JP4660888B2 - Fuel cell power generation system and operation method thereof - Google Patents

Fuel cell power generation system and operation method thereof Download PDF

Info

Publication number
JP4660888B2
JP4660888B2 JP2000185355A JP2000185355A JP4660888B2 JP 4660888 B2 JP4660888 B2 JP 4660888B2 JP 2000185355 A JP2000185355 A JP 2000185355A JP 2000185355 A JP2000185355 A JP 2000185355A JP 4660888 B2 JP4660888 B2 JP 4660888B2
Authority
JP
Japan
Prior art keywords
water
fuel cell
storage tank
power generation
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000185355A
Other languages
Japanese (ja)
Other versions
JP2002008689A (en
Inventor
好輝 三角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000185355A priority Critical patent/JP4660888B2/en
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to EP01401611A priority patent/EP1168476B1/en
Priority to AT01401611T priority patent/ATE429043T1/en
Priority to EP08101770A priority patent/EP1968145A1/en
Priority to DE60138338T priority patent/DE60138338D1/en
Priority to ES01401611T priority patent/ES2325978T3/en
Priority to US09/885,672 priority patent/US6787255B2/en
Publication of JP2002008689A publication Critical patent/JP2002008689A/en
Application granted granted Critical
Publication of JP4660888B2 publication Critical patent/JP4660888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、天然ガス等の燃料を水蒸気改質して水素ガスを含む燃料ガスを生成させ、この燃料ガスを空気中の酸素等の酸化性ガスと電気化学的に反応させて発電を行う燃料電池を用いた発電システムおよびその運転方法に関する。
【0002】
【従来の技術】
一般に、燃料電池発電システムでは、燃料電池における発電効率を高く維持するために、燃料電池内の温度を調整する冷却水が用いられる。冷却水は、通常、予め脱塩などの処理が施されて使用される。
図5は、従来の燃料電池発電システムを示すもので、この燃料電池発電システムは、燃料電池1と、燃料電池1の冷却水となる給水を貯留する給水貯留槽2と、給水貯留槽2の給水を浄化処理して冷却水として燃料電池1に供給する水処理系3と、燃料電池1の排熱を利用して水を加温する排熱回収熱交換器4と、熱交換器4を用いて得られた温水を貯留する温水貯留槽5と、給水貯留槽2に補給水を供給する補給水供給経路41とを備えている。
【0003】
燃料電池1は、燃料電池1から排出される排ガス中の水蒸気を凝縮水として回収する排ガス凝縮水回収熱交換器17を備えている。
水処理系3は、イオン交換式脱塩処理装置等の水処理装置19と、送液ポンプP1とを備えている。
温水貯留槽5は、槽内の温水を熱利用設備(図示略)に供給することができるように構成されている。
【0004】
上記燃料電池発電システムにおいては、燃料電池1において、天然ガス等の燃料を水蒸気改質して水素ガスを含む燃料ガスを生成させ、この燃料ガスを空気中の酸素等の酸化性ガスと電気化学的に反応させて発電を行うとともに、排ガス凝縮水回収熱交換器17において、排ガス中の水蒸気を冷却して凝縮させて回収し、給水貯留槽2に貯留する。また給水貯留槽2内には、必要に応じて市水などの補給水を補給水供給経路41を通して供給する。
給水貯留槽2内には、市水などの補給水等に由来するイオン(炭酸イオン、金属イオン等)や固形物等の不純物が混入するため、給水貯留槽2内の給水は、水処理系3の水処理装置19によって不純物を除去した後に、冷却水として燃料電池1に供給する。これによって冷却水循環経路におけるスケール発生等を防ぐことができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記燃料電池発電システムでは、水処理装置19に与えられる負荷が大きいため水処理装置19として複雑かつ大型のものを使用する必要があり、設備コストが高騰する問題があった。またイオン交換式脱塩装置を使用する場合等には再生処理コストなどの運転コストが嵩むという問題があった。
本発明は上記事情に鑑みてなされたもので、設備コストおよび運転コストの削減が可能となる燃料電池発電システムおよびその運転方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明の燃料電池発電システムは、冷却水循環系を有する燃料電池と、この燃料電池の冷却水となる給水を貯留する給水貯留槽と、この給水貯留槽の給水を処理して冷却水として燃料電池に供給する水処理系と、水を加温する加温手段と、この加温手段により得られた温水を貯留する温水貯留槽と、温水貯留槽内の温水からの水蒸気を凝縮させた凝縮水を給水貯留槽に供給する凝縮水供給系を備えていることを特徴とする。
加温手段は、燃料電池において発電時に生成する熱を利用して水を加温できるように構成することができる。
凝縮水供給系は、温水貯留槽内の温水からの水蒸気を凝縮させて回収する凝縮水回収熱交換器と、この熱交換器において回収された凝縮水を給水貯留槽に供給する凝縮水供給経路を備え、凝縮水回収熱交換器が、温水貯留槽内の温水からの水蒸気を、温水貯留槽への補給水により冷却して凝縮させることができるようにされた構成とすることができる。
また温水貯留槽内に、槽内を複数の槽内空間に区画する隔壁が設けられ、この隔壁が、加温手段で加温された温水が前記槽内空間のうち1つに導入され、かつこの槽内空間内の温水からの水蒸気が凝縮水供給系に供給される構成を採用することができる。
また本発明では、上記燃料電池発電システムを運転するにあたり、温水貯留槽内の温水からの水蒸気を凝縮させた凝縮水を給水貯留槽に供給する運転方法を採ることができる。
【0007】
【発明の実施の形態】
図1および図2は、本発明の燃料電池発電システムの第1の実施形態を示すもので、ここに示す燃料電池発電システムは、燃料電池1と、燃料電池1の冷却水となる給水を貯留する給水貯留槽2と、給水貯留槽2の給水を浄化処理して冷却水として燃料電池1に供給する水処理系3と、燃料電池1の排熱を利用して水を加温する加温手段である排熱回収熱交換器4と、熱交換器4を用いて得られた温水を貯留する温水貯留槽5と、温水貯留槽5内の温水からの水蒸気を凝縮させた凝縮水を給水貯留槽2に供給する凝縮水供給系6を備えている。
【0008】
図2に示すように、燃料電池1は、燃料電池本体11と、燃料を水蒸気改質する改質器12と、燃料電池本体11を冷却する冷却水を循環させる冷却水循環経路13と、改質器12で利用される水蒸気の供給源となる水蒸気分離器14と、冷却水を冷却する熱交換器15と、この熱交換器15において冷却水と熱交換する系内水の循環経路16と、燃料電池1から排出される排ガス中の水蒸気を凝縮させて回収する排ガス凝縮水回収熱交換器17とを主な構成要素とする。
【0009】
燃料電池本体11は、燃料極21と空気極22とが電解質23を挟むように電極板24、25を介して配置されて構成されている。
水蒸気分離器14は、冷却水循環経路13に設けられ、冷却水から水蒸気を分離することができるようになっている。
