JP2002289242A - Fuel cell exhaust heat recovery system - Google Patents

Fuel cell exhaust heat recovery system

Info

Publication number
JP2002289242A
JP2002289242A JP2001092376A JP2001092376A JP2002289242A JP 2002289242 A JP2002289242 A JP 2002289242A JP 2001092376 A JP2001092376 A JP 2001092376A JP 2001092376 A JP2001092376 A JP 2001092376A JP 2002289242 A JP2002289242 A JP 2002289242A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
heat recovery
heat exchanger
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001092376A
Other languages
Japanese (ja)
Inventor
Seisaku Azumaguchi
誠作 東口
Takeshi Tabata
健 田畑
Yoshitaka Kashiwabara
義孝 栢原
Shin Iwata
伸 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001092376A priority Critical patent/JP2002289242A/en
Publication of JP2002289242A publication Critical patent/JP2002289242A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase recovered quantity of exhaust heat from a fuel cell. SOLUTION: A circulating pipe 5 is connected to a hot water storage tank 4, a cooling water circulating pipe 8 to supply cooling water is connected to a fuel cell main body 3, and a cooling water exhaust heat recovery heat exchanger 9 is provided between the cooling water circulating pipe 8 and the circulating pipe 5. A by-pass pipe 10 is provided in parallel with the cooling water exhaust heat recovery heat exchanger 9 on the cooling water circulating pipe 8, and a three-way valve 11 free to regulate a distributing flow rate is attached to a connecting point of the by-pass piping 10 and the cooling water circulating pipe 9. A sensible heat recovery heat exchanger 12 is provided on a piping part 8a on the side to supply to the cooling water exhaust heat recovery heat exchanger 9 between the connecting point with the by-pass pipe 10 of the cooling water circulating pipe 8 and the cooling water exhaust heat recovery heat exchanger 9, a latent heat recovery heat exchanger 13 is provided on a piping part 8b on the side to supply to the fuel cell main body 3, an exhaust gas pipe 14 from a reformer 2 is introduced to the latent heat recovery heat exchanger 13 through the sensible heat recovery heat exchanger 12, and even exhaust heat from the reformer 2 is recovered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、改質器と燃料電池
本体とを有して電気と熱とを発生させる燃料電池からの
排熱を回収し、その排熱を貯湯槽に貯めるとともに、給
湯などに利用できるように構成した燃料電池排熱回収シ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell having a reformer and a fuel cell main body, which collects waste heat from a fuel cell which generates electricity and heat, and stores the waste heat in a hot water storage tank. The present invention relates to a fuel cell exhaust heat recovery system configured to be used for hot water supply and the like.

【0002】[0002]

【従来の技術】従来の燃料電池排熱回収システムとして
は、図2の従来例のシステム構成図に示されるものがあ
った。すなわち、燃料電池の燃料電池本体01に、冷却
水を供給する冷却水循環配管02が接続され、一方、高
温の湯を貯める貯湯槽03に、水を循環する循環配管0
4が接続され、その循環配管04と冷却水循環配管02
との間に熱交換器05が設けられている。
2. Description of the Related Art As a conventional fuel cell exhaust heat recovery system, there is one shown in the system configuration diagram of a conventional example in FIG. That is, a cooling water circulation pipe 02 for supplying cooling water is connected to the fuel cell main body 01 of the fuel cell, and a circulation pipe 0 for circulating water to a hot water storage tank 03 for storing hot water.
4 and its circulation pipe 04 and cooling water circulation pipe 02
And a heat exchanger 05 is provided.

【0003】冷却水循環配管02には、熱交換器05と
並列にバイパス配管06が設けられ、そのバイパス配管
06と冷却水循環配管02との接続箇所に、分配流量を
調整可能な三方弁07が付設され、熱交換器05側とバ
イパス配管06側とに流す冷却水の流量を調整できるよ
うに構成されている。
A bypass pipe 06 is provided in the cooling water circulation pipe 02 in parallel with the heat exchanger 05, and a three-way valve 07 capable of adjusting the distribution flow rate is provided at a connection point between the bypass pipe 06 and the cooling water circulation pipe 02. The flow rate of the cooling water flowing to the heat exchanger 05 side and the bypass pipe 06 side can be adjusted.

【0004】冷却水循環配管02の燃料電池本体01へ
の冷却水の入口箇所に、冷却水の温度を測定する冷却水
温度センサ08が設けられ、この冷却水温度センサ08
が第1のコントローラ09に接続されるとともに第1の
コントローラ09が三方弁07に接続され、冷却水温度
センサ08で測定される冷却水の温度を設定温度(例え
ば、60℃)に維持するように三方弁07の開度を調整す
るように冷却制御機構が構成されている。
A cooling water temperature sensor 08 for measuring the temperature of the cooling water is provided at an inlet of the cooling water circulation pipe 02 to the fuel cell main body 01, and the cooling water temperature sensor 08 is provided.
Is connected to the first controller 09 and the first controller 09 is connected to the three-way valve 07 so that the temperature of the cooling water measured by the cooling water temperature sensor 08 is maintained at a set temperature (for example, 60 ° C.). The cooling control mechanism is configured to adjust the opening of the three-way valve 07.

