JP2012221723A - Fuel cell system - Google Patents
Fuel cell system Download PDFInfo
- Publication number
- JP2012221723A JP2012221723A JP2011086029A JP2011086029A JP2012221723A JP 2012221723 A JP2012221723 A JP 2012221723A JP 2011086029 A JP2011086029 A JP 2011086029A JP 2011086029 A JP2011086029 A JP 2011086029A JP 2012221723 A JP2012221723 A JP 2012221723A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- heat
- circulation
- pump
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明はコジェネレーションシステム例えば燃料電池コジェネレーションシステムなどで排熱を離れた貯湯タンクに温水として蓄熱する排熱回収システムに関するものである。 The present invention relates to an exhaust heat recovery system that stores heat as hot water in a hot water storage tank that has left exhaust heat in a cogeneration system such as a fuel cell cogeneration system.
従来の貯湯式排熱回収システムとしては、燃料電池のコジェネレーションシステムに関するものがあった(例えば、特許文献1参照)。図4は、前記特許文献1に記載された従来の燃料電池のコジェネレーションシステムを示すものである。 As a conventional hot water storage type exhaust heat recovery system, there has been a fuel cell cogeneration system (see, for example, Patent Document 1). FIG. 4 shows a conventional fuel cell cogeneration system described in Patent Document 1. In FIG.
図5において、燃料電池101は余剰な熱を熱交換器102で熱回収水に受け渡すことで排出している。この熱回収水は、循環ポンプ103によって貯湯タンク104の下部から熱回収配管A105および熱回収配管B106を通じて搬送されたものである。熱交換器102で燃料電池101の余剰熱で加熱された熱回収水は熱交出温度センサー108で検出され、その温度が貯湯タンク104の上部の温度よりも高い時は熱回収配管C107によって貯湯槽104の上部に搬送される。ここで加熱された熱回収水の温度が貯湯タンク104の上部の温度よりも低い時は切替弁109によってバイパス回路110を通じて熱回収配管A105の合流部に搬送され回路内を循環する。 In FIG. 5, the fuel cell 101 discharges surplus heat by passing it to the heat recovery water by the heat exchanger 102. This heat recovery water is conveyed from the lower part of the hot water storage tank 104 through the heat recovery pipe A105 and the heat recovery pipe B106 by the circulation pump 103. The heat recovery water heated by surplus heat of the fuel cell 101 in the heat exchanger 102 is detected by the heat exchange temperature sensor 108, and when the temperature is higher than the temperature of the upper part of the hot water storage tank 104, the heat recovery pipe C107 stores the hot water storage. It is conveyed to the upper part of the tank 104. When the temperature of the heat recovery water heated here is lower than the temperature of the upper part of the hot water storage tank 104, the changeover valve 109 conveys the heat recovery water to the junction of the heat recovery pipe A105 through the bypass circuit 110 and circulates in the circuit.
しかしながら、前記従来の構成では、燃料電池101で発生する余剰な熱が小さい場合、高温の温水を貯湯槽104へ送るためには熱交換器102で熱回収水に受け渡し、循環ポンプ103により貯湯槽104へ送られる熱回収水の流量をきわめて小さくする必要がある。 However, in the conventional configuration, when the excessive heat generated in the fuel cell 101 is small, in order to send hot hot water to the hot water storage tank 104, it is transferred to the heat recovery water by the heat exchanger 102, and the hot water storage tank by the circulation pump 103. The flow rate of the heat recovery water sent to 104 needs to be extremely small.
この場合、循環ポンプ103の循環流量が小さくなるため、循環ポンプ103内部にエア噛みが派生し、キャビテーションによる循環ポンプ103の破損、循環不良が発生するという課題を有していた。 In this case, since the circulation flow rate of the circulation pump 103 becomes small, air engagement is derived inside the circulation pump 103, and there is a problem that the circulation pump 103 is damaged due to cavitation and defective circulation occurs.
また、集合住宅等に設置された場合貯湯槽と燃料電池の設置により熱回収配管が長くなる場合が十分想定される。 In addition, when installed in an apartment house or the like, it is sufficiently assumed that the heat recovery pipe becomes longer due to the installation of a hot water tank and a fuel cell.
この場合、熱回収配管の放熱量が大きくなり貯湯槽に十分な蓄熱をすることができないという課題を有していた。 In this case, the heat radiation amount of the heat recovery pipe is increased, and there is a problem that sufficient heat storage cannot be performed in the hot water storage tank.
本発明は、前記従来の課題を解決するもので、排熱回収用循環ポンプの耐久性性能を向上させるとともに、設置余裕度を向上させることを目的とする。 The present invention solves the above-described conventional problems, and an object thereof is to improve the durability performance of the exhaust heat recovery circulation pump and to improve the installation margin.
前記従来の課題を解決するために、貯湯式排熱回収システムは、電力及び熱を供給する燃料電池と、前記燃料電池の熱を吸収する熱媒体が循環する循環経路と、前記熱媒体の熱を蓄熱する蓄熱器と、前記循環経路に配置され、前記熱媒体を循環する循環ポンプと、少なくとも前記循環ポンプを制御する制御器とを有し、前記制御器は、前記燃料電池が発電
を行っている場合に、前記ポンプの操作量を高操作量及びゼロより大きい低操作量の少なくとも二段階に断続的に変化させるように前記ポンプを制御する、燃料電池システムである。
In order to solve the conventional problems, a hot water storage type exhaust heat recovery system includes a fuel cell that supplies electric power and heat, a circulation path through which a heat medium that absorbs heat from the fuel cell circulates, and heat of the heat medium. A heat accumulator that stores heat, a circulation pump that is arranged in the circulation path and circulates the heat medium, and a controller that controls at least the circulation pump. The controller performs power generation by the fuel cell. In this case, the fuel cell system controls the pump so that the operation amount of the pump is intermittently changed into at least two steps of a high operation amount and a low operation amount greater than zero.
本構成によって、循環ポンプのエア噛みを防止することができる。 With this configuration, the air pump of the circulation pump can be prevented.
