JP2004303495A - Fuel cell power generation hot-water supply system - Google Patents

Fuel cell power generation hot-water supply system Download PDF

Info

Publication number
JP2004303495A
JP2004303495A JP2003093092A JP2003093092A JP2004303495A JP 2004303495 A JP2004303495 A JP 2004303495A JP 2003093092 A JP2003093092 A JP 2003093092A JP 2003093092 A JP2003093092 A JP 2003093092A JP 2004303495 A JP2004303495 A JP 2004303495A
Authority
JP
Japan
Prior art keywords
fuel cell
cooling medium
water supply
supply system
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003093092A
Other languages
Japanese (ja)
Inventor
Tsutomu Okuzawa
務 奥澤
Kazuhito Koyama
一仁 小山
Hidekazu Fujimura
秀和 藤村
Takaaki Mizukami
貴彰 水上
Shin Takahashi
心 高橋
Hiroshi Iwata
博 岩田
Yutaka Enokitsu
豊 榎津
Koichi Sakamoto
浩一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Appliances Inc
Original Assignee
Hitachi Ltd
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Home and Life Solutions Inc filed Critical Hitachi Ltd
Priority to JP2003093092A priority Critical patent/JP2004303495A/en
Publication of JP2004303495A publication Critical patent/JP2004303495A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generation hot-water supply system composed by stabilizing a hot-water supply temperature by exhaust heat recovery. <P>SOLUTION: This fuel cell power generation hot-water supply system has: a fuel processor 1 for reforming a fuel to generate an anode gas 6 containing hydrogen; and a fuel cell 9 for reacting air 8 with the hydrogen in the anode gas to generate power. The system is equipped with a plurality of heat exchangers 11-1 to 11-4 for exchanging heat with an indirect cooling medium by using, as heat sources, the anode gas 6, a direct cooling medium 12 for cooling the fuel cell, and an anode exhaust gas 14 and a cathode exhaust gas 13 exhausted from the fuel cell; and a plurality of the heat exchangers are arranged in series to the indirect cooling medium flowing through the heat exchangers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電給湯システムに関する。
【0002】
【従来の技術】
燃料電池は、従来電力用を中心に開発されてきた結果、家庭用のように一部時間帯により高い需要電力が必要だが、平均的には需要電力が低い。このため、電力需要に追随して部分負荷運転するのが経済的である。このような運転状況下のもと、流量が変化すると熱通過率が変わるため排熱回収系の熱交換器の入口出口温度が変化する。さらに、季節及び時間帯により気温が変動すると、貯湯槽に蓄える給湯温度も変動するという課題があり、しかしながら、熱交換器自体はパッシブな機器であるため、これらの変化に対応できないという課題があった。
【0003】
なお、従来技術としては特開平11−223385号公報に記載のコジェネレーションシステムがある。この従来技術においては、発電機の熱を回収するに際し、貯湯槽に低温の水を入れないようにバイパス管と流路切替弁を備えて対処している。
【0004】
【特許文献1】
特開平11−223385号公報
【0005】
【発明が解決しようとする課題】
前述した特開平11−223385号公報に記載の技術では、流路切替弁は全流量をバイパス管又は貯湯槽のいずれかに行くように制御しており、この技術の適用対象の一つであるガスエンジン等の熱源には最適と考えるが、温度管理の要求の厳しい燃料電池の場合、燃料電池の入口出口温度が変動し安定した性能が得にくいという面に配慮がされていないと考える。
【0006】
本発明の目的は、排熱回収による給湯温度を安定させた燃料電池発電給湯システムを提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の燃料電池発電給湯システムでは、燃料を改質して水素を含有するアノードガスを発生させる燃料処理装置と、酸素と前記アノードガス中の水素を反応させて発電する燃料電池とを有する燃料電池発電給湯システムにおいて、前記アノードガス,前記燃料電池を冷却する直接冷却媒体,前記燃料電池から排出されるアノード排ガス及びカソード排ガスを熱源として間接冷却媒体と熱交換する熱交換器を複数設け、この複数の熱交換器を当該熱交換器を流通する間接冷却媒体に対して直列に配置している。
【0008】
【発明の実施の形態】
実施形態の説明に入る前に発明の背景を説明する。この高分子電解質膜燃料電池発電システムの排熱回収系の特徴は、主機の燃料電池の運転温度が70〜80℃程度と水の沸点の100℃より低いため、得られる主たる排熱の熱量は多いが低質の熱エネルギーである点と、燃料電池の電解質保護の意味で沸点以下の温度ながら蒸気をリッチに含んでいる。このため、排熱回収を効率的に行うにはその蒸気排熱、すなわち、潜熱を高効率に回収しなければならないという点で、ガスエンジンなどのシステムとは異なった手法が必要であり、かつ、ガスエンジン等よりも厳しい、燃料電池の温度管理要求にも応えなくてはならないという背景がある。
【0009】
以下、本発明の実施例について図面を用いて説明する。図1は、本発明の一実施例である燃料電池発電給湯システムの系統図を示す。
【0010】
図1に示す燃料電池発電給湯システムは、都市ガス2,空気3,脱イオン水5、及び戻りアノード排ガス4から水素を含むアノードガス6と燃焼排ガス7を発生させる燃料処理装置1,燃料処理装置1からのアノードガス6と、カソードから流入する空気8とを反応させて発電する燃料電池9,燃料電池9を冷却するために、貯湯槽10と熱交換器11−2からなる燃料電池冷却系12,燃料処理装置1からのアノードガス6を燃料電池9のアノードに入るのに適した温度にする第1の熱交換器11−1,燃料電池冷却系12から熱を回収するための第2の熱交換器11−2,燃料電池9へ供給するカソード空気8を燃料電池9からのカソード排ガス13で加熱する第3の熱交換器11−3,熱交換器11−3からのカソード排ガス15からと、燃料電池9からのアノード排ガス14から熱回収する第4の熱交換器11−4,温度測定部18と制御部17によって流量配分する流量分配弁16,温度測定部19と制御部20により流量制御が行われるポンプ21,制御部20と制御部17を統括して制御する制御部25、および貯湯槽22,貯湯槽22のバイパスライン23,熱交換器11−1,11−2,11−4,ポンプ21よりなる排熱回収系24より構成される。
【0011】
以上のように構成された燃料電池発電給湯システムは、まず燃料が燃料処理装置1により改質された水素リッチなアノードガス6と空気8を、燃料電池9内に規定量送り込み、電気化学反応により直流の電力と、熱を発生させる。この熱の一部は、燃料電池冷却系12で除去し、残りのカソード排ガス13の持つ熱は、一部は再び熱交換器11−3でカソード空気8に回収し、残りをカソード排ガス15から熱交換器11−4で回収する。同時に、燃料電池9からのアノード排ガス14からも熱交換器11−4で回収する。その他の熱源である燃料処理装置1の生成アノードガス6からは熱交換器11−1で排熱回収する。ちなみに、この熱交換器11−1の出口でアノードガス6は燃料電池9に入る関係上、70℃付近の温度から大きくずれることは許されない。なお、燃焼排ガス7からも排熱回収は可能であるが回収できる熱量を考えるとコスト的に合わないので除外する。コスト的に合う低コスト熱交換器が実現されれば排熱回収することは言うまでもない。
【0012】
このため、上記のうち、熱交換器11−1,11−2,11−4から給湯用の排熱回収を行う。この3者の熱交換器を並列に繋げば制御は簡単であるが、所定温度の給湯が得られない。また、この熱交換器を直列に並べると、気温条件及び負荷条件によっては、温度関係が逆転し、排熱回収でなく排熱移動になり温度に敏感な燃料電池の性能に損害を与える可能性や、熱交換器の仕様範囲から外れ排熱回収効率の低減を起こす可能性と、アノードガス6の温度を燃料電池9の要求範囲から逸脱させる恐れがある。そのままでは、熱交換器の出入口の温度を監視していて熱交換器を通過する順序を、配管系統を切り替えて行い、必要な給湯を得るしかなかったが、この方法では配管系が複雑になり配管放熱も増えコストも増加し家庭用の燃料電池発電給湯システムのように1kW前後のシステムでは採用できない。
【0013】
これを解決するため、本実施例では前述したように熱交換器11−1,11−2,11−4を、これら熱交換器を流通する間接冷却媒体に対して直列に配置し、上流側から熱交換器11−4,11−2,11−1の順に間接冷却媒体が流通するように排熱回収系を形成している。そして、初段の熱交換器11−4での間接冷却媒体である水道水流入温度を夏季でも設定可能な30℃前後とし、最終段の熱交換器11−1での水道水流出温度を給湯必要温度の60℃以上に設定した。この流入温度は、バイパスライン23を通過させる流量を温度測定部18で検知することにより制御部17で流量分配弁16を調整して制御する。また、同時に、この流出温度は、温度測定部19で検知することにより制御部20でポンプ21の流量を調整して制御する。なお、この制御の際、両方を同時刻では制御しないで、時間分割を行って相互に異なる時間帯で制御部25により制御して行う。相互の目標設定値の許容範囲外に出ないようにタイムシェアリングで目標値に合わせて行く。これにより、密接に関連する制御を安定して行うことができる。
