JPH0821412B2 - Fuel cell power generation method - Google Patents

Fuel cell power generation method

Info

Publication number
JPH0821412B2
JPH0821412B2 JP60217800A JP21780085A JPH0821412B2 JP H0821412 B2 JPH0821412 B2 JP H0821412B2 JP 60217800 A JP60217800 A JP 60217800A JP 21780085 A JP21780085 A JP 21780085A JP H0821412 B2 JPH0821412 B2 JP H0821412B2
Authority
JP
Japan
Prior art keywords
air
gas
fuel
supplied
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60217800A
Other languages
Japanese (ja)
Other versions
JPS6280970A (en
Inventor
睦美 生越
敏明 吉田
正明 遠井
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP60217800A priority Critical patent/JPH0821412B2/en
Publication of JPS6280970A publication Critical patent/JPS6280970A/en
Publication of JPH0821412B2 publication Critical patent/JPH0821412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、燃料電池本体の燃料極に水素ガスを供給
し、空気極に酸化ガスを供給して発電を行なう燃料電池
の発電方法に係り、特にアノード出口ガス中の水分をド
レンせずに、また空気予熱器を2段に分けることで冷却
効果を上げて発電を効率よく行なえるようにした燃料電
池の発電方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a power generation method for a fuel cell, in which hydrogen gas is supplied to a fuel electrode of a fuel cell main body and oxidizing gas is supplied to an air electrode to generate power. In particular, the present invention relates to a power generation method for a fuel cell in which water in the anode outlet gas is not drained and the air preheater is divided into two stages to enhance the cooling effect and efficiently generate power.

[従来の技術] 燃料電池の原理は、水の電気分解の逆の反応であり、
燃料中の水素と空気中の酸素とを化学的に反応させて電
気と水とを同時に取り出すものである。
[Prior Art] The principle of the fuel cell is the reverse reaction of electrolysis of water,
Hydrogen in fuel and oxygen in air are chemically reacted to simultaneously extract electricity and water.

これを第2図により説明すると、燃料電池本体1は水
素などの燃料ガスを反応させる多孔質の燃料極(アノー
ド)2と、酸化ガスを反応させる空気極(カソード)3
と、この両電極2,3間に介在する炭酸塩からなる電解質
4とからなっており、図示のように燃料極2へ水素を含
む燃料ガスが供給され、他方空気極3へ酸素と炭酸ガス
を含む酸化ガスが供給されることになり各電極2,3内で
図示のように反応し炭酸イオン(CO3 2-)を媒介に水素
と酸素が反応して発電が行なわれる。
This will be described with reference to FIG. 2. In the fuel cell main body 1, a porous fuel electrode (anode) 2 that reacts with a fuel gas such as hydrogen, and an air electrode (cathode) 3 that reacts with an oxidizing gas.
And an electrolyte 4 composed of a carbonate interposed between the electrodes 2 and 3, a fuel gas containing hydrogen is supplied to the fuel electrode 2 as shown in the figure, while oxygen and carbon dioxide gas are supplied to the air electrode 3. As a result, an oxidizing gas containing oxygen is supplied, and the electrodes 2 and 3 react as shown in the figure, and hydrogen and oxygen react with each other through the carbonate ion (CO 3 2− ) to generate electricity.

この燃料電池本体1は、多数多段に積層され、高出力
が得られるようになっている。第3図に従来燃料電池の
発電システムの一例を示す。
The fuel cell main body 1 is stacked in a multiplicity of stages to obtain a high output. FIG. 3 shows an example of a conventional fuel cell power generation system.