改質器12は、燃料供給経路26から供給された燃料を、水蒸気分離器14から水蒸気供給経路27を通して供給された水蒸気によって改質し、水素を含む燃料ガスを生成させることができるようになっている。
【0010】
排ガス凝縮水回収熱交換器17は、系内水循環経路16に設けられており、改質器12および空気極22から排出経路28、29を通して排出された排ガス中の水蒸気を、系内水により冷却して凝縮させて回収することができるようになっている。
【0011】
図1に示すように、水処理系3は、水処理装置19と、送液ポンプP1を備えている。
水処理装置19としては、イオンや固形物などの不純物を除去する処理装置を用いることができ、イオン交換樹脂を用いたイオン交換式脱塩処理装置、逆浸透膜を用いた膜分離式脱塩装置、限外ろ過膜を用いた膜分離装置等が使用可能である。
【0012】
図1および図2に示すように、排熱回収熱交換器4は、系内水循環経路16に設けられており、温水貯留槽5から温水循環経路30の供給経路30aを通して供給された水を、系内水によって加温することができるようになっている。
【0013】
温水貯留槽5は、槽内の温水を熱利用設備(図示略)に供給することができるようになっている。
図1に示すように、温水貯留槽5には、温水貯留槽5内に補給水を供給する補給水供給経路36が接続されており、熱利用設備(図示略)への温水供給によって温水貯留槽5内の水量が不足した場合に、温水貯留槽5内に補給水を供給することができるようになっている。
【0014】
本実施形態の燃料電池発電システムにおいて、凝縮水供給系6は、温水貯留槽5内の温水からの水蒸気を凝縮させて回収する温水凝縮水回収熱交換器7と、熱交換器7において回収された凝縮水を給水貯留槽2に供給する凝縮水供給経路8とを備えている。
温水凝縮水回収熱交換器7は、温水貯留槽5に補給水を供給する補給水供給経路36に設けられており、貯留槽5上部の導出経路37を通して導出される温水貯留槽5内ガス中の水蒸気を、補給水供給経路36を流れる補給水により冷却して凝縮させ、凝縮水として回収することができるようになっている。
【0015】
以下、上記燃料電池発電システムの使用方法について説明する。
図2に示すように、この燃料電池発電システムにおいては、脱硫された天然ガス、ナフサ等の燃料を、燃料供給経路26を通して改質器12に供給し、この燃料を、水蒸気分離器14から水蒸気供給経路27を通して供給された水蒸気によって改質し、水素を含む燃料ガスを生成させる。
この燃料ガスを、燃料ガス供給経路31を通して一酸化炭素変成器等(図示略)を経て燃料電池本体11の燃料極21に供給するとともに、空気などの酸化性ガスを、酸化性ガス供給経路32を通して空気極22に供給し、これら燃料ガスと酸化性ガスとを電気化学的に反応させ、発電を行う。
【0016】
改質器12からの燃料系排ガスは、排出経路28を通して排ガス凝縮水回収熱交換器17を経由して系外に排出される。また空気極22からの酸化系排ガスは、排出経路29を通して排出経路28内の燃料系排ガスに合流し、凝縮水回収熱交換器17を経て系外に排出される。
【0017】
冷却水循環経路13では、冷却水が循環することによって、燃料電池本体11が予め設定された温度を維持するように冷却され、この際、冷却水は加温されて高温となり水蒸気分離器14に導入される。
水蒸気分離器14では、冷却水から水蒸気が分離され、その一部が水蒸気供給経路27を通して改質器12に供給される。
水蒸気分離器14を経た冷却水は、熱交換器15において、系内水循環経路16を流れる系内水と熱交換して冷却された後、再び燃料電池本体11へ導入され、以後、この循環過程が繰り返される。
【0018】
系内水循環経路16を流れる系内水は、熱交換器15において冷却水を冷却するとともに、排ガス凝縮水回収熱交換器17において、排出経路28中の燃料系および酸化系の排ガスを冷却し、排ガス中の水蒸気を凝縮させる。
排ガス凝縮水回収熱交換器17において回収された凝縮水は、凝縮水回収経路33を通して給水貯留槽2に送られる。
【0019】
熱交換器15、17において加温された系内水は、排熱回収熱交換器4において、送液ポンプP2により供給経路30aから供給された水を加温する。加温された温水は、返送経路30bを通して温水貯留槽5に送られる。
このように、排熱回収熱交換器4においては、燃料電池本体11で発電時に生成する熱(排熱)で高温となった冷却水により加温された系内水との熱交換により水の加温が行われる。
【0020】
また、熱利用設備(図示略)への温水供給によって温水貯留槽5内の水量が不足した場合には、補給水供給経路36を通して温水貯留槽5内に市水などの補給水を供給する。
【0021】
冷却水循環経路13を流れる冷却水は、その一部が水蒸気分離器14において水蒸気として分離され、経路27を通して冷却水循環経路13から導出されるため、これにより不足した冷却水を補給する必要がある。
このため、給水貯留槽2内の給水を、送液ポンプP1によって水処理装置19に導入して不純物を除去し、得られた処理水を冷却水補給経路35を通して冷却水として冷却水循環経路13に供給する。
【0022】
本実施形態の燃料電池発電システムでは、冷却水の補給を行うことによって給水貯留槽2内の水量が減少した際に、凝縮水供給系6を用いて次のようにして給水貯留槽2内への水の補給を行う。
温水貯留槽5内の水は温水であるため、温水貯留槽5内の気相における水蒸気圧は高く、導出経路37を通して導出される温水貯留槽5内ガスは、多量の水蒸気を含むものとなる。
この水蒸気含有ガスが導出経路37を通して温水凝縮水回収熱交換器7に導入されると、ガス中の水蒸気は、補給水供給経路36を流れる補給水(市水など)に冷却され凝縮する。
【0023】
この凝縮水を、凝縮水供給経路8を通して補給水として給水貯留槽2に供給する。この凝縮水は、イオンなどの不純物濃度が低い蒸留水であるため、給水貯留槽2内への不純物混入量が最小限に抑えられ、給水貯留槽2内の不純物濃度が低くなり、水処理装置19に与えられる脱塩処理等の負荷が軽減される。
従って、水処理装置19の処理能力を低く設定することができ、水処理系3に要する設備コストを削減し、しかもイオン交換樹脂の再生処理コストなどの運転コストを低く抑えることができる。
また水処理装置19の処理能力を低く設定することができることから、装置を小型化し、その設置スペースを小さくすることができる。
【0024】
また排熱回収熱交換器4は、燃料電池1において発電時に生成する熱を排熱として利用して水を加温できるように構成されているので、排熱を有効に利用して温水を得ることができ、エネルギー効率の向上が可能となる。
【0025】
また、凝縮水供給系6の温水凝縮水回収熱交換器7が、温水貯留槽5内ガス中の水蒸気を、補給水供給経路36を流れる補給水により冷却して凝縮させることができるように構成されているので、凝縮水供給系6において水蒸気を凝縮させるにあたって、別途冷却媒体を使用する必要がなくなり、運転コストをいっそう低く抑えることができる。
【0026】
図3は、本発明の燃料電池発電システムの第2の実施形態を示すもので、ここに示す燃料電池発電システムでは、温水貯留槽5に、槽内を2つの槽内空間である上部および下部空間5a、5bに区画する隔壁20が設けられている。
【0027】
隔壁20は、上部空間5a内の温水の温度を高く維持し、温水凝縮水回収熱交換器7に導入される水蒸気量を高めるためのもので、上部空間5aと下部空間5bとの間の温水の流通を可能とする流通口20aを有する。
この流通口20aの内径は、下部空間5b内の水が上部空間5a内に流入するのを制限することができるように設定される。
隔壁20は、ステンレス鋼などの金属や、ポリ塩化ビニルなどの合成樹脂からなるものとすることができる。特に、断熱性能に優れた合成樹脂を用いるのが好ましい。
【0028】
温水循環経路40の供給経路40aおよび返送経路40bは、それぞれ温水貯留槽5の下部および上部に接続されており、排熱回収熱交換器4によって加温された水が返送経路40bを通して上部空間5aに導入された後、流通口20aを通って下部空間5bに流れ、下部空間5bから供給経路40aに流れるようにされている。
温水貯留槽5の下部には、下部空間5b内に補給水を供給する補給水供給経路38が接続されており、熱利用設備(図示略)への温水供給によって温水貯留槽5内の水量が不足した場合に、下部空間5b内に補給水を供給することができるようになっている。
【0029】
この燃料電池発電システムでは、排熱回収熱交換器4で加温され返送経路40bを通して温水貯留槽5に返送された高温の温水が、隔壁20より上部の上部空間5a内に導入される。
上部空間5aに導入された高温の温水が蒸発した水蒸気は導出経路37を通して温水凝縮水回収熱交換器7に導入され、凝縮水となって凝縮水供給管路8を通して給水貯留槽2に供給される。
