JP2003217629A - Solid polymer electrolyte fuel cell power generator - Google Patents

Solid polymer electrolyte fuel cell power generator

Info

Publication number
JP2003217629A
JP2003217629A JP2002010598A JP2002010598A JP2003217629A JP 2003217629 A JP2003217629 A JP 2003217629A JP 2002010598 A JP2002010598 A JP 2002010598A JP 2002010598 A JP2002010598 A JP 2002010598A JP 2003217629 A JP2003217629 A JP 2003217629A
Authority
JP
Japan
Prior art keywords
fuel cell
water
hot water
gas
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002010598A
Other languages
Japanese (ja)
Other versions
JP3561706B2 (en
Inventor
Hirokazu Izaki
博和 井崎
Ryuji Hatayama
龍次 畑山
Masatoshi Ueda
雅敏 上田
Taketoshi Ouki
丈俊 黄木
Koji Shindo
浩二 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002010598A priority Critical patent/JP3561706B2/en
Publication of JP2003217629A publication Critical patent/JP2003217629A/en
Application granted granted Critical
Publication of JP3561706B2 publication Critical patent/JP3561706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte fuel cell power generator capable of raising the temperature of a fuel cell to the temperature range close to the operation temperature in a short time when the generator is started. <P>SOLUTION: In this solid polymer electrolyte fuel cell power generator comprising a reformer, a CO transformer, a CO remover, a process gas burner to burn hydrogen until each reactor is stabilized after the generator is started, a fuel cell, a water tank storing water to cool the fuel cell, and a hot water storage tank to store hot water, a pipe for feeding hydrocarbon fuel gas to the process gas burner is provided, the hydrocarbon fuel gas is fed through the pipe and singly burned when the generator is started, or burned together with hydrogen, and the heat of exhaust gas is recovered to heat the water in the water tank, and the heated hot water is circulated to the fuel cell to heat the fuel cell. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば家庭用の小
型電源として好適な固体高分子形燃料電池発電装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell power generator suitable as a small-sized power source for home use, for example.

【0002】[0002]

【従来の技術】近年、天然ガス、都市ガス、メタノー
ル、LPG、ブタンなどの炭化水素系燃料ガスを水素に
改質する改質器と、一酸化炭素を変成するCO変成器
と、一酸化炭素を除去するCO除去器と、起動後に各反
応器が安定するまで水素を燃焼するプロセスガスバーナ
と、このようにして得られた水素と空気中の酸素とを化
学反応させて発電する燃料電池と、燃料電池の電極部を
冷却するとともに反応空気の加湿のためのイオン交換樹
脂などの水処理装置で処理された水(純水)を収納した
水タンクと、前記改質器、燃料電池、プロセスガスバー
ナなどの排ガスの熱を回収して温水とする熱交換器と、
この温水を蓄える貯湯タンクなどを備えた小型電源とし
ての固体高分子形燃料電池発電装置が提案されている。
2. Description of the Related Art Recently, a reformer for reforming hydrocarbon fuel gas such as natural gas, city gas, methanol, LPG, butane to hydrogen, a CO shifter for transforming carbon monoxide, and a carbon monoxide. A CO remover that removes hydrogen, a process gas burner that burns hydrogen until each reactor stabilizes after startup, and a fuel cell that chemically reacts the hydrogen thus obtained with oxygen in the air to generate electricity. A water tank containing water (pure water) treated with a water treatment device such as an ion exchange resin for cooling the electrode part of the fuel cell and humidifying the reaction air, and the reformer, fuel cell, process gas burner A heat exchanger that recovers the heat of exhaust gas such as
A polymer electrolyte fuel cell power generator has been proposed as a small power source including a hot water storage tank for storing hot water.

【0003】固体高分子形燃料電池発電装置で使用する
固体高分子電解質膜は含水させることによりプロトン導
電性電解質として機能するもので、固体高分子形燃料電
池においては、反応空気や燃料ガスなどの反応ガスに水
蒸気を飽和に含ませて電極部に供給して運転する方法が
採られている。
A solid polymer electrolyte membrane used in a solid polymer fuel cell power generator functions as a proton conductive electrolyte by containing water. In the solid polymer fuel cell, reaction air, fuel gas, etc. A method is employed in which the reaction gas is saturated with water vapor and supplied to the electrode portion to operate.

【0004】燃料極に水素を含む燃料ガス、空気極に空
気を供給すると、燃料極では、水素分子を水素イオンと
電子に分解する燃料極反応、空気極では、酸素と水素イ
オンと電子から水を生成する電気化学反応がそれぞれ行
われ、燃料極から空気極に向かって外部回路を移動する
電子により電力が負荷に供給されるとともに、空気極側
に水が生成される。
When a fuel gas containing hydrogen is supplied to the fuel electrode and air is supplied to the air electrode, a fuel electrode reaction is carried out to decompose hydrogen molecules into hydrogen ions and electrons in the fuel electrode, and water is generated from oxygen, hydrogen ions and electrons in the air electrode. Each of the electrochemical reactions to generate the electric current is performed, and the electric power is supplied to the load by the electrons moving in the external circuit from the fuel electrode toward the air electrode, and the water is generated on the air electrode side.

【0005】図4は、従来の固体高分子形燃料電池発電
装置(PEFC装置GS)の系統図である。燃料電池6
を用いたPEFC装置GSは、例えば、燃料電池6の他
に熱回収装置RDを含んでいる。この熱回収装置RD
は、貯湯タンク50、熱交換器32、46、71、ポン
プ33、47、72とを備えた温水の循環路などで連結
されている。
FIG. 4 is a system diagram of a conventional polymer electrolyte fuel cell power generator (PEFC device GS). Fuel cell 6
The PEFC device GS that uses is, for example, includes a heat recovery device RD in addition to the fuel cell 6. This heat recovery device RD
Are connected by a hot water circulation path including a hot water storage tank 50, heat exchangers 32, 46, 71, and pumps 33, 47, 72.

【0006】燃料電池6は、脱硫器2、改質器3、CO
変成器4、CO除去器5などからなる燃料ガス供給装置
および空気ポンプ11、水タンク21などからなる反応
空気供給装置ならびに燃料極6a、空気極6kなどの電
極および水タンク21、ポンプ48、冷却部6cなどか
らなる燃料電池6の冷却装置を備えている。
The fuel cell 6 comprises a desulfurizer 2, a reformer 3 and a CO
Fuel gas supply device including a transformer 4, CO remover 5 and the like, air pump 11, reaction air supply device including a water tank 21, electrodes such as fuel electrode 6a and air electrode 6k, and water tank 21, pump 48, cooling A cooling device for the fuel cell 6 including a portion 6c and the like is provided.

【0007】燃料電池6で発電された電力は図示しない
DC/DCコンバータで昇圧され、図示しない配電系統
連系インバータを介して商用電源に接続される、一方、
ここから家庭や事務所などの照明や空調機などの他の電
気機器用の電力として供給される。
The electric power generated by the fuel cell 6 is boosted by a DC / DC converter (not shown) and connected to a commercial power source through an inverter (not shown) connected to a distribution system.
From here, it is supplied as electric power for other electric devices such as lighting and air conditioners in homes and offices.