すなわち、図において1は多段に積層された燃料電池
本体、5はLNGなどの燃料ガスを改質して水素リッチガ
スとするリホーマ、6はLNGなど燃料ガスコンプレッ
サ、7は燃料予熱器、8は脱硫器、9は熱交換器、10は
給水ポンプ、11は給水加熱器、12は凝縮器、13は気液分
離器、14はブロワ、15は空気コンプレッサ、16は空気予
熱器、17は煙突である。
That is, in the figure, 1 is a multi-layered fuel cell body, 5 is a reformer that reforms a fuel gas such as LNG into a hydrogen-rich gas, 6 is a fuel gas compressor such as LNG, 7 is a fuel preheater, and 8 is desulfurization , 9 is a heat exchanger, 10 is a feed pump, 11 is a feed heater, 12 is a condenser, 13 is a gas-liquid separator, 14 is a blower, 15 is an air compressor, 16 is an air preheater, and 17 is a chimney. is there.

先ず、LNGなどの燃料ガスは、燃料ガスコンプレッサ
6より燃料予熱器7で予熱され、脱硫器8で脱硫された
のちリホーマ5に供給され、また給水ポンプ10より給水
加熱器11を通って加熱された蒸気がリホーマ5に供給さ
れ、そこで燃料ガスが水素リッチガス及び一酸化炭素に
改質されて燃料電池本体1の燃料極(アノード)2に供
給される。この燃料極2で生じたアノードガス(H2O、C
O2,CO,H2等)は熱交換器9、燃料予熱器7を通り、加熱
器11で給水を加熱し、凝縮器12、気液分離器13でアノー
ドガス中の水分が除去されたのちブロワ14より熱交換器
9を通ってリホーマ5の加熱源として用いられる。また
空気は空気コンプレッサ15より空気予熱器16を通り、そ
こで燃料電池本体1の空気極(カソード)3を出た排ガ
スにより予熱され、その一部が空気極3に、また残りが
リホーマ5の加熱源として供給され、リホーマ5内でア
ノードガス中の残留H2ガスやCOガスを燃焼してリホーマ
5を通る燃料ガスと蒸気を加熱して改質反応させたのち
CO2ガスとして空気極3に供給される。
First, fuel gas such as LNG is preheated by a fuel preheater 7 from a fuel gas compressor 6, desulfurized by a desulfurizer 8 and then supplied to a reformer 5, and is heated by a water supply pump 10 through a water heater 11. The vapor is supplied to the reformer 5, where the fuel gas is reformed into hydrogen-rich gas and carbon monoxide and supplied to the fuel electrode (anode) 2 of the fuel cell body 1. Anode gas generated in this fuel electrode 2 (H 2 O, C
(O 2 , CO, H 2 etc.) passes through the heat exchanger 9 and the fuel preheater 7, the feed water is heated by the heater 11, and the moisture in the anode gas is removed by the condenser 12 and the gas-liquid separator 13. After that, it is used as a heating source of the reformer 5 from the blower 14 through the heat exchanger 9. Further, the air passes from the air compressor 15 through the air preheater 16 and is preheated by the exhaust gas that has exited from the air electrode (cathode) 3 of the fuel cell main body 1, and a part of the air is heated to the air electrode 3 and the rest is heated to the reformer 5. Which is supplied as a source, burns the residual H 2 gas and CO gas in the anode gas in the reformer 5 to heat the fuel gas and steam passing through the reformer 5 to cause a reforming reaction.
It is supplied to the air electrode 3 as CO 2 gas.

従来この燃料電池の発電システムにおいては、燃料極
2で生じたアノード出口ガス中の蒸気を凝縮器12で凝縮
し、気液分離器13で分離し、水分を除去したアノード出
口ガス(CO2,CO,H2)をリホーマ5に供給し、リホーマ
5での反応温度を維持するようにしている。
In the conventional power generation system of the fuel cell, the vapor in the anode outlet gas generated at the fuel electrode 2 is condensed by the condenser 12 and separated by the gas-liquid separator 13 to remove the water, and the anode outlet gas (CO 2 , CO, H 2 ) is supplied to the reformer 5 so that the reaction temperature in the reformer 5 is maintained.

