JPS62234871A - Fuel cell power generating plant - Google Patents

Fuel cell power generating plant

Info

Publication number
JPS62234871A
JPS62234871A JP61076581A JP7658186A JPS62234871A JP S62234871 A JPS62234871 A JP S62234871A JP 61076581 A JP61076581 A JP 61076581A JP 7658186 A JP7658186 A JP 7658186A JP S62234871 A JPS62234871 A JP S62234871A
Authority
JP
Japan
Prior art keywords
fuel
air
fuel cell
supplied
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61076581A
Other languages
Japanese (ja)
Inventor
Tomio Mochizuki
望月 富男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61076581A priority Critical patent/JPS62234871A/en
Publication of JPS62234871A publication Critical patent/JPS62234871A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To suppress a rise in a cell voltage in a low load operating by mixing exhaust gas from a combustion portion of a fuel reforming device to air supplied to an air electrode of a fuel cell, thereby lowering an oxygen concentration in the supplied air. CONSTITUTION:Exhaust gas from a combustion portion 1b of a fuel reforming device 1 is introduced to a heat exchanger 5e and thereafter mixed to air supplied to an air electrode 7b of a fuel cell 7 through a control valve 22 and flow meter 20 to form a fuel cell power generation plant. When a load is lowered so that a cell current is reduced and thereby a cell voltage rises over an allowable value, a signal is taken out of a computing element 30 and the opening of a control valve 22 is controlled by a controller 16 so that exhaust gas or inert gas containing low oxygen is mixed to the supplied air. Therefore, without employing an auxiliary equipment such as a blower, it is possible to simply reduce the quantity of the oxygen to the air electrode 7b so as to suppress a rise in the cell voltage.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、燃料電池発電プラントに係り、特にその運転
圧力、運転温度が高圧、高温の燃料電池発電プラントに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell power generation plant, and particularly to a fuel cell power generation plant whose operating pressure and operating temperature are high pressure and high temperature.

〔発明の背景〕[Background of the invention]

リン酸型燃料電池においては、その電池内に白金又は白
金系合金の貴金属触媒が使用されており、電池的酸性電
解液中の高電位雰囲気において、貴金属粒子が凝集し劣
化を生じることが知られている。また燃料電池はその電
圧−電流特性上、電流が低い領域つまり負荷の低い領域
において電圧が高くなる性質をもっている。従って、負
荷がある値以下に低くなると電池内の触媒が高電位にさ
られることとなり、型部性能の著しい低下をまねくこと
となる。これまで燃料電池の低負荷運転時における電池
電圧の抑性手段として様々な手段が提案されてきた。燃
料電池の特性として、電池の運転圧力、運転温度、空気
極供給空気中の酸素濃度。
In phosphoric acid fuel cells, a noble metal catalyst of platinum or platinum-based alloy is used in the cell, and it is known that noble metal particles agglomerate and deteriorate in the high potential atmosphere in the acidic electrolyte of the cell. ing. Further, due to its voltage-current characteristics, a fuel cell has a property that the voltage is high in a region where the current is low, that is, a region where the load is low. Therefore, if the load falls below a certain value, the catalyst within the battery will be exposed to a high potential, resulting in a significant drop in the performance of the mold section. Until now, various means have been proposed as means for suppressing the cell voltage during low-load operation of the fuel cell. Characteristics of fuel cells include cell operating pressure, operating temperature, and oxygen concentration in the air supplied to the air electrode.

燃料極供給燃料中の水素濃度、水素利用率、酸素利用率
等により電池電圧が変化することが知られており、これ
らの特性を利用して電池電圧の抑制をはかることができ
る。この内電池の空気極への供給空気中の酸素濃度を変
化させることにより、低負荷時における電池電圧の抑制
制御を行なうことが、応答性、電池性能への影響などの
面から最も好ましいとされている。
It is known that the battery voltage changes depending on the hydrogen concentration, hydrogen utilization rate, oxygen utilization rate, etc. in the fuel supplied to the fuel electrode, and these characteristics can be used to suppress the battery voltage. Of these, controlling the battery voltage during low loads by changing the oxygen concentration in the air supplied to the air electrode of the battery is considered the most preferable from the viewpoint of responsiveness and impact on battery performance. ing.