【0030】
上部空間5a内の温水は、温水循環経路40における循環流に従い、流通口20aを通過して下部空間5bに流入する。
温水貯留槽5内の温水は、外気により冷却されその温度が徐々に低下するため、温水貯留槽5内における温水循環流の下流側に相当する下部空間5bでは、上流側に相当する上部空間5aに比べ温水の温度が低くなる。
比較的低温となった下部空間5b内の温水は供給経路40aを通して排熱回収熱交換器4に供給される。
【0031】
本実施形態の燃料電池発電システムでは、上記第1の実施形態の燃料電池発電システムと同様に、水処理系3に供給される給水中の不純物濃度を低くし、水処理系3に与えられる負荷を軽減し、装置の小型化を図ることができ、設備コストおよび運転コストを低く抑えることができる。
さらに、本実施形態の燃料電池発電システムでは、温水貯留槽5内を上部および下部空間5a、5bに区画する隔壁20を設けることによって、上部空間5a内の温水の温度を高く維持し、上部空間5a内の気相における水蒸気圧を高くし、温水凝縮水回収熱交換器7に導入されるガス中の水蒸気含有量を高め、熱交換器7における凝縮水の回収効率を向上させることができる。
よって、不純物濃度が低い蒸留水である凝縮水の給水貯留槽2への供給量を高め、給水貯留槽2内の不純物濃度を低くし、水処理装置19に与えられる脱塩処理等の負荷を軽減することができる。
従って、水処理装置19の処理能力を低く設定することができ、いっそうの設備コストおよび運転コストの削減を図ることができる。
【0032】
なお、上記実施形態の燃料電池発電システムでは、加温手段として、燃料電池1の排熱を利用する排熱回収熱交換器4を設けたが、本発明の燃料電池発電システムでは、熱利用設備に供給するべき水を加温する加温手段は、燃料電池1の排熱を利用するものに限定されない。
例えば、図4に示すように、排熱回収熱交換器4に代えて、温水貯留槽5に、槽内の水を加温するヒータ51を設けることもできる。
【0033】
また上記実施形態の燃料電池発電システムでは、排ガス凝縮水回収熱交換器17で回収された給水を冷却水として利用し得る構成を示したが、本発明の燃料電池発電システムはこれに限らず、排ガス中の水蒸気の回収を行わず、市水などの補給水を専ら給水として利用する構成とすることも可能である。
また、本発明の燃料電池発電システムでは、水処理系に供給される供給水中の不純物濃度を低く維持することができるため、水処理系を省いた構成とすることができる。
また、本発明では、冷却水循環経路を、冷却水が燃料電池本体11、水蒸気分離器14を経て凝縮水回収経路33を通して給水貯留槽2に導入されるように構成することもできる。
【0034】
【発明の効果】
以上説明したように、本発明の燃料電池発電システムは、温水貯留槽内の温水からの水蒸気を凝縮させた凝縮水を給水貯留槽に供給する凝縮水供給系を備えているので、イオンや固形物等の不純物の濃度が低い蒸留水である凝縮水を補給水として給水貯留槽に供給することができ、水処理系に与えられる脱塩処理等の負荷を軽減することができる。
従って、水処理系の処理能力を低く設定することができ、設備コストおよび運転コストを低く抑えることができる。
【0035】
また加温手段を、燃料電池において発電時に生成する熱を利用して水を加温できるように構成することによって、燃料電池で生成する排熱を有効に利用して温水を得ることができ、エネルギー効率の向上が可能となる。
【0036】
また凝縮水供給系を、温水からの水蒸気を凝縮させて回収する凝縮水回収熱交換器と、回収された凝縮水を給水貯留槽に供給する凝縮水供給経路を備え、凝縮水回収熱交換器が、温水からの水蒸気を、温水貯留槽への補給水により冷却して凝縮させることができるように構成することによって、凝縮水供給系において水蒸気を凝縮させるにあたって、別途冷却媒体を使用する必要がなくなり、運転コストをいっそう低く抑えることができる。
【0037】
また温水貯留槽内に、槽内を複数の槽内空間に区画する隔壁が設けられ、この隔壁が、加温手段で加温された温水が前記槽内空間のうち1つに導入され、かつこの槽内空間内の温水からの水蒸気が凝縮水供給系に供給される構成を採用することによって、凝縮水供給系に水蒸気が供給される槽内空間内の温水の温度を高く維持し、この槽内空間内の気相における水蒸気圧を高くし、凝縮水供給系に導入されるガス中の水蒸気含有量を高め、凝縮水の回収効率を向上させることができる。
従って、不純物濃度が低い凝縮水の給水貯留槽への供給量を多くし、水処理系に与えられる脱塩処理等の負荷を軽減し、いっそうの設備コストおよび運転コスト削減を図ることができる。
【図面の簡単な説明】
【図1】 本発明の燃料電池発電システムの第1の実施形態を示す構成図である。
【図2】 図1に示す燃料電池発電システムの燃料電池を示す構成図である。
【図3】 本発明の燃料電池発電システムの第2の実施形態を示す構成図である。
【図4】 本発明の燃料電池発電システムの第3の実施形態を示す構成図である。
【図5】 従来の燃料電池発電システムの一例を示す構成図である。
【符号の説明】
1・・・燃料電池、2・・・給水貯留槽、3・・・水処理系、4・・・排熱回収熱交換器(加温手段)、5・・・温水貯留槽、5a・・・上部空間(槽内空間)、5b・・・下部空間(槽内空間)、6・・・凝縮水供給系、7・・・温水凝縮水回収熱交換器(凝縮水回収熱交換器)、8・・・凝縮水供給経路、13・・・冷却水循環経路、20・・・隔壁、51・・・ヒータ(加温手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a fuel for generating power by steam-reforming a fuel such as natural gas to produce a fuel gas containing hydrogen gas and electrochemically reacting the fuel gas with an oxidizing gas such as oxygen in the air. The present invention relates to a power generation system using a battery and an operation method thereof.
[0002]
[Prior art]
In general, in a fuel cell power generation system, cooling water that adjusts the temperature in the fuel cell is used to maintain high power generation efficiency in the fuel cell. The cooling water is usually used after being subjected to a treatment such as desalting.
FIG. 5 shows a conventional fuel cell power generation system. This fuel cell power generation system includes a fuel cell 1, a feed water storage tank 2 for storing feed water as cooling water for the fuel cell 1, and a feed water storage tank 2. A water treatment system 3 that purifies the feed water and supplies it to the fuel cell 1 as cooling water, an exhaust heat recovery heat exchanger 4 that heats the water using the exhaust heat of the fuel cell 1, and a heat exchanger 4 The hot water storage tank 5 which stores the hot water obtained by using and the supplementary water supply path 41 which supplies supplementary water to the feed water storage tank 2 are provided.
[0003]
