JPH10223245A - Fuel cell electricity-generating apparatus - Google Patents

Fuel cell electricity-generating apparatus

Info

Publication number
JPH10223245A
JPH10223245A JP9021104A JP2110497A JPH10223245A JP H10223245 A JPH10223245 A JP H10223245A JP 9021104 A JP9021104 A JP 9021104A JP 2110497 A JP2110497 A JP 2110497A JP H10223245 A JPH10223245 A JP H10223245A
Authority
JP
Japan
Prior art keywords
cooling water
heat output
heat exchanger
heat
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9021104A
Other languages
Japanese (ja)
Inventor
Toshiya Omura
俊哉 大村
Nobuhiro Iwasa
信弘 岩佐
Takuro Hagino
卓朗 萩野
Harumi Miyama
晴美 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9021104A priority Critical patent/JPH10223245A/en
Publication of JPH10223245A publication Critical patent/JPH10223245A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell type electricity-generating apparatus in which neither water-hammer phenomenon nor sludge deposition occur, steam pressure control can stably be carried out, and a heat output-controllable heat output system is installed. SOLUTION: This electricity-generating apparatus comprises fuel cells 1, each of which is a layered body of a unit cell and a cooling plate 3 having a cooling pipe 4, a circulation pump 11 to circulate cell cooling water 5 at a prescribed temperature in the cooling pipe, a steam separator 12, a cooling water circulating system 10 comprising a heat exchanger 21 for heat output which works also as a heat exchanger for cooling, and a heat output system 20 for heating the secondary cooling water 15 of the system 10 to hot water at non-boiling temperature and carry out heat output. The apparatus further comprises a heat output controlling means 30 for controlling the water flowing rate of the cell cooling water to the heat exchanger for heat output, corresponding to the alteration of the saturated steam pressure and the controlling means 30 comprises a pressure-adjusting part 22 to detect the alteration of the saturated steam pressure in the steam separator 12 and generates a control signal 22S and a three-way control valve 31, which receives the control signal to control the water flowing rate of the cell cooling water to the heat exchanger for heat output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、発電電力の出力
と廃熱利用の為の熱出力とを並行して行う水冷式燃料電
池発電装置、ことに熱出力を電池冷却水を熱源として熱
利用設備に未沸騰温度の温水として供給する燃料電池発
電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-cooled fuel cell power generation apparatus for performing the output of generated power and the heat output for utilizing waste heat in parallel, and more particularly, to utilizing heat output using battery cooling water as a heat source. The present invention relates to a fuel cell power generator that supplies hot water at an unboiled temperature to equipment.

【0002】[0002]

【従来の技術】図2は熱出力装置を備えた従来の燃料電
池発電装置の要部を示す系統図であり、りん酸形燃料電
池1はりん酸を保持するマトリックスを挟んで燃料電極
および空気電極を配した単位セルの積層体からなり、燃
料電極に燃料改質装置2で生成した燃料ガスを供給し,
空気電極に空気を供給することにより、電気化学反応に
基づいて発電が行われる。また、燃料電池1の電気化学
反応は全体として発熱反応であり、燃料電池1の温度を
例えば190°C 程度の運転温度に保持して効率の良い
発電運転を行うためには燃料電池の冷却が必要になる。
そこで、燃料電池1には純水を電池冷却水5とする冷却
パイプ4を含む冷却板3が積層され、この冷却パイプ4
に運転温度より所定温度低い,例えば160〜170°
C程度の電池冷却水5を循環するため、冷却パイプ4に
は冷却水循環ポンプ11,水蒸気分離器12,および冷
却用熱交換器13を含む冷却水循環系10が連結され
る。
2. Description of the Related Art FIG. 2 is a system diagram showing a main part of a conventional fuel cell power generator provided with a heat output device. A phosphoric acid type fuel cell 1 has a fuel electrode and air with a matrix holding phosphoric acid interposed therebetween. It is composed of a stack of unit cells provided with electrodes, and the fuel gas generated by the fuel reformer 2 is supplied to the fuel electrodes.
By supplying air to the air electrode, power generation is performed based on an electrochemical reaction. In addition, the electrochemical reaction of the fuel cell 1 is an exothermic reaction as a whole, and cooling of the fuel cell is necessary to maintain the temperature of the fuel cell 1 at an operating temperature of, for example, about 190 ° C. and perform efficient power generation operation. Will be needed.
Therefore, a cooling plate 3 including a cooling pipe 4 using pure water as a cell cooling water 5 is laminated on the fuel cell 1.
At a predetermined temperature lower than the operating temperature, for example, 160 to 170 °.
A cooling water circulation system 10 including a cooling water circulation pump 11, a steam separator 12, and a cooling heat exchanger 13 is connected to the cooling pipe 4 to circulate the battery cooling water 5 of about C.

