JP2002025590A - Fuel cell power generating device and its control method - Google Patents

Fuel cell power generating device and its control method

Info

Publication number
JP2002025590A
JP2002025590A JP2000206683A JP2000206683A JP2002025590A JP 2002025590 A JP2002025590 A JP 2002025590A JP 2000206683 A JP2000206683 A JP 2000206683A JP 2000206683 A JP2000206683 A JP 2000206683A JP 2002025590 A JP2002025590 A JP 2002025590A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
control valve
flow control
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000206683A
Other languages
Japanese (ja)
Inventor
Shunsuke Oga
俊輔 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000206683A priority Critical patent/JP2002025590A/en
Publication of JP2002025590A publication Critical patent/JP2002025590A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell power generating device and its control method in which improvement is aimed in utilization of a waste heat using equipment by increasing the exhaust-heat recovery temperature of the fuel cell, and a cell cooling water having a predetermined temperature can be supplied to the fuel cell without unreasonable increase of the equipment capacity of a system which cools the cell cooling water. SOLUTION: The fuel cell power generating device is composed of a system piping 50 for circulating the cooling water after cooling a cell to a hot water tank 12 as a waste heat use equipment, a 1st flow rate control valve 22, a cell cooling water cooler 7 equipped downstream the control valve, a 2nd flow rate control valve 25, a by-pass line 24, a thermometer 20 equipped for supplying the cell cooling water of the predetermined temperature to a cooling plate of the fuel cell, and a control equipment 62 which adjusts the opening of the 1st flow rate control valve 22 and the 2nd flow rate control valve 25 based on the difference of the output of the thermometer and the predetermined temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池の廃熱
を外部の熱利用設備へ有効に熱供給するために、燃料電
池から受けた冷却水の熱を回収する廃熱利用設備を備え
た燃料電池発電装置とその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention includes a waste heat utilization facility for recovering heat of cooling water received from a fuel cell in order to effectively supply waste heat of a fuel cell to an external heat utilization facility. The present invention relates to a fuel cell power generator and a control method thereof.

【0002】[0002]

【従来の技術】燃料電池発電装置に組み込まれる燃料電
池としては、電解質の種類、改質原料の種類等によって
異なる種々のタイプがあるが、例えば、固体高分子膜を
電解質として用い、その運転温度が約80℃と比較的低
いタイプの燃料電池として、固体高分子電解質型燃料電
池がよく知られている。
2. Description of the Related Art There are various types of fuel cells to be incorporated in a fuel cell power generator, depending on the type of electrolyte, the type of reforming material, and the like. As a fuel cell of a relatively low temperature of about 80 ° C., a solid polymer electrolyte fuel cell is well known.

【0003】この固体高分子電解質型燃料電池は、リン
酸型燃料電池と同様に、メタンガス等の原燃料を水蒸気
改質して得られた燃料ガス中の水素と空気中の酸素と
を、燃料電池の燃料極および空気極にそれぞれ供給し、
電気化学反応に基づいて発電を行うもので、固体高分子
電解質型燃料電池を組み込んだ燃料電池発電装置におい
ても、発電時に発生する熱を冷却水を供給して取り出
し、燃料電池本体の温度を一定に維持すると共に、発生
熱を回収して、例えば廃熱利用温水器などの廃熱利用設
備により有効活用している。
[0003] As in the case of the phosphoric acid fuel cell, the solid polymer electrolyte fuel cell converts hydrogen in the fuel gas obtained by steam reforming a raw fuel such as methane gas and oxygen in the air into fuel. To the fuel and cathode of the battery,
It generates electricity based on the electrochemical reaction, and even in a fuel cell power generator incorporating a solid polymer electrolyte fuel cell, heat generated during power generation is supplied by supplying cooling water to keep the temperature of the fuel cell body constant. In addition, the generated heat is recovered and effectively used by waste heat utilization equipment such as a waste heat utilization water heater.

【0004】また、原燃料を燃料ガスへ改質するに際し
ては、原燃料に水蒸気を加え燃料改質器で触媒により改
質を促進する方法が採られているが、改質を定常的に行
なうには所要の水蒸気量を定常的に補給する必要があ
り、水蒸気の供給装置には、これに対応した水を常時補
給する必要がある。なお、使用する水は高純度の水であ
ることが必要であり、イオン交換式の水処理装置で不純
物を除去したイオン交換水が用いられるのが通例であ
る。
In reforming raw fuel into fuel gas, a method of adding steam to raw fuel to promote reforming by a catalyst in a fuel reformer has been adopted. It is necessary to constantly replenish the required amount of steam, and it is necessary to constantly replenish the water supply device with the corresponding amount of water. The water used must be high-purity water, and ion-exchanged water from which impurities have been removed by an ion-exchange type water treatment apparatus is generally used.

【0005】一方、燃料電池の電気化学反応では発電生
成水が生じ、また燃料改質器では吸熱反応である水蒸気
改質反応を定常的に行なうための触媒加熱用の燃焼に伴
い燃焼生成水が生じるが、これらの生成水は通常の水道
水に比べて不純物が少なく、これらの生成水を原水とし
て用いれば、水処理装置の負荷を軽減することができる
ため、回収水タンクおよび排ガス冷却器を付加して、こ
れらの生成水を回収する方法が採られている。
On the other hand, in the electrochemical reaction of the fuel cell, water generated by power generation is generated, and in the fuel reformer, the water generated by combustion is accompanied by combustion for heating the catalyst to perform a steam reforming reaction, which is an endothermic reaction, constantly. However, these generated waters have less impurities than ordinary tap water, and if these generated waters are used as raw water, the load on the water treatment equipment can be reduced. In addition, a method of collecting these generated waters is employed.

【0006】図2は従来のこの種の廃熱利用設備を備え
た固体高分子電解質型燃料電池発電装置の、主に廃熱回
収系および生成水回収系に着目した基本的な系統図であ
る。
FIG. 2 is a basic system diagram of a conventional solid polymer electrolyte fuel cell power generator equipped with this type of waste heat utilization equipment, mainly focusing on a waste heat recovery system and a generated water recovery system. .

【0007】図2において、模式的に示した燃料電池1
は、燃料極2と空気極3とを有する単位セルを複数個重
ねる毎に冷却管または冷却溝を有する冷却板4を配設,
積層することにより構成されている。
In FIG. 2, a fuel cell 1 schematically shown
Is provided with a cooling plate 4 having a cooling pipe or a cooling groove every time a plurality of unit cells having a fuel electrode 2 and an air electrode 3 are stacked,
It is configured by stacking.