The fuel cell 1 includes an exhaust gas condensed water recovery heat exchanger 17 that recovers water vapor in the exhaust gas discharged from the fuel cell 1 as condensed water.
The water treatment system 3 includes a water treatment device 19 such as an ion exchange desalination treatment device and a liquid feed pump P1.
The hot water storage tank 5 is configured to supply hot water in the tank to heat utilization equipment (not shown).
[0004]
In the fuel cell power generation system, in the fuel cell 1, fuel such as natural gas is steam reformed to generate a fuel gas containing hydrogen gas, and this fuel gas is combined with an oxidizing gas such as oxygen in the air and electrochemically. The exhaust gas condensed water recovery heat exchanger 17 cools and condenses the water vapor in the exhaust gas, collects it, collects it, and stores it in the feed water storage tank 2. In addition, supply water such as city water is supplied into the supply water storage tank 2 through the supply water supply path 41 as necessary.
In the feed water storage tank 2, ions (carbonate ions, metal ions, etc.) derived from make-up water such as city water and impurities such as solids are mixed, so the feed water in the feed water storage tank 2 is a water treatment system. After the impurities are removed by the water treatment apparatus 19 of No. 3, the fuel cell 1 is supplied as cooling water. As a result, scale generation and the like in the cooling water circulation path can be prevented.
[0005]
[Problems to be solved by the invention]
However, in the fuel cell power generation system, since the load applied to the water treatment device 19 is large, it is necessary to use a complicated and large-sized water treatment device 19 and there is a problem that the equipment cost increases. Moreover, when using an ion exchange type desalting apparatus, there existed a problem that operation costs, such as a regeneration processing cost, increased.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel cell power generation system and an operation method thereof capable of reducing facility costs and operation costs.
[0006]
[Means for Solving the Problems]
The fuel cell power generation system of the present invention includes a fuel cell having a cooling water circulation system, a feed water storage tank that stores feed water that serves as cooling water for the fuel cell, and a fuel cell that serves as cooling water by processing the feed water in the feed water storage tank A water treatment system for supplying water, a heating means for heating water, a hot water storage tank for storing hot water obtained by the heating means, and condensed water obtained by condensing water vapor from the hot water in the hot water storage tank Is provided with a condensed water supply system for supplying water to the feed water storage tank.
The heating means can be configured to heat water using heat generated during power generation in the fuel cell.
The condensed water supply system includes a condensed water recovery heat exchanger that condenses and recovers water vapor from the hot water in the hot water storage tank, and a condensed water supply path that supplies the condensed water recovered in the heat exchanger to the feed water storage tank. The condensate water recovery heat exchanger can be configured to be able to cool and condense the water vapor from the hot water in the hot water storage tank with the makeup water to the hot water storage tank.
In addition, a partition wall is provided in the hot water storage tank to partition the tank into a plurality of tank spaces, and the partition wall is introduced into one of the tank spaces by the warm water heated by the heating means, and It is possible to adopt a configuration in which water vapor from the hot water in the tank space is supplied to the condensed water supply system.
