JP2010045012A - Fuel-cell power generation device - Google Patents

Fuel-cell power generation device Download PDF

Info

Publication number
JP2010045012A
JP2010045012A JP2009039030A JP2009039030A JP2010045012A JP 2010045012 A JP2010045012 A JP 2010045012A JP 2009039030 A JP2009039030 A JP 2009039030A JP 2009039030 A JP2009039030 A JP 2009039030A JP 2010045012 A JP2010045012 A JP 2010045012A
Authority
JP
Japan
Prior art keywords
cooling
water
recovered
recovered water
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009039030A
Other languages
Japanese (ja)
Other versions
JP5369752B2 (en
Inventor
Shigemi Kato
茂実 加藤
Tadashi Komatsu
正 小松
Yasumoto Kubota
康幹 久保田
Masahito Senda
仁人 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2009039030A priority Critical patent/JP5369752B2/en
Publication of JP2010045012A publication Critical patent/JP2010045012A/en
Application granted granted Critical
Publication of JP5369752B2 publication Critical patent/JP5369752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel-cell power generation device that achieves reduction in cost required for exhaust-heat treatment by reducing the number of cooling devices. <P>SOLUTION: The fuel-cell power generation device includes: a recovered-water circulation passage 20 that circulates recovered water to a recovered-water generating device 21 for recovering moisture in exhaust gas, discharged from a fuel cell 2 as recovered water, and is provided with a recovered-water circulation pump 23 halfway in the recovered-water circulation passage; a cooling device 25 for cooling the recovered water circulating in the recovered-water circulation passage 20; a fuel-cell cooling-water circulation passage 1 that circulates first cooling water to the fuel cell 2 and is provided with a cooling heat exchanger 6 halfway in the fuel-cell cooling-water circulation passage; and an exhaust-heat recovery passage for supplying the heat of the first cooling water to an external heat demand. The fuel-cell power generation device is configured to supply the heat of the first cooling water extracted from the cooling heat exchanger 6 to the external heat demand via the exhaust-heat recovery passage and to discharge the excessive heat to the outside in the cooling device 25 via the recovered-water circulation passage 20. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池の排熱を利用できるように構成された燃料電池発電装置に関する。   The present invention relates to a fuel cell power generator configured to be able to use exhaust heat of a fuel cell.

燃料電池発電装置は、天然ガスを改質して得られる水素と空気中の酸素との結合エネルギーを直接電気エネルギーに変換する発電装置である。かかる燃料電池発電装置には、電解質層と、これを挟持するアノード電極及びカソード電極からなる単位電池を複数積層した燃料電池が使用されている。燃料電池は、発電に伴い発熱することから、冷却水を通流して発電最適温度に維持している。   A fuel cell power generator is a power generator that directly converts the binding energy between hydrogen obtained by reforming natural gas and oxygen in the air into electric energy. Such a fuel cell power generator uses a fuel cell in which a plurality of unit cells each composed of an electrolyte layer and an anode electrode and a cathode electrode sandwiching the electrolyte layer are stacked. Since the fuel cell generates heat with power generation, it is maintained at the power generation optimum temperature by flowing cooling water.

従来の燃料電池発電装置の一例を図5に基づいて説明すると、図中の1は、燃料電池冷却水循環経路であって、燃料電池2を冷却する第1冷却水の循環経路である。この燃料電池冷却水循環経路1は、燃料電池2、ヒータ3、水蒸気分離器4、電池冷却水循環ポンプ5、冷却用熱交換器6、電池冷却水水温センサ8、電池冷却水調整バルブ9、及びこれら各構成機器を結ぶ配管を備えている。なお、冷却用熱交換器6及び電池冷却水調整バルブ9は、電池冷却水循環ポンプ5に戻るバイパス経路に設けられている。   An example of a conventional fuel cell power generation device will be described with reference to FIG. 5. Reference numeral 1 in the figure denotes a fuel cell cooling water circulation path, which is a first cooling water circulation path for cooling the fuel cell 2. The fuel cell cooling water circulation path 1 includes a fuel cell 2, a heater 3, a water vapor separator 4, a battery cooling water circulation pump 5, a cooling heat exchanger 6, a battery cooling water temperature sensor 8, a battery cooling water adjusting valve 9, and these It has piping connecting each component. The cooling heat exchanger 6 and the battery coolant adjustment valve 9 are provided in a bypass path that returns to the battery coolant circulation pump 5.

燃料電池冷却水循環経路1では、作動中の燃料電池2に第1冷却水を流入させて、燃料電池2から発電により生じる熱量を奪って燃料電池2の温度を下げる。燃料電池2から流出した第1冷却水は加温されて高温になっており、この高温の第1冷却水は、ヒータ3を通過して水蒸気分離器4に流入させて冷却し、電池冷却水循環ポンプ5によって、燃料電池2に戻される。このとき、一部の水はバイパス経路を通り、冷却用熱交換器6によって冷却されて燃料電池2に戻される。そして、電池冷却水水温センサ8の検知値に応じて電池冷却水調整バルブ9の開度を調節して、冷却用熱交換器6によって冷却された第1冷却水の流量を調整することで、燃料電池冷却水循環経路1内の第1冷却水の水温を予め定められた所定温度に調整している。   In the fuel cell cooling water circulation path 1, the first cooling water is caused to flow into the operating fuel cell 2, and the amount of heat generated by the power generation from the fuel cell 2 is taken to lower the temperature of the fuel cell 2. The first cooling water flowing out from the fuel cell 2 is heated to a high temperature, and this high temperature first cooling water passes through the heater 3 and flows into the water vapor separator 4 to be cooled, and the battery cooling water circulation is performed. It is returned to the fuel cell 2 by the pump 5. At this time, part of the water passes through the bypass path, is cooled by the cooling heat exchanger 6, and returned to the fuel cell 2. And by adjusting the opening degree of the battery cooling water adjustment valve 9 according to the detection value of the battery cooling water temperature sensor 8, and adjusting the flow rate of the first cooling water cooled by the cooling heat exchanger 6, The temperature of the first cooling water in the fuel cell cooling water circulation path 1 is adjusted to a predetermined temperature.

図中の70は、第2冷却水循環経路であって、第1冷却水を冷却する第2冷却水の循環経路である。この第2冷却水循環経路70は、第2冷却水循環ポンプ11、排熱回収用熱交換器71、冷却装置73、調整バルブ74,75及び各構成機器を結ぶ配管を備えている。   In the figure, reference numeral 70 denotes a second cooling water circulation path, which is a second cooling water circulation path for cooling the first cooling water. The second cooling water circulation path 70 includes a second cooling water circulation pump 11, an exhaust heat recovery heat exchanger 71, a cooling device 73, adjustment valves 74 and 75, and pipes connecting the respective components.

第2冷却水循環経路70では、冷却用熱交換器6を介し、第1冷却水と熱交換して昇温した第2冷却水の一部または全部が、排熱回収用熱交換器71及び/又は冷却装置73を通過した後、第2冷却水循環ポンプ11によって、冷却用熱交換器6へ圧送されて第2冷却水循環経路70内を循環している。そして、調整バルブ74の開度を調整することで、排熱回収用熱交換器71を流動する第2冷却水の流量と、排熱回収用熱交換器71を介さないバイパスを流動する冷却水の流量とを調整し、調整バルブ75の開度を調整することで、冷却装置73を流動する第2冷却水の流量と、冷却装置73を介さないバイパスを流動する冷却水の流量とを調整して、第2冷却水循環経路70を循環する冷却水の温度を予め定められた所定温度に保っている。   In the second cooling water circulation path 70, a part or all of the second cooling water whose temperature is increased by exchanging heat with the first cooling water via the cooling heat exchanger 6 is converted into the exhaust heat recovery heat exchanger 71 and / or Alternatively, after passing through the cooling device 73, the second cooling water circulation pump 11 is pumped to the cooling heat exchanger 6 and circulates in the second cooling water circulation path 70. The flow rate of the second cooling water flowing through the exhaust heat recovery heat exchanger 71 and the cooling water flowing through the bypass not passing through the exhaust heat recovery heat exchanger 71 are adjusted by adjusting the opening of the adjustment valve 74. The flow rate of the second cooling water flowing through the cooling device 73 and the flow rate of the cooling water flowing through the bypass not passing through the cooling device 73 are adjusted by adjusting the flow rate of the adjusting valve 75 and the opening degree of the adjusting valve 75. Thus, the temperature of the cooling water circulating through the second cooling water circulation path 70 is maintained at a predetermined temperature.

図中の80は、回収水循環経路であって、燃料電池2から排出される排ガスから回収した回収水の循環経路である。この回収水循環経路80は、回収水生成装置21、回収水循環ポンプ23、排熱回収用熱交換器72、冷却装置25、調整バルブ76及び各構成機器を結ぶ配管を備えている。   In the figure, reference numeral 80 denotes a recovered water circulation path, which is a recovered water circulation path recovered from the exhaust gas discharged from the fuel cell 2. The recovered water circulation path 80 includes a recovered water generating device 21, a recovered water circulating pump 23, an exhaust heat recovery heat exchanger 72, a cooling device 25, an adjustment valve 76, and pipes connecting the respective components.

上記回収水生成装置21で回収された回収水は、回収水循環ポンプ23によって排熱回収用熱交換器72へ圧送され、排熱回収用熱交換器72を通過し、更にその一部または全部は冷却装置25を通過して再び回収水生成装置21に送られる。つまり、調整バルブ76の開度を調整して、冷却装置25を流動する回収水の流量と、冷却装置25を介さないバイパスを流動する冷却水の流量とを調整して、回収水生成装置21内の回収水の温度を予め定められた所定温度に保っている。   The recovered water recovered by the recovered water generating device 21 is pumped to the exhaust heat recovery heat exchanger 72 by the recovered water circulation pump 23, passes through the exhaust heat recovery heat exchanger 72, and a part or all of the recovered water is recovered. It passes through the cooling device 25 and is sent to the recovered water generation device 21 again. That is, by adjusting the opening of the adjustment valve 76, the flow rate of the recovered water flowing through the cooling device 25 and the flow rate of the cooling water flowing through the bypass not passing through the cooling device 25 are adjusted, and the recovered water generating device 21. The temperature of the recovered water is maintained at a predetermined temperature.

また、第2冷却水循環経路70では、排熱回収用熱交換器71を介して、第2冷却水循環経路70を通る第2冷却水と熱交換することで、約85℃〜94℃の高温水を安定して生成することができ、同様に、回収水循環経路80では、排熱回収用熱交換器72を介して、回収水循環経路80を通る回収水と熱交換することで、約40℃〜50℃の低温水を安定して生成することができ、生成した高温水や低温水は、ユーザの温水利用などに提供されて、回収された排熱が有効活用されている。   Further, in the second cooling water circulation path 70, high-temperature water of about 85 ° C. to 94 ° C. is obtained by exchanging heat with the second cooling water passing through the second cooling water circulation path 70 via the exhaust heat recovery heat exchanger 71. Similarly, in the recovered water circulation path 80, heat is exchanged with the recovered water passing through the recovered water circulation path 80 via the exhaust heat recovery heat exchanger 72, so that about 40 ° C. to The low-temperature water of 50 ° C. can be stably generated, and the generated high-temperature water and low-temperature water are provided to the user's use of hot water and the recovered exhaust heat is effectively used.

このように、図5に示す従来の燃料電池発電装置は、第2冷却水循環経路70及び回収水循環経路80のそれぞれに冷却装置25,73を備えており、各々の冷却装置25,73にて、各循環経路を循環する水を冷却して、それぞれ個別に温度制御している。   As described above, the conventional fuel cell power generation device shown in FIG. 5 includes the cooling devices 25 and 73 in the second cooling water circulation path 70 and the recovered water circulation path 80, respectively. Water circulating through each circulation path is cooled, and the temperature is individually controlled.

また、下記特許文献1には、燃料電池と、改質器と、燃料電池及び改質器から排出される熱を温度レベルの異なる冷却水により熱交換して排出する低温水用熱交換器及び高温水用熱交換器と、を備えた燃料電池発電装置の排熱処理をするに当り、低温水用熱交換器及び高温水用熱交換器における温度レベルの異なる冷却水を、空冷ファンにより一括冷却する空冷式冷却器における低温水用冷却器及び高温水用冷却器にそれぞれ循環して冷却し、空冷式冷却器における冷却空気を、低温水用冷却器側から高温水用冷却器側に通流して冷却することが開示されている。   Patent Document 1 listed below includes a fuel cell, a reformer, a heat exchanger for low-temperature water that exchanges heat discharged from the fuel cell and the reformer with cooling water having different temperature levels, and a heat exchanger for low-temperature water. Cooling water with different temperature levels in the low-temperature water heat exchanger and the high-temperature water heat exchanger is collectively cooled by an air-cooling fan when performing heat treatment of the fuel cell power generator equipped with the high-temperature water heat exchanger. Circulates and cools the low-temperature water cooler and the high-temperature water cooler in the air-cooled cooler, and passes the cooling air in the air-cooled cooler from the low-temperature water cooler side to the high-temperature water cooler side. Cooling is disclosed.

特開2002−280033号公報JP 2002-280033 A

図5に示すような従来の燃料電池発電装置では、2つの冷却水系を循環する水温を制御するため、それぞれの循環経路に冷却装置を配置していたので、装置のコストや定期メンテナンスの工数が増えて費用や手間がかかり、さらに設置に必要な占有空間も大きくなっていた。   In the conventional fuel cell power generator as shown in FIG. 5, since the cooling device is arranged in each circulation path in order to control the water temperature circulating through the two cooling water systems, the cost of the device and the man-hours for the regular maintenance are reduced. It increased in cost and labor, and the occupied space required for installation also increased.

また、上記特許文献1では、低温水用熱交換器及び高温水用熱交換器における温度レベルの異なる冷却水を、空冷ファンにより一括冷却する空冷式冷却器における低温水用冷却器及び高温水用冷却器にそれぞれ循環させて、1台の冷却装置にて冷却しているが、低温水と高温水とを同時に冷却しているので、冷却対象の水量が多くなることから冷却装置の出力を大きくする必要があり、運転コストがかかる問題があった。また、高温水と低温水との温度差が大きいと、十分に冷却できなかったり、過剰冷却することがあり、温度制御が困難な場合があった。   Moreover, in the said patent document 1, the cooler for low-temperature water and high-temperature water use in the air-cooling type cooler which cools the cooling water from which the temperature level in a heat exchanger for low-temperature water and a heat exchanger for high-temperature water differs collectively with an air-cooling fan Each unit is circulated through a cooler and cooled by a single cooling device, but low-temperature water and high-temperature water are simultaneously cooled, so the amount of water to be cooled increases, so the output of the cooling device is increased. There is a problem that the operation cost is high. In addition, if the temperature difference between the high-temperature water and the low-temperature water is large, the temperature may not be sufficiently cooled or excessively cooled, making temperature control difficult.

本発明は、上記問題点に鑑みなされたものであり、冷却装置の数を削減して、排熱処理に要するコストを削減できる燃料電池発電装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel cell power generation apparatus that can reduce the number of cooling apparatuses and reduce the cost required for exhaust heat treatment.