【0008】燃料電池の冷却水としては、純水タンク5
に貯液された純水が用いられ、電池冷却水循環ポンプ6
により、電池冷却水循環系配管40を通流して燃料電池
へ供給される。燃料電池から出た冷却水は、これを冷却
するために電池冷却水循環系配管40に設けられた電池
冷却水冷却器7とこれをバイパスするバイパスライン
8、および両者の流量割合を調節する三方調節弁9によ
って、所定温度、例えば75℃に冷却維持される。この
調節制御は、純水タンク5内に設けた温度計20の出力
値と所定の温度設定値との差に基づいて前記三方調節弁
9の開度を調節することにより行われる。
[0008] As a cooling water for the fuel cell, a pure water tank 5 is used.
The pure water stored in the battery cooling water circulation pump 6 is used.
Accordingly, the fuel is supplied to the fuel cell through the cell cooling water circulation system pipe 40. The cooling water discharged from the fuel cell is cooled by a battery cooling water cooler 7 provided in a battery cooling water circulation system pipe 40, a bypass line 8 bypassing the battery cooling water cooler 7, and a three-way control for adjusting the flow rate ratio between the two. The valve 9 keeps cooling to a predetermined temperature, for example, 75 ° C. This adjustment control is performed by adjusting the opening of the three-way control valve 9 based on the difference between the output value of the thermometer 20 provided in the pure water tank 5 and a predetermined temperature set value.

【0009】一方、電池冷却水冷却器7へは、燃料電池
発電装置における回収水を供給して電池冷却水を冷却す
る。回収水タンク10の回収水は、回収水ポンプ11に
より電池冷却水冷却器7へ供給され、その後、燃料電池
発電装置パッケージの外部に取り出され、廃熱利用設備
としての貯湯槽12へ供給され、ここで燃料電池の廃熱
を供給して給湯等に利用する。
On the other hand, the battery cooling water cooler 7 is supplied with the recovered water in the fuel cell power generator to cool the battery cooling water. The recovered water in the recovered water tank 10 is supplied to the battery cooling water cooler 7 by the recovered water pump 11, then taken out of the fuel cell power generator package, and supplied to the hot water storage tank 12 as waste heat utilization equipment. Here, the waste heat of the fuel cell is supplied and used for hot water supply or the like.

【0010】貯湯槽12内の温水温度が十分に高く、燃
料電池からの廃熱がここへ捨てきれない場合には、その
下流にある回収水冷却器13、回収水冷却ファン14に
て冷却する。その後、回収水は排ガス冷却器15へと供
給され、燃料電池の空気極からの排ガスと、図示しない
燃料改質器からの燃焼排ガスとを、回収水に直接接触さ
せてこれら排ガスを冷却し、生成水を回収する。31は
排空気出口配管、131は回収水冷却器出口配管を示
す。
If the temperature of the hot water in the hot water storage tank 12 is sufficiently high and the waste heat from the fuel cell cannot be discarded here, it is cooled by a recovered water cooler 13 and a recovered water cooling fan 14 located downstream thereof. . Thereafter, the recovered water is supplied to the exhaust gas cooler 15, and the exhaust gas from the air electrode of the fuel cell and the combustion exhaust gas from the fuel reformer (not shown) are brought into direct contact with the recovered water to cool these exhaust gases. Collect the generated water. 31 is an exhaust air outlet pipe, and 131 is a recovered water cooler outlet pipe.

【0011】また、電池冷却水循環ポンプ6の出口側に
は改質用の水蒸気となる純水の分岐ライン16を設け、
ここから図示しない燃料改質器へと定常的に改質用水を
供給する。従って、その分は常時補給する必要がある
が、これは回収水から、水処理装置17を介して補給さ
れ、回収水が不足する場合には、補給水供給ライン17
から供給される。
At the outlet of the battery cooling water circulating pump 6, there is provided a branch line 16 of pure water which becomes steam for reforming.
From there, reforming water is constantly supplied to a fuel reformer (not shown). Therefore, it is necessary to constantly replenish the water, but this is replenished from the recovered water via the water treatment device 17.
Supplied from

【0012】固体高分子電解質型燃料電池の運転温度は
約80℃であるため、この温度を維持するために冷却水
の燃料電池出口温度も約80℃となる。一方、排ガスを
回収し、外部からの補給水をできる限りゼロとするため
には、回収水冷却器13から出た回収水の温度を45℃
以下に下げる必要があるため、その結果として回収水の
貯湯槽入口温度は約50℃となる。
Since the operating temperature of the solid polymer electrolyte fuel cell is about 80 ° C., the fuel cell outlet temperature of the cooling water is also about 80 ° C. in order to maintain this temperature. On the other hand, in order to collect the exhaust gas and reduce the amount of external make-up water as much as possible, the temperature of the collected water discharged from the collected water cooler 13 is set to 45 ° C.
Since it is necessary to lower the temperature to below, as a result, the inlet temperature of the hot water storage tank becomes about 50 ° C.

【0013】[0013]

【発明が解決しようとする課題】前述のような従来の廃
熱利用設備を備えた固体高分子電解質型燃料電池発電装
置においては、下記のような問題点があった。
However, the solid polymer electrolyte fuel cell power generator equipped with the above-mentioned conventional waste heat utilization equipment has the following problems.