[発明が解決しようとする課題] しかしながら、燃料電池本体1のアノード出口ガス中
の水分(蒸気)を除去するには、そのアノードガスを冷
却したのち再度加熱しなければならない。従って機器数
が増えコンパクトにならないという問題がある。
[Problems to be Solved by the Invention] However, in order to remove water (vapor) in the anode outlet gas of the fuel cell main body 1, the anode gas must be cooled and then heated again. Therefore, there is a problem that the number of devices increases and the device cannot be made compact.

また空気極3へ供給する空気は、燃料電池本体1自体
が発熱反応を伴なうため、冷却作用ももたせており、そ
の空気極3からの排ガスの全量で予熱して高温にしたの
では、空気極3内の温度が上がり過ぎて好ましくなく、
そのため空気コンプレッサ15の容量を大きくして予熱空
気温度を下げると、そのコンプレッサの消費電力が大き
くなり、効率が悪くなる問題がある。
Further, the air supplied to the air electrode 3 also has a cooling action because the fuel cell main body 1 itself is accompanied by an exothermic reaction, and if the exhaust gas from the air electrode 3 is preheated to a high temperature, It is not preferable because the temperature inside the air electrode 3 rises too much.
Therefore, if the capacity of the air compressor 15 is increased and the preheated air temperature is lowered, the power consumption of the compressor increases and there is a problem that efficiency deteriorates.

本発明は、上記事情を考慮してなされたもので、燃料
電池で生じるアノード出口ガス中の水分を除去すること
なく必要最小の機器構成でリホーマでの改質温度を維持
すると共に、空気極からの排ガスの熱を有効に回収する
ことによって効率のよい冷却を行ない、補機動力を少な
くできる燃料電池の発電方法を提供することを目的とす
る。
The present invention has been made in consideration of the above circumstances, and maintains the reforming temperature in the reformer with the minimum necessary device configuration without removing the water in the anode outlet gas generated in the fuel cell, and from the air electrode. It is an object of the present invention to provide a fuel cell power generation method capable of efficiently cooling the exhaust gas by effectively cooling the exhaust gas and reducing the power of auxiliary machinery.

[課題を解決するための手段及び作用] 本発明は、上記の目的を達成するために、燃料ガスと
水蒸気とをリホーマに供給して水素ガスに改質し、その
水素ガスを燃料電池本体の燃料極に供給し、他方その本
体の空気極に酸化ガスを供給して発電する燃料電池の発
電方法において、上記燃料極への水素ガス供給で生じた
水蒸気を含むアノードガスを、上記リホーマの加熱源に
用いたのち、上記空気極に供給し、また空気極からの排
ガスを第2空気予熱器から第1空気予熱器に流し、他方
空気を第1空気予熱器から第2空気予熱器に流し、その
第1空気予熱器を出た予熱空気の一部を上記空気極に供
給し、さらに第2空気予熱器を出た高温の予熱空気を、
上記リホーマの加熱源に用いたのち空気極に供給するも
ので、アノード出口ガス中に含まれる水分を分離せず、
そのままリホーマの加熱源として供給することでドレン
機器が不用となると共に、燃料ガスのリホーマへの入口
温度は予熱器なしに高くでき、また空気予熱器を2段に
分けることにより第1空気予熱器を出た比較的低い予熱
空気を空気極に供給することで、その入口空気温度を小
流量で必要な値まで低下でき、さらに第2空気予熱器を
出た高温の予熱空気をリホーマの加熱源に用いることで
リホーマでの改質を効率よくできると共に燃料電池での
利用率を向上できるようにしたものである。
[Means and Actions for Solving the Problems] In order to achieve the above-mentioned object, the present invention supplies a fuel gas and water vapor to a reformer to reform the hydrogen gas, and the hydrogen gas of the fuel cell main body is reformed. In a power generation method of a fuel cell for supplying power to a fuel electrode and supplying oxidizing gas to an air electrode of its main body to generate power, an anode gas containing water vapor generated by supplying hydrogen gas to the fuel electrode is heated by the reformer. After being used as a power source, it is supplied to the air electrode and exhaust gas from the air electrode is passed from the second air preheater to the first air preheater, while air is passed from the first air preheater to the second air preheater. , A part of the preheated air that has exited the first air preheater is supplied to the air electrode, and the high temperature preheated air that has exited the second air preheater is
It is used as a heating source for the reformer and then supplied to the air electrode, without separating the water contained in the anode outlet gas,
By supplying it as it is as a heating source of the reformer, the drain device becomes unnecessary, the inlet temperature of the fuel gas to the reformer can be increased without a preheater, and the first air preheater can be divided into two stages. By supplying the relatively low preheated air that has exited to the air electrode, the inlet air temperature can be reduced to a required value with a small flow rate, and the hot preheated air that has exited the second air preheater can be used as the heating source for the reformer It is possible to efficiently perform reforming in reformer and improve the utilization rate in a fuel cell.

[実施例] 以下、本発明に係る燃料電池の発電方法の好適一実施
例を添付図面に基づいて説明する。
[Embodiment] A preferred embodiment of the fuel cell power generation method according to the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の燃料電池の発電方法を実施する発電
プラントのフローシートの一例を示す。図において、1
は燃料電池本体で、燃料極(アノード)2と空気極(カ
ソード)3と、その電極2,3間に介在された炭酸塩を含
む電解質4とからなる。5はリホーマで、燃料ガスと蒸
気とを反応させてH2ガスとCOガスに改質する。リホーマ
5は反応管5aと、反応管5aを加熱すべく、燃料電池本体
1からのアノード出口ガス中の残留H2ガスやCOガスを供
給空気で燃焼させる燃焼室5bとからなっている。6は燃
料ガスコンプレッサ、8は脱硫器である。
FIG. 1 shows an example of a flow sheet of a power plant for implementing the fuel cell power generation method of the present invention. In the figure, 1
Is a fuel cell main body, which comprises a fuel electrode (anode) 2, an air electrode (cathode) 3, and an electrolyte 4 containing a carbonate interposed between the electrodes 2 and 3. 5 is a reformer, which reacts fuel gas with steam to reform it into H 2 gas and CO gas. The reformer 5 comprises a reaction tube 5a and a combustion chamber 5b for burning the residual H 2 gas or CO gas in the anode outlet gas from the fuel cell body 1 with the supply air in order to heat the reaction tube 5a. 6 is a fuel gas compressor, and 8 is a desulfurizer.

燃料ガスコンプレッサ6から燃料ガスは、第1燃料予
熱器18、脱硫器8、第2燃料予熱器19を通ってリホーマ
5の反応管5aに供給されるよう燃料ガス供給ライン20で
接続される。
The fuel gas from the fuel gas compressor 6 is connected through the first fuel preheater 18, the desulfurizer 8 and the second fuel preheater 19 to the reaction pipe 5a of the reformer 5 by the fuel gas supply line 20.

リホーマ5の反応管5aを出た水素リッチガスは、燃料
電池本体1の燃料極(アノード)2に供給され、そのア
ノードガスがライン21により第2燃料予熱器19から第1
燃料予熱器18を通ってリホーマ5の燃焼室5bに流れるよ
う接続される。
The hydrogen-rich gas that has exited the reaction tube 5a of the reformer 5 is supplied to the fuel electrode (anode) 2 of the fuel cell body 1, and the anode gas is supplied from the second fuel preheater 19 to the first by the line 21.
It is connected to flow through the fuel preheater 18 into the combustion chamber 5b of the reformer 5.