上記課題を解決するため、本発明の燃料電池発電装置は、燃料ガスと空気とを電気化学的に反応させて発電する燃料電池(2)を有する燃料電池発電装置において、
前記燃料電池(2)から排出される排ガス中の水分を回収水として回収する回収水生成装置(21)に対して回収水を循環させると共に、その途中に回収水循環ポンプ(23)が設けられた回収水循環経路(20)と、
前記回収水循環経路(20)を流通する前記回収水を冷却する冷却装置(25)と、
前記燃料電池(2)に対して第1冷却水を循環させると共に、その途中に冷却用熱交換器(6)が設けられた燃料電池冷却水循環経路(1)と、
前記第1冷却水の熱を外部の熱需要に供給する排熱回収経路とを備え、
前記冷却用熱交換器(6)から取り出された前記第1冷却水の熱は、前記排熱回収経路を経由して外部の熱需要に供給されると共に、余剰分が前記回収水循環経路(20)を経由して前記冷却装置(25)において外部に放出させるように構成されていることを特徴とする。
In order to solve the above problems, a fuel cell power generator according to the present invention includes a fuel cell (2) that generates electricity by electrochemically reacting fuel gas and air.
The recovered water is circulated to the recovered water generating device (21) that recovers the moisture in the exhaust gas discharged from the fuel cell (2) as recovered water, and a recovered water circulation pump (23) is provided in the middle thereof. A recovered water circulation path (20);
A cooling device (25) for cooling the recovered water flowing through the recovered water circulation path (20);
A fuel cell cooling water circulation path (1) in which the first cooling water is circulated to the fuel cell (2) and a cooling heat exchanger (6) is provided in the middle thereof;
An exhaust heat recovery path for supplying heat of the first cooling water to an external heat demand,
The heat of the first cooling water taken out from the cooling heat exchanger (6) is supplied to the external heat demand via the exhaust heat recovery path, and the surplus is supplied to the recovered water circulation path (20 ) Through the cooling device (25) to be discharged to the outside.

本発明の燃料電池発電装置によれば、冷却用熱交換器から取り出された第1冷却水の熱を外部の熱需要に供給して燃料電池から排出された排熱を回収すると共に、余剰分をの熱を、回収水循環経路を経由して冷却装置において外部に放出させる。このため、燃料電池の排熱を回収して有効利用しつつ、燃料電池を冷却する第1冷却水を積極的に冷却することができて、燃料電池の発電効率を下げることなく安定して運転することができる。そして、第1冷却水や回収水に含まれる燃料電池から排出された排熱を、回収水循環経路に設置した冷却装置で冷却するので、冷却装置を複数台設ける必要がなく、装置全体をより小型化にでき、更には、冷却装置のランニングコストやメンテナンス工数を削減できる。   According to the fuel cell power generator of the present invention, the heat of the first cooling water taken out from the cooling heat exchanger is supplied to the external heat demand to recover the exhaust heat discharged from the fuel cell, and the surplus amount The heat is discharged outside in the cooling device via the recovered water circulation path. Therefore, the first cooling water for cooling the fuel cell can be actively cooled while recovering and effectively using the exhaust heat of the fuel cell, and the fuel cell can be stably operated without lowering the power generation efficiency. can do. And since the exhaust heat discharged from the fuel cell contained in the first cooling water and the recovered water is cooled by the cooling device installed in the recovered water circulation path, it is not necessary to provide a plurality of cooling devices, and the entire device is made smaller. In addition, the running cost and maintenance man-hour of the cooling device can be reduced.

本発明の燃料電池発電装置の好ましい態様の第1は、図1,2に示すように、
前記冷却用熱交換器(6)を介して前記第1冷却水と熱交換し、該第1冷却水を冷却する第2冷却水が循環する第2冷却水循環経路(10)を備え、
前記回収水循環経路から調整バルブ(32)を介して分岐して伸びた第1中継配管(31)が前記第2冷却水循環経路(10)に接続し、
前記第2冷却水循環経路(10)から分岐して伸びた第2中継配管(33)が、前記回収水循環経路(20)の前記調整バルブ(32)の下流側に接続していることである。
A first preferred embodiment of the fuel cell power generator of the present invention is as shown in FIGS.
Heat exchange with the first cooling water via the cooling heat exchanger (6), and a second cooling water circulation path (10) through which the second cooling water for cooling the first cooling water circulates,
A first relay pipe (31) branched and extended from the recovered water circulation path via the adjustment valve (32) is connected to the second cooling water circulation path (10),
The second relay pipe (33) branched and extended from the second cooling water circulation path (10) is connected to the downstream side of the adjustment valve (32) of the recovered water circulation path (20).

この態様によれば、低温である回収水を、高温である第2冷却水循環経路へ通流させることができるので、第2冷却水循環経路を循環する第2冷却水の水温を下げることができる。また、第1中継配管を通じて第2冷却水循環経路に還流された回収水と同量の第2冷却水が、第2中継配管を通じて回収水循環経路に還流されて冷却装置で冷却されるので、簡易な構成で、第2冷却水の水温を制御して、燃料電池を冷却する第1冷却水を設定温度に維持できる。また、第2冷却水循環経路は、第1中継配管から低温の回収水が流入し、第2中継配管から高温の第2冷却水が流出するため、第2冷却水の温度変動を速やかに吸収して設定温度に保つことができる。   According to this aspect, since the recovered water having a low temperature can be passed through the second cooling water circulation path having a high temperature, the water temperature of the second cooling water circulating in the second cooling water circulation path can be lowered. Further, since the same amount of the second cooling water as the recovered water returned to the second cooling water circulation path through the first relay pipe is returned to the recovered water circulation path through the second relay pipe and cooled by the cooling device, With the configuration, the first cooling water for cooling the fuel cell can be maintained at the set temperature by controlling the temperature of the second cooling water. The second cooling water circulation path quickly absorbs temperature fluctuations of the second cooling water because the low temperature recovered water flows in from the first relay pipe and the high temperature second cooling water flows out from the second relay pipe. Can be kept at the set temperature.

本発明の燃料電池発電装置は、上記第1の態様において、
前記第2冷却水循環経路(10)は、第2冷却水水温検知手段(16)を備え、
前記第2冷却水水温検知手段(16)によって検出された前記第2冷却水の温度が予め定められた設定範囲の値になるように、前記調整バルブ(32)の開度、前記回収水循環ポンプ(23)の出力及び前記冷却装置(25)の出力から選ばれた少なくとも1つを制御することにより、前記第1中継配管(31)を通る水量及び/又は水温を調整するように構成されていることが好ましい。
The fuel cell power generator of the present invention is the above first aspect.
The second cooling water circulation path (10) includes second cooling water temperature detecting means (16),
The degree of opening of the adjustment valve (32), the recovered water circulation pump so that the temperature of the second cooling water detected by the second cooling water temperature detecting means (16) falls within a predetermined set range. By controlling at least one selected from the output of (23) and the output of the cooling device (25), the amount of water and / or the water temperature passing through the first relay pipe (31) is adjusted. Preferably it is.

この態様によれば、第2冷却水水温検知手段によって検出された第2冷却水の温度が高すぎる場合には、第1中継配管を通る水量を多くする、及び/又は冷却装置の出力を高めて水温を低下させ、低すぎる場合には、第1中継配管を通る水量を少なくするか、及び/又は冷却装置の出力を低下させて水温を上昇させることにより、第2冷却水循環経路を流通する第2冷却水の温度を調整することができ、それによって冷却水循環経路を通る冷却水の温度も調整することができる。   According to this aspect, when the temperature of the second cooling water detected by the second cooling water temperature detecting means is too high, the amount of water passing through the first relay pipe is increased and / or the output of the cooling device is increased. If the water temperature is too low and the temperature is too low, the amount of water passing through the first relay pipe is reduced and / or the output of the cooling device is lowered to increase the water temperature, thereby circulating the second cooling water circulation path. The temperature of the second cooling water can be adjusted, whereby the temperature of the cooling water passing through the cooling water circulation path can also be adjusted.

本発明の燃料電池発電装置は、上記第1の態様において、
前記第2中継配管(33)は、第2中継配管冷却水水温検知手段(15)を備え、
前記第2中継配管冷却水水温検知手段(15)によって検出された前記第2冷却水の温度が、予め定められた設定範囲の値になるように、前記調整バルブ(32)の開度、前記回収水循環ポンプ(23)の出力及び前記冷却装置(25)の出力から選ばれた少なくとも1つを制御することにより、前記第2中継配管(33)を通る水量及び/又は水温を調整するように構成されていることが好ましい。
The fuel cell power generator of the present invention is the above first aspect.
The second relay pipe (33) includes second relay pipe cooling water temperature detecting means (15),
The degree of opening of the adjustment valve (32), so that the temperature of the second cooling water detected by the second relay pipe cooling water temperature detecting means (15) becomes a value within a predetermined setting range; By controlling at least one selected from the output of the recovered water circulation pump (23) and the output of the cooling device (25), the amount of water and / or the water temperature passing through the second relay pipe (33) is adjusted. It is preferable to be configured.

この態様によれば、第2中継配管冷却水水温検知手段によって検出された第2冷却水の温度が高すぎる場合には、第2中継配管を通る水量を多くする、及び/又は冷却装置の出力を高めて水温を低下させ、低すぎる場合には、第2中継配管を通る水量を少なくするか、及び/又は冷却装置の出力を低下させて水温を上昇させることにより、回収水の温度を調整することができる。   According to this aspect, when the temperature of the second cooling water detected by the second relay pipe cooling water temperature detecting means is too high, the amount of water passing through the second relay pipe is increased and / or the output of the cooling device. If the water temperature is too low, adjust the temperature of the recovered water by reducing the amount of water passing through the second relay pipe and / or increasing the water temperature by reducing the output of the cooling device. can do.

本発明の燃料電池発電装置は、上記第1の態様において、図1に示すように、
前記第2冷却水循環経路(10)の、前記第2中継配管(33)と前記第1中継配管(31)との間の経路に排熱回収用熱交換器(51)が配置され、
前記排熱回収経路は、前記排熱回収用熱交換器(51)を介して、前記第2冷却水循環経路(10)を通る第2冷却水と熱交換して外部に熱を取り出すように構成されていることが好ましい。
As shown in FIG. 1, the fuel cell power generator of the present invention is the above first embodiment.
An exhaust heat recovery heat exchanger (51) is disposed in a path between the second relay pipe (33) and the first relay pipe (31) of the second cooling water circulation path (10),
The exhaust heat recovery path is configured to extract heat to the outside through heat exchange with the second cooling water passing through the second cooling water circulation path (10) via the exhaust heat recovery heat exchanger (51). It is preferable that

この態様によれば、第2冷却水と熱交換して熱を取り出すので、燃料電池の排熱を有効利用できる。また、第2冷却水の設定温度を変更するだけで、容易に使用者のニーズに応じた熱量を取出すことができるので、所望の水温の温水等を安定して使用者に提供することができる。   According to this aspect, since heat is extracted by exchanging heat with the second cooling water, the exhaust heat of the fuel cell can be effectively used. Further, since the amount of heat corresponding to the user's needs can be easily taken out simply by changing the set temperature of the second cooling water, it is possible to stably provide the user with hot water having a desired water temperature. .

本発明の燃料電池発電装置は、上記第1の態様において、図2に示すように、
前記第2冷却水循環経路(10)の、前記第2中継配管(33)が接続する経路よりも上流側の経路に排熱回収用熱交換器(51)が配置され、
前記排熱回収経路は、前記排熱回収用熱交換器(51)を介して、前記第2冷却水循環経路(10)を通る第2冷却水と熱交換して外部に熱を取り出すように構成されていることが好ましい。
As shown in FIG. 2, the fuel cell power generator of the present invention is the above first embodiment.
An exhaust heat recovery heat exchanger (51) is disposed in a path upstream of the path connected to the second relay pipe (33) of the second cooling water circulation path (10),
The exhaust heat recovery path is configured to extract heat to the outside through heat exchange with the second cooling water passing through the second cooling water circulation path (10) via the exhaust heat recovery heat exchanger (51). It is preferable that

この態様によれば、第2冷却水と熱交換して熱を取り出すので、燃料電池の排熱を有効利用できる。また、第2冷却水の設定温度を変更するだけで、容易に使用者のニーズに応じた熱量を取出すことができるので、所望の水温の温水等を安定して使用者に提供することができる。更には、第2中継配管が排熱回収用熱交換器の下流側に設けられているので、回収水循環経路には、排熱回収用熱交換器で熱交換後の第2冷却水を導入でき、排熱回収用熱交換器にてより多くの熱量を回収できる。   According to this aspect, since heat is extracted by exchanging heat with the second cooling water, the exhaust heat of the fuel cell can be effectively used. Further, since the amount of heat corresponding to the user's needs can be easily taken out simply by changing the set temperature of the second cooling water, it is possible to stably provide the user with hot water having a desired water temperature. . Furthermore, since the second relay pipe is provided on the downstream side of the heat exchanger for exhaust heat recovery, the second cooling water after heat exchange by the heat exchanger for exhaust heat recovery can be introduced into the recovered water circulation path. More heat can be recovered by the heat exchanger for exhaust heat recovery.

本発明の燃料電池発電装置の好ましい態様の第2は、図3に示すように、
前記回収水循環経路(20)から調整バルブ(32)を介して分岐し、前記冷却用熱交換器(6)を通って前記回収水循環経路(20)に戻される回収水迂回経路(40)を備えることである。
A second preferred embodiment of the fuel cell power generator of the present invention is as shown in FIG.
A recovered water bypass path (40) is branched from the recovered water circulation path (20) via an adjustment valve (32) and returned to the recovered water circulation path (20) through the cooling heat exchanger (6). That is.

この態様によれば、燃料電池を冷却して昇温した第1冷却水は、冷却用熱交換器を介した回収水迂回経路を通る回収水との熱交換により冷却されて燃料電池に戻されるので、燃料電池を冷却し続けることができる。また、昇温した第1冷却水との熱交換によって暖められた回収水は、冷却装置にて冷却されるので、再び回収水迂回経路を通して第1冷却水の冷却に使用することができる。   According to this aspect, the first cooling water heated by cooling the fuel cell is cooled by heat exchange with the recovered water passing through the recovered water detour path via the cooling heat exchanger and returned to the fuel cell. Therefore, the fuel cell can be continuously cooled. In addition, since the recovered water heated by heat exchange with the first cooling water whose temperature has been increased is cooled by the cooling device, it can be used again for cooling the first cooling water through the recovered water detour path.

本発明の燃料電池発電装置は、上記第2の態様において、
前記回収水迂回経路(40)に迂回回収水水温検知手段(41)が設けられ、
前記迂回回収水水温検知手段(41)によって検出された回収水の温度が、予め定めた設定範囲内の値になるように、前記調整バルブ(32)の開度、前記回収水循環ポンプ(23)の出力及び前記冷却装置(25)の出力から選ばれた少なくとも1つを制御することにより、前記回収水迂回経路(40)を通る水量及び/又は水温を調整するように構成されていることが好ましい。
The fuel cell power generator of the present invention, in the second aspect,
A bypass recovery water temperature detection means (41) is provided in the recovery water bypass path (40),
The degree of opening of the adjustment valve (32) and the recovered water circulation pump (23) so that the temperature of recovered water detected by the detour recovered water temperature detecting means (41) becomes a value within a predetermined set range. And controlling the amount of water and / or the water temperature passing through the recovered water bypass route (40) by controlling at least one selected from the output of the cooling device (25) and the output of the cooling device (25). preferable.

この態様によれば、迂回回収水水温検知手段によって検出された回収水の温度が高すぎる場合には、回収水迂回経路を通る水量を多くする、及び/又は冷却装置の出力を高めて水温を低下させ、低すぎる場合には、回収水迂回経路を通る水量を少なくするか、及び/又は冷却装置の出力を低下させて水温を上昇させることにより、回収水の温度を調整することができる。   According to this aspect, when the temperature of the recovered water detected by the bypass recovery water temperature detecting means is too high, the amount of water passing through the recovery water bypass path is increased and / or the output of the cooling device is increased to increase the water temperature. If it is lowered and is too low, the temperature of the recovered water can be adjusted by decreasing the amount of water passing through the recovered water bypass path and / or increasing the water temperature by decreasing the output of the cooling device.