空気極への供給空気中の酸素濃度を制御して電池電圧の
上昇を抑制する方法として1例えば特公昭60−104
25号公報に示されるように再循環ブロアを用いて、電
池の空気極出口の低酸素濃度のガスを空気極入口へ循環
させ空気極供給空気中の酸素濃度を下げる方法が知られ
ている。この方法では、空気極入口の空気に比べ圧力の
低い空気極出口のガスを該空気極入口へ戻す為に再循環
ブロアが必要となる。このブロアは電池の運転温度、運
転圧力とほぼ等しい、高温、高圧のガスを取扱うことに
なるため、軸受のシール構造及び耐熱性の面で特殊な構
造を要求され、又ブロア本体の運転制御、保護の面から
系統が複雑化するなどの問題点が有った。
As a method for suppressing the rise in battery voltage by controlling the oxygen concentration in the air supplied to the air electrode, for example, Japanese Patent Publication No. 60-104
As shown in Japanese Patent No. 25, a method is known in which a recirculation blower is used to circulate gas having a low oxygen concentration at the air electrode outlet of the battery to the air electrode inlet to lower the oxygen concentration in the air supplied to the air electrode. This method requires a recirculation blower to return the gas at the air electrode outlet, which has a lower pressure than the air at the air electrode inlet, to the air electrode inlet. Since this blower handles high-temperature, high-pressure gas that is approximately equal to the operating temperature and pressure of the battery, it requires a special structure in terms of bearing seal structure and heat resistance, and also requires a special structure in terms of bearing seal structure and heat resistance. There were problems in terms of protection, such as the complexity of the system.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、このような再循環ブロアを使用するこ
となく、燃料電池の低負荷運転時における電池電圧の上
昇を抑制することにある。
An object of the present invention is to suppress the increase in cell voltage during low-load operation of a fuel cell without using such a recirculation blower.

〔発明の概要〕[Summary of the invention]

本発明は、燃料改質器の燃焼部からの排出ガスが、窒素
、二酸化炭素を主成分とする高圧の不活性ガスであるこ
とに着目し、燃焼部から排出ガスを電池の空気極への供
給空気に混合することにより、供給空気中の酸素濃度を
下げ、低負荷運転時における電池電圧の上昇抑制を行な
うようにするものである。
The present invention focuses on the fact that exhaust gas from the combustion section of a fuel reformer is a high-pressure inert gas containing nitrogen and carbon dioxide as its main components, and directs the exhaust gas from the combustion section to the air electrode of the battery. By mixing it with the supplied air, the oxygen concentration in the supplied air is lowered, thereby suppressing the increase in battery voltage during low load operation.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図を参照して説明する。 An embodiment of the present invention will be described with reference to FIG.

外部から該プラントへ供給される天然ガスは。Natural gas is supplied to the plant from outside.

制御弁26によって所定の流量に制御されて燃料改質器
1の反応部1aへ供給される0反応部1aから出力され
たガスは、熱交換器5a−4高温CO変成器3→熱交換
器5b→高温CO変成器4→熱交換器5c、5dを経て
水素を主成分とする燃料ガスに改質された後に、気水分
離器6により脱水され、更に熱交換器5Cを経た後に制
御弁28で流量制御されて燃料電池7の燃料極7aに供
給される。燃料極7aにおいて電池出力相当量の水素が
消費された後に余剰の水素を含む燃料ガスは該燃料極7
aから排出され、補助燃焼′D13へ送られて燃料とし
て使用される。
The gas output from the reaction section 1a is controlled to a predetermined flow rate by the control valve 26 and is supplied to the reaction section 1a of the fuel reformer 1. 5b → high temperature CO shift converter 4 → heat exchangers 5c and 5d, after which the fuel gas is reformed into hydrogen-based fuel gas, dehydrated by the steam-water separator 6, further passed through the heat exchanger 5C, and then the control valve The flow rate is controlled at 28 and the fuel is supplied to the fuel electrode 7a of the fuel cell 7. After the amount of hydrogen equivalent to the battery output is consumed at the fuel electrode 7a, the fuel gas containing surplus hydrogen is transferred to the fuel electrode 7a.
It is discharged from a and sent to the auxiliary combustion 'D13 to be used as fuel.