【0005】また、循環配管04の貯湯槽03への温水
供給箇所に、温水の温度を測定する湯温センサ010が
設けられ、この湯温センサ010が第2のコントローラ
011に接続されるとともに、第2のコントローラ01
1が、循環配管04に設けられた吐出容量可変型の循環
ポンプ012に接続され、湯温センサ010で測定され
る温水の温度を設定温度(例えば、60℃)に維持するよ
うに循環ポンプ012の吐出容量を調整するように貯湯
温度制御機構が構成されている。
A hot water temperature sensor 010 for measuring the temperature of hot water is provided at a location of hot water supply to the hot water storage tank 03 in the circulation pipe 04, and this hot water temperature sensor 010 is connected to a second controller 011. Second controller 01
1 is connected to a circulating pump 012 of variable discharge capacity provided in the circulating pipe 04 so as to maintain the temperature of the hot water measured by the hot water temperature sensor 010 at a set temperature (for example, 60 ° C.). The hot water storage temperature control mechanism is configured to adjust the discharge capacity of the hot water.

【0006】この構成により、燃料電池本体01への冷
却水の温度を一定に維持しながら、燃料電池冷却後の冷
却水の熱を循環配管04を流れる水に伝熱し、設定温度
の温水として回収し、その温水を貯湯槽03に貯めて給
湯などに利用できるようにしている。
With this configuration, while maintaining the temperature of the cooling water to the fuel cell main body 01 constant, the heat of the cooling water after cooling the fuel cell is transferred to the water flowing through the circulation pipe 04 and collected as hot water at a set temperature. Then, the hot water is stored in the hot water storage tank 03 and can be used for hot water supply and the like.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来で
は、燃料電池本体01から取り出される燃料電池冷却後
の冷却水の温度が65℃程度であるのに対して、燃料電池
本体01に供給する冷却水の温度を60℃に維持しなけれ
ばならないため、温水として貯湯槽03に回収する熱量
を十分に確保しづらく、給湯需要が大きいときに熱量が
不足する欠点があった。
However, in the prior art, the temperature of the cooling water taken out of the fuel cell body 01 after cooling the fuel cell is about 65 ° C., whereas the cooling water supplied to the fuel cell body 01 is Must be maintained at 60 ° C., it is difficult to secure a sufficient amount of heat to be recovered as hot water in the hot water storage tank 03, and the amount of heat is insufficient when hot water supply demand is large.

【0008】本発明は、このような事情に鑑みてなされ
たものであって、請求項1に係る発明は、燃料電池から
の排熱の回収量を増加できるようにすることを目的と
し、請求項2に係る発明は、燃料電池からの排熱の回収
量を効果的に増加できるようにすることを目的とし、請
求項3に係る発明は、燃料電池からの排熱の回収量を十
分増加できるようにすることを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to increase the amount of exhaust heat recovered from a fuel cell. The invention according to claim 2 aims at effectively increasing the amount of exhaust heat recovered from the fuel cell, and the invention according to claim 3 sufficiently increases the amount of exhaust heat recovered from the fuel cell. The purpose is to be able to.

【0009】[0009]

【課題を解決するための手段】請求項1に係る発明は、
上述のような目的を達成するために、改質器と燃料電池
本体とを有して電気と熱とを発生させる燃料電池と、高
温の湯を貯める貯湯槽と、前記貯湯槽に接続されて水を
循環する循環配管と、前記燃料電池本体に冷却水を供給
する冷却水循環配管と、前記循環配管と前記冷却水循環
配管との間に設けられて、燃料電池冷却後の冷却水の熱
を前記循環配管を流れる水に伝熱する冷却水排熱回収熱
交換器と、前記冷却水循環配管に前記冷却水排熱回収熱
交換器と並列に設けたバイパス配管と、前記バイパス配
管側と前記冷却水排熱回収熱交換器側とに流す冷却水の
流量を調整する弁機構と、前記燃料電池本体に供給され
る冷却水の温度を感知して冷却水温度を設定温度に維持
するように前記弁機構を制御する冷却制御機構とを備え
た燃料電池排熱回収システムであって、前記冷却水循環
配管の前記バイパス配管との接続箇所と前記冷却水排熱
回収熱交換器との間に、前記冷却水排熱回収熱交換器か
ら前記燃料電池本体に供給される冷却水に前記改質器か
ら排出されるガスの排熱を伝熱する改質器排熱回収熱交
換器を設けて構成する。
According to the first aspect of the present invention,
In order to achieve the above object, a fuel cell having a reformer and a fuel cell main body to generate electricity and heat, a hot water tank for storing high-temperature hot water, and connected to the hot water tank A circulating pipe for circulating water, a cooling water circulating pipe for supplying cooling water to the fuel cell main body, and a cooling water circulating pipe provided between the circulating pipe and the cooling water circulating pipe to heat the cooling water after cooling the fuel cell. A cooling water exhaust heat recovery heat exchanger that transfers heat to water flowing through the circulation pipe; a bypass pipe provided in the cooling water circulation pipe in parallel with the cooling water exhaust heat recovery heat exchanger; a bypass pipe side and the cooling water; A valve mechanism for adjusting a flow rate of the cooling water flowing to the exhaust heat recovery heat exchanger side, and the valve for sensing a temperature of the cooling water supplied to the fuel cell body and maintaining the cooling water temperature at a set temperature. Fuel cell exhaust heat recovery system with a cooling control mechanism for controlling the mechanism A system is provided between the connection point of the cooling water circulation pipe with the bypass pipe and the cooling water exhaust heat recovery heat exchanger, from the cooling water exhaust heat recovery heat exchanger to the fuel cell main body. The cooling water is provided with a reformer exhaust heat recovery heat exchanger that transfers the exhaust heat of the gas exhausted from the reformer.

【0010】また、請求項2に係る発明は、前述のよう
な目的を達成するために、請求項1に記載の燃料電池排
熱回収システムにおいて、改質器排熱回収熱交換器を、
改質器からの水蒸気含有ガスの水蒸気の凝縮に伴う潜熱
を伝熱して回収する潜熱回収熱交換器で構成する。
According to a second aspect of the present invention, there is provided a fuel cell exhaust heat recovery system according to the first aspect, wherein the reformer exhaust heat recovery heat exchanger comprises:
The latent heat recovery heat exchanger is configured to transfer and recover the latent heat generated by the condensation of the steam containing gas from the reformer.