【0008】このような燃料電池6を用いたPEFC装
置GSでは、発電と同時に、例えば燃料電池6による発
電時に発生する熱を利用して市水から温水を生成し、こ
の温水を貯湯タンク50に蓄えて、風呂や台所などに供
給するなど、燃料電池6に使用される燃料がもつエネル
ギーの有効利用を図っている。
In the PEFC device GS using such a fuel cell 6, hot water is generated from city water by utilizing heat generated during power generation by the fuel cell 6 simultaneously with power generation, and the hot water is stored in the hot water storage tank 50. The energy stored in the fuel used in the fuel cell 6 is effectively used by storing it and supplying it to a bath or kitchen.

【0009】上記のPEFC装置GSの燃料ガス供給装
置では、天然ガス、都市ガス、LPG、ブタンなどの炭
化水素系の原燃料1が脱硫器2に供給され、ここで原燃
料から改質触媒に有害な硫黄成分が除去される。この脱
硫器2を経た原燃料は、昇圧ポンプ10で昇圧されて改
質器3に供給される際に、水タンク21から水ポンプ2
2を経て温水が送られ、熱交換器17で加熱されて生成
した水蒸気と合流して、供給される。改質器3では、水
素、二酸化炭素、および一酸化炭素を含む改質ガスが生
成される。この改質器3を経たガスは、CO変成器4に
供給され、ここでは改質ガスに含まれる一酸化炭素が二
酸化炭素に変成される。このCO変成器4を経たガス
は、CO除去器5に供給され、ここではCO変成器4を
経たガス中の未変成の一酸化炭素が例えば10ppm以
下に低減され、水素濃度の高い水性ガス(改質ガス)が
管路64を経て燃料電池6の燃料極6aに供給される。
In the fuel gas supply device of the PEFC device GS described above, a hydrocarbon-based raw fuel 1 such as natural gas, city gas, LPG, or butane is supplied to a desulfurizer 2, where the raw fuel serves as a reforming catalyst. Harmful sulfur components are removed. When the raw fuel that has passed through the desulfurizer 2 is pressurized by the booster pump 10 and supplied to the reformer 3, the raw fuel is removed from the water tank 21.
Hot water is sent via 2 and is joined by the steam generated by being heated by the heat exchanger 17 and supplied. The reformer 3 produces a reformed gas containing hydrogen, carbon dioxide, and carbon monoxide. The gas that has passed through the reformer 3 is supplied to the CO shift converter 4, where carbon monoxide contained in the reformed gas is transformed into carbon dioxide. The gas that has passed through the CO shift converter 4 is supplied to the CO remover 5, where the untransformed carbon monoxide in the gas that has passed through the CO shift converter 4 is reduced to, for example, 10 ppm or less, and the water gas having a high hydrogen concentration The reformed gas) is supplied to the fuel electrode 6a of the fuel cell 6 via the pipe 64.

【0010】このとき、水タンク21から改質器3へ供
給される温水の量を調節することにより改質ガスへの水
分の添加量が調節される。反応空気供給装置では、空気
ポンプ11から水タンク21に、空気を供給し、水タン
ク21内の温水中に反応空気を泡立てつつ気相部53に
送出することによって加湿が行われる。このようにし
て、燃料電池6における反応が適度に維持されるように
水分を与えられた後の反応空気が水タンク21から管路
25を経て燃料電池6の空気極6kに供給される。
At this time, the amount of water added to the reformed gas is adjusted by adjusting the amount of hot water supplied from the water tank 21 to the reformer 3. In the reaction air supply device, humidification is performed by supplying air from the air pump 11 to the water tank 21 and bubbling the reaction air into the hot water in the water tank 21 and sending the reaction air to the gas phase portion 53. In this way, the reaction air that has been moistened so that the reaction in the fuel cell 6 is appropriately maintained is supplied from the water tank 21 to the air electrode 6k of the fuel cell 6 via the pipe 25.

【0011】燃料電池6では、燃料極6aに供給された
改質ガス中の水素と、空気ポンプ11、水タンク21の
気相部53を経て空気極6kへ供給された空気中の酸素
との電気化学反応によって発電が行われる。燃料電池6
の冷却装置は、この電気化学反応の反応熱などで燃料電
池6が過熱しないようにするため、燃料電池6の電極6
a、6kに並置された冷却装置であり、冷却部6cに水
タンク21の温水をポンプ48で冷却水として循環さ
せ、この冷却水で燃料電池6内の温度が発電に適した温
度(例えば70〜80℃程度)に保たれるように制御し
ている。
In the fuel cell 6, the hydrogen in the reformed gas supplied to the fuel electrode 6a and the oxygen in the air supplied to the air electrode 6k via the air pump 11 and the gas phase portion 53 of the water tank 21 are used. Power is generated by an electrochemical reaction. Fuel cell 6
In order to prevent the fuel cell 6 from overheating due to the reaction heat of this electrochemical reaction, the cooling device of FIG.
a, 6k are juxtaposed with each other. Hot water in the water tank 21 is circulated as cooling water by the pump 48 in the cooling unit 6c, and the temperature in the fuel cell 6 is suitable for power generation (for example, 70 The temperature is controlled to be maintained at about 80 ° C.

【0012】改質器3における化学反応は吸熱反応であ
るので、加熱しながら化学反応を継続させるためのバー
ナ12を有し、ここには管路13を介して原燃料が供給
され、ファン14を介して空気が供給され、管路15を
介して、燃料極6aを経た未反応水素が供給される。本
PEFC装置GSの起動時には、バーナ12に管路13
を介して原燃料が供給されて燃焼が行われ、起動後に、
燃料電池6の温度が安定したときには、管路13からの
原燃料の供給が断たれ、替わりに管路15を介して燃料
極6aから排出される未反応水素(オフガス)が供給さ
れて燃焼が継続される。
Since the chemical reaction in the reformer 3 is an endothermic reaction, it has a burner 12 for continuing the chemical reaction while heating, to which the raw fuel is supplied through a pipe 13 and a fan 14 Air is supplied via the fuel cell 6 and unreacted hydrogen via the fuel electrode 6a is supplied via the pipe 15. When the PEFC device GS is started, the burner 12 and the pipe line 13
The raw fuel is supplied through and burned, and after startup,
When the temperature of the fuel cell 6 becomes stable, the supply of raw fuel from the pipe 13 is cut off, and instead, unreacted hydrogen (off gas) discharged from the fuel electrode 6a is supplied via the pipe 15 to burn the fuel. Continued.

【0013】一方、CO変成器4、CO除去器5で行わ
れる化学反応は発熱反応である。運転中は、発熱反応の
熱により反応温度以上に昇温しないように冷却制御が行
われる。このようにして改質器3、CO変成器4、CO
除去器5および燃料電池6では所定の化学反応と発電が
継続される。
On the other hand, the chemical reaction carried out in the CO shift converter 4 and the CO remover 5 is an exothermic reaction. During operation, cooling control is performed so that the heat of the exothermic reaction does not raise the temperature above the reaction temperature. In this way, the reformer 3, the CO converter 4, the CO
A predetermined chemical reaction and power generation are continued in the remover 5 and the fuel cell 6.

