JP2009036473A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2009036473A
JP2009036473A JP2007202523A JP2007202523A JP2009036473A JP 2009036473 A JP2009036473 A JP 2009036473A JP 2007202523 A JP2007202523 A JP 2007202523A JP 2007202523 A JP2007202523 A JP 2007202523A JP 2009036473 A JP2009036473 A JP 2009036473A
Authority
JP
Japan
Prior art keywords
hot water
fuel cell
exhaust heat
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007202523A
Other languages
Japanese (ja)
Inventor
Yasuhiro Arai
康弘 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2007202523A priority Critical patent/JP2009036473A/en
Publication of JP2009036473A publication Critical patent/JP2009036473A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To radiate exhaust heat of a fuel cell system to the atmosphere, by operating a heat pump type hot water supply system by inverse cycle operation. <P>SOLUTION: Supply hot and cold water in a hot water storage tank 37 is heated by the exhaust heat of the fuel cell system FSC, and is exchanged in heat with hot water circulating in a hot water heat exchanger 38. The heated supply hot and cold water is stored in the hot water storage tank 37 in a hot water storage part 36 by the exhaust heat in fuel cell operation and ordinary operation of a heat pump. There is the necessity of radiating heat when the heat is wholly stored in the hot water storage tank 37 of the hot water storage part 36 in operation of the fuel cell system. The operation of the fuel cell system is still continued, and since an ordinary condenser 54 becomes an evaporator by an inverse heat pump cycle and moreover exists on the downstream side of the hot water heat exchanger 38 of the fuel cell system FSC, the exhaust heat of the fuel cell system is recovered, and its exhaust heat is radiated to the atmosphere by an ordinary evaporator 56 functioning as a condenser. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヒートポンプ式給湯システムと組み合わせて運転される燃料電池システムに関するもので、特に、燃料電池システム運転において給湯等に熱が使われずに貯湯部の熱が余った場合に、ヒートポンプ式給湯システムを逆サイクル運転することにより、その排熱を大気に放熱することができる燃料電池システムに係る。   The present invention relates to a fuel cell system that is operated in combination with a heat pump hot water supply system, and in particular, when heat is not used for hot water supply or the like in the fuel cell system operation and heat in a hot water storage part remains, the heat pump hot water supply system The fuel cell system is capable of dissipating the exhaust heat to the atmosphere by performing reverse cycle operation.

固体高分子型燃料電池は、固体高分子電解質膜を挟んで燃料極であるアノード側電極と酸化剤極であるカソード側電極を向い合わせた電池セルをセパレータで挟持した構造物を、複数枚積層して構成されている。   A polymer electrolyte fuel cell is a multi-layer structure in which a battery cell with a solid polymer electrolyte membrane sandwiched between an anode electrode serving as a fuel electrode and a cathode electrode serving as an oxidant electrode facing each other is sandwiched between separators. Configured.

車載用等の燃料電池では、機動性を重視するため、通常、燃料には純水素を使用し、酸化剤には空気を用いたシステムが多い。ところが、定置用や家庭用になると、インフラの問題から、燃料にはメタン成分の多い都市ガスやプロパンガスを使用するシステムが求められる。この場合は、燃料を水素に改質するために、燃料に水蒸気を混合して水素を生成させる燃料処理器を用いる方法が一般的である。   In a fuel cell for in-vehicle use, since mobility is important, there are usually many systems using pure hydrogen as a fuel and air as an oxidant. However, for stationary and household use, a system that uses city gas or propane gas with a high methane component as fuel is required due to infrastructure problems. In this case, in order to reform the fuel into hydrogen, a method using a fuel processor that generates hydrogen by mixing water vapor with the fuel is generally used.

いずれのシステムもアノード電極側に供給された水素がイオン化して固体高分子電解質膜内を流れ、カソード電極側の酸素と反応し、水を生成するとともに、外部に対して電気エネルギが得られる。   In any system, hydrogen supplied to the anode electrode side is ionized and flows in the solid polymer electrolyte membrane, reacts with oxygen on the cathode electrode side to generate water, and electric energy is obtained to the outside.

ところで、この固体高分子型燃料電池は、電気エネルギの発生とともに、約100℃以下の排熱を生じる。これは、電池効率が100%にならない限り、つまり電池本体温度が周囲温度のままで発電が可能にならない限り、温度の高い電池温度から周囲温度への放熱分が熱として発生するからである。   By the way, this polymer electrolyte fuel cell generates exhaust heat of about 100 ° C. or less with generation of electric energy. This is because, as long as the battery efficiency does not reach 100%, that is, unless power generation becomes possible with the battery body temperature at the ambient temperature, the heat radiation from the high battery temperature to the ambient temperature is generated as heat.

一方、燃料を水素に改質するための燃料処理器においても、通常、改質器等の改質反応の加熱に燃焼器を使うため、燃焼排ガスや燃料処理器外部からの排熱が生じる。このような熱を利用すれば、電気エネルギとのハイブリッド運転、すなわちコジェネレーション運転となるため、非常に経済的でエネルギ効率の高い、地球環境に優しい運転が実現できる。   On the other hand, even in a fuel processor for reforming fuel into hydrogen, since a combustor is usually used for heating a reforming reaction of a reformer or the like, combustion exhaust gas or exhaust heat from the outside of the fuel processor is generated. If such heat is used, a hybrid operation with electric energy, that is, a cogeneration operation is performed, so that a very economical, energy-efficient and environmentally friendly operation can be realized.

近年、このような燃料電池システムを家庭に導入しようという開発活動が日本を中心に非常に高まっている。地球温暖化を防止する方法として、二酸化炭素の排出量が少ないこのエネルギが脚光を浴び、その省エネ性や経済性に注目が集まっているためである。   In recent years, development activities to introduce such a fuel cell system into the home have increased greatly, mainly in Japan. This is because, as a method of preventing global warming, this energy, which emits less carbon dioxide, has attracted attention, and attention has been focused on its energy saving and economic efficiency.

システムとしては、発電負荷の高い昼間が運転に適しており、夜間は発電負荷が低くなるため運転効率は低下し易い。また、連続運転をする場合、発電負荷が低下しきれずにシステムから系統電力線への電力が供給される、所謂逆潮流運転を防止するための機能が必要となる。   As a system, the daytime when the power generation load is high is suitable for operation, and the power generation load becomes low at night, so the operation efficiency tends to decrease. Further, in the case of continuous operation, a function for preventing so-called reverse power flow operation in which power is supplied from the system to the system power line without the power generation load being reduced is necessary.