【0011】また、請求項3に係る発明は、前述のよう
な目的を達成するために、請求項2に記載の燃料電池排
熱回収システムにおいて、冷却水循環配管の前記バイパ
ス配管との接続箇所と前記冷却水排熱回収熱交換器との
間に、前記燃料電池本体から前記冷却水排熱回収熱交換
器に供給される冷却水に前記改質器から排出されるガス
の顕熱を伝熱して回収する顕熱回収熱交換器を設け、前
記顕熱回収熱交換器で熱交換した後の水蒸気含有ガスを
潜熱回収熱交換器に供給するように構成する。
According to a third aspect of the present invention, there is provided a fuel cell exhaust heat recovery system according to the second aspect of the present invention, wherein the cooling water circulating pipe is connected to the bypass pipe at a connection point with the bypass pipe. Between the cooling water exhaust heat recovery heat exchanger, the sensible heat of the gas discharged from the reformer is transferred to the cooling water supplied from the fuel cell body to the cooling water exhaust heat recovery heat exchanger. A sensible heat recovery heat exchanger for recovering and recovering the steam is provided, and the steam-containing gas after heat exchange in the sensible heat recovery heat exchanger is supplied to the latent heat recovery heat exchanger.

【0012】[0012]

【作用】請求項1に係る発明の燃料電池排熱回収システ
ムの構成によれば、冷却水排熱回収熱交換器により、燃
料電池本体に供給される冷却水に、改質器から排出され
るガスの排熱を伝熱し、冷却水循環配管とバイパス配管
との燃料電池本体への供給側の接続箇所において、燃料
電池本体に供給される冷却水の温度を上昇させ、バイパ
ス配管を通じて流す燃料電池本体冷却後の冷却水の量を
減少させることができる。
According to the configuration of the fuel cell exhaust heat recovery system according to the first aspect of the present invention, the cooling water exhaust heat recovery heat exchanger discharges the cooling water supplied to the fuel cell body from the reformer. The fuel cell body that transfers the exhaust heat of the gas, raises the temperature of the cooling water supplied to the fuel cell body at the connection point between the cooling water circulation pipe and the bypass pipe on the supply side to the fuel cell body, and flows through the bypass pipe The amount of cooling water after cooling can be reduced.

【0013】また、請求項2に係る発明の燃料電池排熱
回収システムの構成によれば、燃料電池の改質器から排
出されるガスが水蒸気を含むものであることに着目し、
冷却水排熱回収熱交換器から燃料電池本体に供給される
冷却水に、改質器から排出される水蒸気含有ガスの水蒸
気の凝縮に伴う潜熱を伝熱し、バイパス配管を通じて流
す燃料電池本体冷却後の冷却水の量を減少させることが
できる。
[0013] Further, according to the configuration of the fuel cell exhaust heat recovery system according to the second aspect of the present invention, it is noted that the gas discharged from the reformer of the fuel cell contains steam.
After cooling the fuel cell main body, which transfers the latent heat accompanying the condensation of the water vapor-containing gas discharged from the reformer to the cooling water supplied from the cooling water exhaust heat recovery heat exchanger to the fuel cell main body and flows through a bypass pipe The amount of cooling water can be reduced.

【0014】また、請求項3に係る発明の燃料電池排熱
回収システムの構成によれば、冷却水循環配管のバイパ
ス配管との接続箇所よりも冷却水排熱回収熱交換器側
で、燃料電池本体から冷却水排熱回収熱交換器に供給さ
れる燃料電池本体冷却後の冷却水に改質器から排出され
るガスの顕熱を伝熱し、冷却水排熱回収熱交換器に供給
される燃料電池本体冷却後の冷却水の温度を上昇させ、
貯湯槽に温水として回収する排熱量を増加できる。しか
も、その顕熱回収熱交換器で熱交換した後の水蒸気含有
ガスを潜熱回収熱交換器に供給して、潜熱を回収でき
る。
Further, according to the configuration of the fuel cell exhaust heat recovery system according to the third aspect of the present invention, the fuel cell main body is located closer to the cooling water exhaust heat recovery heat exchanger than the connection of the cooling water circulation pipe to the bypass pipe. The sensible heat of the gas discharged from the reformer is transferred to the cooling water after cooling the fuel cell body, which is supplied to the cooling water exhaust heat recovery heat exchanger from the fuel, and the fuel is supplied to the cooling water exhaust heat recovery heat exchanger Raise the temperature of the cooling water after cooling the battery,
The amount of exhaust heat recovered as hot water in the hot water tank can be increased. In addition, the steam-containing gas after the heat exchange in the sensible heat recovery heat exchanger is supplied to the latent heat recovery heat exchanger to recover the latent heat.

【0015】[0015]

【発明の実施の形態】次に、本発明の実施例を図面に基
づいて詳細に説明する。図1は、本発明に係る燃料電池
排熱回収システムの実施例を示すシステム構成図であ
り、1は、電気と熱とを発生させる固体高分子型の燃料
電池を示し、改質器2と燃料電池本体3とから構成され
ている。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a system configuration diagram showing an embodiment of a fuel cell exhaust heat recovery system according to the present invention. FIG. 1 shows a polymer electrolyte fuel cell that generates electricity and heat. And a fuel cell main body 3.