【0014】上記改質器3とCO変成器4間、CO変成
器4とCO除去器5間にはそれぞれ熱交換器18、19
が接続されている。そして各熱交換器18、19には水
タンク21の温水が、ポンプ23、24を介して循環
し、これらの温水で改質器3、CO変成器4を経たガス
がそれぞれ冷却される。図示しないがCO除去器5と燃
料電池6との間にも熱交換器を接続してCO除去器5を
経たガスを冷却することができる。上記改質器3の排気
系31には熱交換器17が接続され、水タンク21の温
水がポンプ22を介して供給されると、この熱交換器1
7で水蒸気化し、この水蒸気が原燃料と混合して改質器
3に供給される。
Heat exchangers 18 and 19 are provided between the reformer 3 and the CO shift converter 4 and between the CO shift converter 4 and the CO remover 5, respectively.
Are connected. The hot water in the water tank 21 circulates through the heat exchangers 18 and 19 via the pumps 23 and 24, and the hot water cools the gas passing through the reformer 3 and the CO shift converter 4, respectively. Although not shown, a heat exchanger may be connected between the CO remover 5 and the fuel cell 6 to cool the gas passing through the CO remover 5. The heat exchanger 17 is connected to the exhaust system 31 of the reformer 3, and when the hot water in the water tank 21 is supplied via the pump 22, the heat exchanger 1
It is vaporized at 7, and this vapor is mixed with the raw fuel and supplied to the reformer 3.

【0015】PEFC装置GSには、プロセスガスバー
ナ(PGバーナ)34が備えられている。PEFC装置
GSの起動時には、改質器3、CO変成器4、CO除去
器5を経た改質ガスの組成が燃料電池6の運転に適した
安定した規定値に達していないので、それが安定するま
では、このガスを燃料電池6に供給することができな
い。そこで、各反応器が安定するまでは、ガス組成が規
定値に達していないガスをこのPGバーナ34に導いて
燃焼させる。37はPGバーナ34に燃焼用空気を送る
ファンである。
The PEFC device GS is provided with a process gas burner (PG burner) 34. At the time of starting the PEFC device GS, the composition of the reformed gas that has passed through the reformer 3, the CO shifter 4, and the CO remover 5 has not reached a stable specified value suitable for the operation of the fuel cell 6, so that it is stable. Until then, this gas cannot be supplied to the fuel cell 6. Therefore, until the respective reactors become stable, the gas whose gas composition has not reached the specified value is introduced into the PG burner 34 and burned. Reference numeral 37 is a fan that sends combustion air to the PG burner 34.

【0016】そして、各反応器が安定しガス中のCO濃
度が規定値(例えば、10〜20ppm以下)に達した
後、燃料電池6に導入して発電を行う。燃料電池6での
発電に使用できなかった未反応ガスは、当初PGバーナ
34に導いて燃焼し、燃料電池6の温度が安定した後
は、燃料電池6からのオフガスを管路15経由、改質器
3のバーナ12に導入して燃焼させる。
Then, after each reactor is stabilized and the CO concentration in the gas reaches a specified value (for example, 10 to 20 ppm or less), it is introduced into the fuel cell 6 to generate electricity. The unreacted gas that could not be used for power generation in the fuel cell 6 was initially guided to the PG burner 34 and burned, and after the temperature of the fuel cell 6 became stable, the off gas from the fuel cell 6 was modified via the pipe line 15 It is introduced into the burner 12 of the quality device 3 and burned.

【0017】すなわち、PEFC装置GSの起動後、各
反応器が温度的に安定するまでは、開閉弁91が閉じら
れ、改質ガスは管路35および開閉弁36を経てPGバ
ーナ34に供給される。
That is, after the PEFC unit GS is started, the on-off valve 91 is closed and the reformed gas is supplied to the PG burner 34 via the pipe line 35 and the on-off valve 36 until the temperature of each reactor becomes stable. It

【0018】各反応器が温度的に安定した場合、今度は
燃料電池6の温度が作動温度(例えば70〜80℃)近
くの温度域で安定するまで、開閉弁91が開かれ、開閉
弁92が閉じられて、改質ガスが管路38および開閉弁
39を経てPGバーナ34に供給され、そこで燃焼され
る。
When the temperature of each reactor is stable, the on-off valve 91 is opened and the on-off valve 92 is opened until the temperature of the fuel cell 6 stabilizes in the temperature range near the operating temperature (for example, 70 to 80 ° C.). Is closed, and the reformed gas is supplied to the PG burner 34 via the pipe 38 and the opening / closing valve 39, and is burned there.

【0019】燃料電池6の温度が作動温度で安定し、連
続して発電が行われるようになった場合、開閉弁91、
開閉弁92が開かれ、開閉弁36、開閉弁39が閉じら
れて、燃料電池6を経た未反応ガス(オフガス)は管路
15を経てバーナ12に供給される。
When the temperature of the fuel cell 6 is stabilized at the operating temperature and power is continuously generated, the on-off valve 91,
The on-off valve 92 is opened, the on-off valve 36 and the on-off valve 39 are closed, and the unreacted gas (off gas) that has passed through the fuel cell 6 is supplied to the burner 12 via the pipe 15.

【0020】貯湯タンク50には水道管61を経て市水
が供給される。この貯湯タンク50に供給された市水
は、PEFC装置GSから発生する排熱によって加熱さ
れ、この昇温された温水は、温水供給管62を通じて外
部に給湯される。例えば排気系31には、熱交換器17
の他に、さらに別の熱交換器32が接続され、この熱交
換器32には貯湯タンク50の水が、ポンプ33を介し
て循環し、排熱回収が行われる。
City water is supplied to the hot water storage tank 50 through a water pipe 61. The city water supplied to the hot water storage tank 50 is heated by the exhaust heat generated from the PEFC device GS, and the heated hot water is supplied to the outside through the hot water supply pipe 62. For example, the exhaust system 31 includes a heat exchanger 17
In addition to the above, another heat exchanger 32 is connected, and the water in the hot water storage tank 50 circulates in the heat exchanger 32 via the pump 33 to recover the exhaust heat.