本発明の燃料電池発電装置は、上記第2の態様において、
前記燃料電池冷却水循環経路(1)及び前記回収水迂回経路(40)に、排熱回収用熱交換器(52,53)がそれぞれ配置され、
前記排熱回収経路は、前記燃料電池冷却水循環経路(1)に設けられた前記排熱回収用熱交換器(52)を介して前記燃料電池冷却水循環経路(1)を通る第1冷却水と熱交換して外部に熱を取り出す経路と、前記回収水迂回経路(40)に設けられた前記排熱回収用熱交換器(53)を介して前記回収水迂回経路(40)を通る回収水と熱交換して外部に熱を取り出す経路とで構成されていることが好ましい。
The fuel cell power generator of the present invention, in the second aspect,
Waste heat recovery heat exchangers (52, 53) are disposed in the fuel cell cooling water circulation path (1) and the recovered water bypass path (40), respectively.
The exhaust heat recovery path includes first cooling water passing through the fuel cell cooling water circulation path (1) via the exhaust heat recovery heat exchanger (52) provided in the fuel cell cooling water circulation path (1). Recovered water passing through the recovered water bypass path (40) via a path for heat exchange to extract heat to the outside and the exhaust heat recovery heat exchanger (53) provided in the recovered water bypass path (40) It is preferable that it is comprised with the path | route which takes heat out and extracts heat | fever outside.

この態様によれば、第1冷却水及び回収水と熱交換して熱を取り出すので、燃料電池の排熱を有効利用できる。また、第1冷却水と回収水は、それぞれ温度が異なることから、例えば、異なる温度の温水等を同時に回収できる。   According to this aspect, since heat is extracted by exchanging heat with the first cooling water and the recovered water, the exhaust heat of the fuel cell can be effectively used. In addition, since the first cooling water and the recovered water have different temperatures, for example, hot water having different temperatures can be recovered simultaneously.

本発明の燃料電池発電装置の好ましい態様の第3は、図4に示すように、
前記冷却用熱交換器(6)に対して第2冷却水を循環させて前記第1冷却水を冷却すると共に、その途中に第2冷却用熱交換器(17)が設けられた第2冷却水循環経路(10)と、
前記回収水循環経路(20)から調整バルブ(32)を介して分岐し、前記第2冷却用熱交換器(17)を通って前記回収水循環経路(20)に戻される回収水第2迂回経路(45)とを備えることである。
A third preferred embodiment of the fuel cell power generator of the present invention is as shown in FIG.
Second cooling in which a second cooling water is circulated through the cooling heat exchanger (6) to cool the first cooling water, and a second cooling heat exchanger (17) is provided in the middle of the second cooling water. Water circulation path (10);
A recovered water second bypass path (branched from the recovered water circulation path (20) via the regulating valve (32) and returned to the recovered water circulation path (20) through the second cooling heat exchanger (17) ( 45).

この態様によれば、燃料電池を冷却して昇温した第1冷却水は、冷却用熱交換器を介した第2冷却水との熱交換により冷却されて燃料電池に戻されるので、燃料電池を冷却し続けることができる。また、回収水循環経路を通る回収水の全部又は一部を、回収水第2迂回経路を通すことにより、第2冷却用熱交換器を介して第2冷却水と熱交換されるので、それによって第1冷却水との熱交換によって昇温した第2冷却水は冷却され、再び第1冷却水の冷却に使用することができる。また、第2冷却水との熱交換によって昇温した回収水は、回収水循環経路に戻されて冷却装置により冷却されるので、再び回収水第2迂回経路を通して第2冷却水の冷却に使用することができる。   According to this aspect, the first cooling water heated by cooling the fuel cell is cooled by heat exchange with the second cooling water via the cooling heat exchanger and returned to the fuel cell. Can continue to cool. Moreover, since all or a part of the recovered water passing through the recovered water circulation path passes through the recovered water second bypass path, heat is exchanged with the second cooling water via the second cooling heat exchanger. The second cooling water whose temperature has been raised by heat exchange with the first cooling water is cooled and can be used again for cooling the first cooling water. In addition, since the recovered water whose temperature has been raised by heat exchange with the second cooling water is returned to the recovered water circulation path and cooled by the cooling device, it is used again for cooling the second cooling water through the recovered water second bypass path. be able to.

本発明の燃料電池発電装置は、上記第3の態様において、
前記第2冷却水循環経路(10)に第2冷却水水温検知手段(16)が設けられ、
前記第2冷却水水温検知手段(16)によって検出された第2冷却水の温度が予め定められた設定範囲内の値になるように、前記調整バルブ(32)の開度、前記回収水循環ポンプ(23)の出力及び前記冷却装置(25)の出力から選ばれた少なくとも1つを制御することにより、前記回収水第2迂回経路(45)を通る水量及び/又は水温を調整するように構成されていることが好ましい。
The fuel cell power generator of the present invention, in the third aspect,
Second cooling water temperature detection means (16) is provided in the second cooling water circulation path (10),
The opening degree of the adjustment valve (32), the recovered water circulation pump so that the temperature of the second cooling water detected by the second cooling water temperature detecting means (16) becomes a value within a predetermined setting range. By controlling at least one selected from the output of (23) and the output of the cooling device (25), the water amount and / or the water temperature passing through the recovered water second bypass path (45) are adjusted. It is preferable that

この態様によれば、第2冷却水水温検知手段によって検出された第2冷却水の温度が高すぎる場合には、回収水第2迂回経路を通る水量を多くするか、及び/又は冷却装置の出力を高めて水温を低下させ、低すぎる場合には、回収水第2迂回経路を通る水量を少なくするか、及び/又は冷却装置の出力を低下させて水温を上昇させることにより、第2冷却水の温度を調整することができ、それによって、冷却水循環経路を流通する第1冷却水の温度も調整できる。   According to this aspect, when the temperature of the second cooling water detected by the second cooling water temperature detecting means is too high, the amount of water passing through the recovered water second bypass path is increased and / or the cooling device If the water temperature is lowered by increasing the output, and if it is too low, the amount of water passing through the second bypass path of the recovered water is reduced and / or the output of the cooling device is decreased and the water temperature is increased to increase the water temperature. The temperature of the water can be adjusted, whereby the temperature of the first cooling water flowing through the cooling water circulation path can also be adjusted.

本発明の燃料電池発電装置は、上記第3の態様において、
前記回収水第2迂回経路(45)に第2迂回回収水水温検知手段(46)が設けられ、
前記第2迂回回収水水温検知手段(46)によって検出された回収水の温度が予め定められた設定範囲内の値になるように、前記調整バルブ(32)の開度、前記回収水循環ポンプ(23)の出力及び前記冷却装置(25)の出力から選ばれた少なくとも1つを制御することにより、前記回収水第2迂回経路(45)を通る水量及び/又は水温を調整するように構成されていることが好ましい。
The fuel cell power generator of the present invention, in the third aspect,
A second detour recovered water temperature detection means (46) is provided in the recovered water second detour path (45),
The degree of opening of the adjustment valve (32), the recovered water circulation pump () so that the temperature of the recovered water detected by the second detour recovered water temperature detecting means (46) becomes a value within a predetermined setting range. 23) and at least one selected from the output of the cooling device (25) is controlled to adjust the amount of water and / or the water temperature through the recovered water second bypass path (45). It is preferable.

この態様によれば、第2迂回回収水水温検知手段によって検出された回収水の温度が高すぎる場合には、回収水第2迂回経路を通る水量を多くするか、及び/又は冷却装置の出力を高めて水温を低下させ、低すぎる場合には、回収水第2迂回経路を通る水量を少なくするか、及び/又は冷却装置の出力を低下させて水温を上昇させることにより、回収水の温度を調整することができる。   According to this aspect, when the temperature of the recovered water detected by the second bypass recovery water temperature detection means is too high, the amount of water passing through the recovery water second bypass path is increased and / or the output of the cooling device If the temperature of the recovered water is too low, the amount of water passing through the second bypass route of the recovered water is decreased and / or the output of the cooling device is decreased to increase the temperature of the recovered water. Can be adjusted.

本発明の燃料電池発電装置は、上記第3の態様において、
前記第2冷却水循環経路(10)及び前記回収水第2迂回経路(45)に、それぞれ排熱回収用熱交換器(54,55)が配置され、
前記排熱回収経路は、前記第2冷却水循環経路(10)に設けられた前記排熱回収用熱交換器(54)を介して前記第2冷却水循環経路(10)を通る第2冷却水と熱交換して外部に熱を取り出す経路と、前記回収水第2迂回経路(45)に設けられた前記排熱回収用熱交換器(55)を介して前記回収水第2迂回経路(45)を通る回収水と熱交換して外部に熱を取り出す経路とで構成されていることが好ましい。
The fuel cell power generator of the present invention, in the third aspect,
Exhaust heat recovery heat exchangers (54, 55) are disposed in the second cooling water circulation path (10) and the recovered water second bypass path (45), respectively.
The exhaust heat recovery path includes second cooling water passing through the second cooling water circulation path (10) via the exhaust heat recovery heat exchanger (54) provided in the second cooling water circulation path (10). A path for extracting heat to the outside through heat exchange and the second bypass path for recovered water (45) via the heat exchanger (55) for exhaust heat recovery provided in the second bypass path for recovered water (45) It is preferable that it is comprised with the path | route which heat-exchanges with the collection | recovery water which passes through, and takes out heat | fever outside.

この態様によれば、第2冷却水及び回収水と熱交換して熱を取り出すので、燃料電池の排熱を有効利用できる。   According to this aspect, since heat is extracted by exchanging heat with the second cooling water and the recovered water, the exhaust heat of the fuel cell can be effectively used.

本発明の燃料電池発電装置は、図1,3,4に示すように
前記回収水循環経路(20)は、前記冷却装置(25)と、前記冷却装置(25)を通流後の前記回収水の水温を検知する回収水水温検知手段(27)と、前記冷却装置(25)に通流させる回収水と前記冷却装置(25)をバイパスさせる回収水との流量比を調整する流量比調整バルブ(26)と、を備え、
前記回収水水温検知手段(27)が検知した前記回収水の水温が予め定められた設定範囲内の値になるように、前記回収水循環ポンプ(23)の出力、前記流量比調整バルブ(26)の開度及び前記冷却装置(25)の出力の少なくとも1つを制御するように構成されていることが好ましい。
1, 3, and 4, the recovered water circulation path (20) includes the recovered water after flowing through the cooling device (25) and the cooling device (25). The recovered water temperature detecting means (27) for detecting the water temperature of the water and the flow ratio adjusting valve for adjusting the flow rate ratio of the recovered water to be passed through the cooling device (25) and the recovered water to bypass the cooling device (25) (26)
The output of the recovered water circulation pump (23) and the flow rate ratio adjusting valve (26) so that the temperature of the recovered water detected by the recovered water temperature detecting means (27) becomes a value within a predetermined setting range. It is preferable that at least one of the opening degree and the output of the cooling device (25) is controlled.

本発明の燃料電池発電装置は、図2に示すように、
前記回収水循環経路(20)は、回収水冷却用熱交換器(28)と、前記回収水冷却用熱交換器(28)を通流後の前記回収水の水温を検知する回収水水温検知手段(27)と、を備え、
前記回収水冷却用熱交換器(28)の冷媒の循環経路(60)に前記冷却装置(25)が配置され、
前記回収水水温検知手段(27)が検知した前記回収水の水温が予め定められた設定範囲内の値になるように、前記回収水循環ポンプ(23)の出力、前記回収水冷却用熱交換器(28)を通過する前記冷媒の流量及び前記冷却装置(25)の出力の少なくとも1つを制御するように構成されていることが好ましい。
As shown in FIG. 2, the fuel cell power generator of the present invention
The recovered water circulation path (20) includes a recovered water cooling heat exchanger (28) and recovered water temperature detecting means for detecting the temperature of the recovered water after flowing through the recovered water cooling heat exchanger (28). (27)
The cooling device (25) is disposed in the refrigerant circulation path (60) of the recovered water cooling heat exchanger (28),
The output of the recovered water circulation pump (23), the recovered water cooling heat exchanger so that the temperature of the recovered water detected by the recovered water temperature detecting means (27) becomes a value within a predetermined set range. It is preferable to be configured to control at least one of the flow rate of the refrigerant passing through (28) and the output of the cooling device (25).

上記各態様によれば、回収水循環経路を流通する回収水を所定の温度に保つことができる。また、回収水の温度変動を速やかに自動で小さくすることができ、回収水生成装置の生成効率を下げることなく安定して運用することができる。   According to each aspect described above, the recovered water flowing through the recovered water circulation path can be maintained at a predetermined temperature. Further, the temperature fluctuation of the recovered water can be quickly and automatically reduced, and it can be stably operated without lowering the generation efficiency of the recovered water generating device.

本発明の燃料電池発電装置によれば、燃料電池の排熱を回収して有効利用しつつ、燃料電池を冷却する第1冷却水を積極的に冷却することができて、燃料電池の発電効率を下げることなく安定して運転することができる。そして、第1冷却水や回収水に含まれる燃料電池から排出された排熱は、回収水循環経路に設置した冷却装置で冷却できることから、冷却装置を複数台設ける必要がなく、より小型化が可能であり、更には、冷却装置のランニングコストやメンテナンス工数を削減できる。   According to the fuel cell power generation device of the present invention, the first cooling water for cooling the fuel cell can be actively cooled while recovering and effectively using the exhaust heat of the fuel cell, and the power generation efficiency of the fuel cell can be improved. It is possible to drive stably without lowering. And since the exhaust heat discharged from the fuel cell contained in the first cooling water and the recovered water can be cooled by the cooling device installed in the recovered water circulation path, it is not necessary to provide a plurality of cooling devices and can be further downsized. Furthermore, the running cost and maintenance man-hour of the cooling device can be reduced.

本発明の燃料電池発電装置の第1の実施形態の構成図である。1 is a configuration diagram of a first embodiment of a fuel cell power generator of the present invention. FIG. 本発明の燃料電池発電装置の第2の実施形態の構成図である。It is a block diagram of 2nd Embodiment of the fuel cell power generator of this invention. 本発明の燃料電池発電装置の第3の実施形態の構成図である。It is a block diagram of 3rd Embodiment of the fuel cell power generator of this invention. 本発明の燃料電池発電装置の第4の実施形態の構成図である。It is a block diagram of 4th Embodiment of the fuel cell electric power generating apparatus of this invention. 従来の燃料電池発電装置の構成図である。It is a block diagram of the conventional fuel cell power generator.

(第1の実施形態)
図1は、本発明の燃料電池発電装置の第1の実施形態を表わす構成図である。図1に示すように、本実施形態の燃料電池発電装置は、燃料電池冷却水循環経路1、第2冷却水循環経路10、回収水循環経路20、第1中継配管31、第2中継配管33、及び制御部100aを備える。
(First embodiment)
FIG. 1 is a block diagram showing a first embodiment of a fuel cell power generator of the present invention. As shown in FIG. 1, the fuel cell power generator of this embodiment includes a fuel cell cooling water circulation path 1, a second cooling water circulation path 10, a recovered water circulation path 20, a first relay pipe 31, a second relay pipe 33, and a control. Part 100a.