Moreover, in this invention, when driving | operating the said fuel cell power generation system, the driving | running method which supplies the condensed water which condensed the water vapor | steam from the warm water in a warm water storage tank to a feed water storage tank can be taken.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a first embodiment of a fuel cell power generation system of the present invention. The fuel cell power generation system shown here stores a fuel cell 1 and water supply serving as cooling water for the fuel cell 1. A water supply storage tank 2 to be purified, a water treatment system 3 to purify the water supplied to the water supply storage tank 2 and supply it to the fuel cell 1 as cooling water, and heating to heat the water using the exhaust heat of the fuel cell 1 Waste heat recovery heat exchanger 4 that is means, hot water storage tank 5 that stores hot water obtained using the heat exchanger 4, and condensed water obtained by condensing water vapor from the hot water in the hot water storage tank 5 A condensed water supply system 6 for supplying the storage tank 2 is provided.
[0008]
As shown in FIG. 2, the fuel cell 1 includes a fuel cell main body 11, a reformer 12 for steam reforming the fuel, a cooling water circulation path 13 for circulating cooling water for cooling the fuel cell main body 11, and reforming. A steam separator 14 serving as a supply source of steam used in the vessel 12, a heat exchanger 15 that cools the cooling water, a circulation path 16 of the internal water that exchanges heat with the cooling water in the heat exchanger 15, An exhaust gas condensed water recovery heat exchanger 17 that condenses and recovers water vapor in the exhaust gas discharged from the fuel cell 1 is a main component.
[0009]
The fuel cell main body 11 is configured such that a fuel electrode 21 and an air electrode 22 are arranged via electrode plates 24 and 25 so as to sandwich an electrolyte 23.
The water vapor separator 14 is provided in the cooling water circulation path 13 and can separate water vapor from the cooling water.
The reformer 12 can reform the fuel supplied from the fuel supply path 26 with the steam supplied from the steam separator 14 through the steam supply path 27 to generate a fuel gas containing hydrogen. ing.
[0010]
The exhaust gas condensed water recovery heat exchanger 17 is provided in the in-system water circulation path 16 and cools the water vapor in the exhaust gas discharged from the reformer 12 and the air electrode 22 through the discharge paths 28 and 29 by the in-system water. It can be condensed and recovered.
[0011]
As shown in FIG. 1, the water treatment system 3 includes a water treatment device 19 and a liquid feed pump P1.
As the water treatment device 19, a treatment device that removes impurities such as ions and solids can be used. An ion exchange type desalination treatment device using an ion exchange resin and a membrane separation type desalination method using a reverse osmosis membrane. A device, a membrane separation device using an ultrafiltration membrane, or the like can be used.
[0012]
As shown in FIGS. 1 and 2, the exhaust heat recovery heat exchanger 4 is provided in the in-system water circulation path 16, and the water supplied from the hot water storage tank 5 through the supply path 30 a of the hot water circulation path 30 is It can be heated with water in the system.
[0013]
The hot water storage tank 5 can supply hot water in the tank to heat utilization equipment (not shown).
As shown in FIG. 1, the hot water storage tank 5 is connected to a supplementary water supply path 36 for supplying makeup water into the hot water storage tank 5, and the hot water is stored by supplying hot water to a heat utilization facility (not shown). When the amount of water in the tank 5 is insufficient, makeup water can be supplied into the hot water storage tank 5.
[0014]
In the fuel cell power generation system of the present embodiment, the condensate supply system 6 is recovered by the hot water condensate recovery heat exchanger 7 that condenses and recovers steam from the hot water in the hot water storage tank 5 and the heat exchanger 7. And a condensed water supply path 8 for supplying the condensed water to the feed water storage tank 2.
The hot water condensate recovery heat exchanger 7 is provided in a makeup water supply path 36 that supplies makeup water to the warm water storage tank 5, and is in the gas in the warm water storage tank 5 that is led out through a lead-out path 37 in the upper part of the storage tank 5. The water vapor is cooled and condensed by the make-up water flowing through the make-up water supply path 36, and can be recovered as condensed water.
[0015]
Hereinafter, a method of using the fuel cell power generation system will be described.
As shown in FIG. 2, in this fuel cell power generation system, fuel such as desulfurized natural gas and naphtha is supplied to the reformer 12 through the fuel supply path 26, and this fuel is supplied from the steam separator 14 to the steam. The fuel gas is reformed by the steam supplied through the supply path 27 to generate a fuel gas containing hydrogen.
This fuel gas is supplied to the fuel electrode 21 of the fuel cell main body 11 through a fuel gas supply path 31 via a carbon monoxide transformer or the like (not shown), and an oxidizing gas such as air is supplied to the oxidizing gas supply path 32. The fuel gas and the oxidizing gas are electrochemically reacted to generate electricity.
[0016]
The fuel system exhaust gas from the reformer 12 is discharged out of the system through the exhaust path 28 through the exhaust gas condensed water recovery heat exchanger 17. Further, the oxidizing exhaust gas from the air electrode 22 merges with the fuel exhaust gas in the discharge path 28 through the discharge path 29, and is discharged outside the system through the condensed water recovery heat exchanger 17.
[0017]
In the cooling water circulation path 13, the cooling water is circulated to cool the fuel cell main body 11 so as to maintain a preset temperature. At this time, the cooling water is heated to a high temperature and introduced into the water vapor separator 14. Is done.
In the steam separator 14, the steam is separated from the cooling water, and a part thereof is supplied to the reformer 12 through the steam supply path 27.
The cooling water having passed through the water vapor separator 14 is cooled by exchanging heat with the system water flowing through the system water circulation path 16 in the heat exchanger 15 and then introduced into the fuel cell main body 11 again. Is repeated.
[0018]
The in-system water flowing through the in-system water circulation path 16 cools the cooling water in the heat exchanger 15 and cools the fuel system and the oxidation system exhaust gas in the discharge path 28 in the exhaust gas condensed water recovery heat exchanger 17. Water vapor in the exhaust gas is condensed.
The condensed water recovered in the exhaust gas condensed water recovery heat exchanger 17 is sent to the feed water storage tank 2 through the condensed water recovery path 33.
[0019]
The in-system water heated in the heat exchangers 15 and 17 heats the water supplied from the supply path 30a by the liquid feed pump P2 in the exhaust heat recovery heat exchanger 4. The heated warm water is sent to the warm water storage tank 5 through the return path 30b.
As described above, in the exhaust heat recovery heat exchanger 4, water is exchanged by heat exchange with the system water heated by the cooling water heated to high temperature by heat (exhaust heat) generated during power generation in the fuel cell body 11. Heating is performed.