【0016】4は、高温の湯を貯める密閉式の貯湯槽を
示し、この貯湯槽4に、下部から上部へと水を循環する
循環配管5が接続されるとともに吐出容量可変型の循環
ポンプP1が介装され、温度成層を形成する状態で高温
の湯を貯めるように構成されている。図中6は高温の湯
を取り出す給湯管を示し、7は給湯分の水を補充する給
水管を示している。燃料電池本体3に、冷却水を供給す
る冷却水循環配管8が接続されるとともにその冷却水循
環配管8に冷却水循環ポンプP2が介装され、その冷却
水循環配管8と循環配管5との間に冷却水排熱回収熱交
換器9が設けられている。
Reference numeral 4 denotes a closed-type hot water tank for storing hot water. A circulation pipe 5 for circulating water from the lower part to the upper part is connected to the hot water tank 4, and a circulating pump P1 having a variable discharge capacity. Is provided, and is configured to store hot water in a state where temperature stratification is formed. In the figure, reference numeral 6 denotes a hot water supply pipe from which hot water is taken out, and reference numeral 7 denotes a water supply pipe for replenishing water for hot water supply. A cooling water circulating pipe 8 for supplying cooling water is connected to the fuel cell main body 3, and a cooling water circulating pump P 2 is interposed in the cooling water circulating pipe 8, and cooling water is provided between the cooling water circulating pipe 8 and the circulating pipe 5. An exhaust heat recovery heat exchanger 9 is provided.

【0017】冷却水循環配管8には、冷却水排熱回収熱
交換器9と並列にバイパス配管10が設けられ、そのバ
イパス配管10と冷却水循環配管9との接続箇所に、分
配流量を調整可能な三方弁11が付設され、冷却水排熱
回収熱交換器9側とバイパス配管10側とに流す燃料電
池本体冷却後の冷却水の流量を調整できるように構成さ
れている。本発明としては、三方弁11に代えて、例え
ば、バイパス配管10と、それと冷却水循環配管9との
接続箇所よりも冷却水排熱回収熱交換器9側箇所それぞ
れに流量調整弁を設け、二個の流量調整弁を互いに連動
させて冷却水排熱回収熱交換器9側とバイパス配管10
側とに流す燃料電池本体冷却後の冷却水の流量を調整で
きるように構成しても良く、それらをして弁機構と総称
する。
A bypass pipe 10 is provided in the cooling water circulation pipe 8 in parallel with the cooling water exhaust heat recovery heat exchanger 9, and a distribution flow rate can be adjusted at a connection point between the bypass pipe 10 and the cooling water circulation pipe 9. A three-way valve 11 is provided so that the flow rate of the cooling water after cooling the fuel cell main body flowing to the cooling water exhaust heat recovery heat exchanger 9 side and the bypass pipe 10 side can be adjusted. According to the present invention, instead of the three-way valve 11, for example, a flow control valve is provided at each position of the bypass pipe 10 and the cooling water exhaust heat recovery heat exchanger 9 closer to the connection point between the bypass pipe 10 and the cooling water circulation pipe 9. The cooling water exhaust heat recovery heat exchanger 9 side and the bypass pipe 10
The flow rate of the cooling water after cooling the fuel cell main body flowing to the side may be adjusted, and these are collectively referred to as a valve mechanism.

【0018】冷却水循環配管8のバイパス配管10との
接続箇所と冷却水排熱回収熱交換器9との間において、
冷却水排熱回収熱交換器9に供給される配管部分8aに
顕熱回収熱交換器12が設けられるとともに、燃料電池
本体3に供給される配管部分8bに、改質器排熱回収熱
交換器としての潜熱回収熱交換器13が設けられてい
る。
Between the connection point of the cooling water circulation pipe 8 with the bypass pipe 10 and the cooling water exhaust heat recovery heat exchanger 9,
A sensible heat recovery heat exchanger 12 is provided in a pipe portion 8a supplied to the cooling water exhaust heat recovery heat exchanger 9, and a reformer exhaust heat recovery heat exchange is provided in a pipe portion 8b supplied to the fuel cell body 3. A latent heat recovery heat exchanger 13 is provided as a vessel.

【0019】改質器2からの排ガス配管14が、顕熱回
収熱交換器12を経て潜熱回収熱交換器13に導入さ
れ、燃料電池本体3から冷却水排熱回収熱交換器9に供
給される燃料電池本体冷却後の冷却水に改質器2から排
出されるガスの顕熱を伝熱して回収するとともに、顕熱
回収熱交換器12で熱交換した後の水蒸気含有ガスの潜
熱を、冷却水排熱回収熱交換器9からバイパス配管10
との接続箇所に供給される冷却水に伝熱して回収するよ
うに構成されている。
The exhaust gas pipe 14 from the reformer 2 is introduced into the latent heat recovery heat exchanger 13 via the sensible heat recovery heat exchanger 12 and supplied from the fuel cell body 3 to the cooling water exhaust heat recovery heat exchanger 9. The sensible heat of the gas discharged from the reformer 2 is transferred and recovered to the cooling water after cooling the fuel cell body, and the latent heat of the steam-containing gas after heat exchange in the sensible heat recovery heat exchanger 12 is Cooling water exhaust heat recovery heat exchanger 9 to bypass pipe 10
It is configured to conduct heat to the cooling water supplied to the connection point with the cooling water and recover it.