一方、空気は圧縮機11により所定の圧力まで加圧され
た後に制御弁21で所定の流量に制御され流量計19を
経て補記燃料電池7の空気t@ 7 bに供給される。
On the other hand, air is pressurized to a predetermined pressure by the compressor 11, then controlled to a predetermined flow rate by the control valve 21, and is supplied to the air t@7b of the supplementary fuel cell 7 via the flow meter 19.

空気極7bにおいて電池出力相当分の酸素が消費された
後に排出され、前記補助燃焼器13へ燃焼用空気として
供給される。
After oxygen equivalent to the battery output is consumed in the air electrode 7b, it is exhausted and supplied to the auxiliary combustor 13 as combustion air.

前記燃料改質器1の燃焼部1bへの燃料は、外部から供
給される天然ガスを制御弁25で所定の流量に制御して
供給され、空気は前記圧縮4!illから熱交換器5e
を経た後に制御弁23で流量制御されて前記補助燃焼器
13へ供給される。燃焼部1bからの排出ガスは前記熱
交換器5θを経た後に制御弁23で流量制御されて前記
補助燃焼器13へ供給される。補助燃焼器13八は圧縮
機11からの加圧空気も制御弁29を介して供給され、
その排出ガスはタービン12を回転させて前記圧縮機1
1を駆動する。
Fuel to the combustion section 1b of the fuel reformer 1 is supplied by controlling natural gas supplied from the outside to a predetermined flow rate with a control valve 25, and air is supplied by the compression 4! ill to heat exchanger 5e
After that, the flow rate is controlled by a control valve 23 and the fuel is supplied to the auxiliary combustor 13. After passing through the heat exchanger 5θ, the exhaust gas from the combustion section 1b is supplied to the auxiliary combustor 13 with its flow rate controlled by the control valve 23. The auxiliary combustor 138 is also supplied with pressurized air from the compressor 11 via the control valve 29,
The exhaust gas rotates the turbine 12 and the compressor 1
Drive 1.

また、前記燃料改質w11の燃焼部1bからの排出ガス
は前記熱交換器5eを経た後に分岐され。
Further, the exhaust gas from the combustion section 1b of the fuel reforming w11 is branched after passing through the heat exchanger 5e.

制御弁22で流量制御された後に流量計20を経て前記
空気極7bへの供給空気に混入される。
After its flow rate is controlled by a control valve 22, it passes through a flowmeter 20 and is mixed into the air supplied to the air electrode 7b.

燃料電池7の電池電圧Vは電圧計17により検出され、
電池電流工は電流計18で検出される。
The battery voltage V of the fuel cell 7 is detected by a voltmeter 17,
Battery current is detected by an ammeter 18.

演算器30は電池電圧V、電池電流Iの検出値を入力し
、電池電流工に基づいて燃料電池7の燃料極7aへの燃
料供給量および空気極7bへの空気供給量を演算して制
御袋W116に制御目標値を設定し、tft池電圧Vを
監視してその値が許暮値Vtを越えた場合には供給空気
に前記燃焼部1bからの排ガスを混入するように制御表
ri16に混入制御信号を与える。制御装置16は、前
記制御目標値、混入制御信号および流量計19.20か
らの計量信号を入力して、制御弁21,22.28の開
閉(開度)を制御する。
The calculator 30 inputs the detected values of the battery voltage V and the battery current I, and calculates and controls the amount of fuel supplied to the fuel electrode 7a and the amount of air supplied to the air electrode 7b of the fuel cell 7 based on the battery current value. A control target value is set in the bag W116, and the control table ri16 is configured to monitor the TFT battery voltage V and mix the exhaust gas from the combustion section 1b into the supplied air when the value exceeds the tolerance value Vt. Provides a contamination control signal. The control device 16 inputs the control target value, the mixing control signal, and the measurement signal from the flowmeter 19.20, and controls the opening/closing (opening degree) of the control valves 21, 22, 28.

燃料電池7のクーラ7Cを冷却する冷却水は、水蒸気分
離器14から冷却水ポンプ15を介してクーラ7Cに送
られ、クーラ7Cから排出された冷却水は更に熱交換器
5a、5bおよび制御弁10を経て水蒸気分離器14に
戻る閉路を循環する、そして、水蒸気分離ll114で
分離された水蒸気は、制御弁27を介して前記燃料改質
器1の反応部1aへの供給ガスに混入される。
The cooling water that cools the cooler 7C of the fuel cell 7 is sent from the steam separator 14 to the cooler 7C via the cooling water pump 15, and the cooling water discharged from the cooler 7C is further sent to the heat exchangers 5a, 5b and the control valve. 10 and returns to the steam separator 14, and the steam separated by the steam separator 114 is mixed into the gas supplied to the reaction section 1a of the fuel reformer 1 via the control valve 27. .

以上のような燃料電池発電プラントにおいて、前記制御
装置16は、燃料極7aへの燃料供給量および空気極7
bへの空気供給量が電池電流■に応じて設定された制御
目標値となるように、制御弁21.28の開度を制御す
る。1’!!池電気Vが許容値v1以下である場合には
制御弁22は閉止状態にある。
In the fuel cell power generation plant as described above, the control device 16 controls the amount of fuel supplied to the fuel electrode 7a and the amount of fuel supplied to the air electrode 7a.
The opening degrees of the control valves 21 and 28 are controlled so that the amount of air supplied to b becomes the control target value set according to the battery current (2). 1'! ! When the battery electricity V is below the allowable value v1, the control valve 22 is in a closed state.

負荷が低下して電池電流工が小さくなり、それに伴って
型部電圧Vが上昇して許容値VLを越えると演算器30
は前記混入制御信号を発生する。
When the load decreases and the battery current becomes smaller, and the mold section voltage V rises and exceeds the allowable value VL, the calculator 30
generates the contamination control signal.

制御装置rf16はこの混入制御信号に応動して制御弁
22を開け、燃料改質器1の燃焼部1bから排出される
高圧のガスを空気極7bへの供給空気中に混入する。こ
の排出ガスは低酸素の不活性ガスであることから、これ
により空気極7bへ供給される酸素量が減少し電池電圧
Vの上昇が抑制される。従って、この排出ガスの混入は
、型部電圧■が許容値Vz以下となるように制御される
The control device rf16 opens the control valve 22 in response to this mixing control signal, and mixes the high pressure gas discharged from the combustion section 1b of the fuel reformer 1 into the air supplied to the air electrode 7b. Since this exhaust gas is a low-oxygen inert gas, the amount of oxygen supplied to the air electrode 7b is thereby reduced and an increase in the battery voltage V is suppressed. Therefore, the mixing of this exhaust gas is controlled so that the mold section voltage (2) is below the allowable value Vz.

第2図は本発明の他の実施例を示すもので、前述の実施
例において説明した燃焼部1bからの排出ガスを空気極
7bへの供給空気に混入させるための供給経路、すなわ
ち熱交換器5eと制御弁22の間に冷却装vlt31を
介在させた例である。
FIG. 2 shows another embodiment of the present invention, in which a supply path for mixing the exhaust gas from the combustion section 1b explained in the previous embodiment with the air supplied to the air electrode 7b, that is, a heat exchanger is shown. This is an example in which a cooling device vlt31 is interposed between the control valve 5e and the control valve 22.

このようにすれば、供給空気に混入する排出ガスの温度
を所定の温度に低下させることができ、制御弁22、流
量計20および燃料電池7の耐熱対策が容易になる。
In this way, the temperature of the exhaust gas mixed in the supplied air can be lowered to a predetermined temperature, and heat resistance measures for the control valve 22, flowmeter 20, and fuel cell 7 can be easily taken.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、燃料改質器の燃焼部か
ら排出される高圧のガスをそのガス圧を利用して燃料電
池空気極への供給空気に混入するようにしたので、プロ
ア等の補機な使用することなく低負荷運転時の電池電圧
の過」−昇を抑制することができ、従って装置が簡易に
なって発電プラントの信頼性が向上する。
As described above, according to the present invention, the high-pressure gas discharged from the combustion section of the fuel reformer is mixed into the air supplied to the fuel cell air electrode using the gas pressure. Excessive rise in battery voltage during low-load operation can be suppressed without the use of auxiliary equipment such as auxiliary equipment, thus simplifying the device and improving the reliability of the power plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明のそれぞれ異なる各実施例
を示す燃料電池発電システムの系統図である。
FIGS. 1 and 2 are system diagrams of fuel cell power generation systems showing different embodiments of the present invention.

Claims (1)

【特許請求の範囲】 1、燃料極と空気極とを有する燃料電池と、炭化水素を
主成分とする燃料を水素を主成分とする燃料へ改質する
反応部及び該反応部へ熱を供給する燃焼部とを有する燃
料改質器と、空気を少なくとも大気圧以上に圧縮する圧
縮機と、前記燃料改質器の反応部より供給される水素を
主成分とする燃料を所定の圧力、温度、流量に制御して
前記燃料電池の燃料極へ供給する燃料供給装置と、前記
圧縮機より供給される空気を所定の圧力、温度、流量に
制御して前記燃料電池の空気却へ供給する空気供給装置
とを備えた燃料電池発電プラントにおいて、前記燃料改
質器の燃焼部からの排出ガスの少なくとも一部を燃料電
池の空気極への供給空気へ合流させる系統及び制御装置
を設けたことを特徴とする燃料電池発電プラント。 2、特許請求の範囲第1項において、前記燃料改質器の
燃焼部からの排出ガスを空気極への供給空気へ合流させ
る系統は、燃料改質器の燃焼部からの排出ガスを所定の
温度に冷却する冷却装置を備えことを特徴とする燃料電
池発電プラント。
[Claims] 1. A fuel cell having a fuel electrode and an air electrode, a reaction section for reforming fuel containing hydrocarbon as a main component into fuel containing hydrogen as a main component, and supplying heat to the reaction section a fuel reformer having a combustion section that compresses air, a compressor that compresses air to at least atmospheric pressure, and a fuel mainly composed of hydrogen supplied from a reaction section of the fuel reformer at a predetermined pressure and temperature. a fuel supply device that controls the flow rate and supplies the air to the fuel electrode of the fuel cell; and a fuel supply device that controls the air supplied from the compressor to a predetermined pressure, temperature, and flow rate and supplies the air to the air outlet of the fuel cell. A fuel cell power generation plant equipped with a supply device, further comprising a system and a control device for merging at least part of the exhaust gas from the combustion section of the fuel reformer into the air supplied to the air electrode of the fuel cell. Features of fuel cell power generation plant. 2. In claim 1, the system for merging the exhaust gas from the combustion section of the fuel reformer with the air supplied to the air electrode is configured to combine the exhaust gas from the combustion section of the fuel reformer into a predetermined A fuel cell power generation plant characterized by being equipped with a cooling device that cools the plant to a certain temperature.
JP61076581A 1986-04-04 1986-04-04 Fuel cell power generating plant Pending JPS62234871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61076581A JPS62234871A (en) 1986-04-04 1986-04-04 Fuel cell power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61076581A JPS62234871A (en) 1986-04-04 1986-04-04 Fuel cell power generating plant