【0003】一方、原燃料を水素リッチな燃料ガスに改
質するためには、原燃料としてのメタンガス等に改質用
スチームを加えて水とメタンとの反応を触媒で促進して
行う燃料改質装置2が用いられ、改質用スチームには水
蒸気分離器12で分離した飽和水蒸気の一部が利用され
る。したがって、冷却水循環系10には燃料の改質に使
用した飽和水蒸気量に対応して純水を補給する必要があ
る。この水は図示しない水処理系で水道水中の不純物を
除去したイオン交換水などが用いられる。また、燃料電
池1の空気電極から排出される空気オフガス中に含まれ
る水分(発電生成水)や燃料改質装置2のバーナの燃焼
排ガス中の水分(燃焼生成水)を凝縮した回収水を用い
た方が水道水よりも不純物が少なく、その分図示しない
水処理系に設けられるイオン交換式水処理装置などの負
荷を軽くできるので、燃料電池発電装置に生成水回収装
置を付加して排気中の水分を回収する方式の燃料電池発
電装置も知られている。
[0003] On the other hand, in order to reform the raw fuel into a hydrogen-rich fuel gas, fuel reforming is performed by adding a reforming steam to methane gas or the like as the raw fuel to promote the reaction between water and methane with a catalyst. A reformer 2 is used, and a part of the saturated steam separated by the steam separator 12 is used for the reforming steam. Therefore, it is necessary to supply pure water to the cooling water circulation system 10 in accordance with the amount of saturated steam used for reforming the fuel. This water is ion-exchanged water from which impurities in tap water are removed by a water treatment system (not shown). Further, water (power generation water) contained in the air off-gas discharged from the air electrode of the fuel cell 1 and recovered water obtained by condensing water (combustion water) in the combustion exhaust gas of the burner of the fuel reformer 2 are used. It has less impurities than tap water and can reduce the load on the ion-exchange type water treatment equipment installed in a water treatment system (not shown). There is also known a fuel cell power generation system that recovers moisture.

【0004】ところで、燃料電池1の発電生成熱を回収
して例えば空調設備や給湯設備などの熱利用設備の熱源
として熱出力しようとする場合、冷却水循環系10に設
けた冷却用熱交換器13を熱出力用熱交換器として利用
すれば、熱出力系20の構成を大幅に簡素化することが
可能になる。そこで、従来の燃料電池発電装置では、熱
出力系20を図に示すように、冷却用熱交換器13を熱
出力用熱交換器21として利用し、熱出力用熱交換器2
1に流れる電池冷却水5を加熱媒体,二次冷却水ライン
26から供給される二次冷却水15を被加熱媒体として
熱交換を行い、2次冷却水15を未沸騰温度に加熱した
温水25として温水ライン27を介して例えば熱利用設
備に向けて供給するよう構成されている。
When the heat generated by the power generation of the fuel cell 1 is to be recovered and output as a heat source of a heat utilization facility such as an air conditioning facility or a hot water supply facility, a cooling heat exchanger 13 provided in a cooling water circulation system 10 is provided. Is used as a heat output heat exchanger, the configuration of the heat output system 20 can be greatly simplified. Therefore, in the conventional fuel cell power generator, the heat output system 20 is used as the heat output heat exchanger 21 as shown in FIG.
Heat exchange is performed by using the battery cooling water 5 flowing into the first cooling medium 5 as a heating medium, and the secondary cooling water 15 supplied from the secondary cooling water line 26 as a medium to be heated. Is supplied through a hot water line 27 to, for example, a heat utilization facility.

【0005】そして、上記のような熱出力系20におい
て熱出力用熱交換器21の熱交換量の制御には、水蒸気
分離器12内の電池冷却水15の温度を燃料電池1の運
転温度を保持するに好適な温度(例えば160〜170
°C)に保持する制御と、温水25の温度を熱利用設備
側での水圧に対応して決まる未沸騰温度(例えば常圧の
場合95°C前後)に保持する制御との双方が求められ
る。そこで、従来の熱出力系20は熱出力制御手段とし
て、水蒸気分離器12内の飽和水蒸気圧の検出部22
A,およびその検出値と基準値との差を補正する信号を
出力する調節部22Bとからなる圧力調節部22と、こ
の圧力調節部22の出力制御信号22Sを受けて熱出力
用熱交換器12への電池冷却水5の通流量を制御するコ
ントロール弁23とを備え、コントロール弁23で熱出
力用熱交換器21に供給する二次冷却水量とバイパスラ
イン28にバイパスする水量との比を制御することによ
り、水蒸気分離器12内の飽和水蒸気圧を、例えば電池
冷却水温度160〜170°Cに相応した水蒸気圧0.
6〜0.8MPa 程度に保持するよう構成されている。
[0005] In the above-described heat output system 20, in order to control the heat exchange amount of the heat output heat exchanger 21, the temperature of the battery cooling water 15 in the steam separator 12 is determined by controlling the operating temperature of the fuel cell 1. Temperature suitable for holding (for example, 160 to 170
° C) and control to keep the temperature of the hot water 25 at a non-boiling temperature (for example, around 95 ° C in the case of normal pressure) determined according to the water pressure on the heat utilization facility side are required. . Thus, the conventional heat output system 20 is used as a heat output control means as a saturated steam pressure detecting unit 22 in the steam separator 12.
A, and a pressure controller 22 comprising a controller 22B for outputting a signal for correcting a difference between the detected value and the reference value, and a heat output heat exchanger receiving the output control signal 22S of the pressure controller 22. And a control valve 23 for controlling the flow rate of the battery cooling water 5 to the battery 12. The control valve 23 controls the ratio between the amount of secondary cooling water supplied to the heat output heat exchanger 21 and the amount of water bypassed to the bypass line 28. By controlling the saturated steam pressure in the steam separator 12, the steam pressure is adjusted to a steam pressure corresponding to a battery cooling water temperature of 160 to 170 ° C., for example.
The pressure is maintained at about 6 to 0.8 MPa.