【0014】一般に、廃熱利用設備の利用効率や使い勝
手などの観点から、廃熱回収温度は、できる限り高い方
が望ましく、例えば、給湯を目的とした貯湯槽内の温水
温度は60〜80℃とすることが望ましい。従来の燃料
電池発電装置において、貯湯槽へ循環される回収水の温
度は、前述のように約50℃であり、所望の温度に比べ
てかなり低いという難点があった。この循環回収水の温
度は、電池冷却水を所定温度例えば75℃に冷却するた
めだけならば、70℃程度にまで上げて運転することが
できるが、その場合には結果として、電池冷却水を冷却
する系統の機器の容量を大きくする必要が生ずる。即
ち、前記図2のシステムの場合には、電池冷却水冷却器
7および/または回収水冷却器13を、燃料電池発電装
置の大きさに対して不適当なまでにその容量を大きくす
る必要があり、さもなければ、排ガス冷却器15への戻
り温度が高くなり、生成水の回収量が不十分となって外
部からの補給水が入り、その結果、循環回収水の水質が
悪化して水処理装置17の寿命が短くなるという問題が
あった。
In general, it is desirable that the waste heat recovery temperature be as high as possible from the viewpoint of utilization efficiency and usability of the waste heat utilization equipment. For example, the temperature of hot water in a hot water storage tank for hot water supply is 60 to 80 ° C. It is desirable that In the conventional fuel cell power generator, the temperature of the recovered water circulated to the hot water storage tank is about 50 ° C. as described above, and has a drawback that it is considerably lower than the desired temperature. The temperature of the circulating recovered water can be raised to about 70 ° C. only for cooling the battery cooling water to a predetermined temperature, for example, 75 ° C., but in that case, as a result, the battery cooling water is It becomes necessary to increase the capacity of the equipment of the cooling system. That is, in the case of the system shown in FIG. 2, it is necessary to increase the capacity of the battery cooling water cooler 7 and / or the recovered water cooler 13 to an extent unsuitable for the size of the fuel cell power generator. Yes, or otherwise, the return temperature to the exhaust gas cooler 15 will be high, and the amount of produced water recovered will be insufficient, and replenishment water will enter from outside. There is a problem that the life of the processing device 17 is shortened.

【0015】この発明は、上記問題点を解消するために
なされたもので、この発明の課題は、燃料電池の廃熱回
収温度を高くして廃熱利用設備の利用価値の向上を図
り、かつ電池冷却水を冷却する系統の機器容量の不適当
な増大なしに、所定温度の電池冷却水を燃料電池へ供給
可能な廃熱利用設備を備えた燃料電池発電装置とその制
御方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to increase the waste heat recovery temperature of a fuel cell to improve the utility value of waste heat utilization equipment, and Provided is a fuel cell power generation apparatus having a waste heat utilization facility capable of supplying battery cooling water at a predetermined temperature to a fuel cell without inappropriately increasing the capacity of a system for cooling the battery cooling water, and a control method therefor. It is in.

【0016】[0016]

【課題を解決するための手段】前述の課題を解決するた
めに、この発明は、冷却板内を流れる冷却水により発生
熱を除去される燃料電池と、前記冷却板から排出された
冷却水の熱を廃熱利用設備に供給する燃料電池発電装置
において、冷却板へ冷却水を循環させる電池冷却水循環
系配管と、電池冷却後の冷却水を前記電池冷却水循環系
配管の第1分岐点から分流して廃熱利用設備を通流させ
た後、電池冷却水循環系配管の第1合流点に還流する廃
熱利用設備循環系配管と、電池冷却水循環系配管の前記
第1合流点よりも下流に設けた電池冷却水冷却器と、前
記第1合流点と電池冷却水冷却器との間の第2分岐点か
ら冷却水を分流し前記電池冷却水冷却器の下流の第2合
流点に還流するバイパスラインと、前記第1分岐点若し
くは前記第1合流点に設けた第1の流量調節弁、または
前記廃熱利用設備循環系配管に設けた第1の流量調節弁
のいずれかと、前記第2分岐点若しくは前記第2合流点
に設けた第2の流量調節弁、または第2分岐点と第2合
流点との間の電池冷却水循環系配管に設けた第2の流量
調節弁のいずれかと、前記冷却板に供給する冷却水温度
を測定する温度計と、前記温度計の出力値と所定の温度
設定値との差に基いて前記第1の流量調節弁の開度と前
記第2の流量調節弁の開度とを調節する制御装置とを備
えたものとする(請求項1の発明)。
In order to solve the above-mentioned problems, the present invention provides a fuel cell for removing generated heat by cooling water flowing through a cooling plate, and a cooling water discharged from the cooling plate. In a fuel cell power generator for supplying heat to waste heat utilization equipment, a battery cooling water circulation pipe for circulating cooling water to a cooling plate, and cooling water after battery cooling are separated from a first branch point of the battery cooling water circulation pipe. After flowing and passing through the waste heat utilization equipment, the waste heat utilization equipment circulation pipe returning to the first junction of the battery cooling water circulation pipe, and the downstream of the first junction of the battery cooling water circulation pipe A cooling water cooler provided, and a cooling water diverted from a second branch point between the first junction and the battery cooling water cooler and returned to a second junction downstream of the battery cooling water cooler. A bypass line and the first junction or the first junction And the first flow control valve provided in the waste heat utilization equipment circulation system piping, and the second flow rate provided in the second branch point or the second junction point A control valve, or one of a second flow rate control valve provided in a battery cooling water circulation system pipe between a second branch point and a second junction, and a thermometer for measuring a temperature of cooling water supplied to the cooling plate. A control device that adjusts an opening of the first flow control valve and an opening of the second flow control valve based on a difference between an output value of the thermometer and a predetermined temperature set value. (The invention of claim 1).

【0017】上記構成によれば、後に詳述するように、
電池冷却水を冷却する系統の機器の容量を大きくするな
しに、廃熱利用設備に対して約80℃の電池冷却水を供
給することが可能となり、廃熱利用設備の利用価値の向
上を図ることができる。
According to the above configuration, as described later in detail,
It is possible to supply battery cooling water at approximately 80 ° C to the waste heat utilization equipment without increasing the capacity of the system equipment that cools the battery cooling water, thereby improving the use value of the waste heat utilization equipment. be able to.

【0018】なお、上記請求項1の発明の適用は、前述
の図2のシステムに特定されない。例えば、廃熱利用設
備としては給湯に限らず暖房機器であってもよいし、ま
た、前記電池冷却水冷却器7へ通流する電池冷却水の冷
却冷媒としては、前記回収水に代えて、一般の冷却水や
異なる冷媒を用いて、この冷媒を、第2の廃熱利用設備
に供給して別途熱回収することもできる。
The application of the first aspect of the present invention is not limited to the system shown in FIG. For example, the waste heat utilization equipment is not limited to hot water supply, but may be a heating device.Also, instead of the recovered water, the cooling water for cooling the battery cooling water flowing to the battery cooling water cooler 7 may be: Using ordinary cooling water or a different refrigerant, the refrigerant can be supplied to the second waste heat utilization facility to separately recover heat.

【0019】さらに、この発明の適用は、固体高分子電
解質型燃料電池発電装置に限定されない。例えば、リン
酸型燃料電池発電装置において、その通常の運転温度約
170℃レベルでの廃熱回収と、比較的低温度での廃熱
回収とを併用する場合には、この発明が適用できる。
Further, the application of the present invention is not limited to a solid polymer electrolyte fuel cell power generator. For example, the present invention can be applied to a case where the waste heat recovery at a normal operating temperature of about 170 ° C. and the waste heat recovery at a relatively low temperature are used in combination in a phosphoric acid fuel cell power generator.