燃料電池冷却水循環経路1は、燃料電池2を冷却する第1冷却水の循環経路であって、燃料電池2、ヒータ3、水蒸気分離器4、電池冷却水循環ポンプ5、冷却用熱交換器6、電池冷却水水温センサ8、電池冷却水調整バルブ9、及びこれら各構成機器を結ぶ配管を備えている。   The fuel cell cooling water circulation path 1 is a first cooling water circulation path for cooling the fuel cell 2, and includes a fuel cell 2, a heater 3, a water vapor separator 4, a battery cooling water circulation pump 5, a cooling heat exchanger 6, The battery cooling water temperature sensor 8, the battery cooling water adjustment valve 9, and piping connecting these components are provided.

すなわち、燃料電池2の冷却水流出側2aから伸びた配管1aには、上流側からヒータ3、水蒸気分離器4、電池冷却水循環ポンプ5、電池冷却水水温センサ8がそれぞれ配置されて燃料電池2の冷却水導入側2bに接続している。また、電池冷却水循環ポンプ5と電池冷却水水温センサ8との間の配管は分岐してバイパス管1bが伸び、水蒸気分離器4と電池冷却水循環ポンプ5との間に接続している。このバイパス管1bには、上流側から冷却用熱交換器6、電池冷却水調整バルブ9がそれぞれ配置されている。   That is, the heater 3, the water vapor separator 4, the battery cooling water circulation pump 5, and the battery cooling water temperature sensor 8 are arranged from the upstream side in the pipe 1 a extending from the cooling water outflow side 2 a of the fuel cell 2. The cooling water introduction side 2b is connected. Further, the pipe between the battery cooling water circulation pump 5 and the battery cooling water temperature sensor 8 is branched to extend the bypass pipe 1b, and is connected between the water vapor separator 4 and the battery cooling water circulation pump 5. The bypass pipe 1b is provided with a cooling heat exchanger 6 and a battery coolant adjustment valve 9 from the upstream side.

燃料電池冷却水循環経路1では、作動中の燃料電池2に第1冷却水を流入させて、燃料電池2から発電により生じる熱量を奪って燃料電池2の温度を下げる。燃料電池2から流出した第1冷却水は加温されて高温になっており、この高温の第1冷却水は、ヒータ3を通過して水蒸気分離器4に流入する。水蒸気分離器4は、燃料電池からの排熱によって加温されて高温となった冷却水から水蒸気を分離する装置であって、気化した第1冷却水(水蒸気)はここで分離される。水蒸気分離器4で分離された水蒸気は、改質器(図示せず)などに導入して、水蒸気改質反応などの利用に供される。水蒸気分離器4によって分離された冷却水の一部は、バイパス管1bを通って冷却用熱交換器6によって更に冷却されて、燃料電池2に再び流入する。その際、電池冷却水水温センサ8の検知値に応じて電池冷却水調整バルブ9の開度を調節して、冷却用熱交換器6によって冷却された第1冷却水の流量を調整することで、燃料電池冷却水循環経路1内の第1冷却水の水温を予め定められた所定温度に調整している。なお、燃料電池2の起動時において、燃料電池2に流入する第1冷却水が低温であると、起動時における燃料電池2の出力効率が下がる。このため、ヒータ3は、起動時に燃料電池2に流入する冷却水を温めるために備えられており、定常運転操作時は停止していることが多い。   In the fuel cell cooling water circulation path 1, the first cooling water is caused to flow into the operating fuel cell 2, and the amount of heat generated by the power generation from the fuel cell 2 is taken to lower the temperature of the fuel cell 2. The first cooling water flowing out from the fuel cell 2 is heated to a high temperature, and the high temperature first cooling water passes through the heater 3 and flows into the water vapor separator 4. The water vapor separator 4 is a device for separating water vapor from the cooling water heated to high temperature by exhaust heat from the fuel cell, and the vaporized first cooling water (water vapor) is separated here. The water vapor separated by the water vapor separator 4 is introduced into a reformer (not shown) or the like and used for a steam reforming reaction or the like. A part of the cooling water separated by the water vapor separator 4 is further cooled by the cooling heat exchanger 6 through the bypass pipe 1 b and flows into the fuel cell 2 again. At that time, the flow rate of the first cooling water cooled by the cooling heat exchanger 6 is adjusted by adjusting the opening of the battery cooling water adjustment valve 9 according to the detection value of the battery cooling water temperature sensor 8. The water temperature of the first cooling water in the fuel cell cooling water circulation path 1 is adjusted to a predetermined temperature. Note that, when the fuel cell 2 is started, if the first cooling water flowing into the fuel cell 2 is at a low temperature, the output efficiency of the fuel cell 2 at the time of startup is lowered. For this reason, the heater 3 is provided for warming the cooling water flowing into the fuel cell 2 at the time of startup, and is often stopped during the steady operation.

第2冷却水循環経路10は、冷却用熱交換器6を介して、燃料電池冷却水循環経路1を流通する第1冷却水と熱交換して該第1冷却水を冷却する、第1冷却水の冷媒となる第2冷却水の循環経路であって、冷却用熱交換器6、排熱回収用熱交換器51、第2冷却水水温センサ16、冷却水循環ポンプ11、及びこれら各構成機器を結ぶ配管を備えている。   The second cooling water circulation path 10 exchanges heat with the first cooling water flowing through the fuel cell cooling water circulation path 1 via the cooling heat exchanger 6 to cool the first cooling water. This is a circulation path of the second cooling water serving as a refrigerant, and connects the cooling heat exchanger 6, the exhaust heat recovery heat exchanger 51, the second cooling water temperature sensor 16, the cooling water circulation pump 11, and these components. It has piping.

すなわち、冷却用熱交換器6の第2冷却水流出側6aから伸びた配管10aには、上流側から排熱回収用熱交換器51、第2冷却水水温センサ16、冷却水循環ポンプ11がそれぞれ配置されて、冷却用熱交換器6の第2冷却水導入側6bに接続している。また、冷却用熱交換器6と排熱回収用熱交換器51との間の配管には、第2中継配管冷却水水温センサ15が配置された第2中継配管33が分岐して伸び、回収水循環経路20に接続している。また、排熱回収用熱交換器51と第2冷却水水温センサ16との間の配管には、後述する回収水循環経路20から伸びた第1中継配管31が接続している。   That is, in the pipe 10a extending from the second cooling water outflow side 6a of the cooling heat exchanger 6, the exhaust heat recovery heat exchanger 51, the second cooling water temperature sensor 16, and the cooling water circulation pump 11 are respectively provided from the upstream side. It arrange | positions and is connected to the 2nd cooling water introduction side 6b of the heat exchanger 6 for cooling. Further, the second relay pipe 33 provided with the second relay pipe cooling water temperature sensor 15 branches and extends to the pipe between the cooling heat exchanger 6 and the exhaust heat recovery heat exchanger 51, and is recovered. It is connected to the water circulation path 20. A first relay pipe 31 extending from the recovered water circulation path 20 described later is connected to the pipe between the exhaust heat recovery heat exchanger 51 and the second cooling water temperature sensor 16.

上記排熱回収用熱交換器51では、第1冷却水との熱交換により昇温した第2冷却水の熱量を、排熱回収用熱交換器51の冷媒である外部水などに与えて温水等を回収する。   In the heat exchanger 51 for exhaust heat recovery, the amount of heat of the second cooling water whose temperature has been raised by heat exchange with the first cooling water is given to external water or the like that is the refrigerant of the heat exchanger 51 for exhaust heat recovery to Collect etc.

回収水循環経路20は、燃料電池2から排出される排ガスから回収した回収水の循環経路であって、回収水生成装置21、回収水循環ポンプ23、第1調整バルブ32、第2調整バルブ26、エアフィンクーラ25、回収水水温センサ27、及び上記各構成機器を結ぶ配管を備えている。   The recovered water circulation path 20 is a circulating path of recovered water recovered from the exhaust gas discharged from the fuel cell 2, and includes a recovered water generation device 21, a recovered water circulation pump 23, a first adjustment valve 32, a second adjustment valve 26, an air The fin cooler 25, the recovered water temperature sensor 27, and piping connecting the above-described components are provided.

上記回収水生成装置21の上部には、燃料電池2のカソード極から伸びた燃料電池オフガス排気経路7が接続しており、回収水生成装置21内にカソードオフガスなどの排ガスが導入される。なお、特に図示しないが、改質器を更に備える燃料電池発電装置の場合においては、改質器のバーナ部から伸びたバーナ燃焼排ガス経路が接続しており、バーナ燃焼排ガスが導入されるように構成されている。また、回収水生成装置21の内部には、上部に散水装置22が配置されおり、回収水生成装置21内に導入された排ガスを、散水装置22から回収水を散水して、冷却し水分を凝縮するように構成されている。また、散水装置22の下方には脱炭酸塔が配置され、ここで排ガスから回収された水分水が脱炭酸処理されて、底部の回収タンクに回収水として回収される。なお、排ガス中のガス成分は、回収水生成装置21の上部から系外に排気される。   A fuel cell off-gas exhaust path 7 extending from the cathode electrode of the fuel cell 2 is connected to the upper part of the recovered water generating device 21, and exhaust gas such as cathode off gas is introduced into the recovered water generating device 21. Although not specifically shown, in the case of a fuel cell power generator further provided with a reformer, the burner combustion exhaust gas path extending from the burner portion of the reformer is connected so that the burner combustion exhaust gas is introduced. It is configured. In addition, a sprinkler 22 is arranged in the upper part of the recovered water generating device 21, and the exhaust gas introduced into the recovered water generating device 21 is sprinkled with recovered water from the sprinkler 22 to cool and cool the moisture. It is configured to condense. In addition, a decarbonation tower is disposed below the sprinkler 22, where the moisture water recovered from the exhaust gas is decarboxylated and recovered as recovered water in the recovery tank at the bottom. The gas component in the exhaust gas is exhausted from the upper part of the recovered water generation device 21 to the outside of the system.

回収水生成装置21の底部(回収タンク)から伸びた配管20aには、上流側から回収水循環ポンプ23、第1調整バルブ32、第2調整バルブ26、エアフィンクーラ25、回収水水温センサ27がそれぞれ配置されて、回収水生成装置21の上部の散水装置22に接続している。   A pipe 20a extending from the bottom (recovery tank) of the recovered water generation device 21 includes a recovered water circulation pump 23, a first adjustment valve 32, a second adjustment valve 26, an air fin cooler 25, and a recovered water temperature sensor 27 from the upstream side. They are respectively arranged and connected to the sprinkler 22 at the top of the recovered water generator 21.

また、第1調整バルブ32を介して第1中継配管31が伸び、前述したように第2冷却水循環経路10の排熱回収用熱交換器51と第2冷却水水温センサ16との間の配管に接続している。この第1調整バルブ32は、第1中継配管31方向への開度を0〜100%の間で調整可能とし、第1中継配管31方向への開度が大きくなるに従って、エアフィンクーラ25方向の配管へ接続された弁の開度が小さくなるよう構成されている。   Further, the first relay pipe 31 extends through the first adjustment valve 32, and the pipe between the heat exchanger 51 for exhaust heat recovery in the second cooling water circulation path 10 and the second cooling water temperature sensor 16 as described above. Connected to. The first adjustment valve 32 can adjust the opening degree in the direction of the first relay pipe 31 between 0 to 100%, and the air fin cooler 25 direction as the opening degree in the direction of the first relay pipe 31 increases. It is comprised so that the opening degree of the valve connected to this piping may become small.

また、第2調整バルブ26には、エアフィンクーラ25の上流側の配管が分岐して伸びたバイパス配管20bが接続しており、第2調整バルブ26のそれぞれの開口弁の開度を調整することで、エアフィンクーラ25へ流す回収水の流量と、エアフィンクーラ25をバイパスして流す回収水の流量比を調整するように構成されている。   The second adjustment valve 26 is connected to a bypass pipe 20b that is branched and extended from the upstream pipe of the air fin cooler 25, and adjusts the opening degree of each opening valve of the second adjustment valve 26. Thus, the flow rate of the recovered water that flows to the air fin cooler 25 and the flow rate ratio of the recovered water that flows while bypassing the air fin cooler 25 are adjusted.

制御部100aは、第2中継配管冷却水水温センサ15、第2冷却水水温センサ16及び回収水水温センサ27からの温度測定値、回収水循環ポンプ23の出力値を受信して、第2冷却水循環経路10を流通する第2冷却水の温度、第2中継配管33を流通する回収水の温度、回収水循環経路20を流通する回収水の温度が設定範囲となるように、第1調整バルブ32、第2調整バルブ26、回収水循環ポンプ23及びエアフィンクーラ25に出力信号を送信する。   The control unit 100a receives the temperature measurement value from the second relay pipe cooling water temperature sensor 15, the second cooling water temperature sensor 16, and the recovered water temperature sensor 27, and the output value of the recovered water circulation pump 23, and receives the second cooling water circulation. The first adjustment valve 32, so that the temperature of the second cooling water flowing through the path 10, the temperature of the recovered water flowing through the second relay pipe 33, and the temperature of the recovered water flowing through the recovered water circulation path 20 are within the set range. An output signal is transmitted to the second adjustment valve 26, the recovered water circulation pump 23, and the air fin cooler 25.

次に、制御部100aで行われる制御について説明する。   Next, the control performed by the control unit 100a will be described.

第2冷却水水温センサ16の検出値は、制御部100aへ送られ、予め制御部100aに記憶された上限値と比較される。上記検出値が設定値よりも大きい場合は、回収水循環経路20から第1中継配管31を通って第2冷却水循環経路10に流入する回収水の流量を増加させる方向に第1調整バルブ32の開度を調整する指令を、また逆に第2冷却水水温センサ16の検出値が設定値よりも小さい場合は、回収水循環経路20から第1中継配管31を通って第2冷却水循環経路10に流入する回収水の流量を減少させる方向に第1調整バルブ32の開度を調整する指令を、第1調整バルブ32に送信する。回収水循環経路20に設けた回収水生成装置21の回収水タンク内の回収水の温度は、第2冷却水循環経路10を循環する第2冷却水の温度よりも低いので、回収水の第2冷却水循環経路10への流入量を調整することで、第2冷却水の温度を調整できる。そして、排熱回収用熱交換器51から取り出される温水の需要が少ない場合など、第1調整バルブ32の第1中継配管31方向への開度が100%に達してもなお、第2冷却水水温センサ16の検出値が制御部100aに記憶された設定値より大きい場合は、回収水循環ポンプ23に出力を増大させる指令を送信し、回収水循環ポンプ23から送出される回収水の流量を増やし、回収水循環経路20から第2冷却水循環経路10に流入する回収水の流量を増加させる。   The detection value of the second cooling water temperature sensor 16 is sent to the control unit 100a and compared with the upper limit value stored in advance in the control unit 100a. When the detected value is larger than the set value, the first adjustment valve 32 is opened in a direction in which the flow rate of the recovered water flowing from the recovered water circulation path 20 through the first relay pipe 31 into the second cooling water circulation path 10 is increased. When the detected value of the second cooling water temperature sensor 16 is smaller than the set value, the command to adjust the degree is flowed from the recovered water circulation path 20 into the second cooling water circulation path 10 through the first relay pipe 31. A command to adjust the opening degree of the first adjustment valve 32 in a direction to decrease the flow rate of the recovered water is transmitted to the first adjustment valve 32. Since the temperature of the recovered water in the recovered water tank of the recovered water generating device 21 provided in the recovered water circulation path 20 is lower than the temperature of the second cooling water circulating in the second cooling water circulation path 10, the second cooling of the recovered water is performed. The temperature of the second cooling water can be adjusted by adjusting the amount of inflow into the water circulation path 10. Even when the opening of the first adjustment valve 32 in the direction of the first relay pipe 31 reaches 100%, such as when there is little demand for hot water taken out from the heat exchanger 51 for exhaust heat recovery, the second cooling water When the detected value of the water temperature sensor 16 is larger than the set value stored in the control unit 100a, a command to increase the output is transmitted to the recovered water circulation pump 23, the flow rate of recovered water sent from the recovered water circulation pump 23 is increased, The flow rate of the recovered water flowing into the second cooling water circulation path 10 from the recovered water circulation path 20 is increased.