一方、ヒートポンプを利用した給湯システムも近年注目を浴びており、急速な市場拡大が見られている。このシステムは、熱源として大気を利用しているため成績係数が高ければ高いほど、より省エネ性や経済性が優れるが、運転時間は料金の安い夜間であることが多く、昼間の運転は経済的に不利である。   On the other hand, hot water supply systems using heat pumps have attracted attention in recent years, and rapid market expansion is seen. This system uses the atmosphere as a heat source, so the higher the coefficient of performance, the better the energy saving and economic efficiency, but the operating hours are often low-cost nighttime, and daytime operation is economical. Disadvantageous.

これより、燃料電池システムは昼間、ヒートポンプを利用した給湯システムは夜間に適したシステムと言える。そして、両者の運転を上手く組み合わせることによって、発電負荷の高い昼間と発電負荷の低い夜間に対して大型発電所の発電負荷をより平準化でき、結果的にその増設を少なくし、地球環境にも優しくなる。   Therefore, it can be said that the fuel cell system is suitable for daytime, and the hot water supply system using a heat pump is suitable for nighttime. By combining the two operations well, the power generation load of a large power plant can be leveled even during the daytime when the power generation load is high and during the night when the power generation load is low. Become tender.

下記特許文献1〜3に記載の発明は、このような燃料電池システムとヒートポンプとを組合せた従来技術の一例である。
特開2005-337516号公報 特開2004-139914号公報 特開2007-132539号公報
The inventions described in the following Patent Documents 1 to 3 are examples of conventional techniques in which such a fuel cell system and a heat pump are combined.
JP 2005-337516 A JP 2004-139914 A JP 2007-132539 JP

前記のように従来技術では、主に夜間にヒートポンプ式給湯システム、昼間に燃料電池システムを組み合わせて運転することにより、各システムの省エネ性や経済性の組み合わせのみならず、電力需要に見合った発電供給を可能としている。この場合、燃料電池システムとヒートポンプ式給湯システムとでは、貯湯タンクや配管の共用化を図ることで、システム全体の構成の単純化、部品点数の削減などを可能としている。   As described above, in the prior art, mainly by operating a heat pump hot water supply system at night and a fuel cell system in the daytime, not only a combination of energy saving and economic efficiency of each system but also power generation that meets the power demand. Supply is possible. In this case, in the fuel cell system and the heat pump hot water supply system, by sharing the hot water storage tank and piping, it is possible to simplify the configuration of the entire system and reduce the number of parts.

一方、家庭用の燃料電池は、冬季や厳寒期の凍結防止の観点から、屋内に設置されることが多く、その場合、運転時に発生する排熱の処理が問題になる。通常、燃料電池運転時の排熱は、貯湯タンクに送られてタンク内の貯溜水を加熱し、この加熱された温水を給湯や暖房に使用することで、有効利用されている。   On the other hand, home fuel cells are often installed indoors from the viewpoint of preventing freezing in the winter and severe cold seasons, and in that case, the treatment of exhaust heat generated during operation becomes a problem. Normally, exhaust heat during fuel cell operation is effectively utilized by being sent to a hot water storage tank to heat the stored water in the tank and using the heated hot water for hot water supply or heating.

しかしながら、屋内設置形の燃料電池の運転時において、温水や暖房などの熱需要が少ない場合には、排熱によって加熱した温水で貯湯タンクが満杯となってしまい、それ以上排熱を貯蔵することが不可能になる。その場合、燃料電池の運転を継続すると、排熱の処理ができなくなり、燃料電池からの排熱を屋内に放出せざるを得ない問題が発生する。   However, when there is little demand for heat, such as hot water or heating, when operating an indoor fuel cell, the hot water tank heated by exhaust heat will fill up the hot water storage tank and store more exhaust heat. Becomes impossible. In that case, if the operation of the fuel cell is continued, the exhaust heat cannot be processed, and there arises a problem that the exhaust heat from the fuel cell has to be released indoors.

これを防止するためには、排熱による温水の加熱ラインとは別に、燃料電池から発生した排熱を屋外に排出するためのダクトや換気扇など設備が別途必要となり、設置器具やスペースの増加などを招く問題があった。   In order to prevent this, separate equipment such as a duct and ventilation fan for exhausting the exhaust heat generated from the fuel cell to the outside is required in addition to the hot water heating line due to exhaust heat, increasing installation equipment and space, etc. There was a problem that invited.

本発明は、前記のようなヒートポンプ給湯を併用した燃料電池システムにおける排熱処理の問題点を解決するために提案されたもので、ヒートポンプ式給湯システムを利用して燃料電池の排熱を屋外に排出することで、排熱放出用のダクトなどの設備を使用することなく、貯湯タンクにおける排熱の処理が満杯となった場合でも、燃料電池の排熱を屋外に効率よく排出することのできる燃料電池システムを提供することを目的とする。   The present invention has been proposed in order to solve the problem of exhaust heat treatment in a fuel cell system combined with a heat pump hot water as described above, and exhausts the exhaust heat of the fuel cell to the outside using a heat pump hot water supply system. As a result, it is possible to efficiently discharge the exhaust heat of the fuel cell to the outdoors even when the exhaust heat treatment in the hot water storage tank is full without using equipment such as a duct for exhaust heat release. An object is to provide a battery system.

前記の目的を達成するため、本発明は、給湯水の貯湯タンク内に貯留する給湯水を燃料電池の排熱とヒートポンプ式給湯システムとによって加熱する燃料電池システムにおいて、前記ヒートポンプ式給湯システムには、通常運転時に凝縮器となり逆サイクル運転時には蒸発器となる通常凝縮器と、通常運転時に蒸発器となり逆サイクル運転時には凝縮器となる通常蒸発器と、通常運転時及び逆サイクル運転時においてこれら凝縮器と蒸発器に対して冷媒の供給方向を切り替えるための手段を設け、前記通常凝縮器を前記給湯水の循環路に配置し、前記ヒートポンプ式給湯システムの通常運転時には前記通常凝縮器によって給湯水を加熱し、燃料電池の排熱放出時には、前記ヒートポンプ式給湯システムを逆サイクル運転させることにより、前記通常凝縮器を蒸発器として機能させて燃料電池の排熱を吸収すると共に、通常蒸発器を凝縮器として機能させて吸収した燃料電池排熱を凝縮器として機能する通常蒸発器から放出することを特徴とする。   In order to achieve the above object, the present invention provides a fuel cell system in which hot water stored in a hot water storage tank is heated by exhaust heat of a fuel cell and a heat pump hot water supply system. A normal condenser that becomes a condenser during normal operation and an evaporator during reverse cycle operation, a normal evaporator that becomes an evaporator during normal operation and a condenser during reverse cycle operation, and a condenser during normal operation and reverse cycle operation. Means for switching the supply direction of the refrigerant with respect to the condenser and the evaporator, the normal condenser is disposed in the circulation path of the hot water supply water, and the hot water supply water is supplied by the normal condenser during normal operation of the heat pump hot water supply system. When the exhaust heat of the fuel cell is released, the heat pump hot water supply system is operated in reverse cycle, The normal condenser functions as an evaporator to absorb the exhaust heat of the fuel cell, and the normal evaporator functions as a condenser to discharge the absorbed fuel cell exhaust heat from the normal evaporator that functions as a condenser. Features.