【0020】上記請求項1の発明と前述の図2のシステ
ムの一部とを組み合わせた請求項1の発明の実施態様と
しては、請求項2ないし5の発明が好適である。即ち、
請求項1記載の燃料電池発電装置において、前記廃熱利
用設備は、温水を供給するための貯湯槽とする(請求項
2の発明)。これにより、60℃以上の給湯が可能とな
る。
As an embodiment of the first aspect of the present invention in which the first aspect of the present invention is combined with a part of the system shown in FIG. 2, the inventions of the second to fifth aspects are preferable. That is,
In the fuel cell power generator according to claim 1, the waste heat utilization equipment is a hot water tank for supplying hot water (the invention of claim 2). This makes it possible to supply hot water of 60 ° C. or higher.

【0021】また、請求項3の発明のように、請求項1
または2記載の燃料電池発電装置において、前記電池冷
却水循環系配管に純水タンクを設け、この純水タンクか
ら冷却水を冷却板へ通流する構成とする。さらに、請求
項4の発明のように、請求項1ないし3のいずれかに記
載の燃料電池発電装置において、前記電池冷却水冷却器
へ通流する電池冷却水の冷却冷媒は、燃料電池発電装置
における回収水とし、前記冷却冷媒としての回収水を循
環するための冷媒出口配管および冷媒入口配管と、この
両配管の間に設けた回収水冷却器および回収水タンク
と、前記冷媒入口配管と純水タンクとの間に設けた水処
理装置とを備えたものとすることができる。上記によ
り、熱併給の燃料電池発電装置システム全体として、合
理的かつ熱効率の高いシステムとすることができる。
Also, as in the invention of claim 3, claim 1
3. The fuel cell power generator according to 2, wherein a pure water tank is provided in the battery cooling water circulation pipe, and cooling water flows from the pure water tank to the cooling plate. Furthermore, as in the invention of claim 4, in the fuel cell power generator according to any one of claims 1 to 3, the cooling refrigerant of the battery cooling water flowing to the battery cooling water cooler is a fuel cell power generator. A refrigerant outlet pipe and a refrigerant inlet pipe for circulating the recovered water as the cooling refrigerant, a recovered water cooler and a recovered water tank provided between the two pipes, And a water treatment device provided between the water treatment device and the water tank. As described above, a system that is rational and has high thermal efficiency can be achieved as a whole of the cogeneration fuel cell power generation system.

【0022】また、請求項5の発明のように、請求項3
または4記載の燃料電池発電装置において、前記温度計
は、純水タンク内の冷却水温度を測定するものとするこ
とにより、回収水温度が変動した場合など外乱があって
も、純水タンク内の温度変化はそれ程変動しないので、
安定した前記調節弁の制御が可能となる。
Also, as in the invention of claim 5, claim 3
Or in the fuel cell power generator according to 4, wherein the thermometer measures the temperature of the cooling water in the pure water tank, so that the temperature in the pure water tank can be maintained even when there is disturbance such as a change in the temperature of the recovered water. Temperature change does not fluctuate so much,
Stable control of the control valve becomes possible.

【0023】さらに、上記発電装置の制御方法として
は、請求項6の方法が好適である。即ち、請求項1ない
し5のいずれかに記載の燃料電池発電装置の制御方法で
あって、所定温度の冷却水を冷却板へ供給するに際し、
第1の流量調節弁の開度調節は、第2の流量調節弁の開
度調節より優先し、第2の流量調節弁をバイパスライン
へ冷却水の全量が流れる状態に固定して行い、第1の流
量調節弁を廃熱利用設備へ冷却水の全量が流れる状態に
調節した状態においてなお、冷却水の温度が所定の設定
温度を超える場合には、冷却水を冷却するために、第2
の流量調節弁の開度調節を開始することとする。この方
法の具体的内容や作用については、後に詳述する。
Further, as a control method of the power generation device, the method of claim 6 is preferable. That is, in the control method of the fuel cell power generator according to any one of claims 1 to 5, when supplying cooling water at a predetermined temperature to the cooling plate,
The adjustment of the opening of the first flow control valve takes precedence over the adjustment of the opening of the second flow control valve, and the second flow control valve is fixed to a state in which the entire amount of the cooling water flows to the bypass line. If the temperature of the cooling water exceeds a predetermined set temperature in a state where the flow rate control valve of the first method is adjusted so that the entire amount of the cooling water flows to the waste heat utilization facility, the second cooling water is cooled.
The opening adjustment of the flow control valve is started. The specific contents and operation of this method will be described later in detail.

【0024】[0024]

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下にのべる。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1は、この発明に関わる実施例を示す系
統図であり、図2と同じ機能を有する部材には同一の番
号を付して説明を省略する。図1と図2との相違点は、
図1における冷媒出口配管71を、回収水冷却器13に
直結した点と、電池冷却後の冷却水を、電池冷却水循環
系配管40の第1分岐点(C点)から分流して廃熱利用
設備としての貯湯槽12内を通流させた後、電池冷却水
循環系配管40の第1合流点(D点)に設けた第1の流
量調節弁(三方調節弁)22に還流する廃熱利用設備循
環系配管50を設け、さらに以下の構成を備えた点であ
る。
FIG. 1 is a system diagram showing an embodiment according to the present invention. Members having the same functions as those in FIG. The difference between FIG. 1 and FIG.
1 and the cooling water after battery cooling is diverted from the first branch point (point C) of the battery cooling water circulation system piping 40 to utilize waste heat. After flowing through the hot water storage tank 12 as a facility, waste heat is returned to a first flow control valve (three-way control valve) 22 provided at a first junction (point D) of the battery cooling water circulation system piping 40. The point is that the equipment circulation system piping 50 is provided, and the following configuration is further provided.