また、第2中継配管冷却水水温センサ15の検出値は、制御部100aへ送られ、予め制御部100aに記憶された上限値と比較される。そして、検出値が上限値よりも大きい場合は、回収水循環経路20の回収水循環ポンプ23の出力を上げる指令を、第2中継配管冷却水水温センサ15の検出値が上限値以下の場合は、回収水循環経路20の回収水循環ポンプ23の出力を下げる指令を、回収水循環ポンプ23へ送信する。第2中継配管33では、回収水循環経路20から第1中継配管31を通って第2冷却水循環経路10に流入したのと同流量の第2冷却水が、第2中継配管33を通って第2冷却水循環経路10から回収水循環経路20へ還流するので、回収水循環ポンプ23の出力を調整することで、第2冷却水及び回収水の温度を調整できる。   The detection value of the second relay pipe cooling water temperature sensor 15 is sent to the control unit 100a and compared with the upper limit value stored in advance in the control unit 100a. When the detected value is larger than the upper limit value, a command to increase the output of the recovered water circulation pump 23 of the recovered water circulation path 20 is issued. When the detected value of the second relay pipe cooling water temperature sensor 15 is lower than the upper limit value, A command to lower the output of the recovered water circulation pump 23 in the water circulation path 20 is transmitted to the recovered water circulation pump 23. In the second relay pipe 33, the second cooling water having the same flow rate as that flowing into the second cooling water circulation path 10 from the recovered water circulation path 20 through the first relay pipe 31 passes through the second relay pipe 33 and is second. Since it recirculates from the cooling water circulation path 10 to the recovered water circulation path 20, the temperature of the second cooling water and the recovered water can be adjusted by adjusting the output of the recovered water circulation pump 23.

また、回収水水温センサ27の検出値は、制御部100aへ送られ、予め制御部100aに記憶された上限値と比較される。検出値が上限値よりも大きい場合は、エアフィンクーラ25に送られる回収水の流量を増大する方向に第2調整バルブ26の開度を調整する指令を、検出値が設定値よりも小さい場合は、エアフィンクーラ25をバイパスして散水装置22へ送られる回収水の流量を増大する方向に第2調整バルブ26の開度を調整する指令を、第2調整バルブ26に送信する。また、第2調整バルブ26のエアフィンクーラ25方向の開度が100%となっても回収水水温センサ27の検出値が所定温度を超える場合は、制御部100aは、エアフィンクーラ25に出力を増大させる指令を送信し、エアフィンクーラ25の出力を上げて、回収水循環経路20の回収水を積極的に冷却させて、回収水水温センサ27が検知する回収水循環経路20の回収水の温度が所定温度となるように制御する。また、エアフィンクーラ25の出力を上限まで増大させても回収水水温センサ27の検出値が所定温度を超える場合は、回収水循環ポンプ23の出力を上げる指令を、回収水循環ポンプ23に送信し、エアフィンクーラ25における回収水の処理量を増大させる。   Further, the detected value of the recovered water temperature sensor 27 is sent to the control unit 100a and compared with the upper limit value stored in advance in the control unit 100a. When the detected value is larger than the upper limit value, a command for adjusting the opening degree of the second adjustment valve 26 in a direction to increase the flow rate of the recovered water sent to the air fin cooler 25, and when the detected value is smaller than the set value. Sends a command to the second adjustment valve 26 to adjust the opening of the second adjustment valve 26 in a direction to increase the flow rate of the recovered water sent to the sprinkler 22 by bypassing the air fin cooler 25. Further, when the detected value of the recovered water temperature sensor 27 exceeds a predetermined temperature even when the opening degree of the second adjustment valve 26 in the direction of the air fin cooler 25 becomes 100%, the control unit 100a outputs to the air fin cooler 25. Is transmitted, the output of the air fin cooler 25 is increased, the recovered water in the recovered water circulation path 20 is actively cooled, and the temperature of the recovered water in the recovered water circulation path 20 detected by the recovered water temperature sensor 27 is detected. Is controlled to a predetermined temperature. If the detected value of the recovered water temperature sensor 27 exceeds a predetermined temperature even if the output of the air fin cooler 25 is increased to the upper limit, a command to increase the output of the recovered water circulation pump 23 is transmitted to the recovered water circulation pump 23. The amount of recovered water in the air fin cooler 25 is increased.

次に、上記実施形態の燃料電池発電装置の排熱回収用熱交換器51から、中温水(約65℃)又は高温水(約85℃)を取り出す場合について、例を挙げて説明する。   Next, the case where intermediate temperature water (about 65 ° C.) or high temperature water (about 85 ° C.) is taken out from the heat exchanger 51 for exhaust heat recovery of the fuel cell power generator of the above embodiment will be described with an example.

排熱回収用熱交換器51から約65℃の中温水を取り出す場合は、制御部100aは、第2冷却水水温センサ16の検出温度が65℃となるよう第1調整バルブ32の開度を制御する。第1調整バルブ32の第1中継配管31方向への開度が100%に達しても第2冷却水水温センサ16の検出値が65℃以上になる場合は、回収水循環経路20の回収水循環ポンプ23の出力を上げて第1中継配管31に流入する冷却水の流量を増加させる。また、第2冷却水循環経路10は、第1中継配管31に流入した量の回収水循環経路20の回収水と同量第2冷却水が、第2中継配管33を介して回収水循環経路20へ流出する。そのため、回収水循環経路20の冷却水が、昇温する。そこで、第2中継配管冷却水水温センサ15の検出値が75℃に達したら回収水循環ポンプ23の回転数を上げて回収水の流量を増加して、エアフィンクーラ25へ送る冷却水の温度を下げる。   When taking out the medium temperature water of about 65 ° C. from the heat exchanger 51 for exhaust heat recovery, the control unit 100a opens the first adjustment valve 32 so that the temperature detected by the second cooling water temperature sensor 16 becomes 65 ° C. Control. If the detected value of the second cooling water temperature sensor 16 is 65 ° C. or higher even when the opening of the first adjustment valve 32 toward the first relay pipe 31 reaches 100%, the recovered water circulation pump of the recovered water circulation path 20 The output of 23 is increased and the flow rate of the cooling water flowing into the first relay pipe 31 is increased. Further, in the second cooling water circulation path 10, the same amount of the second cooling water that has flowed into the first relay pipe 31 as the recovered water in the recovered water circulation path 20 flows out to the recovered water circulation path 20 via the second relay pipe 33. To do. Therefore, the temperature of the cooling water in the recovered water circulation path 20 rises. Therefore, when the detection value of the second relay pipe cooling water temperature sensor 15 reaches 75 ° C., the rotation speed of the recovered water circulation pump 23 is increased to increase the flow rate of the recovered water, and the temperature of the cooling water sent to the air fin cooler 25 is adjusted. Lower.

排熱回収用熱交換器51から約85℃の高温水を取り出す場合は、制御部100aが、第2冷却水水温センサ16の検出値が85℃になるよう第1調整バルブ32の開度を制御するように、第1調整バルブ32の開度に関する設定値を変更する。また、第2中継配管冷却水水温センサ15の検出が95℃以上になる場合は、制御部100aが、回収水循環ポンプ23の出力を上げる制御を行うように、回収水循環ポンプ23に関する設定値を変更する。これらの設定値を変更する以外は、中温水を取り出す場合と同じ制御を行う。   When high temperature water of about 85 ° C. is taken out from the heat exchanger 51 for exhaust heat recovery, the control unit 100a opens the first adjustment valve 32 so that the detected value of the second cooling water temperature sensor 16 becomes 85 ° C. The set value related to the opening of the first adjustment valve 32 is changed so as to be controlled. Further, when the detection of the second relay pipe cooling water temperature sensor 15 is 95 ° C. or higher, the control unit 100a changes the set value for the recovered water circulation pump 23 so as to perform control to increase the output of the recovered water circulation pump 23. To do. Except for changing these set values, the same control is performed as when medium-temperature water is taken out.

このように、各温度センサ15,16が検知した温度に対する設定温度を変更するだけで、使用者のニーズに応じた水温の温水を安定して提供することができる。また、冷却水の温度制御をおこなうにあたり、図5に示す従来例の燃料電池発電装置と比較して、エアフィンクーラ73を不要とすることができるので、装置構成をよりコンパクト化でき、その結果メンテナンスコストなどを低減できる。   As described above, it is possible to stably provide hot water having a water temperature according to the needs of the user only by changing the set temperature with respect to the temperature detected by each of the temperature sensors 15 and 16. In addition, when controlling the temperature of the cooling water, the air fin cooler 73 can be made unnecessary as compared with the conventional fuel cell power generator shown in FIG. Maintenance costs can be reduced.

なお、この実施例形態では、冷却装置としてエアフィンクーラを使用した例を示して説明したが、エアフィンクーラ以外の冷却装置を使用することができることは言うまでもない。   In this embodiment, an example in which an air fin cooler is used as a cooling device has been shown and described. Needless to say, a cooling device other than an air fin cooler can be used.

(第2の実施形態)
本発明の燃料電池発電装置の第2の実施形態について、図2を用いて説明する。なお、上記第1の実施形態と同一箇所には、同一符号を付してその説明を省略する。
(Second Embodiment)
A fuel cell power generator according to a second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same location as the said 1st Embodiment, and the description is abbreviate | omitted.

この実施形態では、第2冷却水循環経路10は、冷却用熱交換器6の第2冷却水流出側6aから伸びた配管10aに上流側から排熱回収用熱交換器51、逆流防止弁19、第2冷却水水温センサ16、冷却水循環ポンプ11がそれぞれ配置されて、冷却用熱交換器6の第2冷却水導入側6bに接続している。そして、排熱回収用熱交換器51と逆流防止弁19との間の配管には、第2中継配管冷却水水温センサが配置された第2中継配管33が分岐して伸び、回収水循環経路20に接続している。また、排熱回収用熱交換器51と逆流防止弁19との間の配管には、回収水循環経路20から伸びた第1中継配管31が接続している。   In this embodiment, the second cooling water circulation path 10 is connected to the pipe 10a extending from the second cooling water outflow side 6a of the cooling heat exchanger 6 to the exhaust heat recovery heat exchanger 51, the backflow prevention valve 19, from the upstream side, A second cooling water temperature sensor 16 and a cooling water circulation pump 11 are arranged and connected to the second cooling water introduction side 6 b of the cooling heat exchanger 6. A second relay pipe 33 provided with a second relay pipe cooling water temperature sensor branches and extends in the pipe between the exhaust heat recovery heat exchanger 51 and the backflow prevention valve 19, and the recovered water circulation path 20 is extended. Connected to. A first relay pipe 31 extending from the recovered water circulation path 20 is connected to the pipe between the exhaust heat recovery heat exchanger 51 and the backflow prevention valve 19.

また、回収水循環経路20は、回収水生成装置21の底部(回収タンク)から伸びた配管20aに、上流側から回収水循環ポンプ23、第1調整バルブ32、回収水冷却用熱交換器28、回収水水温センサ27がそれぞれ配置されて、回収水生成装置21の上部の散水装置に接続している。   Further, the recovered water circulation path 20 is connected to a pipe 20a extending from the bottom (recovery tank) of the recovered water generating device 21, from the upstream side, the recovered water circulation pump 23, the first adjustment valve 32, the recovered water cooling heat exchanger 28, the recovery Water temperature sensors 27 are respectively arranged and connected to a watering device above the recovered water generation device 21.

そして、回収水冷却用熱交換器28の冷媒(以下、回収水冷媒と記す)の冷媒循環経路60に、エアフィンクーラ25、冷媒循環ポンプ61が配置され、回収水冷却用熱交換器28を介して回収水と回収水冷媒とを熱交換して、回収水を冷却するように構成されている。また、回収水との熱交換によって昇温した回収水冷媒は、エアフィンクーラ25で冷却されて、再び回収水冷却用熱交換器28に導入される。   The air fin cooler 25 and the refrigerant circulation pump 61 are disposed in the refrigerant circulation path 60 of the refrigerant of the recovered water cooling heat exchanger 28 (hereinafter referred to as recovered water refrigerant), and the recovered water cooling heat exchanger 28 is The recovered water and the recovered water refrigerant are exchanged with each other through the heat exchanger to cool the recovered water. The recovered water refrigerant whose temperature has been raised by heat exchange with the recovered water is cooled by the air fin cooler 25 and introduced into the recovered water cooling heat exchanger 28 again.

この燃料電池発電装置における制御部100bでは、第2中継配管冷却水水温センサ15、第2冷却水水温センサ16及び回収水水温センサ27からの温度測定値、回収水循環ポンプ23の出力値を受信して、第2冷却水循環経路10を流通する第2冷却水の温度、第2中継配管33を流通する回収水の温度、回収水循環経路20を流通する回収水の温度が設定範囲となるように、第1調整バルブ32、回収水循環ポンプ23及びエアフィンクーラ25に出力信号を送信する。   The control unit 100b in the fuel cell power generator receives the temperature measurement values from the second relay pipe cooling water temperature sensor 15, the second cooling water temperature sensor 16, and the recovered water temperature sensor 27, and the output value of the recovered water circulation pump 23. The temperature of the second cooling water flowing through the second cooling water circulation path 10, the temperature of the recovered water flowing through the second relay pipe 33, and the temperature of the recovered water flowing through the recovered water circulation path 20 are within the set range. An output signal is transmitted to the first adjustment valve 32, the recovered water circulation pump 23, and the air fin cooler 25.

次に、制御部100bで行われる制御について説明する。   Next, the control performed by the control unit 100b will be described.

第2冷却水水温センサ16の検出値は、制御部100bへ送られ、予め制御部100bに記憶された上限値と比較される。検出値が上限値よりも大きい場合は、回収水循環経路20から第1中継配管31を通って第2冷却水循環経路10に流入する回収水の流量を増加させる方向に第1調整バルブ32の開度を調整する指令を、また逆に検出値が設定値よりも小さい場合は、回収水循環経路20から第1中継配管31を通って第2冷却水循環経路10に流入する回収水の流量を減少させる方向に第1調整バルブ32の開度を調整する指令を、第1調整バルブ32に送信する。そして、第1調整バルブ32の第1中継配管31方向への開度が100%に達してもなお、第2冷却水水温センサ16の検出値が制御部100bに記憶された設定値より大きい場合は、回収水循環ポンプ23に出力を増大させる指令を送信し、回収水循環ポンプ23から送出される回収水の流量を増やし、回収水循環経路20から第2冷却水循環経路10に流入する回収水の流量を増加させる。   The detection value of the second coolant temperature sensor 16 is sent to the control unit 100b and compared with the upper limit value stored in advance in the control unit 100b. When the detected value is larger than the upper limit value, the opening degree of the first adjustment valve 32 in the direction of increasing the flow rate of the recovered water flowing from the recovered water circulation path 20 through the first relay pipe 31 into the second cooling water circulation path 10. If the detected value is smaller than the set value, the flow rate of the recovered water flowing from the recovered water circulation path 20 through the first relay pipe 31 to the second cooling water circulation path 10 is decreased. A command for adjusting the opening degree of the first adjustment valve 32 is transmitted to the first adjustment valve 32. And even if the opening degree of the first adjustment valve 32 toward the first relay pipe 31 reaches 100%, the detected value of the second cooling water temperature sensor 16 is larger than the set value stored in the control unit 100b. Transmits a command to increase the output to the recovered water circulation pump 23, increases the flow rate of the recovered water sent from the recovered water circulation pump 23, and sets the flow rate of the recovered water flowing into the second cooling water circulation path 10 from the recovered water circulation path 20. increase.