【0006】[0006]

【発明が解決しようとする課題】上述のように構成され
た熱出力系20を有する従来の燃料電池発電装置が運転
中、例えば電気的出力の急増が指令されると、水蒸気分
離器12から燃料改質装置2に向けて供給する改質スチ
ーム量が急増し、これに伴って水蒸気分離器12内の飽
和水蒸気圧が急減するため、これを感知した圧力調節部
22がコントロール弁23の分流比をバイパスライン2
8側に大きくなるよう制御する。従って、熱出力用熱交
換器21に流入する二次冷却水15の水量が急減または
停止状態になる。一方、熱出力用熱交換器12に流入す
る電池冷却水5の流量は減少しないので、熱出力用熱交
換器内に滞留する二次冷却水が過熱されて突沸状態とな
り、これが原因でウォーターハンマー現象に基づく騒音
が発生する。このため、無公害が特長の燃料電池発電装
置の低騒音性が阻害され、環境に優しいという燃料電池
発電装置のイメージが低下するという問題が発生する。
During operation of the conventional fuel cell power generator having the heat output system 20 constructed as described above, for example, when a sudden increase in the electric output is commanded, the fuel from the steam separator 12 is output. Since the amount of the reforming steam supplied to the reforming device 2 increases rapidly, and the saturated steam pressure in the steam separator 12 decreases sharply with this, the pressure control unit 22 that senses this detects the flow ratio of the control valve 23. The bypass line 2
Control is performed so as to increase to the 8 side. Therefore, the amount of the secondary cooling water 15 flowing into the heat output heat exchanger 21 is rapidly reduced or stopped. On the other hand, since the flow rate of the battery cooling water 5 flowing into the heat output heat exchanger 12 does not decrease, the secondary cooling water staying in the heat output heat exchanger is overheated to a bumping state. Noise is generated based on the phenomenon. For this reason, the low noise performance of the fuel cell power generation device, which is characterized by no pollution, is hindered, and there is a problem that the image of the fuel cell power generation device that is environmentally friendly is reduced.

【0007】また、ウォーターハンマー現象に伴って熱
出力用熱交換器に機械的振動が発生して熱出力用熱交換
器に機械的損傷を生じやすくなるとともに、二次冷却水
の沸騰によってスラッジが堆積しやすくなり、かつスラ
ッジ中に微量に含まれる塩素などにより熱交換管などの
腐食が促進されるため、熱出力用熱交換器の耐用年数の
低下や保守経費の高騰を招くという問題も発生する。
In addition, mechanical vibrations are generated in the heat output heat exchanger due to the water hammer phenomenon, so that the heat output heat exchanger is likely to be mechanically damaged and sludge is generated due to boiling of the secondary cooling water. There is also a problem that the sediment easily accumulates and the traces of chlorine contained in the sludge promote the corrosion of heat exchange tubes, etc., which leads to a reduction in the service life of the heat exchanger for heat output and an increase in maintenance costs. I do.

【0008】この発明の目的は、ウォーターハンマー現
象やスラッジの堆積がなく、安定した水蒸気圧制御およ
び熱出力制御が行える熱出力系を備えた燃料電池発電装
置を提供することにある。
An object of the present invention is to provide a fuel cell power generator having a heat output system capable of performing stable steam pressure control and heat output control without water hammer phenomenon and sludge accumulation.

【0009】[0009]

【課題を解決するための手段】上述の課題を解決するた
めに、この燃料電池発電装置は、単位セルと冷却パイプ
を有する冷却板との積層体からなる燃料電池と、前記冷
却パイプに所定温度の電池冷却水を循環する循環ポン
プ,水蒸気分離器,およびその上流側に配された冷却用
熱交換器を含む冷却水循環系と、前記冷却用熱交換器を
熱出力用熱交換器に兼用し,その二次冷却水を未沸騰温
度の温水に昇温して熱出力する熱出力系とを備えた燃料
電池発電装置において、前記熱出力用熱交換器への電池
冷却水の通流量を前記水蒸気分離器内の飽和水蒸気圧の
変化に対応して制御する熱出力制御手段を備える。
In order to solve the above-mentioned problems, this fuel cell power generator comprises a fuel cell comprising a laminate of a unit cell and a cooling plate having a cooling pipe; A cooling water circulating system including a circulation pump for circulating the battery cooling water, a steam separator, and a cooling heat exchanger disposed upstream thereof, and using the cooling heat exchanger as a heat output heat exchanger. A heat output system for heating the secondary cooling water to hot water at an unboiled temperature and outputting heat therefrom, wherein the flow rate of the battery cooling water to the heat output heat exchanger is A heat output control means is provided for controlling in response to a change in the saturated steam pressure in the steam separator.