【0014】
なお、熱交換器11−3により、カソードに入る空気8と排出されたカソード排ガス13を熱交換している。この構成にすると、カソード排ガス13中の蒸気分が凝縮する熱が利用できるため気温が変わっても凝縮水が少し増減するだけで発生凝縮熱による温度が2〜3℃変わるだけで調整され、気温によらずカソード空気8はほぼ一定の温度が保持できるという効果がある。この効果は、実験によっても確認された。ちなみに、熱交換器11−1,11−2,11−3,11−4は、低コストとコンパクト性からプレート形が望ましい。また、アノード排ガス14とカソード排ガス15は、所持している熱量は異なるが入出の温度条件がほぼ等しいため、アノード排ガス14とカソード排ガス15から熱回収する熱交換器11−4は、さらにコンパクトにできるので3流体形が望ましい。
【0015】
以上のように構成することにより、排熱回収系において温度順位を考慮し熱交換器を直列に接続し、かつ、この熱交換器群の入出温度を制御する管路系と制御系を設けているので、低コストで排熱を最大限に回収しながら部分負荷運転に安定して追従でき、かつ、燃料電池の性能劣化を招かないで、経済的な運転が可能となる燃料電池発電給湯システムを提供することができるという効果がある。
【0016】
次に、本発明の他の実施例について図2を用いて説明する。本実施例は、図1に示す実施例にドレイン抜き26−1〜26−5を熱交換器の下流または燃料電池9のアノード及びカソード排ガス出口ガスの下流に設けたもので、まず、アノードガスのラインで説明すると次のようになる。ドレイン抜き26−1は、燃料処理装置1から排出されたアノードガス6が熱交換器11−1を通過した下流で発生したドレインを抜き、ドレイン抜き26−2は、燃料電池9から排出されたアノード排ガス14に伴われたドレインを抜き、ドレイン抜き26−3は、アノード排ガス14が熱交換器11−4を出た後の戻りアノード排ガス4中に生じたドレインを抜く。
【0017】
次に、カソード排ガスラインに関わるものを説明すると、ドレイン抜き26−4は、燃料電池9から排出されるカソード排ガス13中のドレインを抜く。ドレイン抜き26−5は、カソード排ガス13が熱交換器11−3を通過した際に発生したドレインを抜く。どちらのガスも水蒸気成分リッチなため、温度が低下すると熱交換器群11には有益な凝縮熱が発生するが、同時に発生する凝縮水の処理が問題となる。除去しないと、圧量損失が増大して補助動力が増大し、かつ、熱交換器性能の低下に繋がる。また、特に、戻りアノード排ガス4は、燃料処理装置1に戻り燃焼に供されるので水分を除去しないと失火や燃焼性能低下や燃焼温度の低下を招く。また、これらの凝縮水は、水質は水道水よりも良いので集めれば再利用を図ることができる。図示していないが、水処理装置の小型化が図れる。
【0018】
熱交換器11−1の下流のドレイン抜き26−1は、温度及び水分条件からのみ考えると、ドレインは発生しないと考えていたが、実際は、熱交換する水道水の温度に影響を受けてドレインが発生する。カソード排ガス14が熱交換器11−4を通過した後の部分には凝縮水が発生するがドレイン抜きを設けていないのは、カソード排ガス出口であるためと、出口にドレイン受けタンク(図示せず)を設けるだけで凝縮水を回収できるからである。このドレイン抜きとしては図示していないが、ドレイン受けタンクと、その下に設けた電磁弁とタイマーにより、予め測定した蓄積量と時間から電磁弁を開閉する時間間隔を設定し、主としてガス圧ではなく水の自重で受けタンクに除去する。但し、ガスと外部の空気とを接触させないように一定量の水を残すように電磁弁を閉じる。望ましくは、フロート式のドレイン抜きの採用である。
【0019】
このようにすることにより、低コストで部分負荷運転に安定して追従でき、かつ、燃料電池の性能劣化を招かないで、経済的な運転が可能となり、かつ、高性能な燃料電池発電給湯システムを提供することができるという効果がある。
【0020】
図3は、本発明の他の実施例である燃料電池発電システムを示す。図2の実施例との違いは、燃料電池冷却系12に、バイパスライン28,温度測定部30と流量の制御部29よりなる流量分配弁27を設けたことで、これにより、熱交換器11−2を通さない水と通した水を適量混ぜることにより、燃料電池冷却水の入口温度を50℃以上に保持するように制御する。望ましくは、65℃以上に保持し、燃料電池性能の劣化を招く運転温度に下がらないようにする。部分負荷運転を行うとき、低部分負荷時には、燃料電池からの発生熱量の絶対量が減少するのに対し、放熱損失は、ほぼ一定であるため、燃料電池自身の温度が低下する。そのまま、熱交換器11−2を通過させた水で冷却すると一時的にも燃料電池性能の劣化温度域に入ると、さらに、運転温度が下がる悪循環に陥る恐れがある。それを防止するのが、本実施例の構成である。
【0021】
このようにすることにより、低コストで部分負荷運転に安定して追従でき、かつ、燃料電池の性能劣化を招かないで、経済的な運転が可能となり、かつ、高性能な燃料電池発電給湯システムを提供することができるという効果がある。
【0022】
【発明の効果】
本発明によれば、排熱回収による給湯温度を安定させた燃料電池発電給湯システムを提供できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施例である燃料電池発電給湯システムの系統図を示す。
【図2】本発明の他の実施例である燃料電池発電給湯システムの系統図を示す。
【図3】本発明の他の実施例である燃料電池発電給湯システムの系統図を示す。
【符号の説明】
1…燃料処理装置、2…都市ガス、3…空気、4…戻りアノード排ガス、5…脱イオン水、6…アノードガス、7…燃焼排ガス、8…カソード空気、9…燃料電池、10,22…貯湯槽、11−1〜11−4…熱交換器、12…燃料電池冷却系、13,15…カソード排ガス、14…アノード排ガス、16,27…流量分配弁、17,20,25,29…制御部、18,19,30…温度測定部、
21…ポンプ、23,28…バイパスライン、24…排熱回収系、26−1〜26−5…ドレイン抜き。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell power generation and hot water supply system.
[0002]
[Prior art]
Fuel cells have been developed mainly for electric power. As a result, fuel cells require higher power demands during certain hours like home use, but on average demand is lower. For this reason, it is economical to perform the partial load operation following the power demand. Under such operating conditions, when the flow rate changes, the heat transfer rate changes, so that the inlet and outlet temperatures of the heat exchanger of the exhaust heat recovery system change. Furthermore, if the temperature fluctuates depending on the season and time, there is a problem that the temperature of hot water stored in the hot water tank also fluctuates. However, since the heat exchanger itself is a passive device, there is a problem that it is not possible to cope with these changes. Was.
[0003]
As a prior art, there is a cogeneration system described in JP-A-11-223385. In this prior art, when recovering the heat of the generator, a countermeasure is provided by providing a bypass pipe and a flow path switching valve so as not to put low-temperature water into the hot water storage tank.
[0004]
[Patent Document 1]
JP-A-11-223385
[Problems to be solved by the invention]
In the technology described in Japanese Patent Application Laid-Open No. H11-223385, the flow path switching valve controls the total flow rate to go to either the bypass pipe or the hot water tank, and is one of the applications of this technology. Although it is considered to be optimal for heat sources such as gas engines, in the case of fuel cells that require strict temperature control, consideration is not given to the fact that the inlet and outlet temperatures of the fuel cell fluctuate and it is difficult to obtain stable performance.
[0006]