本発明の貯湯式排熱回収システムによれば、単純な制御により熱回収配管の燃料電池ユニットと貯湯ユニットの間の熱回収水に用いられる循環ポンプのエア噛みを防止することができ、耐久性能を向上させることができると共に、熱回収配管を通して、貯湯槽に送られる高温回収水の量を多くすることにより熱回収配管の放熱量を少なくして前記熱回収配管の延長が可能となる。 According to the hot water storage type exhaust heat recovery system of the present invention, it is possible to prevent the air pumping of the circulation pump used for the heat recovery water between the fuel cell unit and the hot water storage unit of the heat recovery pipe by simple control, and durability performance In addition, by increasing the amount of high-temperature recovered water sent to the hot water storage tank through the heat recovery pipe, it is possible to extend the heat recovery pipe by reducing the heat radiation amount of the heat recovery pipe.
第1の発明は、水素と空気が供給されて発電を行う燃料電池と、前記燃料電池の発電時に発熱する前記燃料電池を冷却する冷却水を循環させる冷却水循環回路と、前記冷却水循環回路に配され冷却水を貯える冷却水タンクと、前記冷却水循環回路内の冷却水を循環させる冷却水循環ポンプと、貯湯槽と、前記貯湯槽から流出した熱回収水を前記貯湯槽に戻す熱回収水循環回路と、前記冷却水循環回路の冷却水と前記熱回収水循環回路の熱回収水とを熱交換させる冷却水熱交換器と、
熱回収水を貯湯槽と冷却水熱交換器との間で循環させる循環ポンプを備え、
前記燃料電池の排熱を回収する際に、循環ポンプの運転操作量を高操作量及びゼロより大きい低操作量の少なくとも二段階に断続的に変化させるように前記ポンプを制御する、燃料電池システムである。
According to a first aspect of the present invention, there is provided a fuel cell that generates power by supplying hydrogen and air, a cooling water circulation circuit that circulates cooling water that cools the fuel cell that generates heat when the fuel cell generates power, and a cooling water circulation circuit. A cooling water tank that stores the cooling water, a cooling water circulation pump that circulates the cooling water in the cooling water circulation circuit, a hot water storage tank, and a heat recovery water circulation circuit that returns the heat recovery water flowing out of the hot water storage tank to the hot water storage tank. A cooling water heat exchanger for exchanging heat between the cooling water in the cooling water circulation circuit and the heat recovery water in the heat recovery water circulation circuit;
A circulation pump that circulates heat recovery water between the hot water tank and the cooling water heat exchanger,
A fuel cell system for controlling the pump so as to intermittently change the operation amount of the circulation pump into at least two stages of a high operation amount and a low operation amount greater than zero when recovering the exhaust heat of the fuel cell; It is.
第2の発明は、水素と空気が供給されて発電を行う燃料電池と、前記燃料電池の発電時に発熱する前記燃料電池を冷却する冷却水を循環させる冷却水循環回路と、前記冷却水循環回路に配され冷却水を貯える冷却水タンクと、前記冷却水循環回路内の冷却水を循環させる冷却水循環ポンプと、貯湯槽と、前記貯湯槽から流出した熱回収水を前記貯湯槽に戻す熱回収水循環回路と、前記冷却水循環回路の冷却水と前記熱回収水循環回路の熱回収水とを熱交換させる冷却水熱交換器と、
熱回収水を貯湯槽と冷却水熱交換器との間で循環させる循環ポンプを備え、
前記燃料電池の排熱を回収する際に、循環ポンプの運転操作量を高操作量及び前記燃料電池が発電を行っている場合の最低操作量の少なくとも二段階に断続的に変化させるように前記ポンプを制御する、燃料電池システムである。
According to a second aspect of the invention, there is provided a fuel cell that generates power by supplying hydrogen and air, a cooling water circulation circuit that circulates cooling water that cools the fuel cell that generates heat during power generation of the fuel cell, and a cooling water circulation circuit. A cooling water tank that stores the cooling water, a cooling water circulation pump that circulates the cooling water in the cooling water circulation circuit, a hot water storage tank, and a heat recovery water circulation circuit that returns the heat recovery water flowing out of the hot water storage tank to the hot water storage tank. A cooling water heat exchanger for exchanging heat between the cooling water in the cooling water circulation circuit and the heat recovery water in the heat recovery water circulation circuit;
A circulation pump that circulates heat recovery water between the hot water tank and the cooling water heat exchanger,
When recovering the exhaust heat of the fuel cell, the operation amount of the circulation pump is intermittently changed to at least two stages of a high operation amount and a minimum operation amount when the fuel cell is generating power. A fuel cell system for controlling a pump.
第3の発明は、水素と空気が供給されて発電を行う燃料電池と、前記燃料電池の発電時に発熱する前記燃料電池を冷却する冷却水を循環させる冷却水循環回路と、前記冷却水循環回路に配され冷却水を貯える冷却水タンクと、前記冷却水循環回路内の冷却水を循環させる冷却水循環ポンプと、貯湯槽と、前記貯湯槽から流出した熱回収水を前記貯湯槽に戻す熱回収水循環回路と、前記冷却水循環回路の冷却水と前記熱回収水循環回路の熱回収水とを熱交換させる冷却水熱交換器と、
熱回収水を貯湯槽と冷却水熱交換器との間で循環させる循環ポンプを備え、
前記燃料電池の排熱を回収する際に、循環ポンプの運転操作量を複数の大きさの操作量に
区分されるように設定して断続的に変化させるように前記ポンプを制御する、燃料電池システムである。
According to a third aspect of the invention, there is provided a fuel cell that generates power by supplying hydrogen and air, a cooling water circulation circuit that circulates cooling water that cools the fuel cell that generates heat during power generation of the fuel cell, and a cooling water circulation circuit. A cooling water tank that stores the cooling water, a cooling water circulation pump that circulates the cooling water in the cooling water circulation circuit, a hot water storage tank, and a heat recovery water circulation circuit that returns the heat recovery water flowing out of the hot water storage tank to the hot water storage tank. A cooling water heat exchanger for exchanging heat between the cooling water in the cooling water circulation circuit and the heat recovery water in the heat recovery water circulation circuit;
A circulation pump that circulates heat recovery water between the hot water tank and the cooling water heat exchanger,
A fuel cell that controls the pump so as to intermittently change the operation amount of the circulating pump by setting the operation amount to be divided into a plurality of operation amounts when recovering the exhaust heat of the fuel cell; System.