また、第2中継配管冷却水水温センサ15の検出値は、制御部100bへ送られ、予め制御部100bに記憶された上限値と比較される。検出値が上限値よりも大きい場合は、回収水循環経路20の回収水循環ポンプ23の出力を上げる指令を、検出値が上限値以下の場合は、回収水循環経路20の回収水循環ポンプ23の出力を下げる指令を回収水循環ポンプ23へ送信する。   The detection value of the second relay pipe cooling water temperature sensor 15 is sent to the control unit 100b and compared with the upper limit value stored in advance in the control unit 100b. When the detected value is larger than the upper limit value, a command to increase the output of the recovered water circulation pump 23 of the recovered water circulation path 20 is issued. When the detected value is less than the upper limit value, the output of the recovered water circulation pump 23 of the recovered water circulation path 20 is decreased. The command is transmitted to the recovered water circulation pump 23.

また、回収水水温センサ27の検出値は、制御部100bへ送られ、予め制御部100bに記憶された上限値と比較される。検出値が上限値よりも大きい場合は、エアフィンクーラ25の出力を上げる指令を、検出値が上限値以下の場合は、エアフィンクーラ25の出力を下げる指令を、エアフィンクーラ25に送信する。すなわち、冷媒循環経路60を流通する回収水冷媒の温度を調整することで、回収水水温センサ27が検知する回収水循環経路20の回収水の温度が所定温度となるように制御する。また、エアフィンクーラ25の出力を上限まで増大させても回収水水温センサ27の検出値が所定温度を超える場合は、回収水循環ポンプ23の出力を上げる指令を、回収水循環ポンプ23に送信し、回収水冷却用熱交換器28における回収水の処理量を増大させる。   Further, the detected value of the recovered water temperature sensor 27 is sent to the control unit 100b and compared with the upper limit value stored in advance in the control unit 100b. When the detected value is larger than the upper limit value, a command to increase the output of the air fin cooler 25 is transmitted to the air fin cooler 25, and when the detected value is equal to or lower than the upper limit value, a command to decrease the output of the air fin cooler 25 is transmitted. . That is, by adjusting the temperature of the recovered water refrigerant flowing through the refrigerant circulation path 60, the temperature of the recovered water in the recovered water circulation path 20 detected by the recovered water temperature sensor 27 is controlled to be a predetermined temperature. If the detected value of the recovered water temperature sensor 27 exceeds a predetermined temperature even if the output of the air fin cooler 25 is increased to the upper limit, a command to increase the output of the recovered water circulation pump 23 is transmitted to the recovered water circulation pump 23. The processing amount of recovered water in the recovered water cooling heat exchanger 28 is increased.

この実施形態では、第1中継配管31が排熱回収用熱交換器51の下流に配置されているので、回収水循環経路20には、排熱回収用熱交換器51で熱交換後の第2冷却水を導入でき、排熱回収用熱交換器51にてより多くの排熱を回収できる。また、回収水循環経路20には、排熱回収用熱交換器51で熱交換後の第2冷却水を通流させるので、より低温の回収水を返送でき、エアフィンクーラ25の負荷をより低減できる。   In this embodiment, since the first relay pipe 31 is arranged downstream of the exhaust heat recovery heat exchanger 51, the second water after the heat exchange with the exhaust heat recovery heat exchanger 51 is provided in the recovered water circulation path 20. Cooling water can be introduced, and more exhaust heat can be recovered by the exhaust heat recovery heat exchanger 51. Further, since the second cooling water after heat exchange is passed through the recovered water circulation path 20 by the heat exchanger 51 for exhaust heat recovery, lower temperature recovered water can be returned and the load on the air fin cooler 25 is further reduced. it can.

また、排ガス中には炭酸ガスなどが含まれていることから、回収水循環経路20を流通する回収水は酸性になっていることが多いため、回収水の流路となる配管は耐酸性素材で構成する必要があり、安価で熱伝導性が良い銅系材料は使用できないが、この実施形態では、エアフィンクーラ25の冷媒の流路には、回収水が流入しないため、エアフィンクーラ25の構成素材として、銅系材料を使用することができる。このため、エアフィンクーラ25の冷却効率を高めることができ、回収水の冷却に要するコストをより低減できる。   In addition, since the exhaust gas contains carbon dioxide and the like, the recovered water that circulates through the recovered water circulation path 20 is often acidic. However, in this embodiment, since the recovered water does not flow into the refrigerant flow path of the air fin cooler 25, it is necessary to configure the air fin cooler 25. A copper-based material can be used as the constituent material. For this reason, the cooling efficiency of the air fin cooler 25 can be increased, and the cost required for cooling the recovered water can be further reduced.

(第3の実施形態)
本発明の燃料電池発電装置の第3の実施形態について、図3を用いて説明する。なお、上記第1の実施形態と同一箇所には、同一符号を付してその説明を省略する。
(Third embodiment)
A third embodiment of the fuel cell power generator of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same location as the said 1st Embodiment, and the description is abbreviate | omitted.

この実施形態では、燃料電池冷却水循環経路1の電池冷却水循環ポンプ5と電池冷却水水温センサ8との間の配管が分岐して伸びたバイパス管1bに、上流側から排熱回収用熱交換器52、冷却用熱交換器6、電池冷却水調整バルブ9がそれぞれ配置されて、燃料電池冷却水循環経路1の、水蒸気分離器4と電池冷却水循環ポンプ5との間の配管に接続している。   In this embodiment, a heat exchanger for exhaust heat recovery from the upstream side is connected to a bypass pipe 1b in which a pipe between a battery cooling water circulation pump 5 and a battery cooling water temperature sensor 8 in the fuel cell cooling water circulation path 1 extends. 52, a cooling heat exchanger 6 and a battery cooling water adjusting valve 9 are respectively arranged and connected to a pipe between the water vapor separator 4 and the battery cooling water circulation pump 5 in the fuel cell cooling water circulation path 1.

上記冷却用熱交換器6には、回収水循環経路20から第1調整バルブ32を介して分岐し、冷却用熱交換器6を通って回収水循環経路20に戻される回収水迂回経路40が配置されている。すなわち、回収水循環経路20を循環する回収水の一部または全部を、第1冷却水の冷媒として利用できるように構成されている。この、回収水迂回経路40の冷却用熱交換器6の下流側には、迂回回収水水温センサ41、排熱回収用熱交換器53がそれぞれ配置されて、回収水循環経路20の第1調整バルブ32の下流側に接続している。   The cooling heat exchanger 6 is provided with a recovered water bypass path 40 that branches from the recovered water circulation path 20 via the first adjustment valve 32 and returns to the recovered water circulation path 20 through the cooling heat exchanger 6. ing. That is, part or all of the recovered water circulating through the recovered water circulation path 20 can be used as the refrigerant of the first cooling water. A bypass recovery water temperature sensor 41 and a waste heat recovery heat exchanger 53 are respectively arranged on the downstream side of the cooling heat exchanger 6 of the recovered water bypass path 40, and the first adjustment valve of the recovered water circulation path 20. 32 is connected to the downstream side.

上記排熱回収用熱交換器52では、燃料電池2の冷却時に発電発熱量を受け取って昇温した第1冷却水の熱量を、排熱回収用熱交換器52の冷媒である外部水などに与えて温水等を回収する。   In the heat exchanger for exhaust heat recovery 52, the heat quantity of the first cooling water that has received the power generation calorific value during cooling of the fuel cell 2 and raised the temperature is used as external water that is the refrigerant of the heat exchanger for exhaust heat recovery 52 or the like. Give it to collect hot water.

上記冷却用熱交換器6では、燃料電池2の発電発熱量から排熱回収用熱交換器52で回収された熱量を差し引いた分の熱量を、回収水迂回経路40を流通する回収水(以下、「迂回回収水」と記す)との熱交換により、迂回回収水に与えることができる。   In the cooling heat exchanger 6, the amount of heat obtained by subtracting the amount of heat recovered by the exhaust heat recovery heat exchanger 52 from the amount of heat generated by the fuel cell 2 is recovered water (hereinafter referred to as the recovered water bypass route 40). In this case, it can be given to the detoured water by heat exchange with the detoured water.

上記排熱回収用熱交換器53では、冷却用熱交換器6での第1冷却水との熱交換により昇温した迂回回収水の熱量を、排熱回収用熱交換器53の冷媒である外部水などに与えて温水等を回収する。ここで回収される熱量は、燃料電池2の発電発熱量から排熱回収用熱交換器52で回収された熱量を差し引いた分の熱量以下であることから、排熱回収用熱交換器52よりも低温の温水などが回収される。   In the heat exchanger for exhaust heat recovery 53, the amount of heat of detour recovered water whose temperature has been raised by heat exchange with the first cooling water in the cooling heat exchanger 6 is the refrigerant of the heat exchanger for exhaust heat recovery 53. Give hot water to external water. The amount of heat recovered here is equal to or less than the amount of heat obtained by subtracting the amount of heat recovered by the exhaust heat recovery heat exchanger 52 from the amount of heat generated by the fuel cell 2. Also low temperature hot water is recovered.

この燃料電池発電装置における制御部100cでは、迂回回収水水温センサ41及び回収水水温センサ27からの温度測定値、回収水循環ポンプ23の出力値を受信して、冷却用熱交換器6から流出する迂回回収水の温度が設定範囲となるように、第1調整バルブ32、回収水循環ポンプ23及びエアフィンクーラ25に出力信号を送信する。   The control unit 100c in the fuel cell power generation apparatus receives the temperature measurement values from the detour recovery water temperature sensor 41 and the recovery water temperature sensor 27 and the output value of the recovery water circulation pump 23, and flows out from the cooling heat exchanger 6. An output signal is transmitted to the first adjustment valve 32, the recovered water circulation pump 23, and the air fin cooler 25 so that the temperature of the bypass recovered water falls within the set range.

次に、制御部100cで行われる制御について説明する。   Next, the control performed by the control unit 100c will be described.

迂回回収水水温センサ41の検出値は、制御部100cへ送られ、予め制御部100cに記憶された上限値と比較される。検出値が設定値よりも大きい場合は、回収水迂回経路40を流通する回収水の流量を増加させる方向に第1調整バルブ32の開度を調整する指令を、また逆に検出値が設定値よりも小さい場合は、回収水迂回経路40を流通する回収水の流量を減少させる方向に第1調整バルブ32の開度を調整する指令を、第1調整バルブ32に送信する。そして、第1調整バルブ32の回収水迂回経路40方向への開度が100%に達してもなお、検出値が制御部100cに記憶された設定値より大きい場合は、回収水循環ポンプ23に出力を増大させる指令を送信し、回収水循環ポンプ23から送出される回収水の流量を増やして回収水循環経路20から回収水迂回経路40を流通する回収水の流量を増加させる。   The detection value of the bypass recovery water temperature sensor 41 is sent to the control unit 100c and compared with the upper limit value stored in advance in the control unit 100c. When the detected value is larger than the set value, a command to adjust the opening of the first adjustment valve 32 in the direction to increase the flow rate of the recovered water flowing through the recovered water bypass path 40, and conversely, the detected value is the set value. If smaller, the command to adjust the opening degree of the first adjustment valve 32 in a direction to decrease the flow rate of the recovered water flowing through the recovered water bypass path 40 is transmitted to the first adjustment valve 32. And even if the opening degree of the first adjustment valve 32 in the direction of the recovered water bypass path 40 reaches 100%, if the detected value is larger than the set value stored in the control unit 100c, it is output to the recovered water circulation pump 23. To increase the flow rate of the recovered water flowing from the recovered water circulation path 20 through the recovered water bypass path 40 by increasing the flow rate of the recovered water sent from the recovered water circulation pump 23.

また、回収水水温センサ27の検出値は、制御部100cへ送られ、予め制御部100cに記憶された上限値と比較される。検出値が上限値よりも大きい場合は、エアフィンクーラ25に送られる回収水の流量を増大する方向に第2調整バルブ26の開度を調整する指令を、検出値が設定値よりも小さい場合は、エアフィンクーラ25をバイパスして散水装置22へ送られる回収水の流量を増大する方向に第2調整バルブ26の開度を調整する指令を、第2調整バルブ26に送信する。また、第2調整バルブ26のエアフィンクーラ25方向の開度が100%となっても回収水水温センサ27の検出値が所定温度を超える場合は、制御部100cは、エアフィンクーラ25に出力を増大させる指令を送信する。また、エアフィンクーラ25の出力を上限まで増大させても回収水水温センサ27の検出値が所定温度を超える場合は、回収水循環ポンプ23の出力を上げる指令を、回収水循環ポンプ23に送信し、エアフィンクーラ25における回収水の処理量を増大させる。   Further, the detected value of the recovered water temperature sensor 27 is sent to the control unit 100c and compared with the upper limit value stored in advance in the control unit 100c. When the detected value is larger than the upper limit value, a command for adjusting the opening degree of the second adjustment valve 26 in a direction to increase the flow rate of the recovered water sent to the air fin cooler 25, and when the detected value is smaller than the set value. Sends a command to the second adjustment valve 26 to adjust the opening of the second adjustment valve 26 in a direction to increase the flow rate of the recovered water sent to the sprinkler 22 by bypassing the air fin cooler 25. If the detected value of the recovered water temperature sensor 27 exceeds a predetermined temperature even when the opening of the second adjustment valve 26 in the direction of the air fin cooler 25 becomes 100%, the control unit 100c outputs to the air fin cooler 25. Send a command to increase If the detected value of the recovered water temperature sensor 27 exceeds a predetermined temperature even if the output of the air fin cooler 25 is increased to the upper limit, a command to increase the output of the recovered water circulation pump 23 is transmitted to the recovered water circulation pump 23. The amount of recovered water in the air fin cooler 25 is increased.

この実施形態によれば、異なる温度範囲の温水等を同時に得ることができる。また、上記実施形態同様、冷却水の温度制御をおこなうにあたり、図5に示す従来例の燃料電池発電装置と比較して、エアフィンクーラ73を不要とすることができるので、装置構成をよりコンパクト化でき、その結果メンテナンスコストなどを低減できる。   According to this embodiment, hot water or the like in different temperature ranges can be obtained simultaneously. Further, as in the above embodiment, the air fin cooler 73 can be dispensed with when controlling the temperature of the cooling water as compared with the conventional fuel cell power generator shown in FIG. As a result, maintenance costs can be reduced.

(第4の実施形態)
本発明の燃料電池発電装置の第4の実施形態について、図4を用いて説明する。なお、上記第1の実施形態と同一箇所には、同一符号を付してその説明を省略する。
(Fourth embodiment)
A fuel cell power generator according to a fourth embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same location as the said 1st Embodiment, and the description is abbreviate | omitted.

この実施形態では、第2冷却水循環経路10は、冷却用熱交換器6の第2冷却水流出側6aから伸びた配管10aに、上流側から排熱回収用熱交換器54、第2冷却用熱交換器17、第2冷却水水温センサ16、冷却水循環ポンプ11がそれぞれ配置されて、冷却用熱交換器6の第2冷却水導入側6bに接続している。   In this embodiment, the second cooling water circulation path 10 is connected to the pipe 10a extending from the second cooling water outflow side 6a of the cooling heat exchanger 6 to the exhaust heat recovery heat exchanger 54, the second cooling use from the upstream side. A heat exchanger 17, a second cooling water temperature sensor 16, and a cooling water circulation pump 11 are arranged and connected to the second cooling water introduction side 6 b of the cooling heat exchanger 6.