An object of the present invention is to provide a fuel cell power generation and hot water supply system that stabilizes a hot water supply temperature by exhaust heat recovery.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the fuel cell power generation and hot water supply system of the present invention, a fuel processing device that reforms fuel to generate an anode gas containing hydrogen, and reacts oxygen with hydrogen in the anode gas. In a fuel cell power generation hot water supply system having a fuel cell for generating electricity, the anode gas, a direct cooling medium for cooling the fuel cell, and an anode exhaust gas and a cathode exhaust gas discharged from the fuel cell exchange heat with an indirect cooling medium as a heat source. A plurality of heat exchangers are provided, and the plurality of heat exchangers are arranged in series with the indirect cooling medium flowing through the heat exchanger.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Prior to describing the embodiments, the background of the invention will be described. The characteristic of the exhaust heat recovery system of this polymer electrolyte membrane fuel cell power generation system is that the operating temperature of the fuel cell of the main engine is about 70 to 80 ° C., which is lower than the boiling point of water of 100 ° C. It is rich in steam at a temperature lower than the boiling point in terms of a large amount of low-quality thermal energy and protection of the electrolyte of the fuel cell. For this reason, in order to efficiently perform exhaust heat recovery, a method different from a system such as a gas engine is necessary in that steam exhaust heat, that is, latent heat must be efficiently recovered, and There is a background that the fuel cell temperature control requirements must be met, which is stricter than that of a gas engine or the like.
[0009]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a system diagram of a fuel cell power generation and hot water supply system according to one embodiment of the present invention.
[0010]
The fuel cell power generation and hot water supply system shown in FIG. 1 is a fuel processing device 1 for generating an anode gas 6 containing hydrogen and a combustion exhaust gas 7 from a city gas 2, air 3, deionized water 5, and a return anode exhaust gas 4. A fuel cell 9 that generates electricity by reacting the anode gas 6 from 1 with the air 8 flowing from the cathode, and a fuel cell cooling system including a hot water tank 10 and a heat exchanger 11-2 for cooling the fuel cell 9 12, a first heat exchanger 11-1 for bringing the anode gas 6 from the fuel processor 1 to a temperature suitable for entering the anode of the fuel cell 9, and a second heat exchanger 11-1 for recovering heat from the fuel cell cooling system 12. Heat exchanger 11-2, a third heat exchanger 11-3 for heating the cathode air 8 supplied to the fuel cell 9 with the cathode exhaust gas 13 from the fuel cell 9, and a cathode exhaust gas 15 from the heat exchanger 11-3. From A fourth heat exchanger 11-4 for recovering heat from the anode exhaust gas 14 from the fuel cell 9, a flow distribution valve 16 for distributing a flow rate by the temperature measuring unit 18 and the control unit 17, and a flow rate by the temperature measuring unit 19 and the control unit 20. A pump 21 to be controlled, a control unit 25 for controlling the control unit 20 and the control unit 17 in an integrated manner, a hot water tank 22, a bypass line 23 of the hot water tank 22, heat exchangers 11-1, 11-2, 11-. 4, an exhaust heat recovery system 24 including a pump 21.
[0011]
In the fuel cell power generation and hot water supply system configured as described above, first, a specified amount of the hydrogen-rich anode gas 6 and the air 8 whose fuel is reformed by the fuel processor 1 are fed into the fuel cell 9 by an electrochemical reaction. Generates DC power and heat. Part of this heat is removed by the fuel cell cooling system 12, and part of the heat of the remaining cathode exhaust gas 13 is recovered again in the cathode air 8 by the heat exchanger 11-3, and the rest is recovered from the cathode exhaust gas 15. It collects in heat exchanger 11-4. At the same time, the anode exhaust gas 14 from the fuel cell 9 is also recovered by the heat exchanger 11-4. Exhaust heat is recovered by the heat exchanger 11-1 from the generated anode gas 6 of the fuel processor 1, which is another heat source. Incidentally, since the anode gas 6 enters the fuel cell 9 at the outlet of the heat exchanger 11-1, a large deviation from a temperature around 70 ° C. is not allowed. Exhaust heat can be recovered from the combustion exhaust gas 7, but it is excluded from consideration of the amount of heat that can be recovered in view of the cost. Needless to say, if a low-cost heat exchanger that is cost-effective is realized, exhaust heat is recovered.
[0012]