(実施の形態1)
図1は、本発明の第1の実施の形態における循環ポンプ71の操作量を制御する熱回収循環回路を包含する燃料電池システムの構成を示すものであり、図2は循環ポンプの操作量を制御する熱回収循環回路のタイムチャートである。
(Embodiment 1)
FIG. 1 shows the configuration of a fuel cell system including a heat recovery circuit that controls the operation amount of the circulation pump 71 according to the first embodiment of the present invention. FIG. 2 shows the operation amount of the circulation pump. It is a time chart of the heat recovery circuit to be controlled.
以下、本発明の実施の形態の燃料電池熱回収循環回路の具体的な構成例および動作例について、燃料電池システムの構成例をもとに図面を参照しながら説明する。 Hereinafter, specific configuration examples and operation examples of the fuel cell heat recovery circuit according to the embodiment of the present invention will be described with reference to the drawings based on the configuration examples of the fuel cell system.
図1は、本発明の実施の形態の燃料電池システムの一構成例を示したブロック図である。図1に示すように、燃料電池システム100は、燃料ガス(水素ガス)を用いて発電および発熱する燃料電池1と燃焼ガス中のメタンと、改質反応を起こさせ、水素を発生させる燃料処理機10を備える。 FIG. 1 is a block diagram showing a configuration example of a fuel cell system according to an embodiment of the present invention. As shown in FIG. 1, a fuel cell system 100 is a fuel cell that generates hydrogen by generating a reforming reaction between a fuel cell 1 that generates and generates heat using fuel gas (hydrogen gas) and methane in the combustion gas. A machine 10 is provided.
燃料電池1では、燃料電池1のアノード(図示せず)に供給された燃料ガスと、燃料電池1のカソード(図示せず)に供給された酸化ガス(例えば、空気)と、が電気化学的に反応(発熱反応)して、電力および熱が発生する。燃料電池1によって生成された電力は、例えば、様々な電気機器において利用できる。また、燃料電池1によって生成された熱は、様々な用途に利用でき、例えば、家庭の暖房や給湯などにおいても利用できる。 In the fuel cell 1, the fuel gas supplied to the anode (not shown) of the fuel cell 1 and the oxidizing gas (for example, air) supplied to the cathode (not shown) of the fuel cell 1 are electrochemical. In response to heat (exothermic reaction), power and heat are generated. The electric power generated by the fuel cell 1 can be used in various electric devices, for example. Further, the heat generated by the fuel cell 1 can be used for various purposes, for example, at home heating or hot water supply.
なお、燃料電池1の内部構造は公知である。よって、その詳細な説明は省略する。燃料電池1の発電では、上述の電気化学反応(発熱反応)が進行するので、燃料電池1の発電中の運転温度が、その反応に適した温度(例えば、70℃〜80℃程度)に維持されるよう、燃料電池1の温度を一定に保つ機構が一般的に採用されている。 The internal structure of the fuel cell 1 is known. Therefore, the detailed description is abbreviate | omitted. In the power generation of the fuel cell 1, since the above-described electrochemical reaction (exothermic reaction) proceeds, the operating temperature during power generation of the fuel cell 1 is maintained at a temperature suitable for the reaction (for example, about 70 ° C. to 80 ° C.). In general, a mechanism for keeping the temperature of the fuel cell 1 constant is generally employed.
まず燃料電池冷却回路について説明する。 First, the fuel cell cooling circuit will be described.
燃料電池冷却回路は、図1に示すように、燃料電池1の発電中に前記燃料電池1を冷却するための冷却水を循環する冷却水循環回路2(請求項1の「循環経路」に対応する)と、前記冷却水循環回路2に設けられた余剰ヒータ3を具備し冷却水を貯える冷却水タンク4と、前記冷却水循環回路2内の冷却水を循環させる冷却水循環ポンプ6と、前記冷却水循環回路2の廃熱を吸収して貯湯槽20内に蓄熱する冷却水熱交換器5と、燃料電池1の冷却水出口に設けられた温度検出器7を備えたものである。図1では、冷却水の流れの方向が実線の矢印によって示されている。前記冷却水循環回路2は冷却水タンク4と冷却水熱交換器5をつなぐ冷却水循環回路a21と、冷却水熱交換器5と燃料電池1をつなぐ冷却水循環回路b22と、燃料電池1と冷却水循環ポンプ6をつなぐ冷却水循環回路c23と、冷却水循環ポンプ6と冷却水タンク4をつなぐ冷却水循環回路d24で構成されている。 As shown in FIG. 1, the fuel cell cooling circuit corresponds to a cooling water circulation circuit 2 that circulates cooling water for cooling the fuel cell 1 during power generation of the fuel cell 1 (corresponding to a “circulation path” in claim 1). ), A cooling water tank 4 provided with an excess heater 3 provided in the cooling water circulation circuit 2 and storing cooling water, a cooling water circulation pump 6 for circulating the cooling water in the cooling water circulation circuit 2, and the cooling water circulation circuit The cooling water heat exchanger 5 that absorbs the waste heat 2 and stores the heat in the hot water storage tank 20 and the temperature detector 7 provided at the cooling water outlet of the fuel cell 1 are provided. In FIG. 1, the flow direction of the cooling water is indicated by a solid arrow. The cooling water circulation circuit 2 includes a cooling water circulation circuit a21 that connects the cooling water tank 4 and the cooling water heat exchanger 5, a cooling water circulation circuit b22 that connects the cooling water heat exchanger 5 and the fuel cell 1, a fuel cell 1 and a cooling water circulation pump. 6, a cooling water circulation circuit c <b> 23 that connects 6, and a cooling water circulation circuit d <b> 24 that connects the cooling water circulation pump 6 and the cooling water tank 4.
つぎに、燃料電池1に都市ガス等を用いて燃料ガス(水素ガス)を供給する燃料処理機10に改質反応のための反応用の水を供給する改質水供給回路について説明する。 Next, a reformed water supply circuit for supplying reaction water for the reforming reaction to the fuel processor 10 for supplying fuel gas (hydrogen gas) using city gas or the like to the fuel cell 1 will be described.
改質水供給回路は前記冷却水循環回路2の冷却水循環回路d24から分岐した給水回路12と、燃料処理機に反応用の水を供給する供給ポンプ11と、燃料処理機10への反応用の水の入り切りを行う第1の燃料処理弁15aと、供給ポンプ11から分岐した凝縮水回路14と、第2の燃料処理弁15bと、給水タンク(凝縮水タンク)16と、冷却水の供給ポンプ13と、冷却水供給回路17bを備えている。図1では、冷却水の流れの方向が点線の矢印によって示されている。前記給水回路12は、燃料電池1と冷却水循環ポン
プ6をつなぐ冷却水循環回路c23から分岐して、供給ポンプ11をつなぐ給水回路12と、供給ポンプ11、第1の燃料処理弁15aをつなぐ給水回路b32と、第1の燃料処理弁15aと燃料処理機10をつなぐ給水回路c33と、前記給水回路b32の途中から分岐して第2の燃料処理弁15bをつなぐ給水回路d34と、第2の燃料処理弁15bと給水タンク(凝縮水タンク)16をつなぐ給水回路e35で構成されている。給水タンク16には、オーバーフローした場合に排水を行うための排水経路が接続されており、排水経路にはオーバーフロー弁16bが配置されている。
The reforming water supply circuit includes a water supply circuit 12 branched from the cooling water circulation circuit d24 of the cooling water circulation circuit 2, a supply pump 11 for supplying reaction water to the fuel processor, and water for reaction to the fuel processor 10. The first fuel processing valve 15a for turning on and off, the condensed water circuit 14 branched from the supply pump 11, the second fuel processing valve 15b, the water supply tank (condensed water tank) 16, and the cooling water supply pump 13 And a cooling water supply circuit 17b. In FIG. 1, the flow direction of the cooling water is indicated by dotted arrows. The water supply circuit 12 branches from a cooling water circulation circuit c23 that connects the fuel cell 1 and the cooling water circulation pump 6, and connects the water supply circuit 12 that connects the supply pump 11, the supply pump 11, and the first fuel processing valve 15a. b32, a water supply circuit c33 connecting the first fuel processing valve 15a and the fuel processor 10, a water supply circuit d34 branching from the water supply circuit b32 and connecting the second fuel processing valve 15b, and a second fuel A water supply circuit e35 that connects the processing valve 15b and a water supply tank (condensate water tank) 16 is configured. The water supply tank 16 is connected to a drainage path for draining when it overflows, and an overflow valve 16b is disposed in the drainage path.
また前記冷却水供給回路17bは冷却水供給回路c17c、冷却水供給回路d17d、冷却水供給回路e17e、で構成されている。また、冷却水循環回路e17eには、冷却水タンク弁4bが配置されている。 The cooling water supply circuit 17b includes a cooling water supply circuit c17c, a cooling water supply circuit d17d, and a cooling water supply circuit e17e. A cooling water tank valve 4b is arranged in the cooling water circulation circuit e17e.
また、循環ポンプ71を含む燃料電池システムの構成部品を制御する制御器50が配置されている。 Further, a controller 50 that controls the components of the fuel cell system including the circulation pump 71 is disposed.
つぎに燃料電池の発電工程を通水、循環回路の循環水充填運転(以下初期水張り)燃料処理、燃料電池の発電の順に説明する。 Next, the fuel cell power generation process will be described in the order of water flow, circulating water filling operation of the circulation circuit (hereinafter referred to as initial water filling) fuel treatment, and fuel cell power generation.
燃料電池システムの循環回路内へ水を充填するため、初期水張りを行う。 Initial filling is performed to fill the circulation circuit of the fuel cell system with water.
まず、第1のバイパス回路60に設けられた第1の切り替え手段61の回路を「開」にする。これにより貯湯槽20内の補給水は、貯湯循環回路41、循環ポンプ71(請求項の「ポンプ」に対応する)、補給水回路51aを通り、第1のバイパス回路60を経て冷却水供給回路c17c、冷却水供給回路d17d、イオン交換樹脂18、冷却水供給回路e17e、を通り、冷却水タンク4に導かれる。これらの一連の動作は貯湯槽20にかかる水道の供給圧により行われる。 First, the circuit of the first switching means 61 provided in the first bypass circuit 60 is set to “open”. Accordingly, the makeup water in the hot water tank 20 passes through the hot water circulation circuit 41, the circulation pump 71 (corresponding to the “pump” in the claims), the makeup water circuit 51a, the first bypass circuit 60, and the cooling water supply circuit. It is guided to the cooling water tank 4 through c17c, the cooling water supply circuit d17d, the ion exchange resin 18, and the cooling water supply circuit e17e. These series of operations are performed by the supply pressure of the water supply applied to the hot water tank 20.
冷却水タンク4内の水位が上昇すると冷却水タンクレベルスイッチ8が満水を検知して、1の切り替え手段61の回路を「閉」にする。 When the water level in the cooling water tank 4 rises, the cooling water tank level switch 8 detects that the water level is full and “closes” the circuit of one switching means 61.
また、前記初期水張りと同時に、給水タンク(凝縮水タンク)16への水の補給を行う。給水タンク弁72を「開」にして貯湯槽20内の貯水を貯湯循環回路41、循環ポンプ71、貯湯循環回路b42から分岐した補給水回路a51、補給水回路b52を介して給水タンク(凝縮水タンク)16に補給する。給水タンク(凝縮水タンク)16内の水位が上昇すると給水タンクレベルスイッチ17が満水を検知して、循環ポンプ71を停止するとともに給水タンク弁72を「閉」にする。 Simultaneously with the initial water filling, water is supplied to the water supply tank (condensate water tank) 16. A water tank (condensed water) is supplied via a replenishment water circuit a51 and a replenishment water circuit b52 branched from the hot water circulation circuit 41, the circulation pump 71 and the hot water circulation circuit b42 with the water tank valve 72 opened. Tank) 16 is replenished. When the water level in the water supply tank (condensate water tank) 16 rises, the water supply tank level switch 17 detects full water, stops the circulation pump 71, and closes the water supply tank valve 72.
前記操作は循環ポンプ71の運転有無に関らず行われる。 The operation is performed regardless of whether the circulation pump 71 is in operation.
前記の冷却水循環回路2内の冷却水の充填が完了すると燃料処理機10から燃料ガス(水素ガス)が燃料電池1に供給され酸化ガス(例えば、空気)と、反応して発電が開始される。そして、この発電により電力および熱が発生する。この電力は電気機器により消費され、発生した熱は冷却水熱交換器5により、貯湯槽20から循環ポンプ71により排熱循環回路40を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。 When filling of the cooling water in the cooling water circulation circuit 2 is completed, fuel gas (hydrogen gas) is supplied from the fuel processor 10 to the fuel cell 1 and reacts with the oxidizing gas (for example, air) to start power generation. . Then, electric power and heat are generated by this power generation. This electric power is consumed by the electrical equipment, and the generated heat is heat-exchanged by the cooling water heat exchanger 5 from the hot water storage tank 20 by the hot water circulating through the exhaust heat circulation circuit 40 by the circulation pump 71 and stored in the hot water storage tank 20. .
前記補給水循環回路は、貯湯槽20と循環ポンプ71をつなぐ貯湯循環回路41と、循環ポンプ71と冷却水熱交換器5をつなぐ補給水循環回路a42と、冷却水熱交換器5と貯湯槽20をつなぐ補給水循環回路c43から構成されている。 The makeup water circulation circuit comprises a hot water storage circuit 41 that connects the hot water tank 20 and the circulation pump 71, a makeup water circulation circuit a42 that connects the circulation pump 71 and the cooling water heat exchanger 5, the cooling water heat exchanger 5 and the hot water tank 20. The makeup water circulation circuit c43 is connected.
また、前記燃料電池システムにおいて発電時に余剰電量が生じた場合は、その余剰電力
をヒータにより熱に変換し、貯湯槽20に蓄熱する。具体的には冷却水タンク4に設けられた余剰ヒータ3により余剰電力を温水に変換する。この冷却水タンク内の温水は冷却水循環ポンプ6により冷却水熱交換器5へ送られ、貯湯槽20から循環ポンプ71により排熱循環回路40を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。
Further, when surplus electricity is generated during power generation in the fuel cell system, the surplus power is converted into heat by a heater and stored in the hot water tank 20. Specifically, surplus power is converted into hot water by the surplus heater 3 provided in the cooling water tank 4. Hot water in the cooling water tank is sent to the cooling water heat exchanger 5 by the cooling water circulation pump 6, and heat is exchanged from the hot water storage tank 20 by the hot water circulating through the exhaust heat circulation circuit 40 by the circulation pump 71 to store heat in the hot water storage tank 20. Is done.
つぎに、発電量が変化し、冷却水熱交換器5で熱交換されて、貯湯槽20に蓄熱される熱量が変化した時の循環ポンプ71の運転制御について図2を用いて説明する。 Next, the operation control of the circulation pump 71 when the power generation amount is changed, the heat exchange is performed in the cooling water heat exchanger 5 and the heat stored in the hot water tank 20 is changed will be described with reference to FIG.
図2は横軸を運転時間としたタイムチャートである。図1の上図は発電排熱量(発熱量)と運転時間の関係を示し、下図は循環ポンプ71の操作量(循環量)と運転時間の関係を示している。 FIG. 2 is a time chart with the horizontal axis as the operation time. The upper diagram in FIG. 1 shows the relationship between the amount of generated heat (heat generation amount) and the operation time, and the lower diagram shows the relationship between the operation amount (circulation amount) of the circulation pump 71 and the operation time.
この場合、最大発電量で燃料電池1の発電排熱量(発電量)が最大の場合は循環ポンプ71の操作量(循環量)を最大(高操作量)にして前記冷却水熱交換器5により、貯湯槽20から循環ポンプ71により排熱循環回路40を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。 In this case, when the amount of generated heat exhausted (power generation) of the fuel cell 1 is maximum with the maximum power generation amount, the operation amount (circulation amount) of the circulation pump 71 is set to the maximum (high operation amount) by the cooling water heat exchanger 5. Then, heat is exchanged from the hot water storage tank 20 by the hot water circulating through the exhaust heat circulation circuit 40 by the circulation pump 71 and is stored in the hot water storage tank 20.
つぎに、燃料電池1の発電量が低下して発電排熱量(発電量)があらかじめ設定されたしきい値を下回った場合は循環ポンプ71の操作量(循環量)を最大発熱量時の操作量(循環量)より小さい低操作量にして前記冷却水熱交換器5により、貯湯槽20から循環ポンプ71により排熱循環回路40を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。このとき、ポンプ操作量(循環量)を0にしてポンプ循環を停止してもかまわない。以降は燃料電池の発電排熱量に応じて前記動作を繰り返す。 Next, when the power generation amount of the fuel cell 1 decreases and the power generation exhaust heat amount (power generation amount) falls below a preset threshold value, the operation amount (circulation amount) of the circulation pump 71 is controlled at the maximum heat generation amount. The cooling water heat exchanger 5 exchanges heat from the hot water storage tank 20 with the hot water circulating through the exhaust heat circulation circuit 40 by the cooling water heat exchanger 5 and stores the heat in the hot water storage tank 20 with a low operation amount smaller than the amount (circulation amount). . At this time, the pump circulation may be stopped by setting the pump operation amount (circulation amount) to zero. Thereafter, the above operation is repeated according to the amount of heat generated by the fuel cell.
以上のように、制御器50により、構成された燃料電池システム等に利用される貯湯式排熱回収システムによれば、一定のしきい値を基準にポンプ操作量(循環量)が制御されるため、ポンプ操作量(循環量)に大きな差を設けることにより低操作量でポンプ内部に発生したエアー噛みを高操作量(循環量)時に排出することができる。 As described above, the controller 50 controls the pump operation amount (circulation amount) based on a certain threshold value according to the hot water storage type exhaust heat recovery system used in the fuel cell system and the like configured. Therefore, by providing a large difference in the pump operation amount (circulation amount), the air bite generated inside the pump with a low operation amount can be discharged at a high operation amount (circulation amount).