[0020]
Further, when the amount of water in the hot water storage tank 5 is insufficient due to the supply of hot water to a heat utilization facility (not shown), supply water such as city water is supplied into the hot water storage tank 5 through the supply water supply path 36.
[0021]
A part of the cooling water flowing through the cooling water circulation path 13 is separated as water vapor in the water vapor separator 14 and is led out from the cooling water circulation path 13 through the path 27, so that it is necessary to replenish the insufficient cooling water.
For this reason, the feed water in the feed water storage tank 2 is introduced into the water treatment device 19 by the liquid feed pump P1 to remove impurities, and the obtained treated water is supplied as cooling water to the cooling water circulation path 13 through the cooling water supply path 35. Supply.
[0022]
In the fuel cell power generation system of this embodiment, when the amount of water in the feed water storage tank 2 is reduced by replenishing cooling water, the condensed water supply system 6 is used to enter the feed water storage tank 2 as follows. Replenish water.
Since the water in the warm water storage tank 5 is warm water, the water vapor pressure in the gas phase in the warm water storage tank 5 is high, and the gas in the warm water storage tank 5 led out through the lead-out path 37 contains a large amount of steam. .
When the steam-containing gas is introduced into the hot water condensed water recovery heat exchanger 7 through the outlet path 37, the steam in the gas is cooled and condensed into makeup water (city water or the like) flowing through the makeup water supply path 36.
[0023]
This condensed water is supplied to the feed water storage tank 2 as makeup water through the condensed water supply path 8. Since this condensed water is distilled water having a low concentration of impurities such as ions, the amount of impurities mixed into the feed water storage tank 2 is minimized, the impurity concentration in the feed water storage tank 2 is reduced, and the water treatment device A load such as a desalting treatment given to 19 is reduced.
Therefore, the treatment capacity of the water treatment device 19 can be set low, the equipment cost required for the water treatment system 3 can be reduced, and the operation cost such as the regeneration treatment cost of the ion exchange resin can be kept low.
Further, since the treatment capacity of the water treatment device 19 can be set low, the device can be miniaturized and its installation space can be reduced.
[0024]
In addition, the exhaust heat recovery heat exchanger 4 is configured to be able to warm water by using heat generated during power generation in the fuel cell 1 as exhaust heat, so that hot water is obtained by effectively using exhaust heat. Energy efficiency can be improved.
[0025]
Further, the hot water condensed water recovery heat exchanger 7 of the condensed water supply system 6 is configured to be able to cool and condense the water vapor in the gas in the hot water storage tank 5 with the makeup water flowing through the makeup water supply path 36. Therefore, when condensing water vapor in the condensed water supply system 6, it is not necessary to use a separate cooling medium, and the operating cost can be further reduced.
[0026]
FIG. 3 shows a second embodiment of the fuel cell power generation system according to the present invention. In the fuel cell power generation system shown here, the hot water storage tank 5 is divided into two upper spaces, that is, two upper spaces. A partition wall 20 is provided that partitions the spaces 5a and 5b.
[0027]
The partition wall 20 is for maintaining a high temperature of the hot water in the upper space 5a and increasing the amount of water vapor introduced into the hot water condensate recovery heat exchanger 7, and the hot water between the upper space 5a and the lower space 5b. Has a distribution port 20a.
The inner diameter of the circulation port 20a is set so that water in the lower space 5b can be restricted from flowing into the upper space 5a.
The partition wall 20 can be made of a metal such as stainless steel or a synthetic resin such as polyvinyl chloride. In particular, it is preferable to use a synthetic resin having excellent heat insulation performance.
[0028]
The supply path 40a and the return path 40b of the hot water circulation path 40 are respectively connected to the lower part and the upper part of the hot water storage tank 5, and the water heated by the exhaust heat recovery heat exchanger 4 passes through the return path 40b to the upper space 5a. Then, it flows into the lower space 5b through the circulation port 20a and flows from the lower space 5b to the supply path 40a.
A makeup water supply path 38 for supplying makeup water into the lower space 5b is connected to the lower part of the warm water storage tank 5, and the amount of water in the warm water storage tank 5 is reduced by supplying warm water to a heat utilization facility (not shown). In the case of a shortage, makeup water can be supplied into the lower space 5b.
[0029]
In this fuel cell power generation system, hot hot water heated by the exhaust heat recovery heat exchanger 4 and returned to the hot water storage tank 5 through the return path 40 b is introduced into the upper space 5 a above the partition wall 20.
The water vapor obtained by evaporating the high-temperature hot water introduced into the upper space 5a is introduced into the hot water condensed water recovery heat exchanger 7 through the outlet path 37, and is supplied to the feed water storage tank 2 through the condensed water supply pipe 8 as condensed water. The
[0030]
The warm water in the upper space 5a follows the circulation flow in the warm water circulation path 40, passes through the circulation port 20a, and flows into the lower space 5b.
The hot water in the hot water storage tank 5 is cooled by the outside air and its temperature gradually decreases. Therefore, in the lower space 5b corresponding to the downstream side of the hot water circulation flow in the hot water storage tank 5, the upper space 5a corresponding to the upstream side. The temperature of hot water is lower than
The hot water in the lower space 5b that has become relatively low temperature is supplied to the exhaust heat recovery heat exchanger 4 through the supply path 40a.
[0031]
In the fuel cell power generation system of the present embodiment, the load applied to the water treatment system 3 by reducing the concentration of impurities in the feed water supplied to the water treatment system 3 as in the fuel cell power generation system of the first embodiment. Can be reduced, the apparatus can be miniaturized, and the equipment cost and operation cost can be kept low.
Furthermore, in the fuel cell power generation system of the present embodiment, by providing the partition wall 20 that divides the hot water storage tank 5 into upper and lower spaces 5a and 5b, the temperature of the hot water in the upper space 5a is maintained high, and the upper space The water vapor pressure in the gas phase in 5a can be increased, the water vapor content in the gas introduced into the hot water condensate recovery heat exchanger 7 can be increased, and the condensate recovery efficiency in the heat exchanger 7 can be improved.
Therefore, the supply amount of the condensed water, which is distilled water having a low impurity concentration, to the feed water storage tank 2 is increased, the impurity concentration in the feed water storage tank 2 is lowered, and the load such as the desalination treatment given to the water treatment device 19 is reduced. Can be reduced.
Therefore, the treatment capacity of the water treatment device 19 can be set low, and the equipment cost and operation cost can be further reduced.