For this reason, among the above, exhaust heat recovery for hot water supply is performed from the heat exchangers 11-1, 11-2, and 11-4. If these three heat exchangers are connected in parallel, control is simple, but hot water supply at a predetermined temperature cannot be obtained. In addition, if these heat exchangers are arranged in series, the temperature relationship may be reversed depending on the temperature and load conditions, resulting in heat transfer instead of heat recovery, which may damage the performance of temperature-sensitive fuel cells. In addition, there is a possibility that the temperature of the anode gas 6 may deviate from a required range of the fuel cell 9 because the heat exchanger may be out of the specification range and the exhaust heat recovery efficiency may be reduced. As it was, monitoring the temperature at the entrance and exit of the heat exchanger, the only way to pass through the heat exchanger was to switch the piping system and obtain the necessary hot water supply, but this method required a complicated piping system. The heat radiation from the pipes increases and the cost also increases, so that it cannot be adopted in a system of about 1 kW such as a home fuel cell power generation and hot water supply system.
[0013]
In order to solve this, in this embodiment, as described above, the heat exchangers 11-1, 11-2, and 11-4 are arranged in series with the indirect cooling medium flowing through these heat exchangers, and The exhaust heat recovery system is formed so that the indirect cooling medium flows in the order from the heat exchangers 11-4, 11-2, and 11-1. Then, the inflow temperature of tap water as the indirect cooling medium in the first-stage heat exchanger 11-4 is set to about 30 ° C., which can be set even in summer, and the outflow temperature of tap water in the last-stage heat exchanger 11-1 is required to be hot water supply. The temperature was set to 60 ° C. or higher. The inflow temperature is controlled by adjusting the flow distribution valve 16 by the control unit 17 by detecting the flow rate passing through the bypass line 23 by the temperature measurement unit 18. At the same time, the outflow temperature is controlled by adjusting the flow rate of the pump 21 by the control unit 20 by detecting the outflow temperature by the temperature measurement unit 19. At the time of this control, both are not controlled at the same time, but are controlled by the control unit 25 in a different time zone by performing time division. The target value is adjusted by time sharing so that the target value does not fall outside the allowable range. Thus, closely related control can be performed stably.
[0014]
The heat exchanger 11-3 exchanges heat between the air 8 entering the cathode and the discharged cathode exhaust gas 13. With this configuration, since heat for condensing the vapor component in the cathode exhaust gas 13 can be used, even if the temperature changes, the condensed water slightly increases or decreases and the temperature due to the generated condensing heat changes only by 2 to 3 ° C. Irrespective of this, there is an effect that the cathode air 8 can maintain a substantially constant temperature. This effect was also confirmed by experiments. Incidentally, the heat exchangers 11-1, 11-2, 11-3, and 11-4 are preferably plate-shaped from the viewpoint of low cost and compactness. Further, since the anode exhaust gas 14 and the cathode exhaust gas 15 have different amounts of heat but have substantially the same temperature conditions for input and output, the heat exchanger 11-4 for recovering heat from the anode exhaust gas 14 and the cathode exhaust gas 15 is more compact. The three-fluid type is desirable because it can be used.
[0015]
With the configuration as described above, the heat exchanger is connected in series in consideration of the temperature order in the exhaust heat recovery system, and a pipeline system and a control system for controlling the input and output temperatures of the heat exchanger group are provided. Fuel cell power generation and hot water supply system that can stably follow partial load operation while maximally recovering waste heat at low cost, and can operate economically without deteriorating fuel cell performance There is an effect that can be provided.
[0016]
Next, another embodiment of the present invention will be described with reference to FIG. This embodiment is different from the embodiment shown in FIG. 1 in that drain drains 26-1 to 26-5 are provided downstream of the heat exchanger or downstream of the anode and cathode exhaust gas outlet gas of the fuel cell 9; This will be described as follows. The drain drain 26-1 drains the drain generated downstream of the anode gas 6 discharged from the fuel processor 1 after passing through the heat exchanger 11-1, and the drain drain 26-2 is discharged from the fuel cell 9. The drain accompanying the anode exhaust gas 14 is drained, and the drain drain 26-3 drains the drain generated in the return anode exhaust gas 4 after the anode exhaust gas 14 has exited the heat exchanger 11-4.
[0017]