【0021】またPGバーナ34の排気系45には、熱
交換器46が接続され、この熱交換器46には、ポンプ
47を介して貯湯タンク50の水が循環され貯湯タンク
50に熱回収が行われる。水タンク21には、ポンプ2
3、24、48によって熱交換器18、19を経て戻る
水や燃料電池6の冷却部6cを循環する冷却水が水管7
3を経て流入する一方、水タンク21に水を供給する水
補給装置68が接続されている。水補給装置68は電動
弁56と供給タンク67およびポンプ74などから構成
されている。供給タンク67は市水補給装置69および
燃料電池6から生じる水を管路70を経て一旦貯えて水
タンク21に水を供給できるようにしたタンクである。
A heat exchanger 46 is connected to the exhaust system 45 of the PG burner 34, and water in the hot water storage tank 50 is circulated through the heat exchanger 46 via a pump 47 to recover heat in the hot water storage tank 50. Done. The water tank 21 has a pump 2
The water returning through the heat exchangers 18 and 19 by the cooling devices 3, 24 and 48 and the cooling water circulating in the cooling portion 6c of the fuel cell 6 are the water pipes 7.
A water supply device 68 is connected to supply water to the water tank 21 while flowing in through The water replenishing device 68 is composed of an electric valve 56, a supply tank 67, a pump 74, and the like. The supply tank 67 is a tank capable of temporarily storing the water generated from the city water supply device 69 and the fuel cell 6 via the pipe line 70 and supplying the water to the water tank 21.

【0022】燃料電池6から生じる水には、例えば、燃
料電池6の空気極6kから排出されたガスを熱交換器7
1に導き、この熱交換器71中をポンプ72によって貯
湯タンク50との間を循環する水で冷却することによっ
て得られたドレン水や燃料極6aから排出されたガスに
含まれている水がある。
For the water generated from the fuel cell 6, for example, the gas discharged from the air electrode 6k of the fuel cell 6 is used as the heat exchanger 7.
1 and the drain water obtained by cooling the inside of the heat exchanger 71 with the water circulating between the heat exchanger 71 and the hot water storage tank 50 and the water contained in the gas discharged from the fuel electrode 6a. is there.

【0023】市水補給装置69は、電動弁76を有する
水道管52を介して水源78に接続されており、供給タ
ンク67の水量が減って水位が低下したことを水位計7
9が検知したときに液面制御装置77が電動弁76を開
き、水源78の水圧を利用して水道管52、水処理装置
(イオン交換樹脂)51を経て供給タンク67に水を補
給し、水タンク21に水を供給するのに支障のない水量
を保持する装置である。水タンク21には、タンク内の
上部に常に空気部分(気相部)53が形成されるように
水の水位を保つ液面制御装置LCおよび水タンク21内
の水温を設定範囲に保つ温度調節装置TCとを有してい
る。
The city water supply device 69 is connected to the water source 78 through the water pipe 52 having the motor-operated valve 76, and indicates that the water level in the supply tank 67 has decreased and the water level has decreased.
When 9 detects, the liquid level control device 77 opens the motor-operated valve 76 and utilizes the water pressure of the water source 78 to supply water to the supply tank 67 via the water pipe 52 and the water treatment device (ion exchange resin) 51. It is a device that holds the amount of water that does not hinder the supply of water to the water tank 21. In the water tank 21, a liquid level control device LC that keeps the water level of water so that an air portion (vapor phase portion) 53 is always formed in the upper part of the tank, and temperature control that keeps the water temperature in the water tank 21 within a set range. And a device TC.

【0024】液面制御装置LCは、水位計54と電動弁
56の制御装置を備えて水タンク21内の水量を常時監
視しつつ、反応用空気が、水タンク21の中を通過する
際に適度に加湿されて燃料電池6に供給されるようにタ
ンク内に水を貯え、かつ上部に気相部53が形成される
ように水量を制御し、水位が低下した場合はポンプ74
を運転し、電動弁56の開度を調節して供給タンク67
から管路84を経て処理水を導入し、水タンク21内の
水位を設定範囲に保つようにしている。55は、水位計
54による水位の検出が泡立ちなどにより不安定になる
のを防止する消波板である。
The liquid level control device LC is provided with a control device for the water level gauge 54 and the motor-operated valve 56 to constantly monitor the amount of water in the water tank 21, and when the reaction air passes through the water tank 21. Water is stored in the tank so as to be appropriately humidified and supplied to the fuel cell 6, and the amount of water is controlled so that the gas phase portion 53 is formed in the upper part. When the water level drops, the pump 74
Of the supply tank 67 by adjusting the opening degree of the motor-operated valve 56.
The treated water is introduced through the pipe line 84 to maintain the water level in the water tank 21 within the set range. Reference numeral 55 is a wave-eliminating plate that prevents the detection of the water level by the water level gauge 54 from becoming unstable due to foaming or the like.

【0025】温度調節装置TCは、燃料電池6の空気極
6kに反応空気を供給する際に、水タンク21内で適度
に加湿が行えるように水の温度を例えば50〜80℃の
温度範囲(設定温度)に保つ装置である。63はバブリ
ング用の多孔板である。
The temperature control device TC controls the temperature of the water in a temperature range of, for example, 50 to 80 ° C. so that the water can be appropriately humidified when the reaction air is supplied to the air electrode 6k of the fuel cell 6. It is a device that keeps the temperature at the set temperature. 63 is a perforated plate for bubbling.

【0026】以上のような構成のPEFC装置GSは、
発電と熱利用のコジェネレーションシステムの形態をと
るので、燃料電池の発電効率が図られるばかりでなく、
このシステムで使用される水の有効な再利用が図られる
効果がある。しかし、装置起動時には、水タンク21内
の水の温度や燃料電池6の温度が低く、燃料電池6の温
度が作動温度近くの温度域で安定するまで時間がかかる
という問題があった。
The PEFC device GS having the above-mentioned configuration is
Since it takes the form of a cogeneration system of power generation and heat utilization, not only is the power generation efficiency of the fuel cell improved,
This has the effect of effectively reusing the water used in this system. However, when the apparatus is started, the temperature of the water in the water tank 21 and the temperature of the fuel cell 6 are low, and there is a problem that it takes time until the temperature of the fuel cell 6 stabilizes in a temperature range near the operating temperature.

【0027】この問題に鑑みて装置起動開始時に前記プ
ロセスガスバーナ34で水素を燃焼させて排ガスの熱を
回収して前記水タンク21の水を昇温し、昇温した温水
を燃料電池6に循環して送って燃料電池6を加熱するよ
うにした固体高分子形燃料電池発電装置が提案された
(特願2001−006349)。図3はこの固体高分
子形燃料電池発電装置を説明する系統図である。図3に
おいて、図4に示した構成部分と同じ構成部分には同一
参照符号を付すことにより、重複した説明を省略する。
In view of this problem, when starting the apparatus, hydrogen is burned in the process gas burner 34 to recover the heat of the exhaust gas to raise the temperature of the water in the water tank 21, and the warmed water is circulated to the fuel cell 6. Then, a polymer electrolyte fuel cell power generation device was proposed in which the fuel cell 6 was heated by heating the fuel cell 6 (Japanese Patent Application No. 2001-006349). FIG. 3 is a system diagram for explaining the polymer electrolyte fuel cell power generator. In FIG. 3, the same components as those shown in FIG. 4 are designated by the same reference numerals, and a duplicate description will be omitted.