【0020】冷却水循環配管8の燃料電池本体3への冷
却水の入口箇所に、冷却水の温度を測定する冷却水温度
センサ15が設けられ、この冷却水温度センサ15が第
1のコントローラ16に接続されるとともに第1のコン
トローラ16が三方弁11に接続され、冷却水温度セン
サ15で測定される冷却水の温度を設定温度(例えば、
60℃)に維持するように三方弁11の開度を調整するよ
うに冷却制御機構が構成されている。
A cooling water temperature sensor 15 for measuring the temperature of the cooling water is provided at an inlet of the cooling water to the fuel cell main body 3 in the cooling water circulation pipe 8, and the cooling water temperature sensor 15 is connected to the first controller 16. The first controller 16 is connected to the three-way valve 11 and connected to the three-way valve 11 to set the temperature of the cooling water measured by the cooling water temperature sensor 15 to a set temperature (for example,
The cooling control mechanism is configured to adjust the opening of the three-way valve 11 so as to maintain the temperature at 60 ° C.).

【0021】また、循環配管5の貯湯槽4への温水供給
箇所に、温水の温度を測定する湯温センサ17が設けら
れ、この湯温センサ17が第2のコントローラ18に接
続されるとともに、第2のコントローラ18が、循環ポ
ンプP1に接続され、湯温センサ17で測定される温水
の温度を設定温度(例えば、65℃)に維持するように循
環ポンプP1の吐出容量を調整するように貯湯温度制御
機構が構成されている。
A hot water temperature sensor 17 for measuring the temperature of hot water is provided at a location of hot water supply to the hot water storage tank 4 of the circulation pipe 5, and the hot water temperature sensor 17 is connected to a second controller 18; The second controller 18 is connected to the circulation pump P1 and adjusts the discharge capacity of the circulation pump P1 so as to maintain the temperature of the hot water measured by the hot water temperature sensor 17 at a set temperature (for example, 65 ° C.). A hot-water storage temperature control mechanism is configured.

【0022】以上の構成により、燃料電池本体3への冷
却水の温度を一定に維持しながら、燃料電池本体冷却後
の冷却水の熱と、改質器2から排出されるガスの顕熱お
よび潜熱を循環配管5を流れる水に伝熱し、設定温度の
温水として回収し、その温水を貯湯槽4に貯めて給湯な
どに利用できる。
With the above configuration, while maintaining the temperature of the cooling water to the fuel cell main body 3 constant, the heat of the cooling water after cooling the fuel cell main body, the sensible heat of the gas discharged from the reformer 2 and The latent heat is transferred to the water flowing through the circulation pipe 5 and collected as hot water at a set temperature, and the hot water is stored in the hot water storage tank 4 and can be used for hot water supply or the like.

【0023】次に、上記実施例の具体的な熱交換例につ
いて説明する。発電容量が1kWの燃料電池1におい
て、改質器2からの水蒸気含有排ガス(温度 158℃)を
毎分36lの流量で顕熱回収熱交換器12から潜熱回収熱
交換器13に供給し、顕熱回収熱交換器12において熱
量 100Wを伝熱して回収し、潜熱回収熱交換器13にお
いて熱量 200Wを伝熱して回収するようにした。
Next, a specific example of heat exchange of the above embodiment will be described. In the fuel cell 1 having a power generation capacity of 1 kW, the steam-containing exhaust gas (temperature 158 ° C.) from the reformer 2 is supplied from the sensible heat recovery heat exchanger 12 to the latent heat recovery heat exchanger 13 at a flow rate of 36 l / min. The heat recovery heat exchanger 12 transfers and recovers 100 W of heat, and the latent heat recovery heat exchanger 13 transfers and recovers 200 W of heat.

【0024】燃料電池本体3からの熱出力が 943Wで、
燃料電池本体3に供給する冷却水の温度を60℃とし、燃
料電池本体冷却後の冷却水の温度が65℃になるように冷
却水を冷却水循環配管8を流したところ、バイパス配管
10に流す流量が毎分2.32lで、冷却水排熱回収熱交換
器9に流す流量が毎分0.38lであった。
The heat output from the fuel cell body 3 is 943W,
When the temperature of the cooling water supplied to the fuel cell body 3 is set to 60 ° C., and the cooling water flows through the cooling water circulation pipe 8 so that the temperature of the cooling water after cooling the fuel cell body becomes 65 ° C., the cooling water flows to the bypass pipe 10. The flow rate was 2.32 l / min, and the flow rate to the cooling water exhaust heat recovery heat exchanger 9 was 0.38 l / min.

【0025】上述した温度が65℃の燃料電池本体冷却後
の冷却水を顕熱回収熱交換器12に通すことにより、冷
却水排熱回収熱交換器9に供給される配管部分8aでの
温度を69℃まで上昇できた。
The cooling water after the cooling of the fuel cell main body having the above-mentioned temperature of 65 ° C. is passed through the sensible heat recovery heat exchanger 12 so that the temperature at the pipe portion 8 a supplied to the cooling water exhaust heat recovery heat exchanger 9 is increased. Could be raised to 69 ° C.

【0026】そして、循環配管5を通じて、温度20℃の
水を冷却水排熱回収熱交換器9に毎分0.38lで流すこと
により、顕熱回収熱交換器12を経た69℃の冷却水と熱
交換し、貯湯槽4に、温度65℃の温水を回収できた。ま
た、冷却水排熱回収熱交換器9から燃料電池本体3に供
給される配管部分8bでの冷却水の温度は24℃であっ
た。この冷却水を潜熱回収熱交換器13に流すことによ
り冷却水の温度を32℃まで上昇できた。このとき、潜熱
回収熱交換器13を経たドレンを含んだ水蒸気含有排ガ
スの温度は30℃であった。
Then, by flowing water at a temperature of 20 ° C. through the circulation pipe 5 to the cooling water exhaust heat recovery heat exchanger 9 at 0.38 liters per minute, the 69 ° C. cooling water passed through the sensible heat recovery heat exchanger 12 The heat was exchanged, and hot water having a temperature of 65 ° C. was collected in the hot water storage tank 4. The temperature of the cooling water in the pipe portion 8b supplied from the cooling water exhaust heat recovery heat exchanger 9 to the fuel cell body 3 was 24 ° C. By flowing this cooling water through the latent heat recovery heat exchanger 13, the temperature of the cooling water could be raised to 32 ° C. At this time, the temperature of the steam-containing exhaust gas containing the drain passing through the latent heat recovery heat exchanger 13 was 30 ° C.