本発明によれば、ヒートポンプ式給湯システムを逆サイクル運転することにより、ヒートポンプの熱移動路を燃料電池の排熱の放出用としてそのまま使用することが可能となり、その結果、排熱放出用のダクトなどの設備を使用することなく、貯湯タンクにおける排熱の処理が満杯となった場合でも、燃料電池の排熱を屋外に効率よく排出することができる。   According to the present invention, by operating the heat pump hot water supply system in a reverse cycle, the heat transfer path of the heat pump can be used as it is for discharging the exhaust heat of the fuel cell, and as a result, the exhaust heat discharging duct is used. Even when the exhaust heat processing in the hot water storage tank becomes full without using such equipment, the exhaust heat of the fuel cell can be efficiently discharged outdoors.

(1)第1実施形態の構成
以下、本発明の第1実施形態を図1〜図3を参照して説明する。図1は、本発明の第1実施形態を示す燃料電池システムの全体構成を示す配置図である。
(1) Configuration of First Embodiment Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a layout diagram showing the overall configuration of the fuel cell system according to the first embodiment of the present invention.

(a) 燃料電池システム部分
第1実施形態の燃料電池システムは、図1に示すように、本発明を固体高分子型燃料電池システムに適用したものである。この第1実施形態において、燃料電池システムFCSは、主に燃料処理系(FPS;Fuel Processing System)1及び電池本体(CSA;Cell Stack Assembly)2から構成される。
(a) Fuel Cell System Portion As shown in FIG. 1, the fuel cell system of the first embodiment is one in which the present invention is applied to a solid polymer fuel cell system. In the first embodiment, the fuel cell system FCS is mainly composed of a fuel processing system (FPS) 1 and a battery body (CSA) 2.

燃料処理系1は、燃料3、脱硫器4、水蒸気発生器5、改質器6、COシフト反応器7、CO選択酸化器8、水蒸気分離器9、改質用燃焼器10、改質用水ポンプ11、タンク形の排熱熱交換器12a,12bなどから構成される。燃料は炭化水素系燃料、例えば都市ガスやプロパンである。一方、電池本体2は、アノード極13、カソード極14から構成される。   The fuel processing system 1 includes a fuel 3, a desulfurizer 4, a steam generator 5, a reformer 6, a CO shift reactor 7, a CO selective oxidizer 8, a steam separator 9, a reforming combustor 10, and reforming water. It comprises a pump 11, tank-type exhaust heat exchangers 12a, 12b, and the like. The fuel is a hydrocarbon fuel such as city gas or propane. On the other hand, the battery body 2 includes an anode electrode 13 and a cathode electrode 14.

本実施形態における固体高分子型燃料電池システムの発電原理を簡単に説明する。燃料に例えば都市ガスを使用する場合、都市ガスから水素ガスへの改質は、燃料処理系1で行われる。都市ガス燃料3は、燃料機器用ブロア31によって送風されることで脱硫器4を通過し、例えば活性炭やゼオライト吸着等によって硫黄分が取り除かれ、次に改質器6を通過する。   The principle of power generation of the polymer electrolyte fuel cell system in this embodiment will be briefly described. For example, when city gas is used as the fuel, reforming from city gas to hydrogen gas is performed in the fuel processing system 1. The city gas fuel 3 passes through the desulfurizer 4 by being blown by the blower 31 for fuel equipment, and the sulfur content is removed by, for example, activated carbon or zeolite adsorption, and then passes through the reformer 6.

この手前の水蒸気発生器5で水が加熱され、ガス化した水蒸気が燃料ガスに合流する。改質器6では触媒により都市ガスと水蒸気の反応から、水素が生成するが同時にCOの生成も行われる。この水蒸気改質は吸熱反応のため、改質器6には加熱用の燃焼器10が含まれており、燃焼用の燃料供給配管25と、ブロア26を備えた燃焼用空気の供給配管27が接続されている。   Water is heated by the steam generator 5 in front of this, and the gasified steam joins the fuel gas. In the reformer 6, hydrogen is generated from the reaction of city gas and water vapor by the catalyst, but at the same time, CO is also generated. Since this steam reforming is an endothermic reaction, the reformer 6 includes a combustor 10 for heating, and includes a fuel supply pipe 25 for combustion and a combustion air supply pipe 27 provided with a blower 26. It is connected.

固体高分子型燃料電池は、電池本体2の電解質膜及び触媒層から構成されるMEA(Membrane Electrode Assembly:膜/電極接合体)でのCO被毒が問題となるため、COはCO2へ酸化させる必要がある。このため、COシフト反応器7ではH2Oによるシフト反応、CO選択酸化器8では、触媒によりCO被毒が発生しない程度に、CO選択酸化用空気ブロア15の空気供給により酸化反応を進める必要がある。 In the polymer electrolyte fuel cell, CO poisoning in a MEA (Membrane Electrode Assembly) composed of the electrolyte membrane and the catalyst layer of the battery body 2 becomes a problem, so CO is oxidized to CO 2 It is necessary to let Therefore, the CO shift reactor 7 needs to proceed with the shift reaction by H 2 O, and the CO selective oxidizer 8 needs to advance the oxidation reaction by supplying air from the CO selective oxidation air blower 15 to the extent that no CO poisoning is generated by the catalyst. There is.

また、簡単化のため図示しなかったが、改質器を含めたこれらの触媒反応温度はそれぞれ異なり、改質器6の数百度からCO選択酸化器8の百数十度と、改質ガスの上流と下流の温度差が大きいため、実際には下流側温度を下げるための水熱交換器が必要となる。   Although not shown for simplification, these catalytic reaction temperatures including the reformer are different from each other, from several hundred degrees of the reformer 6 to several hundred degrees of the CO selective oxidizer 8, and the reformed gas. Since the temperature difference between upstream and downstream is large, a water heat exchanger for reducing the downstream temperature is actually required.

次に、各触媒での主なプロセス反応を以下に示す。例えばメタン成分が主体の都市ガス改質の場合、水蒸気改質反応は(1)式、COシフト反応は(2)式、CO選択酸化反応は(3)式のようになる。   Next, main process reactions in each catalyst are shown below. For example, in the case of city gas reforming mainly composed of a methane component, the steam reforming reaction is represented by equation (1), the CO shift reaction is represented by equation (2), and the CO selective oxidation reaction is represented by equation (3).