【0028】図3に示した固体高分子形燃料電池発電装
置GS1は、排気系31の熱交換器32、排気系45の
熱交換器46および燃料電池6の空気極kから排出され
たガスの熱交換器71の後に、さらに熱交換器HEXを
設置し、貯湯タンク50中の水をポンプPによりこの熱
交換器HEXを経て、熱交換器71、32、46に送っ
て熱交換して排熱回収した温水Aを、直接水タンク21
へ熱交換可能に循環して送るラインL1を設けてある。
そして、前記温水AをラインL1を経て水タンク21へ
送らなくてもよい場合に温水Aを貯湯タンク50へ送る
ラインL2が併設されており、ラインL1には開閉弁8
2、ラインL2には開閉弁81がそれぞれ設けてある。
T1はパイプ(水管)73に設けられた温度計で燃料電
池6の冷却部6cを循環する冷却水の温度を検知する手
段であり、T2は水タンク21中に設けられた温度計で
あり水タンク21の温度を検知する手段である。固体高
分子形燃料電池発電装置GS1は、このような熱回収装
置RD1などを備えた以外は図4に示した固体高分子形
燃料電池発電装置GSと同様になっている。
In the polymer electrolyte fuel cell power generator GS1 shown in FIG. 3, the gas discharged from the heat exchanger 32 of the exhaust system 31, the heat exchanger 46 of the exhaust system 45 and the air electrode k of the fuel cell 6 is used. A heat exchanger HEX is further installed after the heat exchanger 71, and the water in the hot water storage tank 50 is sent by the pump P to the heat exchangers 71, 32, 46 through the heat exchangers HEX, 32, 46 for heat exchange and discharge. The recovered hot water A is directly supplied to the water tank 21.
A line L1 is provided to circulate and send heat to the heat exchanger.
A line L2 for sending the hot water A to the hot water storage tank 50 when the hot water A does not have to be sent to the water tank 21 via the line L1 is provided side by side.
2, the line L2 is provided with an on-off valve 81, respectively.
T1 is a thermometer provided in the pipe (water pipe) 73 for detecting the temperature of the cooling water circulating in the cooling section 6c of the fuel cell 6, and T2 is a thermometer provided in the water tank 21 for It is a means for detecting the temperature of the tank 21. The polymer electrolyte fuel cell power generator GS1 is the same as the polymer electrolyte fuel cell generator GS shown in FIG. 4 except that the heat recovery device RD1 and the like are provided.

【0029】そして、固体高分子形燃料電池発電装置G
S1の起動開始時、水タンク21の水温(温度計T2で
測定される水温)が設定温度以下(例えば50〜80℃
以下)で燃料電池6の温度が設定温度以下(例えば70
〜80℃以下)である場合は、図示しない制御装置から
信号をPGバーナ34、ファン37、開閉弁81、8
2、ポンプPに送って、ファン37を作動させ、水素を
管路35、開閉弁36を経て供給してPGバーナ34を
作動させて点火するとともに、ラインL2の開閉弁81
を閉め、ラインL1の開閉弁82を開け、そしてポンプ
Pを作動させて、PGバーナ34に連結された熱交換器
46で熱回収され昇温した温水Aを含む貯湯タンク50
の温水をラインL1に循環して送って、水タンク21中
の水を加熱する。そして図示しない制御装置から信号を
ポンプ48に送ってポンプ48を作動させて燃料電池6
の冷却部6cに温水を循環して送って燃料電池6本体の
温度を上昇させる。燃料電池6本体の温度が充分上昇し
て燃料電池6が正常に作動すればラインL2の開閉弁8
1を開け、ラインL1の開閉弁82を閉め、温水をライ
ンL1に循環して送るのを停止し熱交換器46で熱回収
され昇温した温水Aを貯湯タンク50に供給する。
The polymer electrolyte fuel cell power generator G
At the start of starting S1, the water temperature of the water tank 21 (the water temperature measured by the thermometer T2) is equal to or lower than the set temperature (for example, 50 to 80 ° C.).
Below, the temperature of the fuel cell 6 is below the set temperature (for example, 70
-80 ° C. or less), a signal is sent from a control device (not shown) to the PG burner 34, the fan 37, the open / close valves 81 and 8.
2. Send to the pump P to operate the fan 37, supply hydrogen through the conduit 35 and the on-off valve 36 to operate the PG burner 34 to ignite, and open / close the valve 81 on the line L2.
Closed, the opening / closing valve 82 of the line L1 is opened, and the pump P is operated to heat the hot water storage tank 50 containing the warm water A whose temperature is recovered by the heat exchanger 46 connected to the PG burner 34.
The hot water of No. 2 is circulated and sent to the line L1 to heat the water in the water tank 21. Then, a signal is sent from the control device (not shown) to the pump 48 to operate the pump 48 to drive the fuel cell 6
The hot water is circulated and sent to the cooling section 6c to raise the temperature of the main body of the fuel cell 6. If the temperature of the fuel cell 6 main body rises sufficiently and the fuel cell 6 operates normally, the opening / closing valve 8 of the line L2
1 is opened, the on-off valve 82 of the line L1 is closed, the circulation of the hot water to the line L1 is stopped, and the hot water A whose temperature is recovered by the heat exchanger 46 and heated is supplied to the hot water storage tank 50.

【0030】このようにすることにより、起動時におい
て固体高分子形燃料電池発電装置GS1の燃料電池6の
温度を作動温度近くの温度域まで加熱する時間が大分短
縮されたが、起動後に改質器3などの各装置が安定する
までは二酸化炭素や一酸化炭素を含む水素濃度の低い改
質ガスがPGバーナ34に供給されるため、燃焼熱量が
少い、安定燃焼ができないなどの問題があるため未だ改
良の余地があった。
By doing so, the time for heating the temperature of the fuel cell 6 of the polymer electrolyte fuel cell power generator GS1 to a temperature range close to the operating temperature at the time of start-up was greatly shortened, but after the start-up, reforming was performed. Until the respective devices such as the reactor 3 become stable, the reformed gas having a low hydrogen concentration including carbon dioxide and carbon monoxide is supplied to the PG burner 34, so that there is a problem that the combustion heat amount is small and stable combustion cannot be performed. Therefore, there was still room for improvement.

【0031】[0031]

【発明が解決しようとする課題】本発明の目的は、従来
の上記問題を解決し、起動時において燃料電池の温度を
作動温度近くの温度域まで短時間で加熱でき起動時間を
短縮できる固体高分子形燃料電池発電装置を提供するこ
とである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to heat the temperature of the fuel cell to a temperature range close to the operating temperature in a short time at the time of starting, so that the starting time can be shortened. A molecular fuel cell power generator is provided.