【0027】一方、従来システム(図2参照)におい
て、燃料電池本体3からの熱出力が 943Wで、燃料電池
本体3に供給する冷却水の温度を60℃とし、燃料電池本
体冷却後の冷却水の温度が65℃になるように冷却水を冷
却水循環配管8を流したところ、バイパス配管10に流
す流量が毎分2.37lで、冷却水排熱回収熱交換器9に流
す流量が毎分0.33lであった。実施例と同様に、温度20
℃の水を冷却水排熱回収熱交換器9に毎分0.33lで流し
たところ、65℃の冷却水と熱交換し、貯湯槽4に回収さ
れる温水の温度は60℃であった。
On the other hand, in the conventional system (see FIG. 2), the heat output from the fuel cell body 3 is 943 W, the temperature of the cooling water supplied to the fuel cell body 3 is 60 ° C., and the cooling water after cooling the fuel cell body is cooled. When the cooling water was passed through the cooling water circulation pipe 8 so that the temperature of the cooling water became 65 ° C., the flow rate flowing through the bypass pipe 10 was 2.37 l / min, and the flow rate flowing through the cooling water exhaust heat recovery heat exchanger 9 was 0.33 l / min. l. As in the example, a temperature of 20
When water at a temperature of 0.35 ° C. was passed through the cooling water exhaust heat recovery heat exchanger 9 at a rate of 0.33 l / min, heat exchanged with the cooling water at a temperature of 65 ° C. and the temperature of the hot water recovered in the hot water storage tank 4 was 60 ° C.

【0028】上記の結果、実施例システムにより、従来
システムに比べて、排熱回収量を、顕熱回収熱交換器1
2および潜熱回収熱交換器13で回収される分の熱量 3
00W増加でき、燃料電池本体冷却後の冷却水を排熱回収
熱交換器9に流す比率を増加でき、そのうえ、貯湯槽4
に回収される温水の温度を5℃分高くでき、排熱回収効
率を良好に向上できることが明らかであった。
As a result, compared with the conventional system, the amount of exhaust heat recovered by the embodiment system can be reduced by the sensible heat recovery heat exchanger 1.
2 and the amount of heat recovered by the latent heat recovery heat exchanger 13 3
00W can be increased, and the ratio of the flow of the cooling water after cooling the fuel cell body to the exhaust heat recovery heat exchanger 9 can be increased.
It was clear that the temperature of the hot water recovered in the furnace could be increased by 5 ° C., and the exhaust heat recovery efficiency could be improved satisfactorily.

【0029】上記実施例では、冷却水循環配管8のバイ
パス配管10との接続箇所と冷却水排熱回収熱交換器9
との間において、冷却水排熱回収熱交換器9に供給され
る配管部分8aに顕熱回収熱交換器12に設けている
が、改質器2から排出される水蒸気含有ガスの温度によ
っては、顕熱回収熱交換器12を設けなくても良く、本
発明としては、顕熱回収熱交換器12を設けないものを
も含む。
In the above embodiment, the connection point between the cooling water circulation pipe 8 and the bypass pipe 10 and the cooling water exhaust heat recovery heat exchanger 9
The sensible heat recovery heat exchanger 12 is provided in the pipe portion 8a supplied to the cooling water waste heat recovery heat exchanger 9, but depending on the temperature of the steam-containing gas discharged from the reformer 2, The sensible heat recovery heat exchanger 12 may not be provided, and the present invention includes an apparatus in which the sensible heat recovery heat exchanger 12 is not provided.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、請求項
1に係る発明の燃料電池排熱回収システムによれば、改
質器から排出されるガスの排熱を利用し、冷却水循環配
管とバイパス配管との燃料電池本体への供給側の接続箇
所において、燃料電池本体に供給される冷却水の温度を
上昇させ、バイパス配管を通じて流す燃料電池本体冷却
後の冷却水の量を減少させるから、冷却水排熱回収熱交
換器に供給する燃料電池本体冷却後の冷却水の量を増加
できて、燃料電池からの排熱の回収量を増加できる。
As is apparent from the above description, according to the fuel cell exhaust heat recovery system according to the first aspect of the present invention, the exhaust heat of the gas discharged from the reformer is used to connect the cooling water circulation pipe At the connection point on the supply side to the fuel cell body with the bypass pipe, the temperature of the cooling water supplied to the fuel cell body is increased, and the amount of cooling water after cooling the fuel cell body flowing through the bypass pipe is reduced. The amount of cooling water after cooling the fuel cell main body supplied to the cooling water exhaust heat recovery heat exchanger can be increased, and the amount of exhaust heat recovered from the fuel cell can be increased.

【0031】また、請求項2に係る発明の燃料電池排熱
回収システムの構成によれば、燃料電池の改質器から排
出される水蒸気含有ガスの水蒸気の凝縮に伴う潜熱を利
用して、バイパス配管を通じて流す燃料電池本体冷却後
の冷却水の量を減少させるから、冷却水排熱回収熱交換
器に供給する燃料電池本体冷却後の冷却水の量を増加で
きて、燃料電池からの排熱の回収量を効果的に増加でき
る。
Further, according to the configuration of the fuel cell exhaust heat recovery system according to the second aspect of the present invention, the latent heat of the steam-containing gas discharged from the reformer of the fuel cell due to the condensation of the steam is used to bypass the fuel cell. Since the amount of cooling water after cooling the fuel cell body flowing through the pipe is reduced, the amount of cooling water after cooling the fuel cell body to be supplied to the cooling water exhaust heat recovery heat exchanger can be increased, and the heat exhausted from the fuel cell can be increased. Can be effectively increased.