【0010】ここで、熱出力制御手段は、水蒸気分離器
内の飽和水蒸気圧を検出し,その検出値と基準値との差
を補正する信号を出力する圧力調節部と、この圧力調節
部の出力制御信号を受けて熱出力用熱交換器への電池冷
却水の通流量を制御するコントロール弁とを備える。そ
して、コントロール弁は、一方の吐出口が熱出力用熱交
換器の電池冷却水入口側に,他方の吐出口が熱出力用熱
交換器のバイパス流路側にそれぞれ接続されて分流比を
制御する3方向コントロール弁とする。
Here, the heat output control means detects a saturated steam pressure in the steam separator, and outputs a signal for correcting a difference between the detected value and a reference value, and a pressure adjusting section for the pressure adjusting section. A control valve that receives the output control signal and controls the flow rate of the battery cooling water to the heat output heat exchanger. The control valve has one discharge port connected to the battery cooling water inlet side of the heat output heat exchanger and the other discharge port connected to the bypass flow path side of the heat output heat exchanger to control the flow division ratio. A three-way control valve.

【0011】また、熱出力系が二次冷却水水量を制御す
ることによって温水温度を未沸騰温度に保持するコント
ロール弁および温度調節部を備えるよう構成されて良
い。この発明の燃料電池発電装置は、電池冷却水の冷却
用熱交換器を兼ねた熱出力用熱交換器の電池冷却水の通
流量を、熱出力制御手段が水蒸気分離器内の飽和水蒸気
圧の変化に対応して制御するので、例えば改質スチーム
量が急増して水蒸気分離器12内の飽和水蒸気圧が急減
すると、直ちに熱出力用熱交換器への電池冷却水の供給
量が減少し、これに伴って熱出力用熱交換器の熱出力が
減少するので、常時一定の二次冷却水量を熱出力用熱交
換器に流しておくことにより、熱出力は一時的に減少す
るものの、二次冷却水の突沸およびウォーターハンマー
現象を回避して騒音の発生を未然に防止できるととも
に、二次冷却水の突沸に伴う熱出力用熱交換器の振動や
スラッジの堆積量の増加を回避することができる。
Further, the heat output system may be configured to include a control valve and a temperature control unit for controlling the amount of the secondary cooling water to maintain the hot water temperature at the non-boiling temperature. In the fuel cell power generator according to the present invention, the flow rate of the battery cooling water of the heat output heat exchanger also serving as the heat exchanger for cooling the battery cooling water is controlled by the heat output control means to determine the saturated steam pressure in the steam separator. Since the control is performed in response to the change, for example, when the amount of the reforming steam rapidly increases and the saturated steam pressure in the steam separator 12 suddenly decreases, the supply amount of the battery cooling water to the heat output heat exchanger immediately decreases, Since the heat output of the heat output heat exchanger decreases with this, a constant amount of secondary cooling water is always supplied to the heat output heat exchanger. To avoid the occurrence of noise by avoiding bumping of the secondary cooling water and the water hammer phenomenon, and to avoid the vibration of the heat output heat exchanger and the increase in sludge accumulation due to the bumping of the secondary cooling water. Can be.

【0012】ここで、熱出力制御手段を圧力調節部、お
よび熱出力用熱交換器への電池冷却水の通流量を制御す
るコントロール弁とで構成すれば、圧力調節部が発する
飽和水蒸気圧の検出値と基準値との差を補正する信号に
よりコントロール弁が動作し、熱出力用熱交換器への電
池冷却水の通流量を制御するので、二次冷却水の突沸防
止を遅滞無く確実に行うことができる。
Here, if the heat output control means is constituted by a pressure adjusting section and a control valve for controlling the flow rate of the battery cooling water to the heat output heat exchanger, the saturated steam pressure generated by the pressure adjusting section can be reduced. The control valve operates according to the signal that corrects the difference between the detected value and the reference value, and controls the flow rate of the battery cooling water to the heat output heat exchanger. It can be carried out.

【0013】そして、コントロール弁を3方向コントロ
ール弁として熱出力用熱交換器とバイパス流路側に流れ
る電池冷却水量の分流比を制御すれば、例えば改質スチ
ーム量の急増に際して、燃料電池から水蒸気分離器への
高温の電池冷却水の供給を急増して飽和水蒸気圧の低下
を防ぐ動作と、熱出力用熱交換器への電池冷却水の供給
を絞って二次冷却水の突沸を防ぐ動作とを並行して円滑
に行う機能が得られる。
If the control valve is used as a three-way control valve to control the split ratio between the heat output heat exchanger and the amount of battery cooling water flowing to the bypass passage, for example, when the amount of reforming steam increases sharply, water vapor is separated from the fuel cell. Operation to prevent a drop in saturated water vapor pressure by rapidly increasing the supply of high-temperature battery cooling water to the heat exchanger, and to prevent bumping of secondary cooling water by reducing the supply of battery cooling water to the heat output heat exchanger. In parallel and smoothly.

【0014】また、熱出力系が、二次冷却水水量を制御
することにより温水温度を未沸騰温度に保持するコント
ロール弁および温度調節部を備えることにより、二次冷
却水が突沸しない流量範囲で二次冷却水水量を制御する
ことにより、温水温度を未沸騰温度の上限近くに保持し
て熱利用設備に供給することができる。
Further, the heat output system includes a control valve and a temperature control section for maintaining the hot water temperature at a non-boiling temperature by controlling the amount of the secondary cooling water, so that the secondary cooling water can flow in a flow rate range where the secondary cooling water does not bump. By controlling the amount of the secondary cooling water, the hot water temperature can be maintained near the upper limit of the unboiled temperature and supplied to the heat utilization facility.