燃料電池本体1の空気極3及びリホーマ5の燃焼室5b
へ供給する空気は、空気コンプレッサ15より、第1空気
予熱器22、及び第2空気予熱器23を通って燃焼空気ライ
ン24を介してリホーマ5の燃焼室5bに供給され、その燃
焼室5bからライン25を通って空気極3に供給され、また
第1空気予熱器22を通った予熱空気は、空気ライン26を
通ってリホーマ5のライン25からのガス(CO2)と共に
空気極3に供給される。
Air electrode 3 of fuel cell body 1 and combustion chamber 5b of reformer 5
Air to be supplied to the combustion chamber 5b of the reformer 5 from the air compressor 15 through the first air preheater 22 and the second air preheater 23 and the combustion air line 24, and from the combustion chamber 5b. The preheated air supplied to the cathode 3 through the line 25 and the first air preheater 22 is supplied to the cathode 3 through the air line 26 together with the gas (CO 2 ) from the line 25 of the reformer 5. To be done.

空気極3で生じた排ガスは、排ガスライン27より、第
2空気予熱器23を通り、第1空気予熱器22を通って煙突
等(図示せず)に排気され、また一部の排ガスはライン
28より蒸気発生器29に供給される。蒸気発生器29は、伝
熱管30を有し、その伝熱管30に気液分離ドラム31が接続
され、伝熱管30内の給水が、ライン28からの排ガスで加
熱され、分離ドラム31で気液分離され、発生した蒸気
が、蒸気ライン32よりリホーマ5の反応管5aに供給され
る。
The exhaust gas generated at the air electrode 3 is exhausted from the exhaust gas line 27 through the second air preheater 23 and the first air preheater 22 to a chimney or the like (not shown).
It is supplied to the steam generator 29 from 28. The steam generator 29 has a heat transfer tube 30, a gas-liquid separation drum 31 is connected to the heat transfer tube 30, the feed water in the heat transfer tube 30 is heated by the exhaust gas from the line 28, and the gas is liquid-liquid at the separation drum 31. The separated and generated steam is supplied to the reaction tube 5a of the reformer 5 through the steam line 32.

リホーマ5で改質されたガスの一部は戻りライン36よ
り脱硫器8に循環される。また燃料電池本体1の燃料極
2及び空気極3にはガスを循環するためのブロワー33,3
4が接続される。
A part of the gas reformed by the reformer 5 is circulated to the desulfurizer 8 through the return line 36. Blowers 33, 3 for circulating gas are provided between the fuel electrode 2 and the air electrode 3 of the fuel cell body 1.
4 is connected.

以上において、LNG等の燃料ガスは、第1燃料予熱器1
8で予熱され、脱硫器8で脱硫され、第2燃料予熱器19
で高温に予熱されたのちリホーマ5の反応管5aに供給さ
れる。この反応管5aには蒸気発生器29で生じた蒸気が、
蒸気ライン32を通じて供給され、燃料ガスの改質反応が
起り、COガスを含むH2リッチガスに改質されて燃料電池
本体1の燃料極2に供給される。この燃料極2を出たア
ノードガスは、ライン21より第2燃料予熱器19及び第1
燃料予熱器18を通って燃料ガスを高温に予熱したのち、
リホーマ5の燃焼室5bに供給される。
In the above, the fuel gas such as LNG is supplied to the first fuel preheater 1
It is preheated in 8 and desulfurized in desulfurizer 8.
It is preheated to a high temperature by and is supplied to the reaction tube 5a of the reformer 5. In this reaction tube 5a, the steam generated in the steam generator 29 is
It is supplied through the steam line 32, a reforming reaction of the fuel gas occurs, and is reformed into H 2 rich gas containing CO gas and supplied to the fuel electrode 2 of the fuel cell body 1. The anode gas discharged from the fuel electrode 2 is fed from the line 21 to the second fuel preheater 19 and the first fuel preheater 19.
After preheating the fuel gas to a high temperature through the fuel preheater 18,
It is supplied to the combustion chamber 5b of the reformer 5.