Next, a description will be given of the cathode exhaust gas line. The drain drain 26-4 drains the drain in the cathode exhaust gas 13 discharged from the fuel cell 9. The drain drain 26-5 drains a drain generated when the cathode exhaust gas 13 passes through the heat exchanger 11-3. Since both gases are rich in water vapor components, when the temperature decreases, useful heat of condensation is generated in the heat exchanger group 11, but the treatment of condensed water generated at the same time becomes a problem. If not removed, the pressure loss increases, the auxiliary power increases, and the heat exchanger performance decreases. In particular, since the return anode exhaust gas 4 is returned to the fuel processing apparatus 1 and is subjected to combustion, unless the water is removed, misfire, a decrease in combustion performance, and a decrease in combustion temperature are caused. In addition, since these condensed waters have better quality than tap water, they can be reused if collected. Although not shown, the size of the water treatment apparatus can be reduced.
[0018]
The drain drain 26-1 on the downstream side of the heat exchanger 11-1 thought that no drain was generated only from the temperature and moisture conditions. However, the drain drain 26-1 was actually affected by the temperature of tap water to be heat-exchanged. Occurs. The condensed water is generated in the portion after the cathode exhaust gas 14 has passed through the heat exchanger 11-4, but the drain drain is not provided because the cathode exhaust gas outlet is provided and a drain receiving tank (not shown) is provided at the outlet. The reason for this is that condensed water can be recovered simply by providing ()). Although not shown in the drawing of the drain, a drain receiving tank, a solenoid valve provided thereunder and a timer are used to set a time interval for opening and closing the solenoid valve from the accumulated amount and time measured in advance. And remove to the receiving tank by its own weight. However, the solenoid valve is closed so as to leave a certain amount of water so that the gas does not come into contact with the outside air. Desirably, a float type drain drain is used.
[0019]
By doing so, it is possible to stably follow the partial load operation at low cost, and economical operation is possible without deteriorating the performance of the fuel cell. There is an effect that can be provided.
[0020]
FIG. 3 shows a fuel cell power generation system according to another embodiment of the present invention. The difference from the embodiment of FIG. 2 is that the fuel cell cooling system 12 is provided with a bypass line 28, a flow rate distribution valve 27 including a temperature measurement unit 30 and a flow rate control unit 29, whereby the heat exchanger 11 By controlling the inlet temperature of the fuel cell cooling water to 50 ° C. or more by mixing an appropriate amount of water that has not passed through −2 and water that has passed. Desirably, the temperature is maintained at 65 ° C. or higher so that the operating temperature does not lower to cause deterioration of the fuel cell performance. When the partial load operation is performed, at a low partial load, the absolute amount of heat generated from the fuel cell decreases, but the heat radiation loss is substantially constant, so that the temperature of the fuel cell itself decreases. When the fuel cell is cooled by the water passed through the heat exchanger 11-2 as it is, if the fuel cell temporarily enters the deterioration temperature range of the performance of the fuel cell, the operating temperature may further fall into a vicious cycle. It is the configuration of the present embodiment that prevents this.
[0021]
By doing so, it is possible to stably follow the partial load operation at low cost, and economical operation is possible without deteriorating the performance of the fuel cell. There is an effect that can be provided.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it is effective in the ability to provide the fuel-cell power generation hot-water supply system which stabilized the hot-water supply temperature by waste heat recovery.
[Brief description of the drawings]
FIG. 1 is a system diagram of a fuel cell power generation and hot water supply system according to one embodiment of the present invention.
FIG. 2 is a system diagram of a fuel cell power generation / hot water supply system according to another embodiment of the present invention.
FIG. 3 shows a system diagram of a fuel cell power generation / hot water supply system according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fuel processing apparatus, 2 ... City gas, 3 ... Air, 4 ... Return anode exhaust gas, 5 ... Deionized water, 6 ... Anode gas, 7 ... Combustion exhaust gas, 8 ... Cathode air, 9 ... Fuel cell, 10, 22 ... Hot water storage tank, 11-1 to 11-4 ... Heat exchanger, 12 ... Fuel cell cooling system, 13,15 ... Cathode exhaust gas, 14 ... Anode exhaust gas, 16,27 ... Flow distribution valve, 17,20,25,29 ... Control unit, 18, 19, 30 ... Temperature measurement unit
Reference numeral 21: pump, 23, 28: bypass line, 24: exhaust heat recovery system, 26-1 to 26-5: drain removal.

