen burner
JP2003282114A (en) Stopping method of fuel cell power generating device
JP2008027855A (en) Fuel cell power generator
JP2009036473A (en) Fuel cell system
JP2005093127A (en) Fuel cell cogeneration system and its operation method
JP2005063697A (en) Fuel cell power generating system
JP2008130434A (en) Package type fuel cell power generating device
JP2010170877A (en) Fuel cell power generation system and operation method thereof
JP3956208B2 (en) Fuel cell power generation system and operation method thereof
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP5068291B2 (en) Fuel cell system
JP2003217623A (en) Solid polymer electrolyte fuel cell generator
JP2001313053A (en) Fuel cell system
JP2003288936A (en) Fuel cell power generating system and its operation method
JP4304975B2 (en) Fuel cell power generator
JP3994324B2 (en) Fuel cell power generator
JP2004178916A (en) Fuel cell system
JP4161264B2 (en) Fuel cell power generator
JP2003288933A (en) Fuel cell power generating system
JP2006179346A (en) Fuel cell power generation system and its operation method
JP2005071740A (en) Fuel cell power generation system and its operation method