【0015】[0015]

【発明の実施の形態】以下この発明を実施例に基づいて
説明する。図1はこの発明の実施例になる燃料電池発電
装置の要部を示す系統図であり、従来例と同じ参照符号
を付けた部材は従来例のそれと同じ機能をもつので、そ
の説明を省略する。図において、燃料電池発電装置は熱
出力系20として、冷却水循環系10の循環ポンプ11
および水蒸気分離器12より上流側に、電池冷却水5の
冷却用熱交換器を兼ねた熱出力用熱交換器21を備え、
水蒸気分離器12内の電池冷却水温度を160〜170
°Cに保持して燃料電池1の冷却パイプ4に循環し、燃
料電池1を運転温度(190°C)に保持する冷却作用
を行うとともに、燃料電池1の発電生成熱を吸収して運
転温度近くに昇温した電池冷却水5を過熱媒体として熱
出力用熱交換器21で二次冷却水ライン26を介して供
給される二次冷却水15を未沸騰温度の温水25に昇温
して温水ライン27を介して図示しない熱利用設備に向
けて供給する熱出力作用を行うよう構成される。また、
熱出力系20の熱出力制御手段30は、水蒸気分離器1
2内の飽和水蒸気圧を検出し,その検出値と基準値との
差を補正する信号22Sを出力する圧力調節部22と、
この圧力調節部22の出力制御信号22Sを受けて熱出
力用熱交換器21への電池冷却水の通流量を制御する三
方向コントロール弁31とを備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a system diagram showing a main part of a fuel cell power generator according to an embodiment of the present invention. Members denoted by the same reference numerals as those of the conventional example have the same functions as those of the conventional example, and therefore description thereof will be omitted. . In the figure, a fuel cell power generation device has a heat output system 20 and a circulation pump 11 of a cooling water circulation system 10.
And a heat output heat exchanger 21 also serving as a heat exchanger for cooling the battery cooling water 5 upstream of the steam separator 12.
The battery cooling water temperature in the steam separator 12 is set to 160 to 170
° C and circulates through the cooling pipe 4 of the fuel cell 1 to perform a cooling action to maintain the fuel cell 1 at the operating temperature (190 ° C) and absorb heat generated by the power generation of the fuel cell 1 to maintain the operating temperature. The secondary cooling water 15 supplied through the secondary cooling water line 26 in the heat output heat exchanger 21 is heated to the unboiled hot water 25 by using the battery cooling water 5 whose temperature has been raised nearby as a superheating medium. It is configured to perform a heat output function of supplying heat to a heat utilization facility (not shown) via the hot water line 27. Also,
The heat output control means 30 of the heat output system 20 includes the steam separator 1
A pressure regulator 22 for detecting a saturated water vapor pressure within 2 and outputting a signal 22S for correcting a difference between the detected value and a reference value;
A three-way control valve 31 is provided which receives the output control signal 22S of the pressure adjusting unit 22 and controls the flow rate of the battery cooling water to the heat output heat exchanger 21.

【0016】そして、三方向コントロール弁31は水蒸
気分離器12の上流側に設けられ、燃料電池1の発電生
成熱を吸収して燃料電池の運転温度近くに温度が上昇し
た電池冷却水5を熱出力用熱交換器21側とバイパス流
路32側とに分流するよう構成される。また、その分流
比は圧力調節部22の出力制御信号22Sによって制御
され、例えば水蒸気分離器12内の飽和水蒸気圧が基準
値(0.6〜0.8MPa の範囲の一定値)を越えた場
合には熱出力用熱交換器21側の流量を増加して熱出力
用熱交換器の熱出力を増加し、飽和水蒸気圧が基準値を
下回った場合にはバイパス流路側への流量を増加して水
蒸気分離器12内の水蒸気圧を上昇させるとともに、熱
出力用熱交換器の熱出力を絞るよう制御する。従って、
水蒸気分離器12内の電池冷却水5の温度は飽和水蒸気
圧の基準値に平衡した160〜170°Cに安定して保
持され、この電池冷却水5によって燃料電池1を最適運
転温度に安定して保持して発電運転が行われる。
The three-way control valve 31 is provided on the upstream side of the steam separator 12 and absorbs the heat generated by the power generation of the fuel cell 1 to heat the cell cooling water 5 whose temperature has risen to near the operating temperature of the fuel cell. It is configured to diverge to the output heat exchanger 21 side and the bypass flow path 32 side. The split ratio is controlled by the output control signal 22S of the pressure control unit 22. For example, when the saturated steam pressure in the steam separator 12 exceeds a reference value (a constant value in the range of 0.6 to 0.8 MPa). The flow rate on the heat output heat exchanger 21 side is increased to increase the heat output of the heat output heat exchanger, and when the saturated steam pressure falls below the reference value, the flow rate to the bypass flow path side is increased. To increase the steam pressure in the steam separator 12 and to reduce the heat output of the heat output heat exchanger. Therefore,
The temperature of the battery cooling water 5 in the steam separator 12 is stably maintained at 160 to 170 ° C. which is balanced with the reference value of the saturated steam pressure, and the fuel cell 1 is stabilized by the battery cooling water 5 at the optimum operating temperature. The power generation operation is performed while holding.