[0032]
In the fuel cell power generation system of the above embodiment, the exhaust heat recovery heat exchanger 4 that uses the exhaust heat of the fuel cell 1 is provided as the heating means. However, in the fuel cell power generation system of the present invention, the heat utilization facility is provided. The heating means for heating the water to be supplied to the fuel cell is not limited to one that uses the exhaust heat of the fuel cell 1.
For example, as shown in FIG. 4, instead of the exhaust heat recovery heat exchanger 4, a heater 51 for heating the water in the tank can be provided in the hot water storage tank 5.
[0033]
In the fuel cell power generation system of the above embodiment, the configuration in which the feed water recovered by the exhaust gas condensate recovery heat exchanger 17 can be used as cooling water is shown, but the fuel cell power generation system of the present invention is not limited to this, It is also possible to employ a configuration in which makeup water such as city water is exclusively used as water supply without collecting water vapor in the exhaust gas.
Moreover, in the fuel cell power generation system of the present invention, since the impurity concentration in the supply water supplied to the water treatment system can be kept low, the water treatment system can be omitted.
In the present invention, the cooling water circulation path may be configured such that the cooling water is introduced into the feed water storage tank 2 through the fuel cell body 11 and the water vapor separator 14 and through the condensed water recovery path 33.
[0034]
【The invention's effect】
As described above, the fuel cell power generation system of the present invention includes a condensed water supply system that supplies condensed water obtained by condensing water vapor from hot water in the hot water storage tank to the feed water storage tank. Condensed water, which is distilled water having a low concentration of impurities such as substances, can be supplied to the feed water storage tank as make-up water, and the load such as desalting treatment applied to the water treatment system can be reduced.
Accordingly, the treatment capacity of the water treatment system can be set low, and the equipment cost and operation cost can be kept low.
[0035]
Further, by configuring the heating means so that water can be heated using heat generated during power generation in the fuel cell, warm water can be obtained by effectively using the exhaust heat generated in the fuel cell, Energy efficiency can be improved.
[0036]
The condensed water supply system includes a condensed water recovery heat exchanger that condenses and recovers steam from the hot water, and a condensed water supply path that supplies the recovered condensed water to the feed water storage tank. However, it is necessary to use a separate cooling medium when condensing the water vapor in the condensed water supply system by configuring so that the water vapor from the hot water can be cooled and condensed by the makeup water to the hot water storage tank. The operating cost can be further reduced.
[0037]
In addition, a partition wall is provided in the hot water storage tank to partition the tank into a plurality of tank spaces, and the partition wall is introduced into one of the tank spaces by the warm water heated by the heating means, and By adopting a configuration in which steam from the hot water in the tank space is supplied to the condensed water supply system, the temperature of the hot water in the tank space in which the steam is supplied to the condensed water supply system is maintained high. It is possible to increase the water vapor pressure in the gas phase in the tank space, increase the water vapor content in the gas introduced into the condensed water supply system, and improve the recovery efficiency of the condensed water.
Therefore, it is possible to increase the supply amount of the condensed water having a low impurity concentration to the feed water storage tank, reduce the load such as the desalination treatment given to the water treatment system, and further reduce the equipment cost and the operation cost.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of a fuel cell power generation system of the present invention.
FIG. 2 is a configuration diagram showing a fuel cell of the fuel cell power generation system shown in FIG. 1;
FIG. 3 is a configuration diagram showing a second embodiment of the fuel cell power generation system of the present invention.
FIG. 4 is a configuration diagram showing a third embodiment of the fuel cell power generation system of the present invention.
FIG. 5 is a configuration diagram showing an example of a conventional fuel cell power generation system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 2 ... Water supply storage tank, 3 ... Water treatment system, 4 ... Waste heat recovery heat exchanger (heating means), 5 ... Hot water storage tank, 5a ... -Upper space (space in the tank), 5b ... Lower space (space in the tank), 6 ... Condensate supply system, 7 ... Hot water condensate recovery heat exchanger (Condensate recovery heat exchanger), 8 ... Condensed water supply path, 13 ... Cooling water circulation path, 20 ... Partition, 51 ... Heater (heating means)

Claims (5)

冷却水循環系を有する燃料電池と、この燃料電池の冷却水となる給水を貯留する給水貯留槽と、この給水貯留槽の給水を処理して冷却水として燃料電池に供給する水処理系と、水を加温する加温手段と、この加温手段により得られた温水を貯留する温水貯留槽とを備えた燃料電池発電システムにおいて、
温水貯留槽内の温水からの水蒸気を凝縮させた凝縮水を給水貯留槽に供給する凝縮水供給系を備えていることを特徴とする燃料電池発電システム。
A fuel cell having a coolant circulation system, a feed water storage tank for storing feed water that serves as cooling water for the fuel cell, a water treatment system for processing the feed water in the feed water storage tank and supplying it to the fuel cell as cooling water, In a fuel cell power generation system comprising a heating means for heating the water and a hot water storage tank for storing hot water obtained by the heating means,
A fuel cell power generation system comprising a condensed water supply system that supplies condensed water obtained by condensing water vapor from hot water in a hot water storage tank to a feed water storage tank.
加温手段は、燃料電池において発電時に生成する熱を利用して水を加温できるように構成されていることを特徴とする請求項1記載の燃料電池発電システム。The fuel cell power generation system according to claim 1, wherein the heating means is configured to be able to heat water using heat generated during power generation in the fuel cell. 凝縮水供給系は、温水貯留槽内の温水からの水蒸気を凝縮させて回収する凝縮水回収熱交換器と、この熱交換器において回収された凝縮水を給水貯留槽に供給する凝縮水供給経路を備え、
凝縮水回収熱交換器が、温水貯留槽内の温水からの水蒸気を、温水貯留槽への補給水により冷却して凝縮させることができるように構成されていることを特徴とする請求項1または2記載の燃料電池発電システム。
The condensed water supply system includes a condensed water recovery heat exchanger that condenses and recovers water vapor from the hot water in the hot water storage tank, and a condensed water supply path that supplies the condensed water recovered in the heat exchanger to the feed water storage tank. With
The condensed water recovery heat exchanger is configured to be able to cool and condense the water vapor from the hot water in the hot water storage tank with the makeup water to the hot water storage tank. 3. The fuel cell power generation system according to 2.