【0032】[0032]

【課題を解決するための手段】すなわち、本発明の請求
項1の固体高分子形燃料電池発電装置は、炭化水素系燃
料ガスを水素に改質する改質器と、一酸化炭素を変成す
るCO変成器と、一酸化炭素を除去するCO除去器と、
起動後に各反応器が安定するまで水素を燃焼するプロセ
スガスバーナと、水素によって発電する燃料電池と、燃
料電池を冷却するための水を収納した水タンクと、前記
改質器、燃料電池、プロセスガスバーナなどの排ガスの
熱を回収して温水とする熱交換器と、この温水を蓄える
貯湯タンクとを備えた固体高分子形燃料電池発電装置で
あって、前記プロセスガスバーナに炭化水素系燃料ガス
を供給する管路を設け、装置起動開始時に炭化水素系燃
料ガスを前記管路を経て供給して前記プロセスガスバー
ナで単独で燃焼させるか、あるいは水素とともに燃焼さ
せて排ガスの熱を回収して前記水タンクの水を昇温し、
昇温した温水を燃料電池に循環して送って燃料電池を加
熱することを特徴とする。
That is, the polymer electrolyte fuel cell power generator according to claim 1 of the present invention is a reformer for reforming hydrocarbon fuel gas into hydrogen, and carbon monoxide is metamorphosed. A CO shift converter and a CO remover for removing carbon monoxide;
A process gas burner that burns hydrogen until each reactor becomes stable after startup, a fuel cell that generates electricity by hydrogen, a water tank that stores water for cooling the fuel cell, the reformer, the fuel cell, and the process gas burner. A polymer electrolyte fuel cell power generator comprising a heat exchanger for collecting heat of exhaust gas such as hot water and a hot water storage tank for storing the hot water, and supplying hydrocarbon fuel gas to the process gas burner. A hydrocarbon gas is supplied through the pipe at the start of the apparatus and burned alone in the process gas burner, or burned with hydrogen to recover the heat of the exhaust gas and the water tank. The water of
It is characterized in that the heated hot water is circulated and sent to the fuel cell to heat the fuel cell.

【0033】本発明の請求項2の固体高分子形燃料電池
発電装置は、請求項1記載の固体高分子形燃料電池発電
装置において、起動後に前記改質器が安定したら前記プ
ロセスガスバーナへの炭化水素系燃料ガスの供給を停止
し、水素を前記プロセスガスバーナで燃焼させることを
特徴とする。
The polymer electrolyte fuel cell power generator according to claim 2 of the present invention is the polymer electrolyte fuel cell generator according to claim 1, wherein the process gas burner is carbonized when the reformer is stabilized after startup. It is characterized in that the supply of the hydrogen-based fuel gas is stopped and hydrogen is burned by the process gas burner.

【0034】本発明の固体高分子形燃料電池発電装置
は、装置起動開始時に炭化水素系燃料ガスを前記プロセ
スガスバーナで単独で燃焼させるか、あるいは水素とと
もに燃焼させて排ガスの熱を回収して前記水タンクの水
を昇温し、昇温した温水を燃料電池に循環して送って燃
料電池を加熱するので、燃料電池の温度を作動温度近く
の温度域まで短時間で加熱でき起動時間を短縮できる。
そして、起動後に前記改質器が安定し、水素濃度の高い
燃焼熱量の高い改質ガスをPGバーナに供給できるよう
になったら、PGバーナへの炭化水素系燃料ガスの供給
を停止し、水素濃度の高い改質ガスのみをプロセスガス
バーナで燃焼させるようにすれば、炭化水素系燃料ガス
の消費量を少なくし、かつ安定燃焼を行うことができ
る。
In the polymer electrolyte fuel cell power generator of the present invention, the hydrocarbon-based fuel gas is burned alone in the process gas burner at the time of starting the device, or is burned together with hydrogen to recover the heat of the exhaust gas, and The water in the water tank is heated, and the heated hot water is circulated and sent to the fuel cell to heat the fuel cell, so the temperature of the fuel cell can be heated to a temperature range close to the operating temperature in a short time, and the startup time is shortened. it can.
Then, after the reformer is stabilized after starting, and the reformed gas having a high hydrogen concentration and a high combustion heat amount can be supplied to the PG burner, the supply of the hydrocarbon fuel gas to the PG burner is stopped, and the hydrogen is stopped. If only the reformed gas having a high concentration is burned by the process gas burner, the consumption of the hydrocarbon fuel gas can be reduced and stable combustion can be performed.

【0035】[0035]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて詳細に説明する。図1は、本発明の固体高分子
形燃料電池発電装置の実施形態を説明する系統図であ
る。図2は、図1に示した本発明による固体高分子形燃
料電池発電装置の温水の流れの一実施形態を示す説明図
である。図1〜2において、図3〜4に示した構成部分
と同じ構成部分には同一参照符号を付すことにより、重
複した説明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a system diagram illustrating an embodiment of a polymer electrolyte fuel cell power generator of the present invention. FIG. 2 is an explanatory diagram showing an embodiment of the flow of hot water in the polymer electrolyte fuel cell power generator according to the present invention shown in FIG. 1-2, the same components as those shown in FIGS. 3-4 are designated by the same reference numerals, and the duplicated description will be omitted.

【0036】図1に示した本発明の固体高分子形燃料電
池発電装置GS2は、PGバーナ34に炭化水素系燃料
ガスを供給する開閉弁100を備えた管路101を設
け、装置起動開始時に開閉弁100を開けて炭化水素系
燃料ガスを管路101を経てPGバーナ34に供給して
単独で燃焼させて排ガスの熱を回収して水タンク21の
水を昇温し、昇温した水タンク21の温水を燃料電池6
に循環して送って燃料電池6を加熱するようにした以外
は図3に示した固体高分子形燃料電池発電装置GS1と
同様になっている。
The solid polymer electrolyte fuel cell power generator GS2 of the present invention shown in FIG. 1 is provided with a conduit 101 having an opening / closing valve 100 for supplying a hydrocarbon fuel gas to the PG burner 34, and at the start of the apparatus start-up. The on-off valve 100 is opened, and the hydrocarbon fuel gas is supplied to the PG burner 34 via the pipe 101 and burned independently to recover the heat of the exhaust gas to raise the temperature of the water in the water tank 21 and raise the temperature of the water. The hot water in the tank 21 is replaced by the fuel cell 6
It is the same as the polymer electrolyte fuel cell power generator GS1 shown in FIG. 3 except that the fuel cell 6 is heated by circulating it to the fuel cell 6.