【0032】また、請求項3に係る発明の燃料電池排熱
回収システムの構成によれば、燃料電池本体からの冷却
水の排熱のみならず、燃料電池の改質器から排出される
水蒸気含有排ガスの顕熱に加えて潜熱までをも回収し、
冷却水排熱回収熱交換器に供給する燃料電池本体冷却後
の冷却水の量を増加するだけで無く、その温度を上昇す
ることができ、燃料電池からの排熱の回収量を十分増加
できる。また、冷却水排熱回収熱交換器に供給する燃料
電池本体冷却後の冷却水の量を増加するのに加えてその
温度を上昇するから、給湯需要の高い場合にも適用で
き、汎用性を向上できる利点がある。
Further, according to the configuration of the fuel cell exhaust heat recovery system according to the third aspect of the present invention, not only the exhaust heat of the cooling water from the fuel cell body but also the water vapor content discharged from the reformer of the fuel cell. It collects not only the sensible heat of the exhaust gas but also the latent heat,
Cooling water waste heat recovery Not only can the amount of cooling water after cooling the fuel cell body supplied to the heat exchanger be increased, but also its temperature can be increased, and the amount of exhaust heat recovered from the fuel cell can be sufficiently increased . In addition, since the temperature of the cooling water after cooling the fuel cell body to be supplied to the cooling water exhaust heat recovery heat exchanger increases as well as the temperature of the cooling water, it can be applied even when the demand for hot water supply is high. There are advantages that can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る燃料電池排熱回収システムの実施
例を示すシステム構成図である。
FIG. 1 is a system configuration diagram showing an embodiment of a fuel cell exhaust heat recovery system according to the present invention.

【図2】従来例のシステム構成図である。FIG. 2 is a system configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1…燃料電池 2…改質器 3…燃料電池本体 4…貯湯槽 5…循環配管 8…冷却水循環配管 9…冷却水排熱回収熱交換器 10…バイパス配管 11…三方弁(弁機構) 12…顕熱回収熱交換部 13…潜熱回収熱交換部 DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Reformer 3 ... Fuel cell main body 4 ... Hot water storage tank 5 ... Circulation piping 8 ... Cooling water circulation piping 9 ... Cooling water waste heat recovery heat exchanger 10 ... Bypass piping 11 ... Three-way valve (valve mechanism) 12 … Sensible heat recovery heat exchange unit 13… Latent heat recovery heat exchange unit

フロントページの続き (72)発明者 栢原 義孝 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 岩田 伸 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 Fターム(参考) 5H026 AA06 CX06 5H027 AA06 BA01 CC06 DD06 KK28 KK48 MM16 Continued on the front page (72) Inventor Yoshitaka Kayahara 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. (72) Inventor Shin Iwata 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Osaka Gas stock In-house F-term (reference) 5H026 AA06 CX06 5H027 AA06 BA01 CC06 DD06 KK28 KK48 MM16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 改質器と燃料電池本体とを有して電気と
熱とを発生させる燃料電池と、 高温の湯を貯める貯湯槽と、 前記貯湯槽に接続されて水を循環する循環配管と、 前記燃料電池本体に冷却水を供給する冷却水循環配管
と、 前記循環配管と前記冷却水循環配管との間に設けられ
て、燃料電池冷却後の冷却水の熱を前記循環配管を流れ
る水に伝熱する冷却水排熱回収熱交換器と、 前記冷却水循環配管に前記冷却水排熱回収熱交換器と並
列に設けたバイパス配管と、 前記バイパス配管側と前記冷却水排熱回収熱交換器側と
に流す冷却水の流量を調整する弁機構と、 前記燃料電池本体に供給される冷却水の温度を感知して
冷却水温度を設定温度に維持するように前記弁機構を制
御する冷却制御機構とを備えた燃料電池排熱回収システ
ムであって、 前記冷却水循環配管の前記バイパス配管との接続箇所と
前記冷却水排熱回収熱交換器との間に、前記冷却水排熱
回収熱交換器から前記燃料電池本体に供給される冷却水
に前記改質器から排出されるガスの排熱を伝熱する改質
器排熱回収熱交換器を設けたことを特徴とする燃料電池
排熱回収システム。
1. A fuel cell having a reformer and a fuel cell main body to generate electricity and heat, a hot water storage tank for storing hot water, and a circulation pipe connected to the hot water storage tank for circulating water. A cooling water circulating pipe for supplying cooling water to the fuel cell body; and a cooling water circulating pipe provided between the circulating pipe and the cooling water circulating pipe to transfer heat of the cooling water after fuel cell cooling to water flowing through the circulating pipe. A cooling water exhaust heat recovery heat exchanger that transfers heat; a bypass pipe provided in the cooling water circulation pipe in parallel with the cooling water exhaust heat recovery heat exchanger; a bypass pipe side and the cooling water exhaust heat recovery heat exchanger A valve mechanism for adjusting a flow rate of the cooling water flowing to the fuel cell body, and a cooling control for sensing the temperature of the cooling water supplied to the fuel cell main body and controlling the valve mechanism so as to maintain the cooling water temperature at a set temperature. Fuel cell exhaust heat recovery system Between the connection point of the cooling water circulation pipe with the bypass pipe and the cooling water exhaust heat recovery heat exchanger, the cooling water supplied from the cooling water exhaust heat recovery heat exchanger to the fuel cell body, A fuel cell exhaust heat recovery system comprising a reformer exhaust heat recovery heat exchanger for transferring the exhaust heat of the gas discharged from the reformer.
【請求項2】 請求項1に記載の燃料電池排熱回収シス
テムにおいて、 改質器排熱回収熱交換器が、改質器からの水蒸気含有ガ
スの水蒸気の凝縮に伴う潜熱を伝熱して回収する潜熱回
収熱交換器である燃料電池排熱回収システム。
2. The fuel cell exhaust heat recovery system according to claim 1, wherein the reformer exhaust heat recovery heat exchanger transfers and recovers latent heat associated with the condensation of steam of the steam-containing gas from the reformer. Fuel cell exhaust heat recovery system, which is a latent heat recovery heat exchanger.
【請求項3】 請求項2に記載の燃料電池排熱回収シス
テムにおいて、 冷却水循環配管の前記バイパス配管との接続箇所と前記
冷却水排熱回収熱交換器との間に、前記燃料電池本体か
ら前記冷却水排熱回収熱交換器に供給される冷却水に前
記改質器から排出されるガスの顕熱を伝熱して回収する
顕熱回収熱交換器を設け、前記顕熱回収熱交換器で熱交
換した後の水蒸気含有ガスを潜熱回収熱交換器に供給す
るように構成してある燃料電池排熱回収システム。
3. The fuel cell exhaust heat recovery system according to claim 2, wherein a portion of the cooling water circulation pipe connected to the bypass pipe and the cooling water exhaust heat recovery heat exchanger is connected to the fuel cell main body. A sensible heat recovery heat exchanger for transferring and recovering the sensible heat of the gas discharged from the reformer to the cooling water supplied to the cooling water exhaust heat recovery heat exchanger; A fuel cell exhaust heat recovery system configured to supply the steam-containing gas after heat exchange in step (1) to the latent heat recovery heat exchanger.
JP2001092376A 2001-03-28 2001-03-28 Fuel cell exhaust heat recovery system Pending JP2002289242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001092376A JP2002289242A (en) 2001-03-28 2001-03-28 Fuel cell exhaust heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001092376A JP2002289242A (en) 2001-03-28 2001-03-28 Fuel cell exhaust heat recovery system