CH4+2H2O→CO2+4H2…(1)
CO+H2O→CO2+H2…(2)
2CO+O2→2CO2…(3)
CH 4 + 2H 2 O → CO 2 + 4H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)
2CO + O 2 → 2CO 2 (3)

CO選択酸化器8を通過した改質ガスは、主に水素、炭酸ガス及び余った水蒸気等より構成される。これらのガスが、アノード極13に送り込まれる。アノード極13に送り込まれた水素ガスは、MEAの触媒層を経てプロトンHが電解質膜を通過、カソード極用空気ブロア16によりカソード極14を通過する空気中の酸素及び電子と結びついて水が生成される。したがって、アノード極は−極、カソード極は+極となり、電位を持って直流電圧を発電する。この電位間に電気負荷を持てば電源としての機能を持つことになる。 The reformed gas that has passed through the CO selective oxidizer 8 is mainly composed of hydrogen, carbon dioxide gas, excess steam, and the like. These gases are fed into the anode 13. The hydrogen gas sent to the anode 13 passes through the catalyst layer of the MEA, proton H + passes through the electrolyte membrane, and is combined with oxygen and electrons in the air passing through the cathode 14 by the cathode air blower 16, and water is added. Generated. Therefore, the anode electrode becomes a negative electrode and the cathode electrode becomes a positive electrode, and a DC voltage is generated with a potential. If there is an electrical load between these potentials, it will function as a power source.

発電に使われずに残ったアノード極出口ガスは、水蒸気加熱器5及び改質器6の加熱用燃料ガスとして使われる。また、カソード極出口中の水蒸気及び燃焼排気ガス中の水蒸気は、排熱熱交換器12aにより、水分を回収し、システムでの水自立を図る。すなわち、CO選択酸化器8を通過した改質ガス中の余った水蒸気は、水蒸気分離器9によって分離された後、熱交換器12a内で凝縮され、改質用ポンプ11によって、活性炭やイオン交換樹脂などの改質水用フィルタ30を通過した後、再び改質器に送られる。   The anode electrode outlet gas remaining without being used for power generation is used as a fuel gas for heating the steam heater 5 and the reformer 6. Further, the water vapor in the cathode electrode outlet and the water vapor in the combustion exhaust gas are collected by the exhaust heat exchanger 12a to achieve water self-supporting in the system. That is, excess water vapor in the reformed gas that has passed through the CO selective oxidizer 8 is separated by the water vapor separator 9 and then condensed in the heat exchanger 12a, and activated carbon and ion exchange are performed by the reforming pump 11. After passing through the reforming water filter 30 such as resin, it is sent to the reformer again.

一方、電池本体2の排熱は、冷却水ポンプ29によって電池本体2に供給される冷却水を加熱することによって取り出され、この加熱された冷却水を電池冷却水ポンプ29の循環ラインに配置された排熱熱交換器12a及び12bにおいて給湯水などと熱交換させることによって熱回収される。この排熱熱交換器12a及び12bで熱交換して暖められた給湯水(温水)は、温水循環ポンプ33の運転により、温水熱交換器38を通して、貯湯部36の貯湯タンク37に蓄熱され、給湯や風呂の温水さらには床暖房などの暖房用として使われる。   On the other hand, the exhaust heat of the battery main body 2 is taken out by heating the cooling water supplied to the battery main body 2 by the cooling water pump 29, and this heated cooling water is disposed in the circulation line of the battery cooling water pump 29. Heat is recovered by exchanging heat with hot water in the exhaust heat exchangers 12a and 12b. The hot water (warm water) heated by exchanging heat in the exhaust heat exchangers 12a and 12b is stored in the hot water storage tank 37 of the hot water storage section 36 through the hot water heat exchanger 38 by the operation of the hot water circulation pump 33. It is used for heating such as hot water supply, hot water for baths, and floor heating.

ここで、貯湯部36は、燃料電池システムFCSの排熱を温水として貯留するためのものであると同時に、後述するヒートポンプ式給湯システム50における貯湯部としても機能するものである。すなわち、この貯湯部36における貯湯タンク37には、給湯用などに使用する水道水が供給されると共に、この貯湯タンク37と前記温水交換器38との間には、貯湯部温水ポンプ39によって貯湯タンク37内に供給された水道水が循環しており、前記温水熱交換器38部分に循環する燃料電池システムFCSの排熱によって加熱された温水との間で熱交換がされ、所定の温度にまで加熱される。   Here, the hot water storage section 36 serves to store the exhaust heat of the fuel cell system FCS as hot water, and also functions as a hot water storage section in the heat pump hot water supply system 50 described later. That is, the hot water storage tank 37 in the hot water storage section 36 is supplied with tap water used for hot water supply or the like, and the hot water storage section 37 and the hot water exchanger 38 are provided with hot water storage by a hot water storage section hot water pump 39. The tap water supplied into the tank 37 circulates, and heat is exchanged with the hot water heated by the exhaust heat of the fuel cell system FCS circulated in the hot water heat exchanger 38 portion, so that the predetermined temperature is reached. Until heated.

(b) ヒートポンプ式給湯システム部分
次に、本実施形態におけるヒートポンプ式給湯システム50の詳細を、図2に示す。本システムは、ヒートポンプ部51と前記貯湯部36から構成され、ヒートポンプ部51は、主として圧縮機52、四方弁53、通常凝縮器54、膨張機構55、通常蒸発器56から構成される。
(b) Heat pump type hot water supply system part Next, the detail of the heat pump type hot water supply system 50 in this embodiment is shown in FIG. This system includes a heat pump unit 51 and the hot water storage unit 36. The heat pump unit 51 mainly includes a compressor 52, a four-way valve 53, a normal condenser 54, an expansion mechanism 55, and a normal evaporator 56.

ここで、通常凝縮器54または通常蒸発器56はヒートポンプ部51が温水を加熱する場合(通常運転時)には凝縮器または蒸発器として機能し、燃料電池システムFCSの排熱を屋外に排出する場合(排熱放出時)には、通常凝縮器54が蒸発器として、通常蒸発器56が凝縮器として機能するものである。そして、この通常凝縮器54部分が貯湯タンク37との間で循環する給湯水(水道水)との熱交換器になっている。   Here, the normal condenser 54 or the normal evaporator 56 functions as a condenser or an evaporator when the heat pump unit 51 heats hot water (during normal operation), and discharges the exhaust heat of the fuel cell system FCS to the outdoors. In this case (when exhaust heat is released), the normal condenser 54 functions as an evaporator, and the normal evaporator 56 functions as a condenser. The normal condenser 54 portion serves as a heat exchanger for hot water (tap water) that circulates between the hot water storage tank 37.

本ヒートポンプ式給湯システムの簡単な動作原理を説明する。本システムには冷媒、例えばCO2が封入され、圧縮機52で加熱、加圧された冷媒が超臨界サイクルで四方弁53を順方向に通過後、通常凝縮器54でエンタルピ低下して、通常凝縮器54に循環される給湯水に熱を放熱する。その後、冷媒は、膨張機構55で絞られた後、気液2相流になり、通常蒸発器56で大気から熱を奪い、圧縮機52に戻るサイクルを繰り返している。 A simple operation principle of the heat pump hot water supply system will be described. In this system, a refrigerant, for example, CO 2 is enclosed, and the refrigerant heated and pressurized by the compressor 52 passes through the four-way valve 53 in the forward direction in the supercritical cycle, and then the enthalpy is reduced by the normal condenser 54. Heat is radiated to the hot water circulated through the condenser 54. After that, the refrigerant is squeezed by the expansion mechanism 55 and then becomes a gas-liquid two-phase flow, and the cycle in which the normal evaporator 56 takes heat from the atmosphere and returns to the compressor 52 is repeated.

通常凝縮器54において熱を与えられた給湯水は、貯湯部36内に配置された貯湯部温水ポンプ39により貯湯タンク37に送られて貯留され、必要に応じて台所や風呂等の給湯や温水暖房などに利用される。   Usually, hot water supplied with heat in the condenser 54 is sent to and stored in a hot water storage tank 37 by a hot water storage unit hot water pump 39 disposed in the hot water storage unit 36, and hot water or hot water in a kitchen or a bath is used as necessary. Used for heating.

なお、本実施形態において、通常凝縮器54は、貯湯部36に供給される給湯水の循環系のなかで、燃料電池システムFCSの排熱熱交換器38の下流側に位置しており、燃料電池システムより放熱温度が高いために、貯湯タンク37により高温の給湯水を貯留することができる。   In the present embodiment, the normal condenser 54 is located on the downstream side of the exhaust heat exchanger 38 of the fuel cell system FCS in the circulating system of hot water supplied to the hot water storage section 36, and the fuel Since the heat dissipation temperature is higher than that of the battery system, the hot water storage tank 37 can store hot hot water.

(2)第1実施形態の作用
前記のように本実施形態の燃料電池システムは、燃料電運転時の排熱とヒートポンプの通常運転とによって、貯湯部36内の貯湯タンク37に加熱した給湯水を貯留することができるものである。すなわち、本システムの場合、基本的運転時間は、発電負荷の高い昼間が燃料電池運転、発電負荷の低い夜間がヒートポンプ式給湯システムの運転である。
(2) Operation of the First Embodiment As described above, the fuel cell system of the present embodiment is configured to supply hot water that is heated to the hot water storage tank 37 in the hot water storage section 36 by exhaust heat during fuel electric operation and normal operation of the heat pump. Can be stored. That is, in the case of this system, the basic operation time is the fuel cell operation during the daytime when the power generation load is high, and the heat pump hot water supply system operation during the night when the power generation load is low.

具体例としては、主として系統電気料金の安い夜間の夜11時から朝7時迄がヒートポンプ式給湯システムの運転であり、それ以外の昼間は燃料電池システムの運転となるが、必ずしも各運転をその間継続する必要は無い。但し、昼間に電力需要が低くなり、発電負荷を低くしても系統への逆潮流が発生する恐れの有る場合は、その間だけヒートポンプ式給湯システム運転も同時に行う。これにより、余分な逆潮流防止のための電気負荷例えば電気ヒータ等は不要となる。   As a specific example, the operation of the heat pump hot water supply system is mainly at night from 11:00 to 7:00 in the evening when the system electricity rate is low, and the fuel cell system is operated during the other daytime. There is no need to continue. However, if there is a risk of reverse power flow to the grid even if the power demand is low during the day and the power generation load is lowered, the heat pump hot water supply system is also operated during that time. This eliminates the need for an extra electrical load for preventing reverse power flow, such as an electric heater.

一方、昼間に燃料電池システムを運転しており、貯湯部36の貯湯タンク37に熱が貯まりきってしまった場合は放熱の必要があるが、この場合、燃料電池システムの運転は継続したまま、図3に示した逆ヒートポンプサイクルにより、通常凝縮器54が蒸発器になり、しかも燃料電池システムFCSの温水熱交換器38の下流側にあるために、燃料電池システムの排熱を回収し、凝縮器として機能する通常蒸発器56により大気にその排熱を放出することができる。   On the other hand, when the fuel cell system is operated in the daytime and the heat is completely stored in the hot water storage tank 37 of the hot water storage section 36, it is necessary to dissipate heat. In this case, the operation of the fuel cell system is continued, The reverse heat pump cycle shown in FIG. 3 makes the condenser 54 normally an evaporator and is located downstream of the hot water heat exchanger 38 of the fuel cell system FCS, so that the exhaust heat of the fuel cell system is recovered and condensed. The waste heat can be released to the atmosphere by the normal evaporator 56 functioning as a vacuum vessel.

すなわち、図3は、前記図2のシステムにおける逆ヒートポンプサイクルを示している。この運転では、四方弁53の反転で冷媒の流れが逆方向となり、通常時の蒸発器56が凝縮器として、通常時の凝縮器54が蒸発器としての機能を果たすことになる。なお、通常凝縮器54と通常蒸発器56に対して冷媒の供給方向を切り替えるための手段としては、前記四方弁53に限らず、その他複数の弁を組み合わせて使用することもできる。   That is, FIG. 3 shows a reverse heat pump cycle in the system of FIG. In this operation, the refrigerant flows in the reverse direction due to the reversal of the four-way valve 53, so that the normal evaporator 56 functions as a condenser and the normal condenser 54 functions as an evaporator. The means for switching the supply direction of the refrigerant to the normal condenser 54 and the normal evaporator 56 is not limited to the four-way valve 53, and other plural valves may be used in combination.

(3)第1実施形態の効果
以上のような構成を有する本実施形態によれば、以下のような効果を有する燃料電池システムを提供することができる。
(3) Effects of First Embodiment According to the present embodiment having the above-described configuration, a fuel cell system having the following effects can be provided.

(a) 主に夜間にヒートポンプ式給湯システム、昼間に燃料電池システムを組み合わせて運転することにより、各システムの省エネ性や経済性の組み合わせのみならず、電力需要に見合った発電供給が可能となり、特に発電負荷調整幅を大きくすることが困難な系統電力の供給電力量の平準化を図ることができ、結果的にその増設を少なくし、地球環境にも優しくなる。 (a) By operating in combination with a heat pump hot water supply system at night and a fuel cell system in the daytime, it becomes possible not only to combine the energy saving and economic efficiency of each system, but also to supply power that meets the power demand. In particular, it is possible to level the power supply amount of the system power, which is difficult to increase the power generation load adjustment range, and as a result, the number of expansions is reduced and the environment becomes gentle.