【0037】本発明の固体高分子形燃料電池発電装置G
S2の起動開始時、水タンク21の水温が設定温度以下
で燃料電池6の温度が設定温度以下である場合は、図示
しない制御装置から信号をPGバーナ34、ファン3
7、開閉弁81、82、100、ポンプPに送って、フ
ァン37を作動させ、炭化水素系燃料ガスを管路101
を経て供給してPGバーナ34を作動させて点火すると
ともに、ラインL2の開閉弁81を閉め、ラインL1の
開閉弁82を開け、そしてポンプPを作動させて、PG
バーナ34に連結された熱交換器46で熱回収され昇温
した温水Aを含む貯湯タンク50の温水をラインL1に
循環して送って、水タンク21中の水を加熱する(図2
参照)。そして図示しない制御装置から信号をポンプ4
8に送ってポンプ48を作動させて燃料電池6の冷却部
6cに水タンク21の温水を循環して送って燃料電池6
本体の温度を上昇させる。
The polymer electrolyte fuel cell power generator G of the present invention
When the water temperature of the water tank 21 is equal to or lower than the set temperature and the temperature of the fuel cell 6 is equal to or lower than the set temperature at the start of the start of S2, a signal is output from a control device (not shown) to the PG burner 34 and the fan 3.
7, the on-off valves 81, 82, 100, and the pump P to operate the fan 37, and the hydrocarbon fuel gas is supplied to the conduit 101.
Is supplied to operate the PG burner 34 to ignite it, close the on-off valve 81 of the line L2, open the on-off valve 82 of the line L1, and operate the pump P to operate the PG.
The hot water in the hot water storage tank 50 containing the hot water A whose temperature has been recovered and heated by the heat exchanger 46 connected to the burner 34 is circulated through the line L1 to heat the water in the water tank 21 (FIG. 2).
reference). The pump 4 sends a signal from a control device (not shown).
8 to operate the pump 48 to circulate and send the hot water in the water tank 21 to the cooling unit 6c of the fuel cell 6
Increase the temperature of the main unit.

【0038】燃料電池6本体の温度が充分上昇して燃料
電池6が正常に作動すればラインL2の開閉弁81を開
け、ラインL1の開閉弁82を閉め、温水をラインL1
に循環して送るのを停止し熱交換器46で熱回収され昇
温した温水Aを貯湯タンク50に供給する。
When the temperature of the fuel cell 6 main body rises sufficiently and the fuel cell 6 operates normally, the open / close valve 81 of the line L2 is opened, the open / close valve 82 of the line L1 is closed, and hot water is supplied to the line L1.
The hot water A whose temperature has been recovered by the heat exchanger 46 and whose temperature has been raised is supplied to the hot water storage tank 50.

【0039】上記の例では装置起動開始時に炭化水素系
燃料ガスをPGバーナ34で単独で燃焼させる例を示し
たが、水素濃度の低い改質ガスあるいは水素濃度の高い
改質ガスを管路35、開閉弁36を経てPGバーナ34
に供給してPGバーナ34で炭化水素系燃料ガスととも
に燃焼させることもできる。そして、起動後に改質器3
が安定し、例えば改質器3の温度が設定温度(約600
℃)に達すると水素濃度の高い燃焼熱量の高い改質ガス
が得られるので、この改質ガスをPGバーナ34へ供給
し、PGバーナ34への炭化水素系燃料ガスの供給を停
止し、水素濃度の高い改質ガスのみをPGバーナ34で
燃焼させるようにすれば、炭化水素系燃料ガスの消費量
を少なくし、かつ安定燃焼を行うことができる。このよ
うにすることにより、起動時において燃料電池6の温度
を作動温度近くの温度域まで短時間で加熱でき、起動時
間を短縮できる。
In the above example, an example in which the hydrocarbon fuel gas is burned by the PG burner 34 alone at the start of the apparatus is shown, but the reformed gas having a low hydrogen concentration or the reformed gas having a high hydrogen concentration is supplied to the pipe 35. , PG burner 34 through on-off valve 36
Can be supplied to the PG burner 34 and burned together with the hydrocarbon fuel gas. Then, after starting, the reformer 3
Is stable, and for example, the temperature of the reformer 3 is the set temperature (about 600
(° C), a reformed gas having a high hydrogen concentration and a high combustion heat amount is obtained. Therefore, this reformed gas is supplied to the PG burner 34, and the supply of the hydrocarbon-based fuel gas to the PG burner 34 is stopped. By burning only the high-concentration reformed gas in the PG burner 34, it is possible to reduce the consumption of the hydrocarbon fuel gas and to perform stable combustion. By doing so, the temperature of the fuel cell 6 can be heated to a temperature range near the operating temperature in a short time at the time of startup, and the startup time can be shortened.

【0040】なお、上記実施形態の説明は、本発明を説
明するためのものであって、特許請求の範囲に記載の発
明を限定し、或は範囲を減縮するものではない。又、本
発明の各部構成は上記実施形態に限らず、特許請求の範
囲に記載の技術的範囲内で種々の変形が可能である。
The above description of the embodiments is for explaining the present invention and does not limit the invention described in the claims or reduce the scope thereof. Further, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.

【0041】[0041]

【発明の効果】本発明の請求項1記載の固体高分子形燃
料電池発電装置は、燃料電池のメンテナンスが簡略化さ
れ、発電と熱利用のコジェネレーションシステムの形態
をとるので、燃料電池の発電効率が図られるばかりでな
く、このシステムで使用される水の有効な再利用が図ら
れる効果があるとともに、起動時において燃料電池の温
度を作動温度近くの温度域まで短時間で加熱でき、起動
時間を短縮できるという顕著な効果を奏する。
The polymer electrolyte fuel cell power generator according to claim 1 of the present invention simplifies the maintenance of the fuel cell and takes the form of a cogeneration system for power generation and heat utilization. Not only the efficiency is improved, but also the water used in this system is effectively reused, and at the time of startup, the temperature of the fuel cell can be heated to a temperature range close to the operating temperature in a short time, and the startup can be started. It has a remarkable effect that the time can be shortened.

【0042】本発明の請求項2の固体高分子形燃料電池
発電装置は、請求項1記載の固体高分子形燃料電池発電
装置において、起動後に前記改質器が安定したら前記プ
ロセスガスバーナへの炭化水素系燃料ガスの供給を停止
し、水素のみを前記プロセスガスバーナで燃焼させるの
で、請求項1記載の固体高分子形燃料電池発電装置と同
じ作用効果を奏するとともに、炭化水素系燃料ガスの消
費量を少なくし、かつ安定燃焼を行うことができるとい
うさらなる顕著な効果を奏する。
The polymer electrolyte fuel cell power generator according to claim 2 of the present invention is the polymer electrolyte fuel cell generator according to claim 1, wherein the process gas burner is carbonized when the reformer becomes stable after startup. The supply of the hydrogen-based fuel gas is stopped, and only hydrogen is burned by the process gas burner, so that the same function and effect as the polymer electrolyte fuel cell power generator according to claim 1 are obtained, and the consumption amount of the hydrocarbon-based fuel gas is also increased. It is possible to obtain a further remarkable effect that the combustion amount can be reduced and stable combustion can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による固体高分子形燃料電池発電装置の
一実施形態を示す系統図である。
FIG. 1 is a system diagram showing one embodiment of a polymer electrolyte fuel cell power generator according to the present invention.

【図2】図1に示した本発明による固体高分子形燃料電
池発電装置の温水の流れの一実施形態を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing an embodiment of a flow of hot water in the polymer electrolyte fuel cell power generator according to the present invention shown in FIG.

【図3】従来の固体高分子形燃料電池発電装置の系統図
である。
FIG. 3 is a system diagram of a conventional polymer electrolyte fuel cell power generator.

【図4】従来の他の固体高分子形燃料電池発電装置の系
統図である。
FIG. 4 is a system diagram of another conventional polymer electrolyte fuel cell power generator.