【0026】即ち、電池冷却水循環系配管40の前記第
1合流点(D点)よりも下流に設けた電池冷却水冷却器
7と、第1合流点(D点)と電池冷却水冷却器7との間
の第2分岐点(E点)から冷却水を分流し電池冷却水冷
却器7の下流の第2合流点(H点)に設けた第2の流量
調節弁(三方調節弁)25に還流するバイパスライン2
4と、純水タンク5内に設けた温度計20と、温度計の
出力値と所定の温度設定値との差に基いて第1の流量調
節弁22の開度と第2の流量調節弁25の開度とを調節
する制御装置62とを設ける。
That is, the battery cooling water cooler 7 provided downstream of the first junction (point D) of the battery cooling water circulation system pipe 40, the first junction (point D) and the battery cooling water cooler 7 And a second flow control valve (three-way control valve) 25 provided at a second junction (point H) downstream of the battery cooling water cooler 7 from a second branch point (point E). Bypass line 2 that returns to
4, a thermometer 20 provided in the pure water tank 5, an opening of the first flow control valve 22 and a second flow control valve based on a difference between an output value of the thermometer and a predetermined temperature set value. And a control unit 62 for adjusting the opening degree of the control unit 25.

【0027】なお、前記各流量調節弁を設ける位置は、
上記限定されるものではなく、また、位置によっては三
方調節弁でなくてもよい。例えば、図1に示す第1の流
量調節弁22に代えて、電池冷却水循環系配管の第1分
岐点(図1のC点)に三方調節弁を設ける、または廃熱
利用設備循環系配管50の例えばA点もしくはB点に2
方向の流量調節弁を設けることにより、同一の機能が得
られる。さらに、図1に示す第2の流量調節弁25に代
えて、電池冷却水循環系配管の第2分岐点(図1のE
点)に三方調節弁を設ける、または第2分岐点(E点)
と第2合流点(H点)との間の電池冷却水循環系配管の
F点もしくはG点に2方向の流量調節弁を設けることに
より、同一の機能が得られる。
The positions where the flow rate control valves are provided are as follows:
The present invention is not limited to the above, and may not be a three-way control valve depending on the position. For example, instead of the first flow control valve 22 shown in FIG. 1, a three-way control valve is provided at the first branch point (point C in FIG. 1) of the battery cooling water circulation system piping, or the waste heat utilization equipment circulation system piping 50 At point A or point B
By providing a directional flow control valve, the same function is obtained. Further, instead of the second flow control valve 25 shown in FIG. 1, a second branch point (E in FIG. 1) of the battery cooling water circulation system piping is used.
A three-way control valve is provided at point (2) or at the second branch point (point E).
The same function can be obtained by providing a two-way flow control valve at point F or point G of the battery cooling water circulating system pipe between the second junction (point H).

【0028】上記構成において、所定温度例えば75℃
の電池冷却水を、燃料電池の冷却板へ供給する場合に
は、請求項6の発明のように各流量調節弁を制御する。
即ち、第1の流量調節弁(三方調節弁)22の開度調節
は、第2の流量調節弁(三方調節弁)25の開度調節よ
り優先し、まず第2の流量調節弁25をバイパスライン
へ冷却水の全量が流れる状態に固定して行い、第1の流
量調節弁22を廃熱利用設備へ冷却水の全量が流れる状
態に調節した状態においてなお、冷却水の温度が所定の
設定温度75℃を超える場合には、冷却水を冷却するた
めに、第2の流量調節弁の開度調節を開始する。このよ
うな制御を、スプリット制御と称する。
In the above configuration, a predetermined temperature, for example, 75 ° C.
When the cell cooling water is supplied to the cooling plate of the fuel cell, each flow control valve is controlled as in the invention of claim 6.
That is, the opening adjustment of the first flow control valve (three-way control valve) 22 takes precedence over the opening adjustment of the second flow control valve (three-way control valve) 25, and first, the second flow control valve 25 is bypassed. The cooling water temperature is set to a predetermined value in a state in which the first flow rate control valve 22 is adjusted to a state in which the entire amount of cooling water flows to the waste heat utilization facility by fixing the entire amount of the cooling water to the line. When the temperature exceeds 75 ° C., the opening adjustment of the second flow control valve is started to cool the cooling water. Such control is referred to as split control.

【0029】上記スプリット制御について、数値例を示
す具体的内容と作用等につき、以下に詳述する。
The above-described split control will be described in detail below with respect to specific contents showing numerical examples and operations.

【0030】純水タンクの温度を75℃に保つ制御例に
ついて、以下に説明する。まず、燃料電池が発電してい
ない起動時においては、図示しない純水タンク5内の電
気ヒータにより60℃位迄電池冷却水を昇温した後に、
電池冷却水循環ポンプ6を駆動する。この時、純水タン
ク内の水はまだ温度が十分低いので、冷却する必要はな
く、第1の流量調節弁22および第2の流量調節弁25
ともに全量が電池冷却水循環系配管40およびバイパス
ライン24を流れるような開度となっている。ここで
は、この状態を開度0%と呼ぶ。
An example of control for keeping the temperature of the pure water tank at 75 ° C. will be described below. First, at the time of startup when the fuel cell is not generating power, the temperature of the battery cooling water is raised to about 60 ° C. by an electric heater in the pure water tank 5 (not shown).
The battery cooling water circulation pump 6 is driven. At this time, since the temperature of the water in the pure water tank is still sufficiently low, there is no need to cool the water, and the first flow control valve 22 and the second flow control valve 25 are not required.
In both cases, the opening degree is such that the entire amount flows through the battery cooling water circulation system piping 40 and the bypass line 24. Here, this state is called an opening degree of 0%.

【0031】その後、燃料電池の発電開始に伴い、燃料
電池に60℃で入った冷却水は、60℃+αとなって、
徐々に純水タンクを加熱していく。この場合、制御装置
62(例えば、PID制御装置)が、設定温度(75℃)
と純水タンク内の水温との差を演算して、この差がゼ
ロ、すなわち純水タンクの温度が75℃となるように、
第1の流量調節弁22の開度のみを制御する。
Then, with the start of power generation by the fuel cell, the cooling water entering the fuel cell at 60 ° C. becomes 60 ° C. + α,
Heat the pure water tank gradually. In this case, the control device 62 (for example, a PID control device) sets the set temperature (75 ° C.)
And the difference between the temperature of the pure water tank and the temperature of the pure water tank are calculated so that the difference is zero, that is, the temperature of the pure water tank is 75 ° C.
Only the opening of the first flow control valve 22 is controlled.

【0032】やがて、燃料電池の出力が大きくなった
り、外の貯湯槽の温度が高かったりして、第1の流量調
節弁22がすべて貯湯槽12側に流れるような開度にな
っても純水タンクの温度が75℃に保てなくなった時点
で(75℃以上になった時点で)始めて、第2の流量調節
弁25を開け、電池冷却水冷却器7により、電池冷却水
の冷却を開始する。
Eventually, even if the output of the fuel cell becomes large or the temperature of the outside hot water storage tank becomes high, the first flow rate control valve 22 becomes fully open to the hot water storage tank 12 side. Only when the temperature of the water tank can no longer be maintained at 75 ° C. (when the temperature becomes 75 ° C. or higher), the second flow control valve 25 is opened, and the cooling of the battery cooling water is performed by the battery cooling water cooler 7. Start.

【0033】第1の流量調節弁22がすべて貯湯槽側に
流れるような開度で、第2の流量調節弁25がすべてバ
イパスラインを流れるような開度にあることを、ここで
は開度50%と呼ぶ。そして、第1の流量調節弁および
第2の流量調節弁ともに、電池冷却水循環系配管および
バイパスラインとは反対側に流れるような開度にある場
合に、ここでは開度100%と呼ぶ。
In this case, it is assumed that the first flow rate control valve 22 has such an opening degree as to flow to the hot water storage tank side and the second flow rate control valve 25 has such an opening degree as to entirely flow through the bypass line. Call it%. When the first flow rate control valve and the second flow rate control valve both have an opening that flows to the opposite side to the battery cooling water circulation system piping and the bypass line, the opening is referred to as 100% here.

【0034】上記開度0%,開度50%および開度10
0%の説明から明らかなように、第1の流量調節弁と第
2の流量調節弁は、両方が同時に中間開度に調節された
状態となることは無く、どちらかが全開または全閉の状
態にあって、もう一方の弁が開度制御されている。この
様な制御方法をスプリット制御と呼ぶ。
The opening is 0%, the opening is 50% and the opening is 10
As is clear from the description of 0%, the first flow control valve and the second flow control valve are not both simultaneously adjusted to the intermediate opening degree, and either of the first and second flow control valves is not fully opened or fully closed. In this state, the opening of the other valve is controlled. Such a control method is called split control.

【0035】図1のシステム系統図において、上記純水
タンク5内の水温が75℃において、他の主な個所にお
ける温度の一例を示すと下記のとおりである。
In the system diagram of FIG. 1, when the water temperature in the pure water tank 5 is 75 ° C., an example of the temperature at other main points is as follows.

【0036】・燃料電池出口温度:80℃ ・貯湯槽内水温:60℃ ・廃熱利用設備循環系配管のA点温度:80℃ ・廃熱利用設備循環系配管のB点温度:65℃ ・冷媒出口配管温度:50℃ ・冷媒入口配管温度:35℃ ・回収水冷却器出口配管温度:45℃ 上記によれば、貯湯槽12へは約80℃の温水を供給で
き、なおかつ電池冷却水を冷却するための冷媒としての
回収水の温度は、回収水冷却器出口において、45℃以
下にすることができる。従って、燃料電池の廃熱回収温
度を高くすることができるとともに、電池冷却水を冷却
する系統の機器容量の不適当な増大なしに、所定温度7
5℃の電池冷却水を燃料電池へ供給できる。
Fuel cell outlet temperature: 80 ° C Water temperature in hot water tank: 60 ° C Temperature at point A of waste heat utilization equipment circulation system piping: 80 ° C Temperature at point B of waste heat utilization equipment circulation system piping: 65 ° C Refrigerant outlet pipe temperature: 50 ° C. Refrigerant inlet pipe temperature: 35 ° C. Recovered water cooler outlet pipe temperature: 45 ° C. According to the above, hot water of about 80 ° C. can be supplied to hot water storage tank 12 and battery cooling water is supplied. The temperature of the recovered water as a cooling medium at the outlet of the recovered water cooler can be 45 ° C. or lower. Therefore, the waste heat recovery temperature of the fuel cell can be increased, and the predetermined temperature 7 can be maintained without inappropriately increasing the capacity of the system for cooling the battery cooling water.
5 ° C. cell cooling water can be supplied to the fuel cell.

【0037】さらに、上記回収水の温度が十分に低く抑
えられるので、生成水を回収して水の自立ができ、その
分の水道代金が不要となり、かつ水処理装置の寿命が長
い経済的な運転が可能となる。
Further, since the temperature of the recovered water can be kept sufficiently low, the generated water can be recovered and the water can be self-sustained. Driving becomes possible.

【0038】[0038]

【発明の効果】上記のとおり、この発明によれば、冷却
板内を流れる冷却水により発生熱を除去される燃料電池
と、前記冷却板から排出された冷却水の熱を廃熱利用設
備に供給する燃料電池発電装置において、冷却板へ冷却
水を循環させる電池冷却水循環系配管と、電池冷却後の
冷却水を前記電池冷却水循環系配管の第1分岐点から分
流して廃熱利用設備を通流させた後、電池冷却水循環系
配管の第1合流点に還流する廃熱利用設備循環系配管
と、電池冷却水循環系配管の前記第1合流点よりも下流
に設けた電池冷却水冷却器と、前記第1合流点と電池冷
却水冷却器との間の第2分岐点から冷却水を分流し前記
電池冷却水冷却器の下流の第2合流点に還流するバイパ
スラインと、前記第1分岐点若しくは前記第1合流点に
設けた第1の流量調節弁、または前記廃熱利用設備循環
系配管に設けた第1の流量調節弁のいずれかと、前記第
2分岐点若しくは前記第2合流点に設けた第2の流量調
節弁、または第2分岐点と第2合流点との間の電池冷却
水循環系配管に設けた第2の流量調節弁のいずれかと、
前記冷却板に供給する冷却水温度を測定する温度計と、
前記温度計の出力値と所定の温度設定値との差に基いて
前記第1の流量調節弁の開度と前記第2の流量調節弁の
開度とを調節する制御装置とを備えたことにより、燃料
電池の廃熱回収温度を高くして廃熱利用設備の利用価値
の向上を図り、かつ電池冷却水を冷却する系統の機器容
量の不適当な増大なしに、所定温度の電池冷却水を燃料
電池へ供給可能な廃熱利用設備を備えた燃料電池発電装
置とその制御方法を提供することができる。
As described above, according to the present invention, the heat generated by the cooling water flowing through the cooling plate is removed from the fuel cell, and the heat of the cooling water discharged from the cooling plate is transferred to the waste heat utilization equipment. In the fuel cell power supply to be supplied, a battery cooling water circulation pipe for circulating cooling water to the cooling plate, and cooling water after battery cooling is diverted from a first branch point of the battery cooling water circulation pipe to provide a waste heat utilization facility. A waste heat utilization equipment circulation pipe that returns to a first junction of the battery cooling water circulation pipe after flowing, and a battery cooling water cooler provided downstream of the first junction of the battery cooling water circulation pipe A bypass line for diverting cooling water from a second branch point between the first junction and the battery cooling water cooler and returning to a second junction downstream of the battery cooling water cooler; A first flow control provided at a branch point or the first junction; A valve or a first flow control valve provided in the waste heat utilization equipment circulation system piping, and a second flow control valve provided in the second branch point or the second junction, or a second branch point Any one of the second flow control valves provided in the battery cooling water circulation system pipe between the first and second junctions,
A thermometer for measuring the temperature of cooling water supplied to the cooling plate,
A control device that adjusts an opening of the first flow control valve and an opening of the second flow control valve based on a difference between an output value of the thermometer and a predetermined temperature set value. As a result, the waste heat recovery temperature of the fuel cell is raised to improve the utility value of the waste heat utilization equipment, and the battery cooling water at a predetermined temperature is maintained without inappropriately increasing the capacity of the system for cooling the battery cooling water. Fuel cell power generation apparatus having a waste heat utilization facility capable of supplying the fuel cell to the fuel cell, and a control method therefor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の燃料電池発電装置の実施例を示す系
統図
FIG. 1 is a system diagram showing an embodiment of a fuel cell power generator according to the present invention.

【図2】従来の燃料電池発電装置の一例を示す系統図FIG. 2 is a system diagram showing an example of a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

1:燃料電池、5:純水タンク、7:電池冷却水冷却
器、10:回収水タンク、12:貯湯槽、13:回収水
冷却器、17:水処理装置、20:温度計、24:バイ
パスライン、22:第1の流量調節弁、25:第2の流
量調節弁、40:電池冷却水循環系配管、50:廃熱利
用設備循環系配管、62:制御装置、71:冷媒出口配
管、72:冷媒入口配管。
1: fuel cell, 5: pure water tank, 7: battery cooling water cooler, 10: recovered water tank, 12: hot water storage tank, 13: recovered water cooler, 17: water treatment device, 20: thermometer, 24: Bypass line, 22: first flow control valve, 25: second flow control valve, 40: battery cooling water circulation system piping, 50: waste heat utilization equipment circulation system piping, 62: control device, 71: refrigerant outlet piping, 72: refrigerant inlet pipe.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷却板内を流れる冷却水により発生熱を
除去される燃料電池と、前記冷却板から排出された冷却
水の熱を廃熱利用設備に供給する燃料電池発電装置にお
いて、 冷却板へ冷却水を循環させる電池冷却水循環系配管と、 電池冷却後の冷却水を前記電池冷却水循環系配管の第1
分岐点から分流して廃熱利用設備を通流させた後、電池
冷却水循環系配管の第1合流点に還流する廃熱利用設備
循環系配管と、 電池冷却水循環系配管の前記第1合流点よりも下流に設
けた電池冷却水冷却器と、 前記第1合流点と電池冷却水冷却器との間の第2分岐点
から冷却水を分流し前記電池冷却水冷却器の下流の第2
合流点に還流するバイパスラインと、 前記第1分岐点若しくは前記第1合流点に設けた第1の
流量調節弁、または前記廃熱利用設備循環系配管に設け
た第1の流量調節弁のいずれかと、 前記第2分岐点若しくは前記第2合流点に設けた第2の
流量調節弁、または第2分岐点と第2合流点との間の電
池冷却水循環系配管に設けた第2の流量調節弁のいずれ
かと、 前記冷却板に供給する冷却水温度を測定する温度計と、 前記温度計の出力値と所定の温度設定値との差に基いて
前記第1の流量調節弁の開度と前記第2の流量調節弁の
開度とを調節する制御装置と、を備えたことを特徴とす
る燃料電池発電装置。
1. A fuel cell, wherein heat generated by cooling water flowing through a cooling plate is removed, and a fuel cell power generator for supplying heat of cooling water discharged from the cooling plate to a waste heat utilization facility, A battery cooling water circulating pipe for circulating cooling water to the battery cooling water circulating pipe;
A waste heat utilization facility circulating pipe that recirculates to a first junction of the battery cooling water circulation pipe after diverting from the branch point and flowing through the waste heat utilization facility; and the first junction of the battery cooling water circulation pipe A battery cooling water cooler provided further downstream than the battery cooling water cooler; and a second branch downstream of the battery cooling water cooler that divides cooling water from a second branch point between the first junction and the battery cooling water cooler.
A bypass line that returns to the junction, a first flow control valve provided at the first branch point or the first junction, or a first flow control valve provided at the waste heat utilization equipment circulating system piping A second flow control valve provided at the second branch point or the second junction, or a second flow control valve provided in a battery cooling water circulation system pipe between the second branch point and the second junction. One of the valves, a thermometer for measuring the temperature of cooling water supplied to the cooling plate, and an opening degree of the first flow control valve based on a difference between an output value of the thermometer and a predetermined temperature set value. A control device for adjusting the opening degree of the second flow control valve.
【請求項2】 請求項1記載の燃料電池発電装置におい
て、前記廃熱利用設備は、温水を供給するための貯湯槽
であることを特徴とする燃料電池発電装置。
2. The fuel cell power generator according to claim 1, wherein the waste heat utilization equipment is a hot water tank for supplying hot water.
【請求項3】 請求項1または2記載の燃料電池発電装
置において、前記電池冷却水循環系配管に純水タンクを
設け、この純水タンクから冷却水を冷却板へ通流する構
成としたことを特徴とする燃料電池発電装置。
3. The fuel cell power generator according to claim 1, wherein a pure water tank is provided in the battery cooling water circulation pipe, and cooling water flows from the pure water tank to the cooling plate. Characteristic fuel cell power generator.
【請求項4】 請求項1ないし3のいずれかに記載の燃
料電池発電装置において、前記電池冷却水冷却器へ通流
する電池冷却水の冷却冷媒は、燃料電池発電装置におけ
る回収水とし、前記冷却冷媒としての回収水を循環する
ための冷媒出口配管および冷媒入口配管と、この両配管
の間に設けた回収水冷却器および回収水タンクと、前記
冷媒入口配管と純水タンクとの間に設けた水処理装置と
を備えたことを特徴とする燃料電池発電装置。
4. The fuel cell power generator according to claim 1, wherein a cooling refrigerant for the battery cooling water flowing to the battery cooling water cooler is recovered water in the fuel cell power generator. A refrigerant outlet pipe and a refrigerant inlet pipe for circulating recovered water as a cooling refrigerant, a recovered water cooler and a recovered water tank provided between the two pipes, and between the refrigerant inlet pipe and the pure water tank. A fuel cell power generator, comprising: a water treatment device provided.
【請求項5】 請求項3または4記載の燃料電池発電装
置において、前記温度計は、純水タンク内の冷却水温度
を測定するものとしたことを特徴とする燃料電池発電装
置。
5. The fuel cell power generator according to claim 3, wherein the thermometer measures a temperature of a cooling water in a pure water tank.
【請求項6】 請求項1ないし5のいずれかに記載の燃
料電池発電装置の制御方法であって、所定温度の冷却水
を冷却板へ供給するに際し、第1の流量調節弁の開度調
節は、第2の流量調節弁の開度調節より優先し、第2の
流量調節弁をバイパスラインへ冷却水の全量が流れる状
態に固定して行い、第1の流量調節弁を廃熱利用設備へ
冷却水の全量が流れる状態に調節した状態においてな
お、冷却水の温度が所定の設定温度を超える場合には、
冷却水を冷却するために、第2の流量調節弁の開度調節
を開始することを特徴とする燃料電池発電装置の制御方
法。
6. The control method for a fuel cell power generator according to claim 1, wherein when the cooling water at a predetermined temperature is supplied to the cooling plate, the opening of the first flow control valve is adjusted. Takes precedence over the opening degree adjustment of the second flow control valve, performs the second flow control valve in a state where the entire amount of the cooling water flows to the bypass line, and sets the first flow control valve to the waste heat utilization equipment. If the temperature of the cooling water exceeds a predetermined set temperature while adjusting the state in which the entire amount of the cooling water flows,
A method for controlling a fuel cell power generator, characterized by starting adjustment of an opening degree of a second flow control valve in order to cool cooling water.
JP2000206683A 2000-07-07 2000-07-07 Fuel cell power generating device and its control method Pending JP2002025590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206683A JP2002025590A (en) 2000-07-07 2000-07-07 Fuel cell power generating device and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206683A JP2002025590A (en) 2000-07-07 2000-07-07 Fuel cell power generating device and its control method

Publications (1)

Publication Number Publication Date
JP2002025590A true JP2002025590A (en) 2002-01-25

Family

ID=18703569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206683A Pending JP2002025590A (en) 2000-07-07 2000-07-07 Fuel cell power generating device and its control method

Country Status (1)

Country Link
JP (1) JP2002025590A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111208A (en) * 2002-09-18 2004-04-08 Toyota Motor Corp Fuel cell power generation system
JP2005276757A (en) * 2004-03-26 2005-10-06 Ebara Ballard Corp Fuel cell cogeneration system
JP2006114264A (en) * 2004-10-13 2006-04-27 Ishikawajima Harima Heavy Ind Co Ltd Solid polymer fuel cell power generation method and device
JP2008084590A (en) * 2006-09-26 2008-04-10 Kyocera Corp Fuel battery module and fuel battery system
JP2010045012A (en) * 2008-07-16 2010-02-25 Fuji Electric Systems Co Ltd Fuel-cell power generation device
JP2012209173A (en) * 2011-03-30 2012-10-25 Panasonic Corp Power generation system
CN113054223A (en) * 2019-12-27 2021-06-29 未势能源科技有限公司 Thermal management system and control method of fuel cell
CN113394428A (en) * 2020-03-11 2021-09-14 郑州宇通客车股份有限公司 Fuel cell waste heat management system and control method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111208A (en) * 2002-09-18 2004-04-08 Toyota Motor Corp Fuel cell power generation system
JP4649090B2 (en) * 2002-09-18 2011-03-09 トヨタ自動車株式会社 Fuel cell power generation system
JP2005276757A (en) * 2004-03-26 2005-10-06 Ebara Ballard Corp Fuel cell cogeneration system
JP2006114264A (en) * 2004-10-13 2006-04-27 Ishikawajima Harima Heavy Ind Co Ltd Solid polymer fuel cell power generation method and device
JP2008084590A (en) * 2006-09-26 2008-04-10 Kyocera Corp Fuel battery module and fuel battery system
JP2010045012A (en) * 2008-07-16 2010-02-25 Fuji Electric Systems Co Ltd Fuel-cell power generation device
JP2012209173A (en) * 2011-03-30 2012-10-25 Panasonic Corp Power generation system
CN113054223A (en) * 2019-12-27 2021-06-29 未势能源科技有限公司 Thermal management system and control method of fuel cell
CN113054223B (en) * 2019-12-27 2022-06-10 未势能源科技有限公司 Thermal management system and control method of fuel cell
CN113394428A (en) * 2020-03-11 2021-09-14 郑州宇通客车股份有限公司 Fuel cell waste heat management system and control method thereof
CN113394428B (en) * 2020-03-11 2022-05-10 宇通客车股份有限公司 Fuel cell waste heat management system and control method thereof

Similar Documents

Publication Publication Date Title
JP4994731B2 (en) Fuel cell power generation system
WO2010058592A1 (en) Hydrogen generation device and fuel battery system having same
JP3849375B2 (en) Combined heat and power unit
JP2002025590A (en) Fuel cell power generating device and its control method
JP2889807B2 (en) Fuel cell system
JP3240840B2 (en) Method of adjusting cooling water temperature of fuel cell power generator
JP2003282108A (en) Fuel cell system
JP2005116256A (en) Fuel cell cogeneration system
JPH1140180A (en) Fuel cell power plant and its operation control method
JPH08124587A (en) Fuel cell power generating plant
JP2007242493A (en) Fuel cell system and its operation stopping method
JP2002280033A (en) Exhaust heat treatment method of fuel cell generator and device
JP2004039430A (en) Fuel cell generator and its operation method
JP5646221B2 (en) Fuel cell system and operation method thereof
JP3743254B2 (en) Fuel cell power generator
JP2002373690A (en) Fuel cell system
EP4109604A1 (en) Exhaust heat recovery system
JP2002343392A (en) Fuel cell system
CN113394431B (en) Thermal management system and method for improving utilization efficiency of green hydrogen energy system
JP3670467B2 (en) Fuel cell power generation system
JP5501750B2 (en) Fuel cell system
JP2005011621A (en) Fuel cell system
JP2004296266A (en) Fuel cell system
JP4440676B2 (en) Fuel cell power generation hot water supply system
JPH04345766A (en) Heat supplying power generating system for fuel cell power generating plant