上記第2冷却用熱交換器17には、回収水循環経路20から第1調整バルブ32を介して分岐し、第2冷却用熱交換器17を通って回収水循環経路20に戻される回収水第2迂回経路45が配置されている。すなわち、回収水循環経路20を循環する回収水の一部または全部を、第2冷却水の冷媒として利用できるように構成されている。この、回収水第2迂回経路45の第2冷却用熱交換器17の下流側の配管45aには、第2迂回回収水水温センサ46、排熱回収用熱交換器55がそれぞれ配置されて、回収水循環経路20の第1調整バルブ32の下流側に接続している。   The second cooling heat exchanger 17 branches from the recovered water circulation path 20 via the first adjustment valve 32, passes through the second cooling heat exchanger 17 and returns to the recovered water circulation path 20. A detour path 45 is arranged. That is, a part or all of the recovered water circulating through the recovered water circulation path 20 can be used as the refrigerant for the second cooling water. A second bypass recovery water temperature sensor 46 and an exhaust heat recovery heat exchanger 55 are arranged in the pipe 45a downstream of the second cooling heat exchanger 17 of the recovered water second bypass path 45, respectively. The recovered water circulation path 20 is connected to the downstream side of the first adjustment valve 32.

上記排熱回収用熱交換器54では、第1冷却水との熱交換により昇温した第2冷却水の熱量を、排熱回収用熱交換器54の冷媒である外部水などに与えて温水等を回収する。   In the heat exchanger for exhaust heat recovery 54, the amount of heat of the second cooling water raised by heat exchange with the first cooling water is given to external water or the like as the refrigerant of the heat exchanger for exhaust heat recovery 54 to Collect etc.

上記第2冷却用熱交換器17では、燃料電池2の発電発熱量から排熱回収用熱交換器54で回収された熱量を差し引いた分の熱量を、回収水第2迂回経路45を流通する回収水(以下、「第2迂回回収水」と記す)と熱交換して第2迂回回収水に与える。   In the second cooling heat exchanger 17, the amount of heat obtained by subtracting the amount of heat recovered by the exhaust heat recovery heat exchanger 54 from the amount of generated heat generated by the fuel cell 2 flows through the recovered water second bypass path 45. Heat is exchanged with the recovered water (hereinafter referred to as “second detour recovery water”) to give the second detour recovery water.

上記排熱回収用熱交換器55では、第2冷却用熱交換器17での第2冷却水との熱交換により昇温した第2迂回回収水の熱量を、排熱回収用熱交換器55の冷媒である外部水などに与えて温水等を回収する。ここで回収される熱量は、燃料電池2の発電発熱量から排熱回収用熱交換器54で回収された熱量を差し引いた分の熱量以下であることから、排熱回収用熱交換器54よりも比較的低温の温水などが回収される。   In the heat exchanger 55 for exhaust heat recovery, the heat amount of the second detour recovery water that has been heated by heat exchange with the second cooling water in the second cooling heat exchanger 17 is used as the heat exchanger 55 for exhaust heat recovery. The hot water is collected by supplying it to external water, which is the refrigerant. The amount of heat recovered here is equal to or less than the amount of heat obtained by subtracting the amount of heat recovered by the exhaust heat recovery heat exchanger 54 from the amount of generated heat generated by the fuel cell 2. Relatively low temperature hot water is also recovered.

この燃料電池発電装置における制御部100dでは、第2冷却水水温センサ16、第2迂回回収水水温センサ46及び回収水水温センサ27からの温度測定値、回収水循環ポンプ23の出力値を受信して、第2冷却水及び第2迂回回収水の温度が設定範囲となるように、第1調整バルブ32、回収水循環ポンプ23及びエアフィンクーラ25に出力信号を送信する。   The control unit 100d in the fuel cell power generator receives the temperature measurement values from the second cooling water temperature sensor 16, the second detour recovery water temperature sensor 46 and the recovery water temperature sensor 27, and the output value of the recovery water circulation pump 23. Then, an output signal is transmitted to the first adjustment valve 32, the recovered water circulation pump 23, and the air fin cooler 25 so that the temperatures of the second cooling water and the second bypass recovery water fall within the set range.

次に、制御部100dで行われる制御について説明する。   Next, control performed by the control unit 100d will be described.

第2冷却水水温センサ16の検出値は、制御部100dへ送られ、予め制御部100dに記憶された上限値と比較される。検出値が設定値よりも大きい場合は、回収水第2迂回経路45を流通する回収水の流量を増加させる方向に第1調整バルブ32の開度を調整する指令を、また逆に検出値が設定値よりも小さい場合は、回収水第2迂回経路45を流通する回収水の流量を減少させる方向に第1調整バルブ32の開度を調整する指令を、第1調整バルブ32に送信する。そして、第1調整バルブ32の回収水第2迂回経路45方向への開度が100%に達してもなお、第2冷却水水温センサ16の検出値が制御部100dに記憶された設定値より大きい場合は、回収水循環ポンプ23に出力を増大させる指令を送信し、回収水循環ポンプ23から送出される回収水の流量を増やして回収水循環経路20から回収水第2迂回経路45に流入する回収水の流量を増加させる。   The detection value of the second coolant temperature sensor 16 is sent to the control unit 100d and compared with the upper limit value stored in advance in the control unit 100d. When the detected value is larger than the set value, a command to adjust the opening of the first adjustment valve 32 in a direction to increase the flow rate of the recovered water flowing through the recovered water second bypass path 45, and conversely, the detected value is When it is smaller than the set value, a command to adjust the opening of the first adjustment valve 32 in a direction to decrease the flow rate of the recovered water flowing through the recovered water second bypass path 45 is transmitted to the first adjustment valve 32. And even if the opening degree of the first adjustment valve 32 in the direction of the recovered water second bypass path 45 reaches 100%, the detected value of the second cooling water temperature sensor 16 is more than the set value stored in the control unit 100d. If larger, a command to increase the output is transmitted to the recovered water circulation pump 23, the flow rate of recovered water sent from the recovered water circulation pump 23 is increased, and the recovered water flowing into the recovered water second bypass path 45 from the recovered water circulation path 20 Increase the flow rate.

また、第2迂回回収水水温センサ46の検出値は、制御部100dへ送られ、予め制御部100dに記憶された上限値と比較される。検出値が上限値よりも大きい場合は、回収水循環ポンプ23の出力を上げる指令を、検出値が上限値以下の場合は、回収水循環ポンプ23の出力を下げる指令を、回収水循環ポンプ23へ送信する。   The detection value of the second detour recovery water temperature sensor 46 is sent to the control unit 100d and compared with the upper limit value stored in advance in the control unit 100d. When the detected value is larger than the upper limit value, an instruction to increase the output of the recovered water circulation pump 23 is transmitted to the recovered water circulation pump 23. When the detected value is equal to or lower than the upper limit value, an instruction to decrease the output of the recovered water circulation pump 23 is transmitted. .

また、回収水水温センサ27の検出値は、制御部100dへ送られ、予め制御部100dに記憶された上限値と比較される。検出値が上限値よりも大きい場合は、エアフィンクーラ25に送られる回収水の流量を増大する方向に第2調整バルブ26の開度を調整する指令を、検出値が設定値よりも小さい場合は、エアフィンクーラ25をバイパスして散水装置22へ送られる回収水の流量を増大する方向に第2調整バルブ26の開度を調整する指令を、第2調整バルブ26に送信する。また、第2調整バルブ26のエアフィンクーラ25方向の開度が100%となっても回収水水温センサ27の検出値が所定温度を超える場合は、制御部100dは、エアフィンクーラ25に出力を増大させる指令を送信する。また、エアフィンクーラ25の出力を上限まで増大させても回収水水温センサ27の検出値が所定温度を超える場合は、回収水循環ポンプ23の出力を上げる指令を、回収水循環ポンプ23に送信し、エアフィンクーラ25における回収水の処理量を増大させる。   The detected value of the recovered water temperature sensor 27 is sent to the control unit 100d and compared with the upper limit value stored in advance in the control unit 100d. When the detected value is larger than the upper limit value, a command for adjusting the opening degree of the second adjustment valve 26 in a direction to increase the flow rate of the recovered water sent to the air fin cooler 25, and when the detected value is smaller than the set value. Sends a command to the second adjustment valve 26 to adjust the opening of the second adjustment valve 26 in a direction to increase the flow rate of the recovered water sent to the sprinkler 22 by bypassing the air fin cooler 25. If the detected value of the recovered water temperature sensor 27 exceeds a predetermined temperature even when the opening degree of the second adjustment valve 26 in the direction of the air fin cooler 25 becomes 100%, the control unit 100d outputs to the air fin cooler 25. Send a command to increase If the detected value of the recovered water temperature sensor 27 exceeds a predetermined temperature even if the output of the air fin cooler 25 is increased to the upper limit, a command to increase the output of the recovered water circulation pump 23 is transmitted to the recovered water circulation pump 23. The amount of recovered water in the air fin cooler 25 is increased.

この実施形態によれば、異なる温度範囲の温水等を同時に得ることができる。また、上記実施形態同様、冷却水の温度制御をおこなうにあたり、図5に示す従来例の燃料電池発電装置と比較して、エアフィンクーラ73を不要とすることができるので、装置構成をよりコンパクト化でき、その結果メンテナンスコストなどを低減できる。   According to this embodiment, hot water or the like in different temperature ranges can be obtained simultaneously. Further, as in the above-described embodiment, the air fin cooler 73 can be dispensed with when controlling the temperature of the cooling water as compared with the conventional fuel cell power generator shown in FIG. As a result, maintenance costs can be reduced.

1:燃料電池冷却水循環経路
2:燃料電池
3:ヒータ
4:水蒸気分離器
5:電池冷却水循環ポンプ
6:冷却用熱交換器
7:燃料電池オフガス排気経路
8:電池冷却水水温センサ
9:電池冷却水調整バルブ
10:冷却水循環経路
11:冷却水循環ポンプ
15:中継配管冷却水水温センサ
16:冷却水水温センサ
17:第2冷却用熱交換器
19:逆流防止弁
20:回収水循環経路
21:回収水生成装置
22:散水装置
23:回収水循環ポンプ
25:エアフィンクーラ
26:第2調整バルブ
27:回収水水温センサ
28:回収水冷却用熱交換器
31:第1中継配管
32:第1調整バルブ
33:第2中継配管
40:回収水迂回経路
41:迂回回収水水温センサ
45:回収水第2迂回経路
46:第2迂回回収水水温センサ
51〜55:排熱回収用熱交換器
60:冷媒循環経路
61:冷媒循環ポンプ
100a〜100d:制御部
1: Fuel cell cooling water circulation path 2: Fuel cell 3: Heater 4: Steam separator 5: Battery cooling water circulation pump 6: Cooling heat exchanger 7: Fuel cell off-gas exhaust path 8: Battery cooling water temperature sensor 9: Battery cooling Water adjustment valve 10: Cooling water circulation path 11: Cooling water circulation pump 15: Relay pipe cooling water temperature sensor 16: Cooling water temperature sensor 17: Second cooling heat exchanger 19: Backflow prevention valve 20: Recovered water circulation path 21: Recovered water Generator 22: Sprinkler 23: Recovery water circulation pump 25: Air fin cooler 26: Second adjustment valve 27: Recovery water temperature sensor 28: Recovery water cooling heat exchanger 31: First relay pipe 32: First adjustment valve 33 : Second relay pipe 40: recovered water bypass path 41: bypass recovered water temperature sensor 45: recovered water second bypass path 46: second bypass recovered water temperature sensors 51 to 55: heat exchange for exhaust heat recovery 60: refrigerant circulation path 61: coolant circulation pump 100a to 100d: control unit

Claims (15)