(b) 昼間に電力需要が減少し、燃料電池システムから系統への逆潮流発生しそうな場合には同時にヒートポンプ式給湯システムを運転することにより、余分な逆潮流防止装置が不要となり、コスト低減につながる。 (b) When power demand decreases during the daytime and a reverse power flow from the fuel cell system to the system is likely to occur, operating a heat pump hot water supply system at the same time eliminates the need for an extra reverse power flow prevention device, reducing costs. Connected.

(c) 燃料電池システム運転において給湯等に熱が使われずに貯湯部の熱が余った場合は、同時にヒートポンプ式給湯システムを逆サイクル運転することにより、その排熱を大気に放熱することができるため、従来必要だった余分な排熱熱交換器が不要となり、コスト低減につながる。 (c) When heat is not used for hot water supply etc. in the fuel cell system operation and the heat in the hot water storage part remains, the exhaust heat can be dissipated to the atmosphere by operating the heat pump hot water supply system in reverse cycle at the same time. This eliminates the need for an extra waste heat exchanger that has been required in the past, leading to cost reduction.

(d) 貯湯部と排熱温水ポンプをヒートポンプ式給湯システムと燃料電池システムで共通化することにより、全体システムの大幅なコスト低減のみならず、設置スペースの省スペース化を図ることができて、販売市場を広めることができる。 (d) By sharing the hot water storage section and the exhaust heat hot water pump with the heat pump hot water supply system and the fuel cell system, not only can the overall system cost be greatly reduced, but also the installation space can be saved. Can spread the sales market.

(e) 各システム、特に燃料電池システムの運転を主に昼間だけにすることができるため、一昼夜連続の運転に比べて各機器の運転時間が短くなり、耐久性が向上するのみならす、コスト低減効果も得られる。
(f) 本実施形態では、燃料電池システムと貯湯部36との間に、温水循環系(温水熱交換器38と温水循環ポンプ33)を設けることにより、貯湯タンク内の給湯水(水道水)を燃料電池システム側と完全に分離している。そのため、燃料電池の運転停止時に給湯水を燃料電池側にまで循環させる必要がなく、給湯水をヒートポンプ側にのみ循環させるだけで済み、停止した燃料電池システム側の機器や配管によって給湯水の熱が奪われることがない。また、循環経路が短いので貯湯部温水ポンプ39も小型のもので良い。
(e) Since each system, especially the fuel cell system, can be operated mainly during the daytime, the operating time of each device is shortened compared to continuous operation day and night, and only the durability is improved. An effect is also obtained.
(f) In the present embodiment, a hot water circulation system (a hot water heat exchanger 38 and a hot water circulation pump 33) is provided between the fuel cell system and the hot water storage section 36, thereby providing hot water (tap water) in the hot water storage tank. Is completely separated from the fuel cell system side. Therefore, it is not necessary to circulate hot water to the fuel cell side when the fuel cell is stopped, and only circulate hot water to the heat pump side. Will not be taken away. Further, since the circulation path is short, the hot water storage section hot water pump 39 may be small.

(4)他の実施形態
本発明は、前記の実施形態に限定されるものではなく、次のような他の実施形態も包含するものである。
(4) Other Embodiments The present invention is not limited to the above-described embodiments, and includes the following other embodiments.

(a) 図4は、図1のヒートポンプ式給湯システムと燃料電池システムを組み合わせた構成の変形例であり、燃料電池システムの温水熱交換器38と温水循環ポンプ33を省略し、貯湯部温水ポンプ39のみで各システムの排熱を貯湯タンク37に回収するシステム構成を示している。 (a) FIG. 4 is a modified example of the configuration in which the heat pump hot water supply system and the fuel cell system of FIG. 1 are combined. The hot water heat exchanger 38 and the hot water circulation pump 33 of the fuel cell system are omitted, and the hot water storage unit hot water pump is omitted. A system configuration in which the exhaust heat of each system is recovered in the hot water storage tank 37 by only 39 is shown.

すなわち、図4の実施形態は、貯湯タンク37の給湯水を、排熱熱交換器12a及び12bに直接循環させることで、図1の実施の形態に設けた燃料電池システムFCSと貯湯部間の温水循環系を省略したものである。これにより、循環系の構成が単純化される利点がある。
(b) 図1の実施形態は、水蒸気分離器9を通過した改質器側の排熱を排熱熱交換器12aで、また冷却水ポンプ9によって循環する燃料電池本体側の排熱を排熱熱交換器12bによって回収している。しかし、本発明においては、これら2つの排熱熱交換器を備えることを限定するものではなく、いずれか一方の排熱熱交換器を使用した燃料電池システムにも適用可能である。また、1つの排熱熱交換器で、改質器側と燃料電池本体側の両方の排熱を、給湯水と熱交換するようなシステムに対しても本発明を適用することができる。
That is, the embodiment of FIG. 4 directly circulates the hot water in the hot water storage tank 37 to the exhaust heat exchangers 12a and 12b, so that the fuel cell system FCS provided in the embodiment of FIG. The hot water circulation system is omitted. Thereby, there exists an advantage by which the structure of a circulatory system is simplified.
(b) In the embodiment of FIG. 1, exhaust heat on the reformer side that has passed through the steam separator 9 is exhausted by the exhaust heat exchanger 12 a and exhaust heat on the fuel cell body side that is circulated by the cooling water pump 9 is exhausted. It is recovered by the heat heat exchanger 12b. However, the present invention is not limited to the provision of these two exhaust heat exchangers, and can be applied to a fuel cell system using either one of the exhaust heat exchangers. The present invention can also be applied to a system in which the exhaust heat on both the reformer side and the fuel cell main body side is heat-exchanged with hot water supply with a single exhaust heat exchanger.

本発明の燃料電池システムの一実施形態を全体構成を示す配置図である。1 is a layout diagram showing the overall configuration of an embodiment of a fuel cell system of the present invention. 図1の燃料電池システムにおけるヒートポンプ式給湯システム部分の詳細を示す配置図で、ヒートポンプの通常運転時の状態を示す。FIG. 2 is a layout diagram showing details of a heat pump hot water supply system portion in the fuel cell system of FIG. 1, showing a state during normal operation of the heat pump. 図1の燃料電池システムにおけるヒートポンプ式給湯システム部分の詳細を示す配置図で、燃料電池の排熱放出運転時の状態を示す。FIG. 2 is a layout diagram showing details of a heat pump hot water supply system portion in the fuel cell system of FIG. 1, showing a state of the fuel cell during exhaust heat release operation. 本発明の別の実施形態における貯湯部と燃料電池システムとの熱交換部分を示す配置図である。It is a layout drawing which shows the heat exchange part of the hot water storage part and fuel cell system in another embodiment of the present invention.