Claims (11)

燃料を改質して水素を含有するアノードガスを発生させる燃料処理装置と、酸素と前記アノードガス中の水素を反応させて発電する燃料電池とを有する燃料電池発電給湯システムにおいて、
前記アノードガス,前記燃料電池を冷却する直接冷却媒体,前記燃料電池から排出されるアノード排ガス及びカソード排ガスを熱源として間接冷却媒体と熱交換する熱交換器を複数設け、この複数の熱交換器を当該熱交換器を流通する間接冷却媒体に対して直列に配置したことを特徴とする燃料電池発電給湯システム。
In a fuel cell power generation and hot water supply system including a fuel processing device that reforms fuel to generate an anode gas containing hydrogen and a fuel cell that generates power by reacting oxygen and hydrogen in the anode gas,
A plurality of heat exchangers for exchanging heat with the indirect cooling medium using the anode gas, the direct cooling medium for cooling the fuel cell, and the anode exhaust gas and the cathode exhaust gas discharged from the fuel cell as heat sources are provided. A fuel cell power generation and hot water supply system, wherein the heat exchanger is arranged in series with an indirect cooling medium flowing through the heat exchanger.
燃料を改質して水素を含有するアノードガスを発生させる燃料処理装置と、空気中の酸素と前記アノードガス中の水素を反応させて発電する燃料電池とを有する燃料電池発電給湯システムにおいて、
前記燃料電池に供給されるアノードガスと間接冷却媒体とを熱交換する第1の熱交換器と、前記燃料電池を冷却した冷却媒体と間接冷却媒体とを熱交換する第2の熱交換器と、前記燃料電池から排出されるカソード排ガスと前記燃料電池に供給する空気とを熱交換する第3の熱交換器と、前記燃料電池から排出されるアノード排ガス及び前記第3の熱交換器を経たカソード排ガスと間接冷却媒体とを熱交換する第4の熱交換器を設け、前記第1,第2,第4の熱交換器を当該第1,第2,第4の熱交換器を流通する間接冷却媒体に対して直列に配置し、前記間接冷却媒体を第4,第2,第1の熱交換器の順に流通させるように排熱回収系を形成したことを特徴とする燃料電池発電給湯システム。
In a fuel cell power generation hot water supply system having a fuel processing device that reforms fuel to generate an anode gas containing hydrogen and a fuel cell that generates power by reacting oxygen in the air and hydrogen in the anode gas,
A first heat exchanger that exchanges heat between the anode gas supplied to the fuel cell and the indirect cooling medium, a second heat exchanger that exchanges heat between the cooling medium that has cooled the fuel cell and the indirect cooling medium, A third heat exchanger for exchanging heat between a cathode exhaust gas discharged from the fuel cell and air supplied to the fuel cell, an anode exhaust gas discharged from the fuel cell and the third heat exchanger. A fourth heat exchanger for exchanging heat between the cathode exhaust gas and the indirect cooling medium is provided, and the first, second, and fourth heat exchangers flow through the first, second, and fourth heat exchangers. A fuel cell power supply system comprising: an exhaust heat recovery system that is arranged in series with an indirect cooling medium so that the indirect cooling medium flows in the order of a fourth, a second, and a first heat exchanger. system.
請求項1に記載の燃料電池発電給湯システムにおいて、
前記複数の熱交換器で熱交換した間接冷却媒体の一部を、該間接冷却媒体の貯湯槽をバイパスさせるバイパス流路と、前記熱交換器の初段に供給する間接冷却媒体と合流させる前記バイパス流路からのバイパス流量を調整する流量分配弁と、該流量分配弁を経た間接冷却媒体を前記熱交換器に供給するポンプを備えたことを特徴とする燃料電池発電給湯システム。
The fuel cell power generation and hot water supply system according to claim 1,
A bypass flow path for bypassing a part of the indirect cooling medium heat-exchanged by the plurality of heat exchangers to a hot water storage tank for the indirect cooling medium, and a bypass for joining the indirect cooling medium supplied to a first stage of the heat exchanger; A fuel cell power generation and hot water supply system comprising: a flow distribution valve for adjusting a bypass flow rate from a flow path; and a pump for supplying an indirect cooling medium passing through the flow distribution valve to the heat exchanger.
請求項3に記載の燃料電池発電給湯システムにおいて、
前記熱交換器の初段に供給される間接冷却媒体の温度が所定温度以上となるように、前記流量分配弁で合流させる間接冷却媒体のバイパス流量を制御する制御装置を備えたことを特徴とする燃料電池発電給湯システム。
The fuel cell power generation and hot water supply system according to claim 3,
A control device for controlling a bypass flow rate of the indirect cooling medium to be joined by the flow distribution valve so that a temperature of the indirect cooling medium supplied to the first stage of the heat exchanger is equal to or higher than a predetermined temperature. Fuel cell power generation hot water supply system.
請求項3に記載の燃料電池発電給湯システムにおいて、