【符号の説明】[Explanation of symbols]

3 改質器 4 CO変成器 5 CO除去器 6 燃料電池 6c 冷却部 10、23〜25、28、43、47、48 ポンプ 21 水タンク 34 プロセスガスバーナ 17、18、19、32、71 熱交換器 37 プロセスガスバーナに燃焼用空気を送るファン 46 プロセスガスバーナに連結された熱交換器 50 貯湯タンク L1 温水Aを熱交換可能に水タンクへ循環して送るラ
イン L2 温水Aを貯湯タンクへ送るライン GS、GS1、GS2 固体高分子形燃料電池発電装置 RD、RD1 熱回収装置 HEX 熱交換器 T1、T2 温度計 P 排熱回収用ポンプ 100 開閉弁 101 管路
3 reformer 4 CO shifter 5 CO remover 6 fuel cell 6c cooling unit 10, 23 to 25, 28, 43, 47, 48 pump 21 water tank 34 process gas burner 17, 18, 19, 32, 71 heat exchanger 37 Fan for sending combustion air to the process gas burner 46 Heat exchanger 50 connected to the process gas burner 50 Hot water storage tank L1 Line L2 for circulating hot water A to the water tank in a heat exchangeable manner, Line GS for sending hot water A to the hot water tank, GS1, GS2 Polymer electrolyte fuel cell power generators RD, RD1 Heat recovery device HEX heat exchangers T1, T2 Thermometer P Exhaust heat recovery pump 100 Open / close valve 101 Pipe line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 雅敏 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 黄木 丈俊 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 進藤 浩二 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H026 AA06 5H027 AA06 BA01 DD06    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masatoshi Ueda             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Taketoshi Koki             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Koji Shindo             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F-term (reference) 5H026 AA06                 5H027 AA06 BA01 DD06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素系燃料ガスを水素に改質する改
質器と、一酸化炭素を変成するCO変成器と、一酸化炭
素を除去するCO除去器と、起動後に各反応器が安定す
るまで水素を燃焼するプロセスガスバーナと、水素によ
って発電する燃料電池と、燃料電池を冷却するための水
を収納した水タンクと、前記改質器、燃料電池、プロセ
スガスバーナなどの排ガスの熱を回収して温水とする熱
交換器と、この温水を蓄える貯湯タンクとを備えた固体
高分子形燃料電池発電装置であって、 前記プロセスガスバーナに炭化水素系燃料ガスを供給す
る管路を設け、装置起動開始時に炭化水素系燃料ガスを
前記管路を経て供給して前記プロセスガスバーナで単独
で燃焼させるか、あるいは水素とともに燃焼させて排ガ
スの熱を回収して前記水タンクの水を昇温し、昇温した
温水を燃料電池に循環して送って燃料電池を加熱するこ
とを特徴とする固体高分子形燃料電池発電装置。
1. A reformer for reforming a hydrocarbon fuel gas into hydrogen, a CO shifter for transforming carbon monoxide, a CO remover for removing carbon monoxide, and each reactor being stable after startup. Process gas burner that burns hydrogen, a fuel cell that uses hydrogen to generate electricity, a water tank that stores water to cool the fuel cell, and the heat of exhaust gas from the reformer, fuel cell, process gas burner, etc. A polymer electrolyte fuel cell power generator comprising a heat exchanger for converting the hot water to hot water, and a hot water storage tank for storing the hot water, wherein a pipe line for supplying a hydrocarbon fuel gas to the process gas burner is provided. At the start of startup, a hydrocarbon fuel gas is supplied through the pipe and burned alone in the process gas burner, or burned with hydrogen to recover the heat of the exhaust gas and recover the water in the water tank. The temperature was raised, the polymer electrolyte fuel cell power generation apparatus characterized by heating the fuel cell by sending circulated to the fuel cell the hot water heated.
【請求項2】 起動後に前記改質器が安定したら前記プ
ロセスガスバーナへの炭化水素系燃料ガスの供給を停止
し、水素を前記プロセスガスバーナで燃焼させることを
特徴とする請求項1記載の固体高分子形燃料電池発電装
置。
2. The solid height according to claim 1, wherein when the reformer becomes stable after startup, the supply of the hydrocarbon fuel gas to the process gas burner is stopped and hydrogen is burned by the process gas burner. Molecular fuel cell power generator.
JP2002010598A 2002-01-18 2002-01-18 Polymer electrolyte fuel cell power generator Expired - Fee Related JP3561706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002010598A JP3561706B2 (en) 2002-01-18 2002-01-18 Polymer electrolyte fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002010598A JP3561706B2 (en) 2002-01-18 2002-01-18 Polymer electrolyte fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2003217629A true JP2003217629A (en) 2003-07-31
JP3561706B2 JP3561706B2 (en) 2004-09-02

Family

ID=27648292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002010598A Expired - Fee Related JP3561706B2 (en) 2002-01-18 2002-01-18 Polymer electrolyte fuel cell power generator

Country Status (1)

Country Link
JP (1) JP3561706B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516385A (en) * 2004-10-08 2008-05-15 ルノー・エス・アー・エス Automotive generator
JP2009036473A (en) * 2007-08-03 2009-02-19 Toshiba Corp Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516385A (en) * 2004-10-08 2008-05-15 ルノー・エス・アー・エス Automotive generator
JP2009036473A (en) * 2007-08-03 2009-02-19 Toshiba Corp Fuel cell system

Also Published As

Publication number Publication date
JP3561706B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
KR100482709B1 (en) Solid polymer fuel cell
KR100525538B1 (en) Solid high polymer type fuel cell power generating device
JP3416653B2 (en) Polymer electrolyte fuel cell power generator
JP2003187848A (en) Fuel cell system
JP2006093157A (en) Solid polymer fuel cell system
JP3889553B2 (en) Method and apparatus for controlling fuel cell system
JP2003217623A (en) Solid polymer electrolyte fuel cell generator
JP3906083B2 (en) Solid polymer fuel cell power generator
JP3448567B2 (en) Polymer electrolyte fuel cell power generator
JP3530458B2 (en) Method and apparatus for starting polymer electrolyte fuel cell
JP3679792B2 (en) Solid polymer fuel cell power generator
JP3992423B2 (en) Method and apparatus for starting operation of fuel cell system
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JPH09161832A (en) Fuel cell generating device, and its operation method and operation control method
JP3561706B2 (en) Polymer electrolyte fuel cell power generator
JP2001185187A (en) Power generating system for solid polymeric fuel cell
JP2004213985A (en) Fuel cell system
JP3939333B2 (en) Hot water system
JP2001185178A (en) Co removing unit and solid polymeric fuel cell power generation system
JP2001210340A (en) Exhaust heat recovery system of solid polymer type fuel cell
JP2004213977A (en) Fuel cell system
JP2002158025A (en) Fuel cell electricity generating system
JP2001210343A (en) Hot water storage/hot water supply system
JP2001185180A (en) Co treatment device and solid polymeric fuel cell power generation system
JP2001180909A (en) Reforming equipment and power generating system by solid polymer fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees