JP2006024431A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2006024431A
JP2006024431A JP2004200835A JP2004200835A JP2006024431A JP 2006024431 A JP2006024431 A JP 2006024431A JP 2004200835 A JP2004200835 A JP 2004200835A JP 2004200835 A JP2004200835 A JP 2004200835A JP 2006024431 A JP2006024431 A JP 2006024431A
Authority
JP
Japan
Prior art keywords
heat exchanger
fuel cell
circulation
hot water
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004200835A
Other languages
Japanese (ja)
Other versions
JP4707338B2 (en
Inventor
Hidenori Nakabayashi
秀則 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004200835A priority Critical patent/JP4707338B2/en
Publication of JP2006024431A publication Critical patent/JP2006024431A/en
Application granted granted Critical
Publication of JP4707338B2 publication Critical patent/JP4707338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system which can utilize effectively exhaust gas from a solid electrolyte fuel cell. <P>SOLUTION: The fuel cell system comprises: the solid electrolyte fuel cell 1 ; a heat exchanger 5 which carries out heat exchange between the exhaust gas from the solid electrolyte fuel cell 1 and water ; a hot water storing tank 6 which stores the water ; a circulation piping 7 which connects a bottom of the hot water storing tank 6 with the heat exchanger 5, and an upper portion of the hot water storing tank 6 with the heat exchanger 5, respectively ; a circulation pump 8 disposed in the circulation piping 7 ; a rotational frequency detector which detects rotational frequency of the circulation pump 8 ; a circulating water flow quantity detector 9 disposed in the circulation piping 7, and a control unit 10 which compares theoretical quantity of the water flow corresponding the rotational frequency detected with the rotational frequency detector with real quantity of the water flow detected with the circulating water flow quantity detector 9, and when the real quantity of the water flow becomes less than the theoretical quantity of the water flow by a predetermined value, controls output of the circulation pump 8 compulsorily in order that the output of the pump 8 becomes a predetermined value or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体電解質形燃料電池と、この固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、熱交換器と貯湯タンクとの間を連結する循環配管と、この循環配管に設けられた循環ポンプとを具備する燃料電池システムに関する。   The present invention relates to a solid oxide fuel cell, a heat exchanger for exchanging heat between the exhaust gas from the solid oxide fuel cell and water, a hot water storage tank for storing water, and a connection between the heat exchanger and the hot water storage tank. The present invention relates to a fuel cell system including a circulation pipe that performs circulation and a circulation pump provided in the circulation pipe.

従来、高分子電解質形燃料電池システムを、図5を基に説明する。この燃料電池システムでは、燃料電池31より生じた熱を回収する冷却水の温度を検出するサーミスタ等の電池温度検出器33が、冷却配管35の燃料電池31からの出口側に設置されている。符号36は、電池温度検出器33が検出する冷却水の温度が運転温度の上限値未満の時は、燃料電池31の発電量に応じて排熱回収配管37内の水の流量が所定流量になるように循環ポンプ39の出力を制御し、この温度が運転温度の上限値以上となると燃料電池31の発電量に関係なく循環ポンプ39の出力を強制的に冷却水温度が燃料電池31または冷却配管35に配したポンプ41や電池温度検出器33等の部材の劣化が激しくなる温度に到達しない値に制御する制御装置である。   A conventional polymer electrolyte fuel cell system will be described with reference to FIG. In this fuel cell system, a battery temperature detector 33 such as a thermistor for detecting the temperature of cooling water for recovering heat generated from the fuel cell 31 is installed on the outlet side of the cooling pipe 35 from the fuel cell 31. Reference numeral 36 indicates that when the temperature of the cooling water detected by the battery temperature detector 33 is less than the upper limit value of the operating temperature, the flow rate of water in the exhaust heat recovery pipe 37 is set to a predetermined flow rate according to the power generation amount of the fuel cell 31. The output of the circulation pump 39 is controlled so that the output of the circulation pump 39 is forcibly controlled regardless of the amount of power generated by the fuel cell 31 when the temperature exceeds the upper limit value of the operating temperature. This is a control device that controls to a value that does not reach a temperature at which deterioration of members such as the pump 41 and the battery temperature detector 33 arranged in the pipe 35 becomes severe.

このような燃料電池システムの運転時には、燃料処理装置43は天然ガスなどの原料を水蒸気改質し、水素を主成分とするガスを生成して燃料電池31に供給する。また、空気供給装置45により、酸化剤ガスは酸化側加湿器47で加湿され、燃料電池31に供給される。一方、燃料電池31の発電により生じた熱は、冷却配管35内を流れる冷却水に回収される。冷却水はポンプ41により循環し、冷却水に回収された熱は、熱交換器49を介して排熱回収配管37内を循環する水に移動する。   During the operation of such a fuel cell system, the fuel processing device 43 steam-reforms a raw material such as natural gas, generates a gas containing hydrogen as a main component, and supplies the gas to the fuel cell 31. Further, the oxidant gas is humidified by the oxidation side humidifier 47 by the air supply device 45 and supplied to the fuel cell 31. On the other hand, the heat generated by the power generation of the fuel cell 31 is recovered by the cooling water flowing in the cooling pipe 35. The cooling water is circulated by the pump 41, and the heat recovered in the cooling water moves to the water circulating in the exhaust heat recovery pipe 37 via the heat exchanger 49.

制御装置36は、電池温度検出器33が検出する冷却水の温度が運転温度の上限値未満であるときは、燃料電池31の発電量に応じて熱回収配管37内の水の流量が所定流量となるように循環ポンプ39の出力を制御する。また、制御装置36は、冷却水の温度が運転温度の上限値以上となると、循環ポンプ39の出力を強制的に冷却水温度が燃料電池31または冷却配管35に配したポンプ41や電池温度検出器33等の部材の劣化が激しくなる温度に到達しない値に制御する。例えば、高分子電解質形燃料電池を用いて、70〜85℃で通常運転している場合であれば、運転温度が上限値の90℃以上になった時、循環ポンプ39の出力を強制的に増加させ、冷却水温度が燃料電池31または冷却配管35に配したポンプ41や電池温度検出器33等の部材の劣化が激しくなる100℃付近にまで到達しない値に制御し、かつ迅速に通常運転温度に復帰させる。   When the temperature of the cooling water detected by the battery temperature detector 33 is less than the upper limit value of the operating temperature, the control device 36 sets the flow rate of water in the heat recovery pipe 37 according to the power generation amount of the fuel cell 31 to a predetermined flow rate. The output of the circulation pump 39 is controlled so that In addition, when the temperature of the cooling water becomes equal to or higher than the upper limit value of the operating temperature, the control device 36 forcibly outputs the output of the circulation pump 39 and detects the temperature of the pump 41 and the battery that are arranged in the fuel cell 31 or the cooling pipe 35. The value is controlled so as not to reach a temperature at which the deterioration of the member such as the vessel 33 becomes severe. For example, if the polymer electrolyte fuel cell is normally operated at 70 to 85 ° C., the output of the circulation pump 39 is forced when the operating temperature reaches 90 ° C., which is the upper limit value. Increase the cooling water temperature to a value that does not reach around 100 ° C. where the deterioration of the components such as the pump 41 and the battery temperature detector 33 arranged in the fuel cell 31 or the cooling pipe 35 becomes severe, and quickly normal operation Return to temperature.

このような構成にすることにより、排熱回収管37での気泡の発生やごみの詰まり等による圧力損失の増大を防ぐことができ、それにともなう燃料電池31の温度上昇を阻止できる。また、燃料電池31の温度上昇による緊急停止等の運転停止動作をしなくてもすむため、長時間に渡り安定した発電を維持できる(特許文献1参照)。   With such a configuration, it is possible to prevent an increase in pressure loss due to generation of bubbles in the exhaust heat recovery pipe 37, clogging of dust, and the like, and it is possible to prevent an increase in the temperature of the fuel cell 31 associated therewith. Further, since it is not necessary to perform an operation stop operation such as an emergency stop due to the temperature rise of the fuel cell 31, stable power generation can be maintained for a long time (see Patent Document 1).

従来、高分子電解質形燃料電池システムでは、排熱回収管内の水を循環させる循環ポンプとして、一般に少量の水を高圧で確実に循環できるギアポンプが用いられている。
特開2003−282108号
Conventionally, in a polymer electrolyte fuel cell system, a gear pump that can reliably circulate a small amount of water at high pressure is generally used as a circulation pump for circulating water in an exhaust heat recovery pipe.
JP 2003-282108 A

しかしながら、高分子電解質形燃料電池システムでは、排熱回収システムが開発されているものの、固体電解質形燃料電池システムでは、排熱回収システムについては提案されたものはなく、また、電解質が固体電解質タイプという異なるものであるため、高分子電解質形燃料電池システムの排熱回収システムを固体電解質形燃料電池システムにそのまま適用することはできなかった。   However, although exhaust heat recovery systems have been developed for polymer electrolyte fuel cell systems, no solid heat recovery systems have been proposed for solid electrolyte fuel cell systems, and the electrolyte is a solid electrolyte type. Therefore, the exhaust heat recovery system of the polymer electrolyte fuel cell system cannot be directly applied to the solid electrolyte fuel cell system.

即ち、高分子電解質形燃料電池システムでは、高分子電解質を用いるため燃料電池を冷却する必要があり、そのために冷却水を用いており、この冷却水による冷却が行われなくなると、燃料電池自体が破損するため、冷却水の温度を制御する必要がある。   That is, in the polymer electrolyte fuel cell system, since the polymer electrolyte is used, it is necessary to cool the fuel cell. For this reason, cooling water is used. If cooling with this cooling water is not performed, the fuel cell itself Since it breaks, it is necessary to control the temperature of the cooling water.

一方、固体電解質形燃料電池システムでは、燃料ガスと酸素含有ガスを用いて固体電解質で発電するもので、余剰の燃料ガスや酸素含有ガスを燃焼させて燃焼ガスを排出するが、この排ガスの熱エネルギーを有効に利用しようとするものである。   On the other hand, in a solid oxide fuel cell system, fuel gas and oxygen-containing gas are used to generate power with a solid electrolyte. Excess fuel gas or oxygen-containing gas is burned to discharge combustion gas. It is intended to make effective use of energy.

従って、高分子電解質形燃料電池システムでは、燃料電池を冷却する冷却水の温度を基に排熱回収システムを制御する必要があるが、固体電解質形燃料電池システムでは、燃料電池を冷却する必要がないため、制御法も異なるのである。   Therefore, in the polymer electrolyte fuel cell system, it is necessary to control the exhaust heat recovery system based on the temperature of the cooling water that cools the fuel cell, but in the solid oxide fuel cell system, it is necessary to cool the fuel cell. The control method is also different.

また、高分子電解質形燃料電池システムでは、燃料電池内の温度が70〜85℃であり、熱交換器内に導入される冷却水の温度も低いものの、固体電解質形燃料電池システムでは、発電温度が少なくとも600℃以上であり、熱交換器内に導入される排ガスは高分子型よりも高温であり、水が熱交換器内で急激に加熱される。このため、固体電解質形では、例えば、水の中に存在している気泡が多数発生する傾向がある。   In the polymer electrolyte fuel cell system, the temperature in the fuel cell is 70 to 85 ° C. and the temperature of the cooling water introduced into the heat exchanger is low, but in the solid oxide fuel cell system, the power generation temperature is Is at least 600 ° C. or higher, the exhaust gas introduced into the heat exchanger is at a higher temperature than the polymer type, and water is rapidly heated in the heat exchanger. For this reason, in the solid electrolyte form, for example, many bubbles present in water tend to be generated.

また、一般に、高分子電解質形燃料電池システムでは、少量の水を高圧で確実に循環できるギアポンプが用いられているが、このギアポンプは高価であるという問題があった。   In general, in a polymer electrolyte fuel cell system, a gear pump capable of reliably circulating a small amount of water at a high pressure is used, but this gear pump has a problem that it is expensive.

本発明は、固体電解質形燃料電池からの排ガスを有効に利用できる燃料電池システムを提供することを目的とする。   It is an object of the present invention to provide a fuel cell system that can effectively use exhaust gas from a solid oxide fuel cell.

本発明の燃料電池システムでは、固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、該循環ポンプの回転数を検出する回転数検出器と、前記循環配管に設けられた循環流量検出器と、前記回転数検出器で検出された回転数に対応する理論流量と前記循環流量検出器で検出された実流量を比較し、該実流量が前記理論流量よりも所定量下回ると前記循環ポンプの出力を強制的に所定値以上に制御する制御装置とを具備することを特徴とする。   In the fuel cell system of the present invention, a solid electrolyte fuel cell, a heat exchanger for exchanging heat between the exhaust gas from the solid electrolyte fuel cell and water, a hot water storage tank for storing water, a bottom of the hot water storage tank, A circulation pipe that connects between the heat exchanger and between the upper part of the hot water storage tank and the heat exchanger, and circulates water between the hot water storage tank and the heat exchanger; and A circulating pump that forcibly circulates the water, a rotational speed detector that detects the rotational speed of the circulating pump, a circulating flow rate detector that is provided in the circulating pipe, and the rotational speed detector. The theoretical flow rate corresponding to the number of revolutions is compared with the actual flow rate detected by the circulation flow detector, and if the actual flow rate falls below the theoretical flow rate by a predetermined amount, the output of the circulation pump is forcibly increased to a predetermined value or more. A control device for controlling The features.

固体電解質形燃料電池では、酸素含有ガスと燃料ガスとを供給し、反応に用いられなかった余剰の酸素含有ガスと余剰の燃料ガスが燃焼され、排ガスとして外部に放出されるが、この排ガスが熱交換器に供給されるとともに、この熱交換器に水が供給され、排ガスと水が熱交換され、熱交換された水が循環配管を介して貯湯タンクの上部に送られる。また、貯湯タンクの底部から水が循環配管を介して熱交換器に供給される。熱交換器において、燃料電池から排出される排ガスの熱エネルギーを、熱交換器により水の加熱に用いることができ、加熱された水が貯湯タンクに供給される。   In a solid oxide fuel cell, an oxygen-containing gas and a fuel gas are supplied, and the surplus oxygen-containing gas and surplus fuel gas that have not been used for the reaction are burned and discharged to the outside as exhaust gas. While being supplied to the heat exchanger, water is supplied to the heat exchanger, the exhaust gas and water are heat-exchanged, and the heat-exchanged water is sent to the upper part of the hot water storage tank via the circulation pipe. Further, water is supplied from the bottom of the hot water storage tank to the heat exchanger via a circulation pipe. In the heat exchanger, the heat energy of the exhaust gas discharged from the fuel cell can be used for heating water by the heat exchanger, and the heated water is supplied to the hot water storage tank.

そして、本発明の燃料電池システムでは、回転数検出器で検出された循環ポンプの回転数に対応する理論流量と、循環流量検出器で検出された循環配管を流れる実流量とを比較し、実流量が理論流量よりも所定量下回ると、気泡等が熱交換器や循環配管内に存在し、水の流通を阻害しているものと判断し、循環ポンプの出力を強制的に所定値以上に制御することにより、循環配管内の気泡等を循環ポンプにより強力に押し出すことができる。   In the fuel cell system of the present invention, the theoretical flow rate corresponding to the rotation speed of the circulation pump detected by the rotation speed detector is compared with the actual flow rate flowing through the circulation pipe detected by the circulation flow detector. If the flow rate is lower than the theoretical flow rate by a predetermined amount, it is determined that bubbles or the like are present in the heat exchanger or the circulation pipe, impeding the flow of water, and the output of the circulation pump is forcibly exceeded the predetermined value. By controlling, bubbles or the like in the circulation pipe can be strongly pushed out by the circulation pump.

即ち、循環ポンプの回転数と循環流量は比例関係にあり、通常の運転では設置の状況に応じた循環配管の圧力損失により決まる。設置の状況に応じた循環配管の圧力損失は配管径と配管長さで決定されるため、あらかじめ配管径および配管長さの範囲を決めておけば循環ポンプの回転数に対する循環流量は計算される。このことから循環ポンプの回転数から計算される理論流量と実際に検出した実流量を比較し、実流量が理論流量よりも所定量下回る場合には、例えば、突然エアロック等で循環流が止まった場合においても直ちに循環ポンプの出力を最大に制御することにより、気泡を押し出すことができ、循環を正常に維持することができる。   That is, the rotation speed of the circulation pump and the circulation flow rate are in a proportional relationship, and in normal operation, they are determined by the pressure loss of the circulation pipe corresponding to the installation situation. Since the pressure loss of the circulation pipe according to the installation situation is determined by the pipe diameter and the pipe length, if the range of the pipe diameter and the pipe length is determined in advance, the circulation flow rate for the rotation speed of the circulation pump is calculated . Therefore, the theoretical flow rate calculated from the rotation speed of the circulation pump is compared with the actual detected actual flow rate. If the actual flow rate is lower than the theoretical flow rate by a predetermined amount, for example, the air flow suddenly stops the circulation flow. Even in such a case, by immediately controlling the output of the circulation pump to the maximum, bubbles can be pushed out and the circulation can be maintained normally.

また、本発明の燃料電池は、固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、該循環ポンプの回転数を検出する回転数検出器と、前記循環配管に設けられた循環流量検出器と、前記回転数検出器で検出された回転数の時間当たり変化に対して、循環流量検出器で検出した流量変化が所定値以上である状態が所定時間継続したとき、前記循環ポンプの出力を強制的に所定値以上に制御する制御装置とを具備することを特徴とする。   The fuel cell of the present invention includes a solid oxide fuel cell, a heat exchanger for exchanging heat between the exhaust gas from the solid electrolyte fuel cell and water, a hot water storage tank for storing water, and a bottom portion of the hot water storage tank. A circulation pipe for connecting water between the heat exchanger and between the upper part of the hot water storage tank and the heat exchanger, and circulating water between the hot water storage tank and the heat exchanger; A circulation pump for forcibly circulating water, a rotation speed detector for detecting the rotation speed of the circulation pump, a circulation flow rate detector provided in the circulation pipe, and the rotation speed detector The output of the circulation pump is forcibly controlled to a predetermined value or more when a change in the flow rate detected by the circulation flow rate detector is equal to or greater than a predetermined value for a predetermined time with respect to the change in rotation speed per time. And a control device To.

このような燃料電池システムでは、回転数検出器で検出された回転数の時間当たり変化に対して、循環流量検出器で検出した流量変化が所定値以上である状態が所定時間継続したとき、循環ポンプの出力を強制的に所定値以上に制御するため、気泡を押し出すことができ、一定の温度で安定して貯湯タンクに温水を蓄えることができる。即ち、ある一定時間あたりの循環ポンプ回転数の変化よりも流量検出器で検出された流量変化が所定値以上となることは、循環配管の管路抵抗が増大していることになるため、循環ポンプの出力を大きく制御することにより、未然に循環停止を防ぐことができる。   In such a fuel cell system, when the state in which the flow rate change detected by the circulating flow rate detector is greater than or equal to a predetermined value continues for a predetermined time with respect to the change in rotational frequency detected by the rotational rate detector, Since the output of the pump is forcibly controlled to a predetermined value or more, bubbles can be pushed out, and hot water can be stably stored in the hot water storage tank at a constant temperature. That is, if the flow rate change detected by the flow rate detector exceeds a predetermined value rather than the change in the number of revolutions of the circulation pump per certain time, the pipe line resistance of the circulation pipe is increased. By largely controlling the output of the pump, the circulation stop can be prevented beforehand.

さらに、本発明の燃料電池システムは、固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、該循環ポンプの回転数を検出する回転数検出器と、前記熱交換器の出口水温を検出する温度検出器と、前記回転数検出器の循環ポンプ回転数から前記循環配管内の水の循環流量を算出し、該循環流量と前記固体電解質形燃料電池の排ガスの熱量から前記熱交換器の出口水温を算出し、実際に検出される熱交換器の出口温度が、算出された熱交換器の出口温度となるように前記循環ポンプの出力を制御する制御装置とを具備するとともに、該制御装置は、実際に検出される熱交換器の出口温度が、算出された熱交換器の出口温度よりも所定以上の状態が所定時間継続した場合に、前記循環ポンプを強制的に所定以上の出力で所定時間運転制御することを特徴とする。   Further, the fuel cell system of the present invention includes a solid oxide fuel cell, a heat exchanger for exchanging heat between the exhaust gas from the solid electrolyte fuel cell and water, a hot water storage tank for storing water, and a bottom portion of the hot water storage tank A circulation pipe for connecting water between the hot water storage tank and the heat exchanger, and for circulating water between the hot water storage tank and the heat exchanger, and the circulation A circulation pump that is provided in the piping and forcibly circulates water, a rotation speed detector that detects the rotation speed of the circulation pump, a temperature detector that detects the outlet water temperature of the heat exchanger, and the rotation speed detection The circulation flow rate of water in the circulation pipe is calculated from the rotation speed of the circulation pump of the condenser, and the outlet water temperature of the heat exchanger is calculated from the circulation flow rate and the heat amount of the exhaust gas of the solid oxide fuel cell, and is actually detected. Heat exchanger outlet temperature is calculated And a control device that controls the output of the circulation pump so that the outlet temperature of the heat exchanger is adjusted, and the control device is configured so that the detected outlet temperature of the heat exchanger is the calculated heat. When the state more than the predetermined temperature than the outlet temperature of the exchanger continues for a predetermined time, the circulation pump is forcibly controlled for a predetermined time with an output higher than the predetermined time.

このような燃料電池システムでも、循環ポンプの出力を強制的に所定値以上に制御するため、一定の温度で安定して貯湯タンクに温水を蓄えることができる。即ち、実際に検出される熱交換器の出口温度が、算出された熱交換器の出口温度よりも所定以上の状態が所定時間継続した場合、循環配管中に気泡が停滞し管路抵抗が増大し、循環流量が減少しているので、例えば循環ポンプの出力を最大に制御することにより、循環配管内の気泡を押し出し、未然に循環停止を防ぐことができる。   Even in such a fuel cell system, since the output of the circulation pump is forcibly controlled to a predetermined value or more, the hot water can be stored in the hot water storage tank stably at a constant temperature. In other words, if the detected outlet temperature of the heat exchanger is higher than the calculated outlet temperature of the heat exchanger for a predetermined time, bubbles are stagnated in the circulation pipe and the pipe resistance increases. Since the circulation flow rate is reduced, for example, by controlling the output of the circulation pump to the maximum, bubbles in the circulation pipe can be pushed out and the circulation stop can be prevented beforehand.

また、本発明の燃料電池システムでは、固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、該循環ポンプの回転数を検出する回転数検出器と、前記循環配管に設けられた循環流量検出器と、前記熱交換器の出口水温を検出する温度検出器と、前記熱交換器の出口側と前記貯湯タンクとの間に設けられた循環配管に、前記貯湯タンクの中層部に連結されるバイパス配管を設け、該バイパス配管に切り替え弁に設け、前記回転数検出器で検出された回転数に対応する理論流量と前記流量検出器で検出された実流量を比較し、該実流量が前記理論流量よりも所定量下回ると前記循環ポンプの出力を強制的に所定値以上に制御するとともに、前記バイパス配管に切り替え、前記貯湯タンクの中層部に循環水を戻すことを特徴とする。   In the fuel cell system of the present invention, a solid oxide fuel cell, a heat exchanger for exchanging heat between the exhaust gas from the solid electrolyte fuel cell and water, a hot water storage tank for storing water, and a bottom portion of the hot water storage tank A circulation pipe for connecting water between the hot water storage tank and the heat exchanger, and for circulating water between the hot water storage tank and the heat exchanger, and the circulation A circulation pump provided in the pipe for forcibly circulating water; a rotation speed detector for detecting the rotation speed of the circulation pump; a circulation flow rate detector provided in the circulation pipe; and an outlet of the heat exchanger A temperature detector for detecting the water temperature, a circulation pipe provided between the outlet side of the heat exchanger and the hot water storage tank, a bypass pipe connected to the middle layer of the hot water storage tank is provided, and the bypass pipe Provided in the switching valve, the rotation The theoretical flow rate corresponding to the rotational speed detected by the detector is compared with the actual flow rate detected by the flow rate detector, and if the actual flow rate falls below the theoretical flow rate by a predetermined amount, the output of the circulation pump is forcibly While controlling to more than a predetermined value, it switches to the said bypass piping, and circulating water is returned to the middle layer part of the said hot water storage tank, It is characterized by the above-mentioned.

このような燃料電池システムでは、循環配管中に気泡が停滞し管路抵抗が増大し、循環流量が減少した場合、循環ポンプの出力を、例えば最大に制御することにより、循環配管内の気泡を押し出し、循環停止を未然に防ぐことができるとともに、バイパス配管に設けられた切り替え弁を操作し、貯湯タンク中層部に循環水を戻すことにより、貯湯タンク上部に温度の低い水が戻ってくることを防ぐことができ、貯湯タンク内の温度成層を乱すことなく、貯湯タンク上部に溜まった高温水を有効に使用することができる。   In such a fuel cell system, when bubbles are stagnated in the circulation pipe, the pipe resistance is increased, and the circulation flow rate is reduced, the output of the circulation pump is controlled to the maximum, for example, to reduce the bubbles in the circulation pipe. Pushing and stopping circulation can be prevented, and low temperature water can be returned to the upper part of the hot water tank by operating the switching valve provided in the bypass pipe and returning the circulating water to the middle part of the hot water tank. The hot water accumulated in the upper part of the hot water storage tank can be used effectively without disturbing the temperature stratification in the hot water storage tank.

また、本発明の燃料電池システムは、循環ポンプはうず巻きポンプであることを特徴とする。このような燃料電池システムでは安価とできる。   In the fuel cell system of the present invention, the circulation pump is a spiral pump. Such a fuel cell system can be inexpensive.

さらに、本発明の燃料電池システムは、燃料電池が、家庭用に用いられる固体電解質型燃料電池であることが望ましい。このような燃料電池は小型化が要求されるため、本発明の燃料電池システムを有効に用いることができる。   Furthermore, in the fuel cell system of the present invention, it is desirable that the fuel cell is a solid oxide fuel cell used for home use. Since such a fuel cell is required to be downsized, the fuel cell system of the present invention can be used effectively.

本発明の燃料電池システムによれば、固体電解質形燃料電池を駆動させることにより発生した排ガスを回収する熱交換器と循環配管の圧力損失の変動により発生する循環不良を防止することができ、高温の水を安定して供給することができる。   According to the fuel cell system of the present invention, it is possible to prevent poor circulation caused by fluctuations in pressure loss between the heat exchanger that collects exhaust gas generated by driving the solid oxide fuel cell and the circulation pipe, and high temperature. Water can be supplied stably.

本発明の燃料電池システムを図1に基づき詳細に説明する。図1に示すように、本発明の固体酸化物型の燃料電池システムは、燃料電池1、都市ガス、天然ガスなどを燃料電池1に供給する燃料供給装置2、および酸化剤の空気を燃料電池1に供給するための空気供給装置3、燃料電池1に供給する燃料ガスを加湿する燃料加湿器4が備えられている。   The fuel cell system of the present invention will be described in detail with reference to FIG. As shown in FIG. 1, a solid oxide fuel cell system according to the present invention includes a fuel cell 1, a fuel supply device 2 that supplies city gas, natural gas, and the like to the fuel cell 1, and oxidant air as the fuel cell. An air supply device 3 for supplying to the fuel cell 1 and a fuel humidifier 4 for humidifying the fuel gas to be supplied to the fuel cell 1 are provided.

燃料電池1には、発電により生じる排熱を回収する熱交換器5が接続され、さらに熱交換器5には、貯湯タンク6内の水を循環するための循環配管7が接続され、循環配管7には循環配管7内の水を熱交換器5に供給する循環ポンプ8が設けられている。即ち、循環配管7は、熱交換器5と貯湯タンク6の上部との間を連結する循環配管7aと、熱交換器5と貯湯タンク6の底部との間を連結する循環配管7bとから構成されており、循環配管7bに設けられたうず巻きポンプからなる循環ポンプ8により、貯湯タンク底部の水を熱交換器5を通して貯湯タンク6の上部に戻す。   The fuel cell 1 is connected to a heat exchanger 5 that recovers exhaust heat generated by power generation. The heat exchanger 5 is further connected to a circulation pipe 7 for circulating water in the hot water storage tank 6. 7 is provided with a circulation pump 8 for supplying water in the circulation pipe 7 to the heat exchanger 5. That is, the circulation pipe 7 includes a circulation pipe 7 a that connects between the heat exchanger 5 and the upper part of the hot water storage tank 6, and a circulation pipe 7 b that connects between the heat exchanger 5 and the bottom of the hot water storage tank 6. The water at the bottom of the hot water storage tank is returned to the upper part of the hot water storage tank 6 through the heat exchanger 5 by a circulation pump 8 comprising a spiral pump provided in the circulation pipe 7b.

そして、本発明の燃料電池システムでは、循環配管7bには、この循環配管7b内を流れる水量を検出する流量検出器9が設けられており、この流量検出器9は、循環配管7b内で循環水温度が最も低い循環ポンプ8の近傍に設けられている。また、循環ポンプ8の出力を制御するための制御装置10が設けられており、燃料電池1の発電量に応じ発生する排熱を回収するために必要なポンプ出力が制御される。尚、符号11は、貯湯タンク6内の水温を検出するタンク温度検出器である。   In the fuel cell system of the present invention, the circulation pipe 7b is provided with a flow rate detector 9 for detecting the amount of water flowing in the circulation pipe 7b. The flow rate detector 9 is circulated in the circulation pipe 7b. It is provided in the vicinity of the circulation pump 8 having the lowest water temperature. Further, a control device 10 for controlling the output of the circulation pump 8 is provided, and the pump output necessary for recovering the exhaust heat generated according to the power generation amount of the fuel cell 1 is controlled. Reference numeral 11 denotes a tank temperature detector that detects the water temperature in the hot water storage tank 6.

以上のような燃料電池システムの運転は、燃料供給装置2で燃料となる都市ガス、天然ガスなどを燃料電池1に供給する。また、空気供給装置3により酸化剤ガスが燃料電池1に供給される。最初に燃料電池1内部で燃料ガスを燃焼させ、その燃焼熱で燃料電池1自体を発電可能な温度まで加熱する。所定の温度になると発電が始まり、発電により発生する熱により燃料電池1の温度を維持する。さらに、発電により発生する熱が余り、外部に排熱として放出されるようになる。この排熱を熱交換器5へ導き、熱交換器5を介して循環配管7内を循環する水に熱を移動せしめる。制御装置10は、タンク温度検出器11が検出するタンク水温が貯湯運転可能温度の上限値未満であるときは、燃料電池1の発電量に応じて循環配管内の水の流量が所定流量となるよう循環ポンプ8の出力を制御する。例えば、貯湯運転可能温度の上限値が90℃であれば、タンク水温が70℃の場合には、循環配管内の水の流量が0.3リットル/minとなるように循環ポンプ8の出力が制御される。   In the operation of the fuel cell system as described above, the fuel supply device 2 supplies city gas, natural gas, or the like as fuel to the fuel cell 1. Further, an oxidant gas is supplied to the fuel cell 1 by the air supply device 3. First, fuel gas is combusted inside the fuel cell 1, and the fuel cell 1 itself is heated to a temperature at which power can be generated by the combustion heat. When the temperature reaches a predetermined temperature, power generation starts, and the temperature of the fuel cell 1 is maintained by heat generated by the power generation. Furthermore, the heat generated by the power generation is excessive and is released to the outside as exhaust heat. This exhaust heat is guided to the heat exchanger 5, and the heat is transferred to the water circulating in the circulation pipe 7 through the heat exchanger 5. When the tank water temperature detected by the tank temperature detector 11 is lower than the upper limit value of the hot water storage operation temperature, the control device 10 sets the flow rate of water in the circulation pipe to a predetermined flow rate according to the power generation amount of the fuel cell 1. The output of the circulation pump 8 is controlled. For example, if the upper limit value of the hot water storage operation temperature is 90 ° C. and the tank water temperature is 70 ° C., the output of the circulation pump 8 is set so that the flow rate of water in the circulation pipe is 0.3 liter / min. Be controlled.

また、制御装置10は、循環ポンプ8の回転数から計算される理論流量と流量検出器9で検出した実流量を比較する。流量検出器9で検出した実流量が理論流量よりも所定値以上(例えば50%)小さくなった場合や、突然エアロック等で循環流量が止まった場合(実流量が0又は0に近くなった場合)は、循環配管7内を循環する水の中に溶け込んでいた空気や水蒸気が気泡として発生し、この気泡が次第に増加し循環配管7内に停滞した状態になり、水が通過する循環配管7の流路が狭くなり、循環配管7の圧力損失が増加した場合である。   Further, the control device 10 compares the theoretical flow rate calculated from the rotational speed of the circulation pump 8 with the actual flow rate detected by the flow rate detector 9. When the actual flow rate detected by the flow rate detector 9 is smaller than the theoretical flow rate by a predetermined value or more (for example, 50%), or when the circulating flow rate suddenly stops due to an air lock or the like (the actual flow rate becomes 0 or close to 0) In this case, air or water vapor dissolved in the water circulating in the circulation pipe 7 is generated as bubbles, and the bubbles gradually increase and stagnate in the circulation pipe 7 so that water passes through the circulation pipe. 7 is a case where the flow path 7 becomes narrow and the pressure loss of the circulation pipe 7 increases.

この場合、制御装置10は、直ちに循環ポンプ8の出力を通常よりも大きくし、もしくは最大となるように制御する。これにより、循環配管7内の水圧が高くなり、気泡が循環ポンプ8の水圧により押し出され、貯湯タンク内へと押し出される。そして、循環配管7内の気泡が押し出されると、循環ポンプ8の回転数から計算される理論流量と流量検出器9で検出した実流量がほぼ同量となるため、制御装置10により通常流量となるように循環ポンプ8の回転数が制御される。   In this case, the control device 10 immediately controls the output of the circulation pump 8 to be larger than normal or maximized. As a result, the water pressure in the circulation pipe 7 is increased, and the bubbles are pushed out by the water pressure of the circulation pump 8 and pushed into the hot water storage tank. When the bubbles in the circulation pipe 7 are pushed out, the theoretical flow rate calculated from the number of revolutions of the circulation pump 8 and the actual flow rate detected by the flow rate detector 9 become substantially the same amount. Thus, the rotational speed of the circulation pump 8 is controlled.

従って、本発明の燃料電池システムでは、循環配管7内に多量の気泡が停滞した場合であっても、制御装置10により循環ポンプ8の回転数が上げられ、循環配管7内の水圧が高くされ、これによりうず巻きポンプを用いたとしても気泡を押し出すことができ、循環を正常に維持することができ、循環不良による熱交換器の異常高温や異常圧力上昇を防ぐことができ、安定した運転を継続できる。   Therefore, in the fuel cell system of the present invention, even when a large amount of bubbles stagnates in the circulation pipe 7, the rotation speed of the circulation pump 8 is increased by the control device 10 and the water pressure in the circulation pipe 7 is increased. Therefore, even if a spiral pump is used, bubbles can be pushed out, circulation can be maintained normally, abnormal heat temperature and abnormal pressure rise of the heat exchanger due to poor circulation can be prevented, and stable operation can be achieved. Can continue.

また、循環ポンプとして、高価なギアポンプを用いることなく、高速で回転させることにより水圧を高くする安価なうず巻きポンプを用いることができ、安価な燃料電池システムを提供できる。   In addition, an inexpensive spiral pump that increases the water pressure by rotating at a high speed without using an expensive gear pump can be used as the circulation pump, and an inexpensive fuel cell system can be provided.

図2は本発明の他の燃料電池システムを示すもので、この燃料電池システムでは、熱交換器5と貯湯タンク6の上部とを連結する循環配管7aに、熱交換器5の出口水温を検出する回収温度検出器12が設けられている。   FIG. 2 shows another fuel cell system of the present invention. In this fuel cell system, an outlet water temperature of the heat exchanger 5 is detected in a circulation pipe 7a connecting the heat exchanger 5 and the upper part of the hot water storage tank 6. A recovery temperature detector 12 is provided.

この燃料電池システムでは、制御装置10は、タンク温度検出器11が検出するタンク水温が貯湯運転可能温度の上限値未満であるときは、回収温度検出器12の温度が所定の温度、例えば60〜90℃になるように循環ポンプ8の出力を制御する。   In this fuel cell system, when the tank water temperature detected by the tank temperature detector 11 is less than the upper limit value of the hot water storage operation temperature, the control device 10 sets the temperature of the recovery temperature detector 12 to a predetermined temperature, for example, 60 to The output of the circulation pump 8 is controlled so as to be 90 ° C.

そして、この燃料電池システムでは、図1と同様に、循環ポンプ8の回転数から計算される理論流量よりも流量検出器9で検出した実流量が所定値以上小さくなった場合や、突然エアロック等で循環流量が止まった場合、制御装置10は、直ちに循環ポンプ8の出力を通常よりも大きくし、もしくは最大となるように制御し、これにより、循環配管7内の水圧が高くなり、気泡が循環ポンプ8の水圧により押し出され、貯湯タンク内へと押し出され、迅速に通常流量に復帰させることができる。   In this fuel cell system, as in FIG. 1, when the actual flow rate detected by the flow rate detector 9 is smaller than the theoretical flow rate calculated from the rotational speed of the circulation pump 8, a sudden air lock occurs. When the circulation flow rate stops, the control device 10 immediately controls the output of the circulation pump 8 to be larger than usual or maximizes the pressure, thereby increasing the water pressure in the circulation pipe 7 and causing bubbles. Is pushed out by the water pressure of the circulation pump 8, pushed into the hot water storage tank, and can be quickly returned to the normal flow rate.

また、この形態の燃料電池システムでは、制御装置10が、タンク温度検出器11が検出するタンク水温が貯湯運転可能温度の上限値未満であるときは、回収温度検出器12の温度が所定の温度になるように循環ポンプ8の出力を制御するため、図1のシステムよりも、貯湯タンク6の温度成層を乱すことなく積層沸上げを達成できる。   In the fuel cell system of this embodiment, when the tank water temperature detected by the tank temperature detector 11 is less than the upper limit value of the hot water storage operation temperature, the temperature of the recovery temperature detector 12 is a predetermined temperature. Since the output of the circulation pump 8 is controlled so as to become, stacking and boiling can be achieved without disturbing the temperature stratification of the hot water storage tank 6 as compared with the system of FIG.

図3は本発明の他の燃料電池システムを示すもので、この燃料電池システムでは、制御装置10が以下のような機能を有する。即ち、循環ポンプ8の回転数の単位時間当たりの変化をΔNとし、流量検出器9が検出する実流量の単位時間当たりの変化をΔLとする。ΔNとΔLの比ΔN/ΔLは、燃料電池1の通常運転時には、一定範囲内に収まる。しかし、循環配管7内に気泡等が発生し気泡の残留量が増大すると配管7の抵抗が増加し、循環流量が低下すると、ΔN/ΔL値は、通常運転時の限界値以上になる。この状態が所定時間継続した場合、循環ポンプ8の出力(制御電圧)を強制的に所定値以上に制御する。これにより、循環配管7内の水圧を高くでき、気泡を押し出すことができる。   FIG. 3 shows another fuel cell system of the present invention. In this fuel cell system, the control device 10 has the following functions. That is, the change per unit time of the rotation speed of the circulation pump 8 is ΔN, and the change per unit time of the actual flow rate detected by the flow rate detector 9 is ΔL. The ratio ΔN / ΔL between ΔN and ΔL is within a certain range during normal operation of the fuel cell 1. However, if bubbles or the like are generated in the circulation pipe 7 and the residual amount of bubbles increases, the resistance of the pipe 7 increases, and if the circulation flow rate decreases, the ΔN / ΔL value becomes equal to or greater than the limit value during normal operation. When this state continues for a predetermined time, the output (control voltage) of the circulation pump 8 is forcibly controlled to a predetermined value or more. Thereby, the water pressure in the circulation piping 7 can be made high, and a bubble can be extruded.

また、流量検出器9で、循環流量低下を検出し、ポンプの回転数を上昇させて、所定の循環流量になるよう制御をする場合においても、ΔN/ΔL値が通常運転の限界値を超える状態が所定時間継続すると循環ポンプ8の出力を強制的に所定値以上に制御する。   Further, even when the flow rate detector 9 detects a decrease in the circulation flow rate and increases the number of revolutions of the pump so as to achieve a predetermined circulation flow rate, the ΔN / ΔL value exceeds the limit value for normal operation. When the state continues for a predetermined time, the output of the circulation pump 8 is forcibly controlled to a predetermined value or more.

このような構成にすることにより、循環配管7内に気泡が停滞した場合であっても、循環を正常に維持することができ、循環不良による熱交換器の異常高温や異常圧力上昇を防ぐことができ、安定した運転を継続できる。   By adopting such a configuration, even when bubbles are stagnated in the circulation pipe 7, the circulation can be maintained normally, and the abnormally high temperature and abnormal pressure rise of the heat exchanger due to the poor circulation can be prevented. And stable operation can be continued.

また、制御装置10の機能が以下の機能を有する場合であってもよい。即ち、燃料電池1の排ガスの熱量をQ、タンク温度検出器11が検出したタンク水温をW1、熱交換器入口水温をWin、出口温度検出器12が検出した熱交換器出口水温をWout、回転数検出器で検出された回転数をN、循環配管7の圧力損失等の流量ファクターをτとすると、循環流量PはP=τNで表せる。   Moreover, the case where the function of the control apparatus 10 has the following functions may be sufficient. That is, the heat quantity of the exhaust gas of the fuel cell 1 is Q, the tank water temperature detected by the tank temperature detector 11 is W1, the heat exchanger inlet water temperature is Win, and the heat exchanger outlet water temperature detected by the outlet temperature detector 12 is Wout. The circulation flow rate P can be expressed by P = τN, where N is the number of rotations detected by the number detector and τ is a flow factor such as pressure loss of the circulation pipe 7.

また、熱交換器5の熱交換ファクターをαとすると、熱交換器5の理論昇温ΔT’は、ΔT’=αQ/Pで表せる。一方熱交換器5の実際のΔTはΔT=Wout−Winで表すことができ、定常運転中はΔT’≒ΔTとなり、一定範囲内に収まる。しかし、循環配管7内に気泡等が発生し気泡の残留量が増大すると配管の抵抗が増加し、循環流量が低下すると、ΔT’<ΔTとなり、通常運転時の限界値以上になる。   If the heat exchange factor of the heat exchanger 5 is α, the theoretical temperature rise ΔT ′ of the heat exchanger 5 can be expressed by ΔT ′ = αQ / P. On the other hand, the actual ΔT of the heat exchanger 5 can be expressed as ΔT = Wout−Win, and ΔT′≈ΔT during a steady operation, which falls within a certain range. However, if bubbles or the like are generated in the circulation pipe 7 and the residual amount of bubbles increases, the resistance of the pipe increases, and if the circulation flow rate decreases, ΔT ′ <ΔT, which exceeds the limit value during normal operation.

この状態が所定時間継続すると、循環ポンプ8を強制的に定格出力で所定時間運転制御する。このような構成にすることにより循環を正常に維持することができ、循環不良による熱交換器の異常高温や異常圧力上昇を防ぐことができ、安定した運転を継続できる。   When this state continues for a predetermined time, the circulation pump 8 is forcibly controlled at a rated output for a predetermined time. With such a configuration, the circulation can be maintained normally, the abnormally high temperature and abnormal pressure increase of the heat exchanger due to poor circulation can be prevented, and stable operation can be continued.

図3は本発明の他の燃料電池システムを示すもので、この燃料電池システムは、熱交換器5と貯湯タンク6の上部とを連結する循環配管7aからバイパス配管14が分岐しており、このバイパス配管14は貯湯タンク6の中層部に連結されている。尚、符号13はバイパス配管14に設けられた切り替え弁である。   FIG. 3 shows another fuel cell system of the present invention. In this fuel cell system, a bypass pipe 14 is branched from a circulation pipe 7a connecting the heat exchanger 5 and the upper part of the hot water storage tank 6. The bypass pipe 14 is connected to the middle layer of the hot water storage tank 6. Reference numeral 13 denotes a switching valve provided in the bypass pipe 14.

制御装置10は、タンク温度検出器11が検出するタンク水温が貯湯運転可能温度の上限値未満であるときは、回収温度検出器12の温度が所定の温度になるよう循環ポンプ8の出力を制御する。また、制御装置10は、循環ポンプ8の回転数から計算される理論流量と流量検出器9で検出した実流量を比較し、流量検出器9で検出した実流量が理論流量よりも所定値以上小さい場合や、突然エアロック等で循環流が止まった場合において直ちに循環ポンプ8の出力を最大となるように制御すると同時に、切り替え弁13をバイパス配管14に切り替え、貯湯タンク6の中層部に循環水を戻す。   When the tank water temperature detected by the tank temperature detector 11 is less than the upper limit value of the hot water storage operation temperature, the control device 10 controls the output of the circulation pump 8 so that the temperature of the recovery temperature detector 12 becomes a predetermined temperature. To do. Further, the control device 10 compares the theoretical flow rate calculated from the rotational speed of the circulation pump 8 with the actual flow rate detected by the flow rate detector 9, and the actual flow rate detected by the flow rate detector 9 is equal to or greater than a predetermined value from the theoretical flow rate. When the circulation flow is suddenly stopped due to an air lock or the like, the output of the circulation pump 8 is immediately controlled to be maximized. At the same time, the switching valve 13 is switched to the bypass pipe 14 to circulate in the middle layer of the hot water storage tank 6. Return the water.

実流量が理論流量よりも所定値以上小さい場合や、循環流が止まった場合には、循環配管7a内で放熱され、循環配管7a内の水が冷却され、この冷却された水が貯湯タンク11の上部に流入すると、貯湯タンク6の高温の水層上に低温の水が供給されることになり、貯湯タンク6内の温度成層を乱すことになるが、本発明では、実流量が理論流量よりも所定値以上小さい場合や、循環流が止まった場合には、切り替え弁13により水がバイパス配管14を介して貯湯タンク6の中層部に流入することになり、貯湯タンク6内の温度成層を乱すことなく、貯湯タンク6上部に溜まった高温水を有効に給湯に使用することができる。   When the actual flow rate is smaller than the theoretical flow rate by a predetermined value or when the circulation flow stops, heat is radiated in the circulation pipe 7a, the water in the circulation pipe 7a is cooled, and the cooled water is stored in the hot water storage tank 11. When the water flows into the upper part of the hot water tank, low temperature water is supplied onto the hot water layer of the hot water storage tank 6 and the temperature stratification in the hot water storage tank 6 is disturbed. In the present invention, the actual flow rate is the theoretical flow rate. If the circulating flow stops when the flow is smaller than a predetermined value, the switching valve 13 causes water to flow into the middle layer of the hot water storage tank 6 via the bypass pipe 14, and temperature stratification in the hot water storage tank 6 is performed. The hot water accumulated in the upper part of the hot water storage tank 6 can be effectively used for hot water supply without disturbing the water.

本発明の燃料電池システムを示す構成図である。It is a block diagram which shows the fuel cell system of this invention. 本発明の他の燃料電池システムを示す構成図である。It is a block diagram which shows the other fuel cell system of this invention. 本発明のさらに他の燃料電池システムを示す構成図である。It is a block diagram which shows the further another fuel cell system of this invention. 従来の燃料電池システムを示す構成図である。It is a block diagram which shows the conventional fuel cell system.

符号の説明Explanation of symbols

1:燃料電池
5:熱交換器
6:貯湯タンク
7、7a、7b:循環配管
8:循環ポンプ
9:循環流量検出器
10:制御装置
11:タンク温度検出器
12:回収温度検出器
13:切り替え弁
14:バイパス配管
1: Fuel cell 5: Heat exchanger 6: Hot water storage tanks 7, 7a, 7b: Circulation piping 8: Circulation pump 9: Circulation flow rate detector 10: Controller 11: Tank temperature detector 12: Recovery temperature detector 13: Switching Valve 14: Bypass piping

Claims (5)

固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、該循環ポンプの回転数を検出する回転数検出器と、前記循環配管に設けられた循環流量検出器と、前記回転数検出器で検出された回転数に対応する理論流量と前記循環流量検出器で検出された実流量を比較し、該実流量が前記理論流量よりも所定量下回ると前記循環ポンプの出力を強制的に所定値以上に制御する制御装置とを具備することを特徴とする燃料電池システム。 A solid oxide fuel cell; a heat exchanger that exchanges heat between the exhaust gas from the solid oxide fuel cell and water; a hot water storage tank that stores water; a bottom of the hot water storage tank; and the heat exchanger; and An upper part of the hot water storage tank and the heat exchanger are connected to each other, a circulation pipe for circulating water between the hot water storage tank and the heat exchanger, and a circulation pipe provided in the circulation pipe for forcing water. A circulating pump to be circulated, a rotational speed detector for detecting the rotational speed of the circulating pump, a circulating flow rate detector provided in the circulating pipe, and a theoretical flow rate corresponding to the rotational speed detected by the rotational speed detector; And a control device for forcibly controlling the output of the circulation pump to a predetermined value or more when the actual flow rate falls below a predetermined amount below the theoretical flow rate. Fuel cell system 固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、該循環ポンプの回転数を検出する回転数検出器と、前記循環配管に設けられた循環流量検出器と、前記回転数検出器で検出された回転数の時間当たり変化に対して、循環流量検出器で検出した流量変化が所定値以上である状態が所定時間継続したとき、前記循環ポンプの出力を強制的に所定値以上に制御する制御装置とを具備することを特徴とする燃料電池システム。 A solid oxide fuel cell; a heat exchanger that exchanges heat between the exhaust gas from the solid oxide fuel cell and water; a hot water storage tank that stores water; a bottom of the hot water storage tank; and the heat exchanger; and An upper part of the hot water storage tank and the heat exchanger are connected to each other, a circulation pipe for circulating water between the hot water storage tank and the heat exchanger, and a circulation pipe provided in the circulation pipe for forcing water. A circulating pump to be circulated, a rotational speed detector for detecting the rotational speed of the circulating pump, a circulating flow rate detector provided in the circulating pipe, and a change in rotational speed detected by the rotational speed detector per time. On the other hand, it comprises a control device for forcibly controlling the output of the circulation pump to a predetermined value or more when a state in which the flow rate change detected by the circulation flow detector is a predetermined value or more continues for a predetermined time. A fuel cell system. 固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、該循環ポンプの回転数を検出する回転数検出器と、前記熱交換器の出口水温を検出する温度検出器と、前記回転数検出器の循環ポンプ回転数から前記循環配管内の水の循環流量を算出し、該循環流量と前記固体電解質形燃料電池の排ガスの熱量から前記熱交換器の出口水温を算出し、実際に検出される熱交換器の出口温度が、算出された熱交換器の出口温度となるように前記循環ポンプの出力を制御する制御装置とを具備するとともに、該制御装置は、実際に検出される熱交換器の出口温度が、算出された熱交換器の出口温度よりも所定以上の状態が所定時間継続した場合に、前記循環ポンプを強制的に所定以上の出力で所定時間運転制御することを特徴とする燃料電池システム。 A solid oxide fuel cell; a heat exchanger that exchanges heat between the exhaust gas from the solid oxide fuel cell and water; a hot water storage tank that stores water; a bottom of the hot water storage tank; and the heat exchanger; and An upper part of the hot water storage tank and the heat exchanger are connected to each other, a circulation pipe for circulating water between the hot water storage tank and the heat exchanger, and a circulation pipe provided in the circulation pipe for forcing water. A circulation pump for circulation; a rotation speed detector for detecting the rotation speed of the circulation pump; a temperature detector for detecting the outlet water temperature of the heat exchanger; and the circulation pipe from the circulation pump rotation speed of the rotation speed detector Calculate the circulating flow rate of the water inside, calculate the outlet water temperature of the heat exchanger from the circulating flow rate and the amount of heat of the exhaust gas of the solid oxide fuel cell, and calculate the outlet temperature of the heat exchanger that is actually detected So that the outlet temperature of the heat exchanger A control device for controlling the output of the circulation pump, and the control device has a state where the actually detected outlet temperature of the heat exchanger is not lower than the calculated outlet temperature of the heat exchanger. When the fuel cell system continues for a predetermined time, the circulation pump is forcibly controlled for a predetermined time with a predetermined output or more. 固体電解質形燃料電池と、該固体電解質形燃料電池からの排ガスと水とを熱交換する熱交換器と、水を貯える貯湯タンクと、該貯湯タンクの底部と前記熱交換器との間、及び前記貯湯タンクの上部と前記熱交換器との間をそれぞれ連結し、前記貯湯タンクと前記熱交換器との間で水を循環させる循環配管と、該循環配管に設けられ、水を強制的に循環させる循環ポンプと、該循環ポンプの回転数を検出する回転数検出器と、前記循環配管に設けられた循環流量検出器と、前記熱交換器の出口水温を検出する温度検出器と、前記熱交換器の出口側と前記貯湯タンクとの間に設けられた循環配管に、前記貯湯タンクの中層部に連結されるバイパス配管を設け、該バイパス配管に切り替え弁に設け、前記回転数検出器で検出された回転数に対応する理論流量と前記流量検出器で検出された実流量を比較し、該実流量が前記理論流量よりも所定量下回ると前記循環ポンプの出力を強制的に所定値以上に制御するとともに、前記バイパス配管に切り替え、前記貯湯タンクの中層部に循環水を戻すことを特徴とする燃料電池システム。 A solid oxide fuel cell; a heat exchanger that exchanges heat between the exhaust gas from the solid oxide fuel cell and water; a hot water storage tank that stores water; a bottom of the hot water storage tank; and the heat exchanger; and An upper part of the hot water storage tank and the heat exchanger are connected to each other, a circulation pipe for circulating water between the hot water storage tank and the heat exchanger, and a circulation pipe provided in the circulation pipe for forcing water. A circulation pump to circulate, a rotation speed detector for detecting the rotation speed of the circulation pump, a circulation flow rate detector provided in the circulation pipe, a temperature detector for detecting an outlet water temperature of the heat exchanger, The circulation pipe provided between the outlet side of the heat exchanger and the hot water storage tank is provided with a bypass pipe connected to the middle layer portion of the hot water storage tank, the bypass pipe is provided with a switching valve, and the rotation speed detector Corresponding to the number of revolutions detected in The theoretical flow rate is compared with the actual flow rate detected by the flow rate detector, and when the actual flow rate falls below the theoretical flow rate by a predetermined amount, the output of the circulation pump is forcibly controlled to a predetermined value or more, and the bypass pipe And circulating water is returned to the middle layer of the hot water storage tank. 循環ポンプはうず巻きポンプであることを特徴とする請求項1乃至4のうちいずかに記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 4, wherein the circulation pump is a spiral pump.
JP2004200835A 2004-07-07 2004-07-07 Fuel cell system Active JP4707338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200835A JP4707338B2 (en) 2004-07-07 2004-07-07 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200835A JP4707338B2 (en) 2004-07-07 2004-07-07 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2006024431A true JP2006024431A (en) 2006-01-26
JP4707338B2 JP4707338B2 (en) 2011-06-22

Family

ID=35797552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200835A Active JP4707338B2 (en) 2004-07-07 2004-07-07 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4707338B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273252A (en) * 2006-03-31 2007-10-18 Osaka Gas Co Ltd Solid oxide fuel cell system
JP2007273146A (en) * 2006-03-30 2007-10-18 Kyocera Corp Solid oxide fuel cell system
JP2008130252A (en) * 2006-11-16 2008-06-05 Kyocera Corp Fuel cell device
JP2008135356A (en) * 2006-10-27 2008-06-12 Kyocera Corp Fuel cell device
JP2010255950A (en) * 2009-04-27 2010-11-11 Aisin Seiki Co Ltd Exhaust heat recovery system and fuel cell system
JP2010257806A (en) * 2009-04-27 2010-11-11 Aisin Seiki Co Ltd Solid oxide fuel cell system
JP2012069390A (en) * 2010-09-24 2012-04-05 Toto Ltd Fuel cell system
JP2012221723A (en) * 2011-04-08 2012-11-12 Panasonic Corp Fuel cell system
JP2013114851A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system
WO2013095026A1 (en) * 2011-12-22 2013-06-27 포스코에너지 주식회사 Heat recovery unit based on fuel cell and operating method thereof
JP2014089022A (en) * 2012-10-31 2014-05-15 Noritz Corp Hot water storage type hot water supply system
EP2922129A1 (en) 2014-03-20 2015-09-23 Aisin Seiki Kabushiki Kaisha Fuell cell system
JP2016012522A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system
JP2016012520A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143737A (en) * 1999-11-18 2001-05-25 Matsushita Electric Ind Co Ltd Heat and power supply unit
JP2001165524A (en) * 1999-12-08 2001-06-22 Daikin Ind Ltd Absorption refrigerating device
JP2003282108A (en) * 2002-03-20 2003-10-03 Matsushita Electric Ind Co Ltd Fuel cell system
JP2004150646A (en) * 2002-10-28 2004-05-27 Sekisui Chem Co Ltd Cogeneration system
JP2004179077A (en) * 2002-11-28 2004-06-24 Rinnai Corp Cogeneration system
JP2005141913A (en) * 2003-11-04 2005-06-02 Tokyo Gas Co Ltd Fuel cell exhaust heat utilization system and its operation method
JP2005521218A (en) * 2002-03-27 2005-07-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel cell reformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143737A (en) * 1999-11-18 2001-05-25 Matsushita Electric Ind Co Ltd Heat and power supply unit
JP2001165524A (en) * 1999-12-08 2001-06-22 Daikin Ind Ltd Absorption refrigerating device
JP2003282108A (en) * 2002-03-20 2003-10-03 Matsushita Electric Ind Co Ltd Fuel cell system
JP2005521218A (en) * 2002-03-27 2005-07-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel cell reformer
JP2004150646A (en) * 2002-10-28 2004-05-27 Sekisui Chem Co Ltd Cogeneration system
JP2004179077A (en) * 2002-11-28 2004-06-24 Rinnai Corp Cogeneration system
JP2005141913A (en) * 2003-11-04 2005-06-02 Tokyo Gas Co Ltd Fuel cell exhaust heat utilization system and its operation method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273146A (en) * 2006-03-30 2007-10-18 Kyocera Corp Solid oxide fuel cell system
JP2007273252A (en) * 2006-03-31 2007-10-18 Osaka Gas Co Ltd Solid oxide fuel cell system
JP2008135356A (en) * 2006-10-27 2008-06-12 Kyocera Corp Fuel cell device
JP2008130252A (en) * 2006-11-16 2008-06-05 Kyocera Corp Fuel cell device
JP2010255950A (en) * 2009-04-27 2010-11-11 Aisin Seiki Co Ltd Exhaust heat recovery system and fuel cell system
JP2010257806A (en) * 2009-04-27 2010-11-11 Aisin Seiki Co Ltd Solid oxide fuel cell system
JP2012069390A (en) * 2010-09-24 2012-04-05 Toto Ltd Fuel cell system
JP2012221723A (en) * 2011-04-08 2012-11-12 Panasonic Corp Fuel cell system
JP2013114851A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system
WO2013095026A1 (en) * 2011-12-22 2013-06-27 포스코에너지 주식회사 Heat recovery unit based on fuel cell and operating method thereof
KR101352320B1 (en) * 2011-12-22 2014-01-17 포스코에너지 주식회사 Heat recovery apparatus based on fuel cell and its operating method
CN104221198A (en) * 2011-12-22 2014-12-17 Posco能源公司 Heat recovery unit based on fuel cell and operating method thereof
JP2015507821A (en) * 2011-12-22 2015-03-12 ポスコエナジー株式会社Poscoenergy Co.,Ltd. Fuel cell-based heat recovery device and operation method thereof
US9620795B2 (en) 2011-12-22 2017-04-11 Posco Energy Co., Ltd. Heat recovery apparatus based on fuel cell and operating method thereof
JP2014089022A (en) * 2012-10-31 2014-05-15 Noritz Corp Hot water storage type hot water supply system
EP2922129A1 (en) 2014-03-20 2015-09-23 Aisin Seiki Kabushiki Kaisha Fuell cell system
JP2015185265A (en) * 2014-03-20 2015-10-22 アイシン精機株式会社 fuel cell system
JP2016012522A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system
JP2016012520A (en) * 2014-06-30 2016-01-21 アイシン精機株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP4707338B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP5173111B2 (en) Fuel cell system
JP4707338B2 (en) Fuel cell system
EP2215679B1 (en) Fuel cell system
JP6766638B2 (en) Fuel cell cooling system
US8735011B2 (en) Fuel cell system
KR20190067629A (en) Fuel cell thermal management system and control method of the same
US20050069741A1 (en) Fuel cell system
JP2008164191A (en) Cogeneration system
JP2005044629A (en) Fuel cell system
RU2364991C1 (en) Fuel cell system
JP2010007950A (en) Cogeneration system
JP5201850B2 (en) Fuel cell device
JP2006261015A (en) Fuel cell system
JP2007305334A (en) Fuel cell system
JP6298923B1 (en) Fuel cell system, control device
JP4050919B2 (en) Fuel cell system and operation method thereof
JP5361125B2 (en) Fuel cell device
JP3848243B2 (en) Cogeneration system
JP2008226810A (en) Fuel cell power generation system
JP2006226639A (en) Cogeneration system
JP4833707B2 (en) Waste heat recovery device
JP2020087623A (en) Fuel cell system
JP2010287361A (en) Fuel cell system
JP2010287362A (en) Fuel cell system
JP2010192141A (en) Coolant circuit system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R150 Certificate of patent or registration of utility model

Ref document number: 4707338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150