前記熱交換器の最終段から排出される間接冷却媒体の温度が所定温度以上となるように、前記ポンプで供給する間接冷却媒体の流量を制御する制御装置を備えたことを特徴とする燃料電池発電給湯システム。
The fuel cell power generation and hot water supply system according to claim 3,
A fuel cell, comprising: a controller that controls a flow rate of the indirect cooling medium supplied by the pump so that a temperature of the indirect cooling medium discharged from a final stage of the heat exchanger is equal to or higher than a predetermined temperature. Power generation hot water supply system.
請求項1に記載の燃料電池発電給湯システムにおいて、
前記燃料電池に供給される前記直接冷却媒体の一部を、前記間接冷却媒体と熱交換する熱交換器をバイパスさせるバイパス経路と、前記燃料電池に供給する直接冷却媒体と合流させる前記バイパス流路からのバイパス流量を調整する流量分配弁と、前記燃料電池に供給される直接冷却媒体の温度が所定温度以上となるように、前記流量分配弁で合流させる直接冷却媒体のバイパス流量を制御する制御装置を備えたことを特徴とする燃料電池発電給湯システム。
The fuel cell power generation and hot water supply system according to claim 1,
A bypass path that bypasses a heat exchanger that exchanges heat with the indirect cooling medium for part of the direct cooling medium supplied to the fuel cell; and a bypass path that joins the direct cooling medium supplied to the fuel cell. A flow distribution valve that adjusts a bypass flow rate from the fuel cell, and a control that controls a bypass flow rate of the direct cooling medium that is joined by the flow distribution valve so that the temperature of the direct cooling medium supplied to the fuel cell is equal to or higher than a predetermined temperature. A fuel cell power generation and hot water supply system comprising the device.
請求項1に記載の燃料電池発電給湯システムにおいて、
前記熱交換器はプレート形の熱交換器であることを特徴とする燃料電池発電給湯システム。
The fuel cell power generation and hot water supply system according to claim 1,
The heat exchanger according to claim 1, wherein the heat exchanger is a plate-type heat exchanger.
請求項1に記載の燃料電池発電給湯システムにおいて、
前記燃料電池のカソード空気を、該燃料電池から排出されるカソード排ガスによって加熱する熱交換器を備えたことを特徴とする燃料電池発電給湯システム。
The fuel cell power generation and hot water supply system according to claim 1,
A fuel cell power generation / hot water supply system, comprising: a heat exchanger for heating cathode air of the fuel cell by cathode exhaust gas discharged from the fuel cell.
請求項1に記載の燃料電池発電給湯システムにおいて、
前記複数の熱交換器のうち一つは、アノード排ガスとカソード排ガスと間接冷却媒体とを熱交換する、3流体形熱交換器であることを特徴とする燃料電池発電給湯システム。
The fuel cell power generation and hot water supply system according to claim 1,
One of the plurality of heat exchangers is a three-fluid heat exchanger for exchanging heat between an anode exhaust gas, a cathode exhaust gas, and an indirect cooling medium.
請求項1に記載の燃料電池発電給湯システムにおいて、
前記燃料処理装置から燃料電池にアノードガスを供給する経路,前記燃料電池から排出されたカソード排ガスが流通する経路,前記燃料電池から排出されたアノード排ガスが流通する経路のうち少なくとも一つの経路にドレイン抜きを設けることを特徴とする燃料電池発電給湯システム。
The fuel cell power generation and hot water supply system according to claim 1,
A drain is supplied to at least one of a path for supplying anode gas from the fuel processor to the fuel cell, a path for passing the cathode exhaust gas discharged from the fuel cell, and a path for flowing the anode exhaust gas discharged from the fuel cell. A fuel cell power generation hot water supply system characterized by providing a hole.
請求項4又は5に記載の燃料電池発電給湯システムにおいて、
前記複数の熱交換器の初段に供給される間接冷却媒体と、最終段の熱交換器から排出される間接冷却媒体の温度を、相互に異なる時間帯に制御する制御装置を設けたことを特徴とする燃料電池発電給湯システム。
The fuel cell power generation and hot water supply system according to claim 4 or 5,
A controller is provided for controlling the temperature of the indirect cooling medium supplied to the first stage of the plurality of heat exchangers and the temperature of the indirect cooling medium discharged from the last stage heat exchanger in mutually different time zones. Fuel cell power generation hot water supply system.
JP2003093092A 2003-03-31 2003-03-31 Fuel cell power generation hot-water supply system Withdrawn JP2004303495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093092A JP2004303495A (en) 2003-03-31 2003-03-31 Fuel cell power generation hot-water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093092A JP2004303495A (en) 2003-03-31 2003-03-31 Fuel cell power generation hot-water supply system