【0017】一方、熱出力用熱交換器21は水蒸気分離
器内で電池冷却水温度の保持に消費される熱量を除く余
剰熱量を温水25を被過熱媒体として熱出力することに
なり、例えば燃料電池発電装置の電気的出力の急増が指
令されて改質スチーム量が急増し、水蒸気分離器12内
の飽和水蒸気圧が急減すると、直ちに熱出力用熱交換器
21への電池冷却水5の供給量が減少し、これに伴って
熱出力用熱交換器の熱出力が減少するので、常時一定の
二次冷却水15を熱出力用熱交換器に流しておくことに
より、熱出力は一時的に減少して温水25の温度が低下
するものの、二次冷却水15の突沸およびウォーターハ
ンマー現象を回避して騒音の発生を未然に防止できると
ともに、二次冷却水の突沸に伴う熱出力用熱交換器の振
動やスラッジの堆積量の増加を回避できる利点が得られ
る。
On the other hand, the heat output heat exchanger 21 outputs a surplus amount of heat excluding the amount of heat consumed for maintaining the temperature of the battery cooling water in the steam separator using the hot water 25 as a medium to be heated, and outputs, for example, a fuel. When a sudden increase in the electrical output of the battery power generation device is instructed and the amount of reforming steam rapidly increases, and the saturated steam pressure in the steam separator 12 sharply decreases, the supply of the battery cooling water 5 to the heat output heat exchanger 21 is immediately performed. Since the heat output of the heat output heat exchanger decreases as the amount decreases, the heat output is temporarily reduced by constantly flowing the secondary cooling water 15 through the heat output heat exchanger. Although the temperature of the hot water 25 is reduced to a low level, the occurrence of noise can be prevented by avoiding the bumping of the secondary cooling water 15 and the water hammer phenomenon, and the heat for heat output caused by the bumping of the secondary cooling water. Exchanger vibration and sludge accumulation The advantage of avoiding an increase in the amount is obtained.

【0018】なお、熱出力制御手段30のうち圧力調節
部22は、水蒸気分離器12内の電池冷却水温度をその
基準温度160〜170°Cに保持する圧力調節部に置
き換えても良く、水蒸気分離器12内では飽和水蒸気圧
と電池冷却水温度とが平衡状態にあるので、前述の実施
例におけると同様の作用,効果が得られる。また、熱出
力系が二次冷却水15の流量を制御することによって温
水25の温度を未沸騰温度に保持するコントロール弁お
よび温度調節部を二次冷却水ライン26側に備えるよう
構成すれば、二次冷却水が突沸しない流量範囲で二次冷
却水水量を制御することにより、温水温度を未沸騰温度
の上限近くに保持して熱利用設備に供給することができ
るので、例えば熱利用設備が温水25を熱源とする蓄熱
槽などを有する場合、温水温度をほぼ一定温度に保って
熱利用し易くできる利点が得られる。なお、コントロー
ル弁および温度調節部を熱利用設備側に設けるよう構成
しても良い。
The pressure control section 22 of the heat output control means 30 may be replaced with a pressure control section for maintaining the battery cooling water temperature in the steam separator 12 at its reference temperature of 160 to 170 ° C. Since the saturated steam pressure and the battery cooling water temperature are in an equilibrium state in the separator 12, the same operation and effect as in the above-described embodiment can be obtained. Further, if the heat output system is provided with a control valve and a temperature control unit for maintaining the temperature of the hot water 25 at the non-boiling temperature by controlling the flow rate of the secondary cooling water 15 on the secondary cooling water line 26 side, By controlling the amount of secondary cooling water in a flow rate range in which the secondary cooling water does not boil, the hot water temperature can be maintained near the upper limit of the unboiled temperature and supplied to the heat utilization equipment. In the case where a heat storage tank or the like using the hot water 25 as a heat source is provided, there is an advantage that the temperature of the hot water can be maintained at a substantially constant temperature and heat can be easily used. In addition, you may comprise so that a control valve and a temperature control part may be provided in the heat utilization equipment side.

【0019】[0019]

【発明の効果】この発明の燃料電池発電装置は前述のよ
うに、電池冷却水の冷却用熱交換器を兼ねた熱出力用熱
交換器への電池冷却水の通流量を、熱出力制御手段によ
り飽和水蒸気圧の変化に対応して制御するよう構成し
た。その結果、水蒸気分離器内の飽和水蒸気圧が減少す
ると、直ちに熱出力用熱交換器への電池冷却水の供給量
が減り、熱出力用熱交換器の熱出力が減少するので、常
時一定の二次冷却水量を熱出力用熱交換器に流しておく
ことにより、従来技術で問題になった二次冷却水の突沸
およびウォーターハンマー現象を回避して騒音の発生を
未然に防ぎ、かつ二次冷却水の突沸に伴う熱出力用熱交
換器の振動やスラッジの堆積量の増加を回避できるの
で、低騒音で耐用年数が長く、保守管理が簡単で、安定
した水蒸気圧制御および熱出力制御が行える熱出力系を
備えた燃料電池発電装置を提供することができる。
As described above, the fuel cell power generator according to the present invention controls the flow rate of the battery cooling water to the heat output heat exchanger also serving as the battery cooling water cooling heat exchanger by controlling the heat output control means. Thus, the control is performed in accordance with the change in the saturated steam pressure. As a result, when the saturated steam pressure in the steam separator decreases, the supply amount of battery cooling water to the heat output heat exchanger immediately decreases, and the heat output of the heat output heat exchanger decreases. By flowing the amount of secondary cooling water to the heat output heat exchanger, it is possible to prevent the secondary cooling water bumping and water hammer phenomena, which were problems in the prior art, to prevent the generation of noise, and Since the vibration of the heat output heat exchanger and the increase of sludge accumulation due to bumping of the cooling water can be avoided, low noise, long service life, easy maintenance, and stable steam pressure control and stable heat output control are achieved. It is possible to provide a fuel cell power generation device provided with a heat output system that can be used.