Publications (1)

Publication Number Publication Date
JPS62234871A true JPS62234871A (en) 1987-10-15

Family

ID=13609243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61076581A Pending JPS62234871A (en) 1986-04-04 1986-04-04 Fuel cell power generating plant

Country Status (1)

Country Link
JP (1) JPS62234871A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010266A2 (en) * 1989-12-29 1991-07-11 International Fuel Cells Corporation Use and composition of a reactant gas to control fuel cell potential
WO1991010267A2 (en) * 1989-12-29 1991-07-11 International Fuel Cells Corporation Air ejector system for fuel cell passivation
CN113632269A (en) * 2019-03-27 2021-11-09 日产自动车株式会社 Fuel cell system and control method of fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168877A (en) * 1985-01-23 1986-07-30 Hitachi Ltd Fuel cell system
JPS6280970A (en) * 1985-10-02 1987-04-14 Ishikawajima Harima Heavy Ind Co Ltd Power generating method of fuel cell
JPS62150662A (en) * 1985-12-24 1987-07-04 Ishikawajima Harima Heavy Ind Co Ltd Normal pressure type fuel cell power generation plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168877A (en) * 1985-01-23 1986-07-30 Hitachi Ltd Fuel cell system
JPS6280970A (en) * 1985-10-02 1987-04-14 Ishikawajima Harima Heavy Ind Co Ltd Power generating method of fuel cell
JPS62150662A (en) * 1985-12-24 1987-07-04 Ishikawajima Harima Heavy Ind Co Ltd Normal pressure type fuel cell power generation plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010266A2 (en) * 1989-12-29 1991-07-11 International Fuel Cells Corporation Use and composition of a reactant gas to control fuel cell potential
WO1991010267A2 (en) * 1989-12-29 1991-07-11 International Fuel Cells Corporation Air ejector system for fuel cell passivation
CN113632269A (en) * 2019-03-27 2021-11-09 日产自动车株式会社 Fuel cell system and control method of fuel cell system
CN113632269B (en) * 2019-03-27 2024-02-27 日产自动车株式会社 Fuel cell system and control method for fuel cell system

Similar Documents

Publication Publication Date Title
US7425380B2 (en) Fuel cell system and related method
US8053126B2 (en) Water transfer efficiency improvement in a membrane humidifier by reducing dry air inlet temperature
US8603690B2 (en) Methods and controls for hydrogen to cathode inlet of a fuel cell system
US11309561B2 (en) Fuel cell temperature distribution control system, fuel cell, and temperature distribution control method
JP2001143732A (en) Solid polymer fuel cell power generating system and its operating method
CN105609824A (en) Fuel cell system and fuel cell system control method
US6706430B2 (en) Electronic by-pass of fuel cell cathode gas to combustor
US8697303B2 (en) Optimized cathode fill strategy for fuel cell
JPS62234871A (en) Fuel cell power generating plant
JPS60177565A (en) Operation method of fuel cell power generating system
JP3208970B2 (en) Fuel cell temperature control method and apparatus
US20080131743A1 (en) Fuel Cell System and Associated Control Method
JP2001325975A (en) Fuel cell power generation apparatus and its control method
JP3513933B2 (en) Fuel cell power generator
JPH0714595A (en) Operating method of power generating device of fuel cell type
JP2615790B2 (en) Phosphoric acid fuel cell power generation system
JP2811277B2 (en) Temperature control method of gas cooled fuel cell power generator
JP2998301B2 (en) Combustor temperature control method and apparatus for fuel cell power generator
JP2814706B2 (en) Fuel cell generator
US20040146762A1 (en) Reactant supply for a fuel cell power system
JPH01176667A (en) Fuel cell power generating system
JPH0824054B2 (en) Fuel cell power plant and control method thereof
JPH04167368A (en) Fuel cell generation system
JPH03266367A (en) Fuel system control unit of fuel cell system
JPS6372072A (en) Control method of fuel cell power generating plant