符号の説明Explanation of symbols

FCS…燃料電池システム
1…燃料処理系
2…電池本体
3…燃料
4…脱硫器
5…水蒸気発生器
6…改質器
7…COシフト反応器
8…CO選択酸化器
9…水蒸気分離器
10…改質用燃焼器
11…改質用水ポンプ
12a…排熱熱交換器(燃料電池本体側)
12b…排熱熱交換器(改質器側)
13…アノード極
14…カソード極
15…CO選択酸化用空気ブロア
16…カソード極用空気ブロア
29…電池冷却水ポンプ
30…改質水用フィルタ
31…燃料機器用ブロア
33…温水循環ポンプ
36…貯湯部
37…貯湯タンク
38…温水熱交換器
39…貯湯部温水ポンプ
50…ヒートポンプ式給湯システム
51…ヒートポンプ
52…圧縮機
53…四方弁
54…通常凝縮器
55…膨張機構
56…通常蒸発器
FCS ... fuel cell system 1 ... fuel treatment system 2 ... battery body 3 ... fuel 4 ... desulfurizer 5 ... steam generator 6 ... reformer 7 ... CO shift reactor 8 ... CO selective oxidizer 9 ... steam separator 10 ... Reforming combustor 11 ... reforming water pump 12a ... waste heat exchanger (fuel cell main body side)
12b ... Waste heat exchanger (reformer side)
DESCRIPTION OF SYMBOLS 13 ... Anode pole 14 ... Cathode pole 15 ... CO selective oxidation air blower 16 ... Cathode pole air blower 29 ... Battery cooling water pump 30 ... Reformed water filter 31 ... Fuel equipment blower 33 ... Hot water circulation pump 36 ... Hot water storage Part 37 ... Hot water storage tank 38 ... Hot water heat exchanger 39 ... Hot water storage part hot water pump 50 ... Heat pump hot water supply system 51 ... Heat pump 52 ... Compressor 53 ... Four-way valve 54 ... Normal condenser 55 ... Expansion mechanism 56 ... Normal evaporator

Claims (6)

給湯水の貯湯タンク内に貯留する給湯水を燃料電池の排熱とヒートポンプ式給湯システムとによって加熱する燃料電池システムにおいて、
前記ヒートポンプ式給湯システムには、通常運転時に凝縮器となり逆サイクル運転時には蒸発器となる通常凝縮器と、通常運転時に蒸発器となり逆サイクル運転時には凝縮器となる通常蒸発器と、通常運転時及び逆サイクル運転時においてこれら凝縮器と蒸発器に対して冷媒の供給方向を切り替えるための手段を設け、
前記通常凝縮器を前記給湯水の循環路に配置し、前記ヒートポンプ式給湯システムの通常運転時には前記通常凝縮器によって給湯水を加熱し、
燃料電池の排熱放出時には、前記ヒートポンプ式給湯システムを逆サイクル運転させることにより、前記通常凝縮器を蒸発器として機能させて燃料電池の排熱を吸収すると共に、吸収した燃料電池排熱を凝縮器として機能する通常蒸発器から放出することを特徴とする燃料電池システム。
In a fuel cell system that heats hot water stored in a hot water storage tank using a waste heat of the fuel cell and a heat pump hot water supply system,
The heat pump hot water supply system includes a normal condenser that becomes a condenser during normal operation and an evaporator during reverse cycle operation, a normal evaporator that becomes an evaporator during normal operation and a condenser during reverse cycle operation, and a normal operation and A means for switching the supply direction of the refrigerant to the condenser and the evaporator during reverse cycle operation is provided,
The normal condenser is arranged in a circulation path of the hot water, and hot water is heated by the normal condenser during normal operation of the heat pump hot water system,
When the exhaust heat of the fuel cell is released, the heat pump hot water supply system is operated in a reverse cycle so that the normal condenser functions as an evaporator to absorb the exhaust heat of the fuel cell and condense the absorbed fuel cell exhaust heat. A fuel cell system, characterized in that it is discharged from a normal evaporator that functions as a vacuum vessel.
燃料電池の排熱によって温水を加熱する排熱熱交換器と、この排熱熱交換器と温水熱交換器との間で温水を循環させるための温水循環ポンプを備え、
前記温水熱交換器と前記貯湯タンクとの間で貯湯部温水ポンプを用いて給湯水を循環させ、温水熱交換器において排熱熱交換器で加熱された温水と給湯水とを熱交換させることにより、給湯水を加熱することを特徴とする請求項1に記載の燃料電池システム。
An exhaust heat exchanger that heats the hot water by the exhaust heat of the fuel cell, and a hot water circulation pump for circulating the hot water between the exhaust heat exchanger and the hot water heat exchanger,
Hot water is circulated between the hot water heat exchanger and the hot water storage tank using a hot water storage section hot water pump, and the hot water heated by the exhaust heat exchanger and the hot water are exchanged in the hot water heat exchanger. The fuel cell system according to claim 1, wherein hot water is heated.
前記給湯水の循環路において、前記ヒートポンプ給湯システムの通常凝縮器を、温水熱交換器の上流側に配置したことを特徴とする請求項2に記載の燃料電池システム。   3. The fuel cell system according to claim 2, wherein a normal condenser of the heat pump hot water supply system is disposed upstream of the hot water heat exchanger in the hot water circulation path. 燃料電池の排熱と貯湯タンクからの給湯水との熱交換を行う排熱熱交換器と、貯湯タンクと排熱熱交換器との間で給湯水を循環させるための貯湯部温水ポンプとを備え、排熱熱交換器によって直接給湯水を加熱することを特徴とする請求項1に記載の燃料電池システム。   An exhaust heat exchanger that exchanges heat between the exhaust heat of the fuel cell and hot water from the hot water storage tank, and a hot water storage hot water pump that circulates the hot water between the hot water storage tank and the exhaust heat exchanger 2. The fuel cell system according to claim 1, wherein the hot water is directly heated by an exhaust heat exchanger. 前記給湯水の循環路において、前記ヒートポンプ給湯システムの通常凝縮器を、排熱熱交換器の上流側に配置したことを特徴とする請求項4に記載の燃料電池システム。   5. The fuel cell system according to claim 4, wherein a normal condenser of the heat pump hot water supply system is disposed upstream of the exhaust heat exchanger in the hot water circulation path. 前記排熱熱交換器が、燃料電池本体または改質器の少なくとも一方の排熱の熱交換を行うものであることを特徴とする請求項2乃至請求項5のいずれか1項に記載の燃料電池システム。   The fuel according to any one of claims 2 to 5, wherein the exhaust heat exchanger performs heat exchange of exhaust heat of at least one of the fuel cell main body and the reformer. Battery system.
JP2007202523A 2007-08-03 2007-08-03 Fuel cell system Pending JP2009036473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202523A JP2009036473A (en) 2007-08-03 2007-08-03 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202523A JP2009036473A (en) 2007-08-03 2007-08-03 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2009036473A true JP2009036473A (en) 2009-02-19