【0020】ここで、熱出力制御手段を圧力調節部が発
する信号によりコントロール弁,例えば三方向コントロ
ール弁の分流比を制御するよう構成すれば、水蒸気分離
器内の飽和水蒸気圧をその基準値に保持して燃料電池の
冷却性能を安定化する動作と、熱出力用熱交換器への電
池冷却水の供給を絞って熱出力を制御し二次冷却水の突
沸を防ぐ動作とを並行して円滑に行う機能を備えた燃料
電池発電装置を提供することができる。
Here, if the heat output control means is configured to control the split ratio of a control valve, for example, a three-way control valve, by a signal generated by the pressure control section, the saturated steam pressure in the steam separator is set to its reference value. The operation of holding and stabilizing the cooling performance of the fuel cell and the operation of restricting the supply of battery cooling water to the heat output heat exchanger to control the heat output and prevent bumping of the secondary cooling water are performed in parallel. It is possible to provide a fuel cell power generation device having a function of performing the operation smoothly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例になる燃料電池発電装置の要
部を示す系統図
FIG. 1 is a system diagram showing a main part of a fuel cell power generator according to an embodiment of the present invention.

【図2】熱出力装置を備えた従来の燃料電池発電装置の
要部を示す系統図
FIG. 2 is a system diagram showing a main part of a conventional fuel cell power generator equipped with a heat output device.

【符号の説明】[Explanation of symbols]

1 燃料電池 2 燃料改質装置 3 冷却板 4 冷却パイプ 5 電池冷却水 10 冷却水循環系 11 循環ポンプ 12 水蒸気分離器 13 冷却用熱交換器(熱出力用熱交換器兼用) 15 二次冷却水 20 熱出力系 21 熱出力用熱交換器(冷却用熱交換器兼用) 22 圧力調節部 22A 検出部 22B 調節部 22S 制御信号 23 三方向コントロール弁 25 温水 26 二次冷却水ライン 27 温水ライン 30 熱出力制御手段 31 三方向コントロール弁 DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Fuel reformer 3 Cooling plate 4 Cooling pipe 5 Battery cooling water 10 Cooling water circulation system 11 Circulation pump 12 Steam separator 13 Cooling heat exchanger (also used as heat output heat exchanger) 15 Secondary cooling water 20 Heat output system 21 Heat exchanger for heat output (also used as heat exchanger for cooling) 22 Pressure regulator 22A Detector 22B Regulator 22S Control signal 23 Three-way control valve 25 Hot water 26 Secondary cooling water line 27 Hot water line 30 Heat output Control means 31 Three-way control valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大村 俊哉 神奈川県横浜市磯子区汐見台3−3−3305 −522 (72)発明者 岩佐 信弘 大阪府岸和田市葛城町910番55号 (72)発明者 萩野 卓朗 愛知県名古屋市瑞穂区前田町1−33 (72)発明者 深山 晴美 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiya Omura 3-3-3305-522, Shiomidai, Isogo-ku, Yokohama-shi, Kanagawa (72) Inventor Nobuhiro Iwasa 910-55, Katsuragi-cho, Kishiwada-shi, Osaka (72) Inventor Takuo Hagino 1-33 Maeda-cho, Mizuho-ku, Nagoya-shi, Aichi Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】単位セルと冷却パイプを有する冷却板との
積層体からなる燃料電池と、前記冷却パイプに所定温度
の電池冷却水を循環する循環ポンプ,水蒸気分離器,お
よびその上流側に配された冷却用熱交換器を含む冷却水
循環系と、前記冷却用熱交換器を熱出力用熱交換器に兼
用し,その二次冷却水を未沸騰温度の温水に昇温して熱
出力する熱出力系とを備えた燃料電池発電装置におい
て、前記熱出力用熱交換器への電池冷却水の通流量を前
記水蒸気分離器内の飽和水蒸気圧の変化に対応して制御
する熱出力制御手段を備えたことを特徴とする燃料電池
発電装置。
1. A fuel cell comprising a laminate of a unit cell and a cooling plate having a cooling pipe, a circulation pump for circulating battery cooling water at a predetermined temperature through the cooling pipe, a steam separator, and an upstream side thereof. A cooling water circulating system including a cooling heat exchanger and the cooling heat exchanger also serving as a heat output heat exchanger, and the secondary cooling water is heated to a non-boiling temperature to output heat. A heat output control means for controlling a flow rate of battery cooling water to the heat output heat exchanger in accordance with a change in saturated steam pressure in the steam separator. A fuel cell power generator comprising:
【請求項2】熱出力制御手段は、水蒸気分離器内の飽和
水蒸気圧を検出し,その検出値と基準値との差を補正す
る信号を出力する圧力調節部と、この圧力調節部の出力
制御信号を受けて熱出力用熱交換器への電池冷却水の通
流量を制御するコントロール弁とを備えたことを特徴と
する請求項1記載の燃料電池発電装置。
2. A heat output control means for detecting a saturated steam pressure in a steam separator and outputting a signal for correcting a difference between the detected value and a reference value, and an output of the pressure adjuster. 2. The fuel cell power generator according to claim 1, further comprising a control valve that receives a control signal and controls a flow rate of battery cooling water to the heat output heat exchanger.
【請求項3】コントロール弁は一方の吐出口が熱出力用
熱交換器の電池冷却水入口側に,他方の吐出口が熱出力
用熱交換器のバイパス流路側にそれぞれ接続されて分流
比を制御する3方向コントロール弁であることを特徴と
する請求項2記載の燃料電池発電装置。
3. The control valve has one discharge port connected to the battery cooling water inlet side of the heat output heat exchanger, and the other discharge port connected to the bypass flow path side of the heat output heat exchanger, thereby controlling the flow division ratio. 3. The fuel cell power generator according to claim 2, which is a three-way control valve for controlling.
【請求項4】熱出力系が二次冷却水水量を制御すること
により温水温度を未沸騰温度に保持するコントロール弁
および温度調節部を備えたことを特徴とする請求項1記
載の燃料電池発電装置。
4. The fuel cell power generation system according to claim 1, wherein the heat output system includes a control valve and a temperature control section for maintaining the hot water temperature at a non-boiling temperature by controlling the amount of secondary cooling water. apparatus.
JP9021104A 1997-02-04 1997-02-04 Fuel cell electricity-generating apparatus Pending JPH10223245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9021104A JPH10223245A (en) 1997-02-04 1997-02-04 Fuel cell electricity-generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9021104A JPH10223245A (en) 1997-02-04 1997-02-04 Fuel cell electricity-generating apparatus