(実施の形態2)
つぎに、本発明の第2の実施例について図2を用いて説明を行う。
燃料電池の発電工程、通水、循環回路の循環水充填運転、燃料処理、燃料電池の発電の順についての説明については(実施の形態1)と同様であるため省略する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to FIG.
The description of the order of the power generation process of the fuel cell, water flow, circulating water filling operation of the circulation circuit, fuel processing, and power generation of the fuel cell is the same as (Embodiment 1), and is therefore omitted.
本実施の形態は、第1の実施例で説明した低操作量を循環ポンプ71の最低操作量にすることを特徴とする。 The present embodiment is characterized in that the low operation amount described in the first embodiment is set to the minimum operation amount of the circulation pump 71.
すなわち、最大発電量で燃料電池1の発電排熱量(発電量)が最大の場合は循環ポンプ71の操作量(循環量)を最大(高操作量)にして前記冷却水熱交換器5により、貯湯槽20から循環ポンプ71により排熱循環回路40を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。 That is, when the generated power exhaust heat amount (power generation amount) of the fuel cell 1 is the maximum with the maximum power generation amount, the operation amount (circulation amount) of the circulation pump 71 is set to the maximum (high operation amount) by the cooling water heat exchanger 5. Heat is exchanged from the hot water storage tank 20 by the hot water circulating through the exhaust heat circulation circuit 40 by the circulation pump 71 and is stored in the hot water storage tank 20.
つぎに、燃料電池1の発電量が低下して発電排熱量(発電量)があらかじめ設定されたしきい値を下回った場合は循環ポンプ71の操作量(循環量)を最大発熱量時の操作量(循環量)より小さい低操作量である循環ポンプの最低操作量にして前記冷却水熱交換器5により、貯湯槽20から循環ポンプ71により排熱循環回路40を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。このとき、ポンプ操作量(循環量)を0にしてポンプ循環を停止してもかまわない。以降は燃料電池の発電排熱量に応じて前記動作を繰り返す。 Next, when the power generation amount of the fuel cell 1 decreases and the power generation exhaust heat amount (power generation amount) falls below a preset threshold value, the operation amount (circulation amount) of the circulation pump 71 is controlled at the maximum heat generation amount. Heat is exchanged by hot water stored in the exhaust heat circulation circuit 40 from the hot water tank 20 by the circulation pump 71 by the cooling water heat exchanger 5 with the minimum operation amount of the circulation pump being a low operation amount smaller than the amount (circulation amount). Then, heat is stored in the hot water tank 20. At this time, the pump circulation may be stopped by setting the pump operation amount (circulation amount) to zero. Thereafter, the above operation is repeated according to the amount of heat generated by the fuel cell.
以上のように、構成された燃料電池システム等に利用される貯湯式排熱回収システムによれば、一定のしきい値を基準に制御されるため、ポンプ操作量(循環量)に大きな差を設けることにより低操作量でポンプ内部に発生したエアー噛みを高操作量時に排出することができる。 As described above, according to the hot water storage type exhaust heat recovery system used for the fuel cell system and the like configured, since it is controlled based on a certain threshold value, there is a large difference in the pump operation amount (circulation amount). By providing, the air bite generated in the pump with a low operation amount can be discharged at a high operation amount.
(実施の形態3)
つぎに、本発明の第3の実施例について図3を用いて説明を行う。
(Embodiment 3)
Next, a third embodiment of the present invention will be described with reference to FIG.
燃料電池の発電工程、通水、循環回路の循環水充填運転、燃料処理、燃料電池の発電の順についての説明については(実施の形態1)と同様であるため省略する。 The description of the order of the power generation process of the fuel cell, water flow, circulating water filling operation of the circulation circuit, fuel processing, and power generation of the fuel cell is the same as (Embodiment 1), and is therefore omitted.
本実施の形態は発電排熱量の最大時から最小時において、複数の大きさの操作量に区分してポンプ循環量を制御することに特徴を有する。 The present embodiment is characterized in that the pump circulation amount is controlled by dividing it into a plurality of operation amounts from the maximum to the minimum of the power generation exhaust heat amount.
すなわち、最大発電量で燃料電池1の発電排熱量(発電量)が最大の場合は循環ポンプ71の操作量(循環量)を最大(高操作量)にして前記冷却水熱交換器5により、貯湯槽20から循環ポンプ71により排熱循環回路40を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。 That is, when the generated power exhaust heat amount (power generation amount) of the fuel cell 1 is the maximum with the maximum power generation amount, the operation amount (circulation amount) of the circulation pump 71 is set to the maximum (high operation amount) by the cooling water heat exchanger 5. Heat is exchanged from the hot water storage tank 20 by the hot water circulating through the exhaust heat circulation circuit 40 by the circulation pump 71 and is stored in the hot water storage tank 20.
つぎに、燃料電池1の発電量が低下して発電排熱量(発電量)があらかじめ設定されたしきい値を下回った場合は循環ポンプ71の操作量(循環量)を最大発熱量時の操作量(循環量)より小さい低操作量である循環ポンプの最低操作量にして前記冷却水熱交換器5により、貯湯槽20から循環ポンプ71により排熱循環回路40を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。 Next, when the power generation amount of the fuel cell 1 decreases and the power generation exhaust heat amount (power generation amount) falls below a preset threshold value, the operation amount (circulation amount) of the circulation pump 71 is controlled at the maximum heat generation amount. Heat is exchanged by hot water stored in the exhaust heat circulation circuit 40 from the hot water tank 20 by the circulation pump 71 by the cooling water heat exchanger 5 with the minimum operation amount of the circulation pump being a low operation amount smaller than the amount (circulation amount). Then, heat is stored in the hot water tank 20.
具体的には、図3に示すように、発電排熱量(発電量)が第1しきい値を下まわった時は循環ポンプ操作量(循環量)を第1操作量に低下させる。 Specifically, as shown in FIG. 3, when the power generation exhaust heat amount (power generation amount) falls below the first threshold value, the circulation pump operation amount (circulation amount) is reduced to the first operation amount.
以後第2しきい値から第5しきい値に低下していくに従いそれに対応して循環ポンプ操作量(循環量)も第2操作量から第5操作量へ降下していく。発電排熱量(発電量)が最低になり第6しきい値以下になると循環ポンプ操作量(循環量)は低操作量で制御される。このとき、ポンプ操作量(循環量)を0にしてポンプ循環を停止してもかまわない。以降は燃料電池の発電排熱量に応じて前記動作を繰り返す。 Thereafter, as the second threshold value decreases to the fifth threshold value, the circulation pump operation amount (circulation amount) also decreases correspondingly from the second operation amount to the fifth operation amount. When the power generation exhaust heat amount (power generation amount) becomes the minimum and falls below the sixth threshold value, the circulation pump operation amount (circulation amount) is controlled with a low operation amount. At this time, the pump circulation may be stopped by setting the pump operation amount (circulation amount) to zero. Thereafter, the above operation is repeated according to the amount of heat generated by the fuel cell.
以上のように、構成された燃料電池システム等に利用される貯湯式排熱回収システムによれば、複数のしきい値を基準にポンプ操作量(循環量)が制御されるため、安定した排熱量を貯湯槽20へ蓄熱することができる。 As described above, according to the hot water storage type exhaust heat recovery system used in the fuel cell system configured as described above, the pump operation amount (circulation amount) is controlled based on a plurality of threshold values, so that stable exhaust The amount of heat can be stored in the hot water tank 20.
またリニアにポンプ操作量(循環量)を制御する場合に比べポンプ操作量(循環量)に大きな差を設けることにより低操作量でポンプ内部に発生したエアー噛みを高操作量時に排出することができる。 In addition, by providing a large difference in the pump operation amount (circulation amount) compared to the case where the pump operation amount (circulation amount) is controlled linearly, the air bit generated inside the pump can be discharged at a high operation amount with a low operation amount. it can.
以上のように、本発明に係る燃料電池冷却装置に係る貯湯式排熱回収システムは、循環ポンプのエアー噛み無くすことができ、循環ポンプのエア噛みの無い制御が簡単で耐久性のある排熱循環回路を実現できる。これにより初期設定性能を満たす十分な熱交換性能を確保して、安定した発電を実施することができる燃料電池システムに係る貯湯式排熱回収システムを提供することができる。 As described above, the hot water storage type exhaust heat recovery system according to the fuel cell cooling device according to the present invention can eliminate the air pumping of the circulation pump, and can easily control the circulation pump without air biting and has a durable exhaust heat. A circulation circuit can be realized. As a result, it is possible to provide a hot water storage type exhaust heat recovery system related to a fuel cell system that can secure a sufficient heat exchange performance that satisfies the initial setting performance and can perform stable power generation.
1 燃料電池
2 冷却水循環回路(循環経路)
3 余剰ヒータ
4 冷却水タンク(蓄熱器)
4b 冷却水タンク弁
5 冷却水熱交換器
6 冷却水循環ポンプ
7 温度検出器
8 冷却水タンクレベルスイッチ
10 燃料処理機
11 供給ポンプ
12 給水回路
13 供給ポンプ
14 凝縮水回路
15a 第1の燃料処理弁
15b 第2の燃料処理弁
16 給水タンク(凝縮水タンク)
16b オーバーフロー弁
17 給水タンクレベルスイッチ
17c 冷却水供給回路c
17d 冷却水供給回路d
17e 冷却水供給回路e
18 イオン交換樹脂
20 貯湯槽
21 冷却水循環回路a
22 冷却水循環回路b
23 冷却水循環回路c
24 冷却水循環回路d
32 給水回路b
33 給水回路c
34 給水回路d
35 給水回路e
40 排熱循環回路
41 貯湯循環回路
42 貯湯循環回路b
43 補給水循環回路c
50 制御器
51 補給水回路a
52 補給水回路b
60 第1のバイパス回路
71 循環ポンプ(ポンプ)
72 給水タンク弁
1 Fuel cell 2 Cooling water circulation circuit (circulation path)
3 Excess heater 4 Cooling water tank (heat accumulator)
4b Cooling water tank valve 5 Cooling water heat exchanger 6 Cooling water circulation pump 7 Temperature detector 8 Cooling water tank level switch 10 Fuel processor 11 Supply pump 12 Supply water circuit 13 Supply pump 14 Condensate water circuit 15a First fuel processing valve 15b Second fuel processing valve 16 Water supply tank (condensate tank)
16b Overflow valve 17 Water supply tank level switch 17c Cooling water supply circuit c
17d Cooling water supply circuit d
17e Cooling water supply circuit e
18 Ion exchange resin 20 Hot water storage tank 21 Cooling water circulation circuit a
22 Cooling water circulation circuit b
23 Cooling water circulation circuit c
24 Cooling water circulation circuit d
32 Water supply circuit b
33 Water supply circuit c
34 Water supply circuit d
35 Water supply circuit e
40 Waste heat circulation circuit 41 Hot water storage circuit 42 Hot water storage circuit b
43 makeup water circulation circuit c
50 controller 51 makeup water circuit a
52 makeup water circuit b
60 First bypass circuit 71 Circulation pump (pump)
72 Water tank valve
Claims (3)
前記燃料電池の熱を吸収する熱媒体が循環する循環経路と、
前記熱媒体の熱を蓄熱する蓄熱器と、
前記循環経路に配置され、前記熱媒体を循環するポンプと、
少なくとも前記ポンプを制御する制御器と、
を有し、
前記制御器は、前記燃料電池が発電を行っている場合に、前記ポンプの操作量を高操作量及びゼロより大きい低操作量の少なくとも二段階に断続的に変化させるように前記ポンプを制御する、
燃料電池システム。 A fuel cell for supplying power and heat;
A circulation path through which a heat medium that absorbs heat of the fuel cell circulates;
A regenerator for storing heat of the heat medium;
A pump disposed in the circulation path and circulating the heat medium;
A controller for controlling at least the pump;
Have
The controller controls the pump so that the operation amount of the pump is intermittently changed into at least two steps of a high operation amount and a low operation amount greater than zero when the fuel cell is generating power. ,
Fuel cell system.
請求項1に記載の燃料電池システム。 The low operation amount is a minimum operation amount when the fuel cell is generating power.
The fuel cell system according to claim 1.
請求項1又は2に記載の燃料電池システム。 The high operation amount is set to be divided into operation amounts of a plurality of sizes.
The fuel cell system according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011086029A JP2012221723A (en) | 2011-04-08 | 2011-04-08 | Fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011086029A JP2012221723A (en) | 2011-04-08 | 2011-04-08 | Fuel cell system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012221723A true JP2012221723A (en) | 2012-11-12 |
Family
ID=47273017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011086029A Pending JP2012221723A (en) | 2011-04-08 | 2011-04-08 | Fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012221723A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6238099B1 (en) * | 2017-04-21 | 2017-11-29 | 三浦工業株式会社 | Fuel cell system |
DE102019211493A1 (en) * | 2019-08-01 | 2021-02-04 | Audi Ag | Method for venting a cooling circuit, set of a coolant compensation arrangement and motor vehicle |
CN114566676A (en) * | 2022-02-28 | 2022-05-31 | 同济大学 | Automatic water replenishing system and shutdown water replenishing method for fuel cell |
JP7548757B2 (en) | 2020-09-15 | 2024-09-10 | 京セラ株式会社 | Fuel Cell Device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001325982A (en) * | 2000-05-15 | 2001-11-22 | Toyota Motor Corp | Combined system of fuel cell apparatus and hot-water supply equipment |
JP2006024431A (en) * | 2004-07-07 | 2006-01-26 | Kyocera Corp | Fuel cell system |
US20060134481A1 (en) * | 2004-12-16 | 2006-06-22 | Utc Fuel Cells, Llc | Dual pump fuel cell temperature management system |
JP2007257918A (en) * | 2006-03-22 | 2007-10-04 | Toyota Motor Corp | Operation control of fuel cell system |
JP2008135356A (en) * | 2006-10-27 | 2008-06-12 | Kyocera Corp | Fuel cell device |
US20080254328A1 (en) * | 2007-04-13 | 2008-10-16 | Gm Global Technology Operations, Inc. | Closed Coolant Loop with Expansion Device for a Fuel Cell System |
JP2010255950A (en) * | 2009-04-27 | 2010-11-11 | Aisin Seiki Co Ltd | Exhaust heat recovery system and fuel cell system |
JP4584337B2 (en) * | 2006-09-26 | 2010-11-17 | パナソニック株式会社 | Fuel cell system |
-
2011
- 2011-04-08 JP JP2011086029A patent/JP2012221723A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001325982A (en) * | 2000-05-15 | 2001-11-22 | Toyota Motor Corp | Combined system of fuel cell apparatus and hot-water supply equipment |
JP2006024431A (en) * | 2004-07-07 | 2006-01-26 | Kyocera Corp | Fuel cell system |
US20060134481A1 (en) * | 2004-12-16 | 2006-06-22 | Utc Fuel Cells, Llc | Dual pump fuel cell temperature management system |
JP2007257918A (en) * | 2006-03-22 | 2007-10-04 | Toyota Motor Corp | Operation control of fuel cell system |
JP4584337B2 (en) * | 2006-09-26 | 2010-11-17 | パナソニック株式会社 | Fuel cell system |
JP2008135356A (en) * | 2006-10-27 | 2008-06-12 | Kyocera Corp | Fuel cell device |
US20080254328A1 (en) * | 2007-04-13 | 2008-10-16 | Gm Global Technology Operations, Inc. | Closed Coolant Loop with Expansion Device for a Fuel Cell System |
JP2010255950A (en) * | 2009-04-27 | 2010-11-11 | Aisin Seiki Co Ltd | Exhaust heat recovery system and fuel cell system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6238099B1 (en) * | 2017-04-21 | 2017-11-29 | 三浦工業株式会社 | Fuel cell system |
WO2018193626A1 (en) * | 2017-04-21 | 2018-10-25 | 三浦工業株式会社 | Fuel cell system |
DE102019211493A1 (en) * | 2019-08-01 | 2021-02-04 | Audi Ag | Method for venting a cooling circuit, set of a coolant compensation arrangement and motor vehicle |
JP7548757B2 (en) | 2020-09-15 | 2024-09-10 | 京セラ株式会社 | Fuel Cell Device |
CN114566676A (en) * | 2022-02-28 | 2022-05-31 | 同济大学 | Automatic water replenishing system and shutdown water replenishing method for fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101022010B1 (en) | Fuel Cell System | |
CN113793947B (en) | Fuel cell waste heat utilization system and energy system | |
JP2012221723A (en) | Fuel cell system | |
JP2015103409A (en) | Fuel cell system | |
KR101910126B1 (en) | System for fuel cell | |
JP4355349B2 (en) | Fuel cell system | |
JP2008135356A (en) | Fuel cell device | |
JP5750570B2 (en) | Fuel cell system | |
JP5564916B2 (en) | Fuel cell system | |
JP2018165585A (en) | Fuel cell system, control device, and program | |
JP2018527699A (en) | Fuel cell system | |
KR100700548B1 (en) | Heating/hot-water control device for fuel cell and method thereof | |
CN115053105B (en) | Waste heat recovery system | |
JP2004095360A (en) | Fuel cell system and operating method therefor | |
JP2013057435A (en) | Heat supply system | |
JP2006164541A (en) | Fuel cell system | |
JP2006179225A (en) | Fuel cell system | |
JP7434142B2 (en) | Operating method of fuel cell system and fuel cell system | |
KR102347322B1 (en) | Thermal Management Method and Device For PEFMC | |
JP2010021061A (en) | Fuel cell power generation system | |
JP2000113900A (en) | Solid polymer fuel cell system | |
CN210638105U (en) | Internal circulation composite energy central heating device | |
JP5584804B2 (en) | FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM | |
KR20130022312A (en) | Combined heat and power generation fuel cell system and controlling method thereof | |
JP5465265B2 (en) | FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140310 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140414 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141007 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150818 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20151215 |