Publications (1)

Publication Number Publication Date
JP2002289242A true JP2002289242A (en) 2002-10-04

Family

ID=18946847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001092376A Pending JP2002289242A (en) 2001-03-28 2001-03-28 Fuel cell exhaust heat recovery system

Country Status (1)

Country Link
JP (1) JP2002289242A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166540A (en) * 2003-12-04 2005-06-23 Nissan Motor Co Ltd Fuel cell stack cooling system
WO2006057223A1 (en) * 2004-11-25 2006-06-01 Aisin Seiki Kabushiki Kaisha Fuel cell system
JP2007048654A (en) * 2005-08-11 2007-02-22 Kyocera Corp Power generator
JP2009036473A (en) * 2007-08-03 2009-02-19 Toshiba Corp Fuel cell system
JP2010272506A (en) * 2009-04-22 2010-12-02 Toshiba Corp Fuel cell stack and fuel cell system equipped with it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166540A (en) * 2003-12-04 2005-06-23 Nissan Motor Co Ltd Fuel cell stack cooling system
JP4677715B2 (en) * 2003-12-04 2011-04-27 日産自動車株式会社 Fuel cell cooling system
WO2006057223A1 (en) * 2004-11-25 2006-06-01 Aisin Seiki Kabushiki Kaisha Fuel cell system
JPWO2006057223A1 (en) * 2004-11-25 2008-06-05 アイシン精機株式会社 Fuel cell system
JP4887158B2 (en) * 2004-11-25 2012-02-29 アイシン精機株式会社 Fuel cell system
JP2007048654A (en) * 2005-08-11 2007-02-22 Kyocera Corp Power generator
JP2009036473A (en) * 2007-08-03 2009-02-19 Toshiba Corp Fuel cell system
JP2010272506A (en) * 2009-04-22 2010-12-02 Toshiba Corp Fuel cell stack and fuel cell system equipped with it

Similar Documents

Publication Publication Date Title
US20060150652A1 (en) Cooling/heating apparatus using waste heat from fuel cell
JP5295257B2 (en) Heat recovery device for fuel cell system
JP5300717B2 (en) Cogeneration system
US7452618B2 (en) Fuel cell cogeneration system
RU2005119301A (en) THERMAL REGULATION IN ELECTROCHEMICAL FUEL ELEMENTS
JP5361125B2 (en) Fuel cell device
JP2002289242A (en) Fuel cell exhaust heat recovery system
JP4273640B2 (en) Cogeneration system
JP2003282108A (en) Fuel cell system
JPH1140180A (en) Fuel cell power plant and its operation control method
JP5593808B2 (en) Fuel cell hot water supply system
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JP2003282106A (en) Fuel cell system
JP2004039430A (en) Fuel cell generator and its operation method
JP2012221723A (en) Fuel cell system
JPH09147885A (en) Thermal power generation system for fuel cell
JP2004335402A (en) Fuel cell co-generation device
JP4440676B2 (en) Fuel cell power generation hot water supply system
JP5369752B2 (en) Fuel cell power generator
JP2008243590A (en) Fuel cell device
JP2002289213A (en) Fuel cell waste heat recovery system
JP2004303495A (en) Fuel cell power generation hot-water supply system
JP2016207581A (en) Fuel cell cogeneration system
KR102576021B1 (en) Fuel cost reduction device and method using waste heat from fuel cell reformer
JP7109218B2 (en) fuel cell system