Publications (1)

Publication Number Publication Date
JPH10223245A true JPH10223245A (en) 1998-08-21

Family

ID=12045575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9021104A Pending JPH10223245A (en) 1997-02-04 1997-02-04 Fuel cell electricity-generating apparatus

Country Status (1)

Country Link
JP (1) JPH10223245A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008689A (en) * 2000-06-20 2002-01-11 Kurita Water Ind Ltd Fuel cell power generation system and its running method
JP2004303495A (en) * 2003-03-31 2004-10-28 Hitachi Ltd Fuel cell power generation hot-water supply system
JP2005209547A (en) * 2004-01-23 2005-08-04 Osaka Gas Co Ltd Fuel cell power generator and operating method for fuel cell power generator
JP2016091646A (en) * 2014-10-30 2016-05-23 アイシン精機株式会社 Fuel cell system
CN110031250A (en) * 2019-05-22 2019-07-19 南通市阳光节能科技有限公司 A kind of water cooling test macro

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008689A (en) * 2000-06-20 2002-01-11 Kurita Water Ind Ltd Fuel cell power generation system and its running method
JP4660888B2 (en) * 2000-06-20 2011-03-30 栗田工業株式会社 Fuel cell power generation system and operation method thereof
JP2004303495A (en) * 2003-03-31 2004-10-28 Hitachi Ltd Fuel cell power generation hot-water supply system
JP2005209547A (en) * 2004-01-23 2005-08-04 Osaka Gas Co Ltd Fuel cell power generator and operating method for fuel cell power generator
JP2016091646A (en) * 2014-10-30 2016-05-23 アイシン精機株式会社 Fuel cell system
CN110031250A (en) * 2019-05-22 2019-07-19 南通市阳光节能科技有限公司 A kind of water cooling test macro

Similar Documents

Publication Publication Date Title
EP2215679B1 (en) Fuel cell system
JP3722019B2 (en) Fuel cell system
JP5763484B2 (en) Fuel cell system
JPH11339831A (en) On-vehicle fuel cell system
WO2006057223A9 (en) Fuel cell system
JP2005100873A (en) Fuel cell system
JP6826436B2 (en) Fuel cell system and its operation method
JP5763480B2 (en) Fuel cell system
US10916787B2 (en) Fuel cell system
JP2004146240A (en) Fuel cell system
JPH10223245A (en) Fuel cell electricity-generating apparatus
JP4050919B2 (en) Fuel cell system and operation method thereof
JP2010062044A (en) Fuel cell system
KR100700548B1 (en) Heating/hot-water control device for fuel cell and method thereof
EP4044301A1 (en) Air tank and variable geometry air handling in hydrogen fuel cells
JP5534775B2 (en) Fuel cell cogeneration system
JP2005116256A (en) Fuel cell cogeneration system
KR20120056818A (en) Mitigating electrode erosion in high temperature pem fuel cell
KR100317347B1 (en) Method and apparatus for controlling a feul cell power generation system
JP2008123840A (en) Fuel cell system
JP5203668B2 (en) Fuel cell power generation system and control method thereof
JP7468416B2 (en) Fuel Cell Systems
JP5643731B2 (en) Fuel cell system
JP5653869B2 (en) Fuel cell system
JP5266782B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914