一方、空気は空気コンプレッサ15より第1空気予熱器
22を通り、そこで空気極3からの排ガスで予熱され、さ
らに第2空気予熱器23を通って高温に予熱されたのちリ
ホーマ5の燃焼室5bに供給され、ライン21から供給され
たアノードガス中の残留H2ガスやCOガスを燃焼し、その
燃焼温度で反応管5a内の温度を所定温度に保つ。燃焼後
のCO2ガス等のガスは、ライン25より空気極3に供給さ
れ、また第1空気予熱器22から空気ライン26を通った低
温の予熱空気が空気極3に供給され、第2図で説明した
反応が各極2,3で起り発電が行なわれることとなる。
On the other hand, the air from the air compressor 15 is the first air preheater.
In the anode gas supplied from line 21, the gas is preheated by the exhaust gas from the air electrode 3 there, and further preheated to a high temperature through the second air preheater 23 and then supplied to the combustion chamber 5b of the reformer 5. The remaining H 2 gas and CO gas are burned, and the temperature inside the reaction tube 5a is maintained at a predetermined temperature at the burning temperature. Gas such as CO 2 gas after combustion is supplied to the air electrode 3 through the line 25, and low-temperature preheated air that has passed through the air line 26 from the first air preheater 22 is supplied to the air electrode 3. The reaction described in section 2 occurs at each pole 2 and 3, and power is generated.

[発明の効果] 以上詳述してきたことから明らかなように本発明によ
れば次のごとき優れた効果を発揮する。
[Effects of the Invention] As is clear from the above, according to the present invention, the following excellent effects are exhibited.

(1) 燃料電池本体の燃料極で生じたアノードガス中
の水分を除去せず、そのままリホーマの加熱源に用いる
ので、従来のようにドレン機器を必要とせず、その分の
コストを低減できる。
(1) Since water in the anode gas generated at the fuel electrode of the fuel cell main body is not removed and used as it is as a heating source for the reformer, a drain device is not required unlike the conventional case, and the cost can be reduced accordingly.

(2) 空気を二段に予熱し、高温の予熱空気をリホー
マの加熱源として、また低温の予熱空気を空気極に供給
することで、リホーマでの効率を維持しつつ電池本体で
の燃料の利用率を向上させることができる。
(2) By preheating the air in two stages, using the high-temperature preheated air as the heating source for the reformer and supplying the low-temperature preheated air to the air electrode, the efficiency of the reformer is maintained and the fuel in the cell body is maintained. The utilization rate can be improved.

(3) さらに、少ない空気量で効率よい冷却ができる
ため、全体の効率も上がる。
(3) Furthermore, since efficient cooling can be performed with a small amount of air, overall efficiency is also improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の燃料電池の発電方法を実施する装置の
一例を示す図、第2図は燃料電池の詳細を示す図、第3
図は従来例を示す図である。 図中、1は燃料電池本体、2は燃料極、3は空気極、5
はリホーマ、20は燃料ガス供給ライン、22は第1空気予
熱器、23は第2空気予熱器、29は蒸気発生器である。
FIG. 1 is a diagram showing an example of an apparatus for carrying out the fuel cell power generation method of the present invention, FIG. 2 is a diagram showing details of the fuel cell, and FIG.
The figure shows a conventional example. In the figure, 1 is a fuel cell main body, 2 is a fuel electrode, 3 is an air electrode, 5
Is a reformer, 20 is a fuel gas supply line, 22 is a first air preheater, 23 is a second air preheater, and 29 is a steam generator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料ガスと水蒸気とをリホーマに供給して
水素ガスに改質し、その水素ガスを燃料電池本体の燃料
極に供給し、他方その本体の空気極に酸化ガスを供給し
て発電する燃料電池の発電方法において、上記燃料極へ
の水素ガス供給で生じた水蒸気を含むアノードガスを、
上記リホーマの加熱源に用いたのち、上記空気極に供給
し、また空気極からの排ガスを第2空気予熱器から第1
空気予熱器に流し、他方空気を第1空気予熱器から第2
空気予熱器に流し、その第1空気予熱器を出た予熱空気
の一部を上記空気極に供給し、さらに第2空気予熱器を
出た高温の予熱空気を、上記リホーマの加熱源に用いた
のち空気極に供給することを特徴とする燃料電池の発電
方法。
1. A fuel gas and water vapor are supplied to a reformer to be reformed into hydrogen gas, and the hydrogen gas is supplied to a fuel electrode of a fuel cell body, while an oxidizing gas is supplied to an air electrode of the body. In a fuel cell power generation method for generating power, an anode gas containing water vapor generated by supplying hydrogen gas to the fuel electrode,
After being used as a heating source for the reformer, it is supplied to the air electrode and exhaust gas from the air electrode is fed from the second air preheater to the first air heater.
Pour into the air preheater, while allowing air to flow from the first air preheater to the second air preheater.
A part of the preheated air flowing from the first air preheater to the air preheater is supplied to the air electrode, and the high temperature preheated air discharged from the second air preheater is used as the heating source of the reformer. A power generation method for a fuel cell, which comprises supplying to an air electrode after a while.
JP60217800A 1985-10-02 1985-10-02 Fuel cell power generation method Expired - Lifetime JPH0821412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60217800A JPH0821412B2 (en) 1985-10-02 1985-10-02 Fuel cell power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217800A JPH0821412B2 (en) 1985-10-02 1985-10-02 Fuel cell power generation method

Publications (2)

Publication Number Publication Date
JPS6280970A JPS6280970A (en) 1987-04-14
JPH0821412B2 true JPH0821412B2 (en) 1996-03-04

Family

ID=16709928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217800A Expired - Lifetime JPH0821412B2 (en) 1985-10-02 1985-10-02 Fuel cell power generation method

Country Status (1)

Country Link
JP (1) JPH0821412B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234871A (en) * 1986-04-04 1987-10-15 Hitachi Ltd Fuel cell power generating plant
JP2595585B2 (en) * 1987-11-27 1997-04-02 石川島播磨重工業株式会社 Fuel cell generator
JP2002337999A (en) * 2001-05-18 2002-11-27 Nippon Oil Corp Fuel feeding system
CN114857043B (en) * 2022-04-21 2023-10-24 珠海格力电器股份有限公司 Air compressor, fuel cell and new energy vehicle

Also Published As

Publication number Publication date
JPS6280970A (en) 1987-04-14

Similar Documents

Publication Publication Date Title
US5039579A (en) Electric power producing system using molten carbonate type fuel cell
JP2008541382A (en) High temperature fuel cell system with integrated heat exchanger network
KR20010071907A (en) Fuel cell power supply with exhaust recycling for improved water management
JP2002319428A (en) Molten carbonate fuel cell power generating device
JP2000156236A (en) Solid polymer type fuel cell system
JP3943405B2 (en) Fuel cell power generation system
JP4419329B2 (en) Solid polymer electrolyte fuel cell power generator
JPS5828176A (en) Fuel-cell generation system
JP6621358B2 (en) Fuel cell system
JP3407747B2 (en) Fuel cell power generator with moisture separator
CN1937294A (en) Fuel cell system with water separator
JPH0821412B2 (en) Fuel cell power generation method
JP3079317B2 (en) Molten carbonate fuel cell power generator
JP4176130B2 (en) Fuel cell power generation system
JPH065298A (en) Fuel cell power generating apparatus
JP4101051B2 (en) Fuel cell system
JP3257604B2 (en) Fuel cell generator
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JPS63141268A (en) Generating unit for natural-gas reformed molten carbonate type fuel cell
JP2508781B2 (en) Fuel cell generator
JPH03216964A (en) Power generating method for molten carbonate fuel cell
JP2008226603A (en) Heat recovery system in fuel cell device
JP3741288B2 (en) Method and apparatus for controlling cathode temperature of molten carbonate fuel cell power generation facility
JP2002100382A (en) Fuel cell power generator
JPH07169485A (en) Fuel cell generating system