Publications (1)

Publication Number Publication Date
JP2004303495A true JP2004303495A (en) 2004-10-28

Family

ID=33405966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093092A Withdrawn JP2004303495A (en) 2003-03-31 2003-03-31 Fuel cell power generation hot-water supply system

Country Status (1)

Country Link
JP (1) JP2004303495A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187779A (en) * 2008-02-06 2009-08-20 Panasonic Corp Fuel cell co-generation system
WO2009157149A1 (en) * 2008-06-26 2009-12-30 パナソニック株式会社 Fuel cell system
JP2010027366A (en) * 2008-07-18 2010-02-04 Panasonic Corp Fuel cell cogeneration system
JP2010027365A (en) * 2008-07-18 2010-02-04 Panasonic Corp Fuel cell cogeneration system
KR101032775B1 (en) 2009-09-15 2011-05-06 한국에너지기술연구원 Home fuel cell systme

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828176A (en) * 1981-08-12 1983-02-19 Toshiba Corp Fuel-cell generation system
JPH04126369A (en) * 1990-09-17 1992-04-27 Tokyo Gas Co Ltd Self-supplying system of steam source for reforming original fuel in fuel cell
JPH10223245A (en) * 1997-02-04 1998-08-21 Tokyo Gas Co Ltd Fuel cell electricity-generating apparatus
JP2000030726A (en) * 1998-07-07 2000-01-28 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system
JP2000173632A (en) * 1998-12-04 2000-06-23 Hitachi Ltd Fuel cell power generation system
JP2001065976A (en) * 1999-08-26 2001-03-16 Matsushita Electric Works Ltd Cogeneration system
JP2001176527A (en) * 1999-12-16 2001-06-29 Daikin Ind Ltd Fuel cell system and fuel cell cogeneration system
JP2001196075A (en) * 2000-01-11 2001-07-19 Matsushita Seiko Co Ltd Fuel cell cogeneration system
JP2003007324A (en) * 2001-06-21 2003-01-10 Honda Motor Co Ltd Cooling system of fuel cell
JP2003217635A (en) * 2002-01-23 2003-07-31 Toyota Motor Corp Fuel cell power generation system
JP2003257457A (en) * 2001-12-26 2003-09-12 Toyota Motor Corp Fuel cell power generation system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828176A (en) * 1981-08-12 1983-02-19 Toshiba Corp Fuel-cell generation system
JPH04126369A (en) * 1990-09-17 1992-04-27 Tokyo Gas Co Ltd Self-supplying system of steam source for reforming original fuel in fuel cell
JPH10223245A (en) * 1997-02-04 1998-08-21 Tokyo Gas Co Ltd Fuel cell electricity-generating apparatus
JP2000030726A (en) * 1998-07-07 2000-01-28 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system
JP2000173632A (en) * 1998-12-04 2000-06-23 Hitachi Ltd Fuel cell power generation system
JP2001065976A (en) * 1999-08-26 2001-03-16 Matsushita Electric Works Ltd Cogeneration system
JP2001176527A (en) * 1999-12-16 2001-06-29 Daikin Ind Ltd Fuel cell system and fuel cell cogeneration system
JP2001196075A (en) * 2000-01-11 2001-07-19 Matsushita Seiko Co Ltd Fuel cell cogeneration system
JP2003007324A (en) * 2001-06-21 2003-01-10 Honda Motor Co Ltd Cooling system of fuel cell
JP2003257457A (en) * 2001-12-26 2003-09-12 Toyota Motor Corp Fuel cell power generation system
JP2003217635A (en) * 2002-01-23 2003-07-31 Toyota Motor Corp Fuel cell power generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187779A (en) * 2008-02-06 2009-08-20 Panasonic Corp Fuel cell co-generation system
WO2009157149A1 (en) * 2008-06-26 2009-12-30 パナソニック株式会社 Fuel cell system
JP2010027366A (en) * 2008-07-18 2010-02-04 Panasonic Corp Fuel cell cogeneration system
JP2010027365A (en) * 2008-07-18 2010-02-04 Panasonic Corp Fuel cell cogeneration system
KR101032775B1 (en) 2009-09-15 2011-05-06 한국에너지기술연구원 Home fuel cell systme

Similar Documents

Publication Publication Date Title
CN105576269B (en) A kind of thermal control system of fixed micro fuel cell cogeneration system
US20100248047A1 (en) Fuel cell system
JP2005100873A (en) Fuel cell system
JP5092186B2 (en) Fuel cell cogeneration system
US20040043266A1 (en) Solid polymer type fuel cell system
JP2017068913A (en) Fuel battery system
US20120021320A1 (en) Fuel cell system and method for operating fuel cell system
JP2004303495A (en) Fuel cell power generation hot-water supply system
JP2006318750A (en) Fuel cell system
JP2004127841A (en) Fuel battery cogeneration system
JP2008066016A (en) Operation method of fuel cell system and fuel cell system
JP2006139998A (en) Fuel cell system and low-temperature start-up method of fuel cell system
JP2005116256A (en) Fuel cell cogeneration system
JP4986424B2 (en) Power generator
WO2009109744A2 (en) Heat and process water recovery system
KR101554485B1 (en) Latent heat retrieving system of exhaust gas using heat exchanger, modules for the system, and heat exchanger for the system
JP2002025590A (en) Fuel cell power generating device and its control method
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
JP2004059352A (en) Fuel reforming system
JP5369752B2 (en) Fuel cell power generator
JP2007280638A (en) Solid polymer fuel cell generator
JP2013206657A (en) Fuel cell power generation system
JP4440676B2 (en) Fuel cell power generation hot water supply system
JP2004296265A (en) Fuel cell system
JP2002289242A (en) Fuel cell exhaust heat recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090518

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090611