燃料ガスと空気とを電気化学的に反応させて発電する燃料電池(2)を有する燃料電池発電装置において、
前記燃料電池(2)から排出される排ガス中の水分を回収水として回収する回収水生成装置(21)に対して回収水を循環させると共に、その途中に回収水循環ポンプ(23)が設けられた回収水循環経路(20)と、
前記回収水循環経路(20)を流通する前記回収水を冷却する冷却装置(25)と、
前記燃料電池(2)に対して第1冷却水を循環させると共に、その途中に冷却用熱交換器(6)が設けられた燃料電池冷却水循環経路(1)と、
前記第1冷却水の熱を外部の熱需要に供給する排熱回収経路とを備え、
前記冷却用熱交換器(6)から取り出された前記第1冷却水の熱は、前記排熱回収経路を経由して外部の熱需要に供給されると共に、余剰分が前記回収水循環経路(20)を経由して前記冷却装置(25)において外部に放出させるように構成されていることを特徴とする燃料電池発電装置。
In a fuel cell power generator having a fuel cell (2) for generating electricity by electrochemically reacting fuel gas and air,
The recovered water is circulated to the recovered water generating device (21) that recovers the moisture in the exhaust gas discharged from the fuel cell (2) as recovered water, and a recovered water circulation pump (23) is provided in the middle thereof. A recovered water circulation path (20);
A cooling device (25) for cooling the recovered water flowing through the recovered water circulation path (20);
A fuel cell cooling water circulation path (1) in which the first cooling water is circulated to the fuel cell (2) and a cooling heat exchanger (6) is provided in the middle thereof;
An exhaust heat recovery path for supplying heat of the first cooling water to an external heat demand,
The heat of the first cooling water taken out from the cooling heat exchanger (6) is supplied to the external heat demand via the exhaust heat recovery path, and the surplus is supplied to the recovered water circulation path (20 ) Through the cooling device (25) to be discharged to the outside.
前記冷却用熱交換器(6)を介して前記第1冷却水と熱交換し、該第1冷却水を冷却する第2冷却水が循環する第2冷却水循環経路(10)を備え、
前記回収水循環経路から調整バルブ(32)を介して分岐して伸びた第1中継配管(31)が前記第2冷却水循環経路(10)に接続し、
前記第2冷却水循環経路(10)から分岐して伸びた第2中継配管(33)が、前記回収水循環経路(20)の前記調整バルブ(32)の下流側に接続している、請求項1に記載の燃料電池発電装置。
Heat exchange with the first cooling water via the cooling heat exchanger (6), and a second cooling water circulation path (10) through which the second cooling water for cooling the first cooling water circulates,
A first relay pipe (31) branched and extended from the recovered water circulation path via the adjustment valve (32) is connected to the second cooling water circulation path (10),
The second relay pipe (33) branched and extended from the second cooling water circulation path (10) is connected to the downstream side of the adjustment valve (32) of the recovered water circulation path (20). The fuel cell power generator described in 1.
前記第2冷却水循環経路(10)は、第2冷却水水温検知手段(16)を備え、
前記第2冷却水水温検知手段(16)によって検出された前記第2冷却水の温度が予め定められた設定範囲内の値になるように、前記調整バルブ(32)の開度、前記回収水循環ポンプ(23)の出力及び前記冷却装置(25)の出力から選ばれた少なくとも1つを制御することにより、前記第1中継配管(31)を通る水量及び/又は水温を調整するように構成されている、請求項2に記載の燃料電池発電装置。
The second cooling water circulation path (10) includes second cooling water temperature detecting means (16),
The degree of opening of the adjustment valve (32), the recovered water circulation so that the temperature of the second cooling water detected by the second cooling water temperature detecting means (16) is a value within a predetermined setting range. By controlling at least one selected from the output of the pump (23) and the output of the cooling device (25), the amount of water and / or the water temperature passing through the first relay pipe (31) is adjusted. The fuel cell power generator according to claim 2.
前記第2中継配管(33)は、第2中継配管冷却水水温検知手段(15)を備え、
前記第2中継配管冷却水水温検知手段(15)によって検出された前記第2冷却水の温度が、予め定められた設定範囲内の値になるように、前記調整バルブ(32)の開度、前記回収水循環ポンプ(23)の出力及び前記冷却装置(25)の出力から選ばれた少なくとも1つを制御することにより、前記第2中継配管(33)を通る水量及び/又は水温を調整するように構成されている請求項2又は3に記載の燃料電池発電装置。
The second relay pipe (33) includes second relay pipe cooling water temperature detecting means (15),
The degree of opening of the adjustment valve (32) so that the temperature of the second cooling water detected by the second relay pipe cooling water temperature detecting means (15) is a value within a predetermined setting range; By controlling at least one selected from the output of the recovered water circulation pump (23) and the output of the cooling device (25), the amount of water and / or the water temperature passing through the second relay pipe (33) is adjusted. The fuel cell power generator according to claim 2 or 3, wherein
前記第2冷却水循環経路(10)の、前記第2中継配管(33)と前記第1中継配管(31)との間の経路に排熱回収用熱交換器(51)が配置され、
前記排熱回収経路は、前記排熱回収用熱交換器(51)を介して、前記第2冷却水循環経路(10)を通る第2冷却水と熱交換して外部に熱を取り出すように構成されている、請求項2〜4のいずれか一つに記載の燃料電池発電装置。
An exhaust heat recovery heat exchanger (51) is disposed in a path between the second relay pipe (33) and the first relay pipe (31) of the second cooling water circulation path (10),
The exhaust heat recovery path is configured to extract heat to the outside through heat exchange with the second cooling water passing through the second cooling water circulation path (10) via the exhaust heat recovery heat exchanger (51). The fuel cell power generator according to any one of claims 2 to 4, wherein
前記第2冷却水循環経路(10)の、前記第2中継配管(33)が接続する経路よりも上流側の経路に排熱回収用熱交換器(51)が配置され、
前記排熱回収経路は、前記排熱回収用熱交換器(51)を介して、前記第2冷却水循環経路(10)を通る第2冷却水と熱交換して外部に熱を取り出すように構成されている、請求項2〜4のいずれか一つに記載の燃料電池発電装置。
An exhaust heat recovery heat exchanger (51) is disposed in a path upstream of the path connected to the second relay pipe (33) of the second cooling water circulation path (10),
The exhaust heat recovery path is configured to extract heat to the outside through heat exchange with the second cooling water passing through the second cooling water circulation path (10) via the exhaust heat recovery heat exchanger (51). The fuel cell power generator according to any one of claims 2 to 4, wherein
前記回収水循環経路(20)から調整バルブ(32)を介して分岐し、前記冷却用熱交換器(6)を通って前記回収水循環経路(20)に戻される回収水迂回経路(40)を備える、請求項1に記載の燃料電池発電装置。   A recovered water bypass path (40) is branched from the recovered water circulation path (20) via an adjustment valve (32) and returned to the recovered water circulation path (20) through the cooling heat exchanger (6). The fuel cell power generator according to claim 1. 前記回収水迂回経路(40)に迂回回収水水温検知手段(41)が設けられ、
前記迂回回収水水温検知手段(41)によって検出された回収水の温度が、予め定めた設定範囲内の値になるように、前記調整バルブ(32)の開度、前記回収水循環ポンプ(23)の出力及び前記冷却装置(25)の出力から選ばれた少なくとも1つを制御することにより、前記回収水迂回経路(40)を通る水量及び/又は水温を調整するように構成されている請求項7に記載の燃料電池発電装置。
A bypass recovery water temperature detection means (41) is provided in the recovery water bypass path (40),
The degree of opening of the adjustment valve (32) and the recovered water circulation pump (23) so that the temperature of recovered water detected by the detour recovered water temperature detecting means (41) becomes a value within a predetermined set range. The amount of water and / or the water temperature passing through the recovered water bypass route (40) is controlled by controlling at least one selected from the output of the cooling device (25) and the output of the cooling device (25). 8. The fuel cell power generator according to 7.
前記燃料電池冷却水循環経路(1)及び前記回収水迂回経路(40)に、排熱回収用熱交換器(52,53)がそれぞれ配置され、
前記排熱回収経路は、前記燃料電池冷却水循環経路(1)に設けられた前記排熱回収用熱交換器(52)を介して前記燃料電池冷却水循環経路(1)を通る第1冷却水と熱交換して外部に熱を取り出す経路と、前記回収水迂回経路(40)に設けられた前記排熱回収用熱交換器(53)を介して前記回収水迂回経路(40)を通る回収水と熱交換して外部に熱を取り出す経路とで構成されている、請求項7又は8に記載の燃料電池発電装置。
Waste heat recovery heat exchangers (52, 53) are disposed in the fuel cell cooling water circulation path (1) and the recovered water bypass path (40), respectively.
The exhaust heat recovery path includes first cooling water passing through the fuel cell cooling water circulation path (1) via the exhaust heat recovery heat exchanger (52) provided in the fuel cell cooling water circulation path (1). Recovered water passing through the recovered water bypass path (40) via a path for heat exchange to extract heat to the outside and the exhaust heat recovery heat exchanger (53) provided in the recovered water bypass path (40) The fuel cell power generator according to claim 7 or 8, comprising a path for exchanging heat with the heat and extracting heat to the outside.
前記冷却用熱交換器(6)に対して第2冷却水を循環させて前記第1冷却水を冷却すると共に、その途中に第2冷却用熱交換器(17)が設けられた第2冷却水循環経路(10)と、
前記回収水循環経路(20)から調整バルブ(32)を介して分岐し、前記第2冷却用熱交換器(17)を通って前記回収水循環経路(20)に戻される回収水第2迂回経路(45)とを備える、請求項1に記載の燃料電池発電装置。
Second cooling in which a second cooling water is circulated through the cooling heat exchanger (6) to cool the first cooling water, and a second cooling heat exchanger (17) is provided in the middle of the second cooling water. Water circulation path (10);
A recovered water second bypass path (branched from the recovered water circulation path (20) via the regulating valve (32) and returned to the recovered water circulation path (20) through the second cooling heat exchanger (17) ( 45). The fuel cell power generator according to claim 1, further comprising:
前記第2冷却水循環経路(10)に第2冷却水水温検知手段(16)が設けられ、
前記第2冷却水水温検知手段(16)によって検出された第2冷却水の温度が予め定められた設定範囲内の値になるように、前記調整バルブ(32)の開度、前記回収水循環ポンプ(23)の出力及び前記冷却装置(25)の出力から選ばれた少なくとも1つを制御することにより、前記回収水第2迂回経路(45)を通る水量及び/又は水温を調整するように構成されている請求項10記載の燃料電池発電装置。
Second cooling water temperature detection means (16) is provided in the second cooling water circulation path (10),
The opening degree of the adjustment valve (32), the recovered water circulation pump so that the temperature of the second cooling water detected by the second cooling water temperature detecting means (16) becomes a value within a predetermined setting range. By controlling at least one selected from the output of (23) and the output of the cooling device (25), the water amount and / or the water temperature passing through the recovered water second bypass path (45) are adjusted. The fuel cell power generator according to claim 10.
前記回収水第2迂回経路(45)に第2迂回回収水水温検知手段(46)が設けられ、
前記第2迂回回収水水温検知手段(46)によって検出された回収水の温度が予め定められた設定範囲内の値になるように、前記調整バルブ(32)の開度、前記回収水循環ポンプ(23)の出力及び前記冷却装置(25)の出力から選ばれた少なくとも1つを制御することにより、前記回収水第2迂回経路(45)を通る水量及び/又は水温を調整するように構成されている請求項10記載の燃料電池発電装置。
A second detour recovered water temperature detection means (46) is provided in the recovered water second detour path (45),
The degree of opening of the adjustment valve (32), the recovered water circulation pump () so that the temperature of the recovered water detected by the second detour recovered water temperature detecting means (46) becomes a value within a predetermined setting range. 23) and at least one selected from the output of the cooling device (25) is controlled to adjust the amount of water and / or the water temperature through the recovered water second bypass path (45). The fuel cell power generator according to claim 10.
前記第2冷却水循環経路(10)及び前記回収水第2迂回経路(45)に、それぞれ排熱回収用熱交換器(54,55)が配置され、
前記排熱回収経路は、前記第2冷却水循環経路(10)に設けられた前記排熱回収用熱交換器(54)を介して前記第2冷却水循環経路(10)を通る第2冷却水と熱交換して外部に熱を取り出す経路と、前記回収水第2迂回経路(45)に設けられた前記排熱回収用熱交換器(55)を介して前記回収水第2迂回経路(45)を通る回収水と熱交換して外部に熱を取り出す経路とで構成されている、請求項10〜12のいずれか一つに記載の燃料電池発電装置。
Exhaust heat recovery heat exchangers (54, 55) are disposed in the second cooling water circulation path (10) and the recovered water second bypass path (45), respectively.
The exhaust heat recovery path includes second cooling water passing through the second cooling water circulation path (10) via the exhaust heat recovery heat exchanger (54) provided in the second cooling water circulation path (10). A path for extracting heat to the outside through heat exchange and the second bypass path for recovered water (45) via the heat exchanger (55) for exhaust heat recovery provided in the second bypass path for recovered water (45) The fuel cell power generator according to any one of claims 10 to 12, wherein the fuel cell power generator is configured by a path for exchanging heat with recovered water passing through the pipe and extracting heat to the outside.
前記回収水循環経路(20)は、前記冷却装置(25)と、前記冷却装置(25)を通流後の前記回収水の水温を検知する回収水水温検知手段(27)と、前記冷却装置(25)に通流させる回収水と前記冷却装置(25)をバイパスさせる回収水との流量比を調整する流量比調整バルブ(26)と、を備え、
前記回収水水温検知手段(27)が検知した前記回収水の水温が予め定められた設定範囲内の値になるように、前記回収水循環ポンプ(23)の出力、前記流量比調整バルブ(26)の開度及び前記冷却装置(25)の出力の少なくとも1つを制御するように構成されている、請求項1〜13のいずれか一つに記載の燃料電池発電装置。
The recovered water circulation path (20) includes the cooling device (25), recovered water temperature detecting means (27) for detecting the temperature of the recovered water after flowing through the cooling device (25), and the cooling device ( 25) a flow rate adjusting valve (26) for adjusting a flow rate ratio between the recovered water to be passed to 25) and the recovered water to bypass the cooling device (25),
The output of the recovered water circulation pump (23) and the flow rate ratio adjusting valve (26) so that the temperature of the recovered water detected by the recovered water temperature detecting means (27) becomes a value within a predetermined setting range. The fuel cell power generator according to any one of claims 1 to 13, wherein the fuel cell power generator is configured to control at least one of an opening degree and an output of the cooling device (25).
前記回収水循環経路(20)は、回収水冷却用熱交換器(28)と、前記回収水冷却用熱交換器(28)を通流後の前記回収水の水温を検知する回収水水温検知手段(27)と、を備え、
前記回収水冷却用熱交換器(28)の冷媒の循環経路(60)に前記冷却装置(25)が配置され、
前記回収水水温検知手段(27)が検知した前記回収水の水温が予め定められた設定範囲内の値になるように、前記回収水循環ポンプ(23)の出力、前記回収水冷却用熱交換器(28)を通過する前記冷媒の流量及び前記冷却装置(25)の出力の少なくとも1つを制御するように構成されている、請求項1〜13のいずれか一つに記載の燃料電池発電装置。
The recovered water circulation path (20) includes a recovered water cooling heat exchanger (28) and recovered water temperature detecting means for detecting the temperature of the recovered water after flowing through the recovered water cooling heat exchanger (28). (27)
The cooling device (25) is disposed in the refrigerant circulation path (60) of the recovered water cooling heat exchanger (28),
The output of the recovered water circulation pump (23), the recovered water cooling heat exchanger so that the temperature of the recovered water detected by the recovered water temperature detecting means (27) becomes a value within a predetermined set range. The fuel cell power generator according to any one of claims 1 to 13, wherein the fuel cell power generator is configured to control at least one of a flow rate of the refrigerant passing through (28) and an output of the cooling device (25). .
JP2009039030A 2008-07-16 2009-02-23 Fuel cell power generator Active JP5369752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039030A JP5369752B2 (en) 2008-07-16 2009-02-23 Fuel cell power generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008184598 2008-07-16
JP2008184598 2008-07-16
JP2009039030A JP5369752B2 (en) 2008-07-16 2009-02-23 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2010045012A true JP2010045012A (en) 2010-02-25
JP5369752B2 JP5369752B2 (en) 2013-12-18

Family

ID=42016232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039030A Active JP5369752B2 (en) 2008-07-16 2009-02-23 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP5369752B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038688A (en) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd Fuel cell power generation device
CN115395050A (en) * 2022-10-26 2022-11-25 深圳市氢蓝时代动力科技有限公司 Fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082478A (en) * 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> Phospholic acid type fuel cell generation plant
JP2002025590A (en) * 2000-07-07 2002-01-25 Fuji Electric Co Ltd Fuel cell power generating device and its control method
JP2006179225A (en) * 2004-12-21 2006-07-06 Aisin Seiki Co Ltd Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082478A (en) * 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> Phospholic acid type fuel cell generation plant
JP2002025590A (en) * 2000-07-07 2002-01-25 Fuji Electric Co Ltd Fuel cell power generating device and its control method
JP2006179225A (en) * 2004-12-21 2006-07-06 Aisin Seiki Co Ltd Fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038688A (en) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd Fuel cell power generation device
CN115395050A (en) * 2022-10-26 2022-11-25 深圳市氢蓝时代动力科技有限公司 Fuel cell system
CN115395050B (en) * 2022-10-26 2023-02-14 深圳市氢蓝时代动力科技有限公司 Fuel cell system

Also Published As

Publication number Publication date
JP5369752B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP2005100873A (en) Fuel cell system
JP2015002093A (en) Fuel cell system
JP5295257B2 (en) Heat recovery device for fuel cell system
US10147989B2 (en) System for generating power from fuel cell waste heat
JP2015022864A (en) Fuel cell system
JP2017107852A (en) Fuel battery system
JP4225112B2 (en) Fuel cell cogeneration system
JP4098484B2 (en) Fuel cell system
JP2019132477A (en) Cogeneration system and operation method of the same
JP5369752B2 (en) Fuel cell power generator
JP4195974B2 (en) Fuel cell cogeneration system
JP6734206B2 (en) Fuel cell device, fuel cell system, and control device
JP5361125B2 (en) Fuel cell device
JP2006294535A (en) Fuel cell system
JPH1140180A (en) Fuel cell power plant and its operation control method
JP2003282108A (en) Fuel cell system
JP2005116256A (en) Fuel cell cogeneration system
JP2011228182A (en) Fuel cell system and control method thereof
JP2007242493A (en) Fuel cell system and its operation stopping method
JP4153910B2 (en) Fuel cell system
JP2004303495A (en) Fuel cell power generation hot-water supply system
JP2018125099A (en) Fuel cell device
JP4440676B2 (en) Fuel cell power generation hot water supply system
JP2016207581A (en) Fuel cell cogeneration system
JP4225109B2 (en) Fuel cell cogeneration system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5369752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250