Family

ID=40438540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202523A Pending JP2009036473A (en) 2007-08-03 2007-08-03 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2009036473A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189233A (en) * 2011-03-09 2012-10-04 Panasonic Corp Cogeneration system
US8445155B2 (en) * 2011-06-08 2013-05-21 Samsung Everland Inc. Complex power generation system and method for supplying heated water thereof
GB2514813A (en) * 2013-06-05 2014-12-10 Intelligent Energy Ltd Fuel cell system and associated method of operation
JPWO2013027312A1 (en) * 2011-08-24 2015-03-05 パナソニック株式会社 Heating system control method and heating system
JP2015145734A (en) * 2014-01-31 2015-08-13 本田技研工業株式会社 cogeneration system
JP2015145735A (en) * 2014-01-31 2015-08-13 本田技研工業株式会社 cogeneration system
JP2020143794A (en) * 2019-03-04 2020-09-10 東京瓦斯株式会社 Heat supply device for heating fluid
JP2020145769A (en) * 2019-03-04 2020-09-10 東京瓦斯株式会社 Heat pump system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065984A (en) * 1999-08-30 2001-03-16 Osaka Gas Co Ltd Hot water storage type water heating facility
JP2001296059A (en) * 2000-04-12 2001-10-26 Osaka Gas Co Ltd Hot water storage type hot water heater source device
JP2002289242A (en) * 2001-03-28 2002-10-04 Osaka Gas Co Ltd Fuel cell exhaust heat recovery system
JP2003217629A (en) * 2002-01-18 2003-07-31 Sanyo Electric Co Ltd Solid polymer electrolyte fuel cell power generator
JP2004012041A (en) * 2002-06-07 2004-01-15 Tokyo Gas Co Ltd Hot water storage type hot water supplying heat source device
JP2004259615A (en) * 2003-02-26 2004-09-16 Denso Corp Cooling device for fuel cell
JP2006012563A (en) * 2004-06-24 2006-01-12 Ebara Ballard Corp Fuel cell system
JP2006158148A (en) * 2004-12-01 2006-06-15 Osaka Gas Co Ltd Power consumption installation and cogeneration system
JP2007132539A (en) * 2005-11-08 2007-05-31 Hanshin Electric Co Ltd Hot water storage type water heater

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065984A (en) * 1999-08-30 2001-03-16 Osaka Gas Co Ltd Hot water storage type water heating facility
JP2001296059A (en) * 2000-04-12 2001-10-26 Osaka Gas Co Ltd Hot water storage type hot water heater source device
JP2002289242A (en) * 2001-03-28 2002-10-04 Osaka Gas Co Ltd Fuel cell exhaust heat recovery system
JP2003217629A (en) * 2002-01-18 2003-07-31 Sanyo Electric Co Ltd Solid polymer electrolyte fuel cell power generator
JP2004012041A (en) * 2002-06-07 2004-01-15 Tokyo Gas Co Ltd Hot water storage type hot water supplying heat source device
JP2004259615A (en) * 2003-02-26 2004-09-16 Denso Corp Cooling device for fuel cell
JP2006012563A (en) * 2004-06-24 2006-01-12 Ebara Ballard Corp Fuel cell system
JP2006158148A (en) * 2004-12-01 2006-06-15 Osaka Gas Co Ltd Power consumption installation and cogeneration system
JP2007132539A (en) * 2005-11-08 2007-05-31 Hanshin Electric Co Ltd Hot water storage type water heater

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189233A (en) * 2011-03-09 2012-10-04 Panasonic Corp Cogeneration system
US8445155B2 (en) * 2011-06-08 2013-05-21 Samsung Everland Inc. Complex power generation system and method for supplying heated water thereof
JPWO2013027312A1 (en) * 2011-08-24 2015-03-05 パナソニック株式会社 Heating system control method and heating system
US9851110B2 (en) 2011-08-24 2017-12-26 Panasonic Intellectual Property Management Co., Ltd. Heating system control method and heating system
GB2514813A (en) * 2013-06-05 2014-12-10 Intelligent Energy Ltd Fuel cell system and associated method of operation
GB2514813B (en) * 2013-06-05 2020-12-23 Intelligent Energy Ltd Fuel cell system and associated method of operation
JP2015145734A (en) * 2014-01-31 2015-08-13 本田技研工業株式会社 cogeneration system
JP2015145735A (en) * 2014-01-31 2015-08-13 本田技研工業株式会社 cogeneration system
JP2020143794A (en) * 2019-03-04 2020-09-10 東京瓦斯株式会社 Heat supply device for heating fluid
JP2020145769A (en) * 2019-03-04 2020-09-10 東京瓦斯株式会社 Heat pump system
JP7249172B2 (en) 2019-03-04 2023-03-30 東京瓦斯株式会社 A heat supply device that heats a fluid

Similar Documents

Publication Publication Date Title
JP2009036473A (en) Fuel cell system
KR101828938B1 (en) High efficiency tri-generation systems based on fuel cells
EP2755269B1 (en) Cogeneration system
JP2015002093A (en) Fuel cell system
JP2015022864A (en) Fuel cell system
JP5980025B2 (en) Fuel cell cogeneration system
JP2009021047A (en) Indoor type fuel cell power generation system
KR101339672B1 (en) Heating and cooling system using heat from fuel cell
JP2016515190A (en) Heating equipment and method of operating heating equipment
JP2014182923A (en) Fuel cell system and operation method thereof
JP4007442B2 (en) Air conditioning system using exhaust heat of fuel cells
JP3956208B2 (en) Fuel cell power generation system and operation method thereof
JP2001068135A (en) Reforming system for fuel cell
JP5277573B2 (en) Fuel cell power generator
KR102432355B1 (en) High temperature fuel cell system and control method
JP5068291B2 (en) Fuel cell system
JP2009170189A (en) Fuel cell system and method of recovering flocculated water in the fuel cell system
JP7249172B2 (en) A heat supply device that heats a fluid
KR101828937B1 (en) Combined power generation system of high-temperature polymer electrolyte membrane fuel cell with a rankine cycle system
JP2011233378A (en) Fuel cell hot-water supply system
JP4791661B2 (en) Polymer electrolyte fuel cell system
JP4101051B2 (en) Fuel cell system
JP2004213985A (en) Fuel cell system
JP2008282572A (en) Fuel cell system
JP2004178916A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108