温水貯留槽内に、槽内を複数の槽内空間に区画する隔壁が設けられ、
この隔壁は、加温手段で加温された温水が前記槽内空間のうち1つに導入され、かつこの槽内空間内の温水からの水蒸気が凝縮水供給系に供給されるように構成されていることを特徴とする請求項1〜3のうちいずれか1項記載の燃料電池発電システム。
In the hot water storage tank, a partition that partitions the tank into a plurality of tank spaces is provided,
The partition wall is configured such that warm water heated by a heating means is introduced into one of the tank spaces, and water vapor from the warm water in the tank space is supplied to a condensed water supply system. The fuel cell power generation system according to any one of claims 1 to 3, wherein:
冷却水循環系を有する燃料電池と、この燃料電池の冷却水となる給水を貯留する給水貯留槽と、この給水貯留槽の給水を処理して冷却水として燃料電池に供給する水処理系と、水を加温する加温手段と、この加温手段により得られた温水を貯留する温水貯留槽とを備えた燃料電池発電システムを運転する方法であって、
温水貯留槽内の温水からの水蒸気を凝縮させた凝縮水を給水貯留槽に供給することを特徴とする燃料電池発電システムの運転方法。
A fuel cell having a cooling water circulation system, a feed water storage tank for storing feed water serving as cooling water for the fuel cell, a water treatment system for processing the feed water in the feed water storage tank and supplying it to the fuel cell as cooling water, A method of operating a fuel cell power generation system comprising a heating means for warming and a warm water storage tank for storing warm water obtained by the warming means,
An operation method of a fuel cell power generation system, characterized in that condensed water obtained by condensing water vapor from hot water in a hot water storage tank is supplied to a water supply storage tank.
JP2000185355A 2000-06-20 2000-06-20 Fuel cell power generation system and operation method thereof Expired - Fee Related JP4660888B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000185355A JP4660888B2 (en) 2000-06-20 2000-06-20 Fuel cell power generation system and operation method thereof
AT01401611T ATE429043T1 (en) 2000-06-20 2001-06-19 FUEL CELL POWER SUPPLY SYSTEM AND OPERATING METHOD
EP08101770A EP1968145A1 (en) 2000-06-20 2001-06-19 Fuel cell power generating system and operation method
DE60138338T DE60138338D1 (en) 2000-06-20 2001-06-19 Fuel cell power supply system and operating method
EP01401611A EP1168476B1 (en) 2000-06-20 2001-06-19 Fuel cell power generating system and operation method
ES01401611T ES2325978T3 (en) 2000-06-20 2001-06-19 FUEL CELL POWER GENERATION SYSTEM AND OPERATING METHOD.
US09/885,672 US6787255B2 (en) 2000-06-20 2001-06-20 Fuel cell power generating system and operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000185355A JP4660888B2 (en) 2000-06-20 2000-06-20 Fuel cell power generation system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2002008689A JP2002008689A (en) 2002-01-11
JP4660888B2 true JP4660888B2 (en) 2011-03-30

Family

ID=18685684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185355A Expired - Fee Related JP4660888B2 (en) 2000-06-20 2000-06-20 Fuel cell power generation system and operation method thereof

Country Status (1)

Country Link
JP (1) JP4660888B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064213A (en) * 2006-09-08 2008-03-21 Chugoku Electric Power Co Inc:The Compressor with bog warmer and power generation system having the same
CN108735963A (en) * 2018-07-27 2018-11-02 成都信息工程大学 A kind of device adding distilled water for accumulator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140066A (en) * 1992-10-30 1994-05-20 Fuji Electric Co Ltd Fuel cell power generating system
JPH08250142A (en) * 1995-03-14 1996-09-27 Fuji Electric Co Ltd Steam-separator pressure controller for fuel-cell generating system
JPH10223245A (en) * 1997-02-04 1998-08-21 Tokyo Gas Co Ltd Fuel cell electricity-generating apparatus
JPH11233130A (en) * 1998-02-17 1999-08-27 Fuji Electric Co Ltd Fuel cell power generating facility
JP2000012055A (en) * 1998-06-22 2000-01-14 Osaka Gas Co Ltd Fuel cell power generating facility
JP2000090948A (en) * 1998-09-10 2000-03-31 Fuji Electric Co Ltd Fuel cell power generation device
JP2001255010A (en) * 2000-03-09 2001-09-21 Osaka Gas Co Ltd Cogeneration system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140066A (en) * 1992-10-30 1994-05-20 Fuji Electric Co Ltd Fuel cell power generating system
JPH08250142A (en) * 1995-03-14 1996-09-27 Fuji Electric Co Ltd Steam-separator pressure controller for fuel-cell generating system
JPH10223245A (en) * 1997-02-04 1998-08-21 Tokyo Gas Co Ltd Fuel cell electricity-generating apparatus
JPH11233130A (en) * 1998-02-17 1999-08-27 Fuji Electric Co Ltd Fuel cell power generating facility
JP2000012055A (en) * 1998-06-22 2000-01-14 Osaka Gas Co Ltd Fuel cell power generating facility
JP2000090948A (en) * 1998-09-10 2000-03-31 Fuji Electric Co Ltd Fuel cell power generation device
JP2001255010A (en) * 2000-03-09 2001-09-21 Osaka Gas Co Ltd Cogeneration system

Also Published As

Publication number Publication date
JP2002008689A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
US7785744B2 (en) Fuel cell water purification system and method
JP2006309982A (en) Solid oxide fuel cell system
JPH0821403B2 (en) How to operate a fuel cell power plant
JP2002525805A (en) Fuel cell power supply with exhaust recovery for improved water management
JP2003100336A (en) Fuel cell power generation system and its operation method
JP2013058337A (en) Fuel cell system
JP3943405B2 (en) Fuel cell power generation system
US6787255B2 (en) Fuel cell power generating system and operation method
JP2002231282A (en) Solid polymer electrolyte fuel cell generating device
JP4660888B2 (en) Fuel cell power generation system and operation method thereof
JP4660889B2 (en) Fuel cell power generation system and operation method thereof
JP4176130B2 (en) Fuel cell power generation system
JP2002100382A (en) Fuel cell power generator
JP3743254B2 (en) Fuel cell power generator
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP2009140726A (en) Fuel cell power generation device
JP2000294262A (en) Fuel cell power generating device
JP2000012055A (en) Fuel cell power generating facility
JPH06231787A (en) Fuel cell power generator
JPH0821412B2 (en) Fuel cell power generation method
JP2001035520A (en) Waste heat recovering apparatus for fuel cell generating apparatus
JP2010027365A (en) Fuel cell cogeneration system
JP2002025588A (en) Fuel cell power generating device
JPH11233130A (en) Fuel cell power generating facility
JP2004213977A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees