JP3240840B2 - Method of adjusting cooling water temperature of fuel cell power generator - Google Patents
Method of adjusting cooling water temperature of fuel cell power generatorInfo
- Publication number
- JP3240840B2 JP3240840B2 JP16727894A JP16727894A JP3240840B2 JP 3240840 B2 JP3240840 B2 JP 3240840B2 JP 16727894 A JP16727894 A JP 16727894A JP 16727894 A JP16727894 A JP 16727894A JP 3240840 B2 JP3240840 B2 JP 3240840B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- fuel cell
- cooling water
- steam
- steam separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、発電時および停止時
に燃料電池の温度を制御するための燃料電池発電装置の
冷却水温度の調節方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the temperature of a cooling water in a fuel cell power generator for controlling the temperature of a fuel cell during power generation and during shutdown.
【0002】[0002]
【従来の技術】リン酸型燃料電池は、電解液にリン酸を
用い、メタンガス等の原燃料を水蒸気改質して得られた
燃料ガス中の水素と空気中の酸素とを、それぞれ燃料極
と空気極とに供給し、電気化学反応により発電を行うも
ので、リン酸型燃料電池を組み込んだ燃料電池発電装置
では、発電時に発生する熱を冷却水を供給して除去し、
燃料電池本体の運転温度を一定に維持するとともに、発
生熱を回収して有効活用している。2. Description of the Related Art Phosphoric acid fuel cells use phosphoric acid as an electrolyte and convert hydrogen in fuel gas and oxygen in air obtained by steam reforming a raw fuel such as methane gas into a fuel electrode. The fuel cell power generator incorporates a phosphoric acid fuel cell and removes the heat generated during power generation by supplying cooling water,
The operating temperature of the fuel cell body is maintained constant, and the generated heat is recovered and used effectively.
【0003】また、原燃料を燃料ガスへ改質するに際し
ては、原燃料に水蒸気を加え燃料改質装置で触媒により
改質を促進する方法が採られているが、改質を定常的に
行うには所要の水蒸気量を定常的に補給する必要があ
り、水蒸気の供給装置には、これに対応した水を常時補
給する必要がある。使用する水は、高純度の水であるこ
とが必要であり、イオン交換式の水処理装置で不純物を
除去したイオン交換水が用いられるのが通例である。一
方、燃料電池の電気化学反応では発電生成水が生じ、ま
た燃料改質器では後述のように加熱用の燃焼に伴い燃焼
生成水が生じるが、これらの生成水は通常の水道水に比
べて不純物が少なく、これらの生成水を燃料改質器への
原水として用いればイオン交換式の水処理装置の負荷を
軽減することができるので、補給水回収装置を付加し
て、これらの生成水を回収する方法が採られている。[0003] When reforming raw fuel into fuel gas, a method of adding steam to the raw fuel to promote reforming by a catalyst in a fuel reformer has been adopted. It is necessary to constantly replenish the required amount of steam, and it is necessary to constantly replenish the water supply device with the corresponding amount of water. The water used must be high-purity water, and ion-exchanged water from which impurities have been removed by an ion-exchange type water treatment apparatus is generally used. On the other hand, in the electrochemical reaction of the fuel cell, water generated by power generation is generated, and in the fuel reformer, water generated by combustion is generated by combustion for heating as described later. The use of these generated waters as raw water for the fuel reformer can reduce the load on the ion-exchange type water treatment equipment. A method of recovery is adopted.
【0004】図4は、従来のこの種の燃料電池発電装置
のガス系、冷却水系の基本的な系統図の第1の例であ
る。本図では、燃料電池本体1は模式的に示されてお
り、図示しないリン酸電解質層を燃料極2と空気極3と
で挟持して単位セルを構成し、この単位セルを複数個重
ねる毎に冷却管を有する冷却板4を配設することにより
構成されている。FIG. 4 is a first example of a basic system diagram of a gas system and a cooling water system of this type of conventional fuel cell power generator. In this figure, a fuel cell body 1 is schematically shown, and a phosphoric acid electrolyte layer (not shown) is sandwiched between a fuel electrode 2 and an air electrode 3 to constitute a unit cell. And a cooling plate 4 having a cooling pipe.
【0005】メタンガス等の原燃料は、燃料供給回路8
から供給され、後述する水蒸気分離器21から水蒸気供
給回路10を通して送られた高圧の水蒸気とエゼクタポ
ンプ9によって混合され、燃料改質器7へと送られる。
燃料改質器7では、改質触媒下において、燃料極2から
排出されオフガス供給回路12を通して送られたオフガ
スと燃焼空気供給回路16から供給された空気との燃焼
により加熱されて、水素に富んだガスに改質されたの
ち、改質ガス供給回路11を通して燃料電池本体1の燃
料極2へと供給され、電気化学反応を起こす。A raw fuel such as methane gas is supplied to a fuel supply circuit 8.
Is mixed with high-pressure steam sent from a steam separator 21 to be described later through a steam supply circuit 10 by the ejector pump 9 and sent to the fuel reformer 7.
In the fuel reformer 7, under the reforming catalyst, the fuel is heated by the combustion of the off gas discharged from the fuel electrode 2 and sent through the off gas supply circuit 12 and the air supplied from the combustion air supply circuit 16, and is rich in hydrogen. After being reformed into raw gas, it is supplied to the fuel electrode 2 of the fuel cell main body 1 through the reformed gas supply circuit 11 to cause an electrochemical reaction.
【0006】一方、反応空気は、反応空気供給回路14
より供給され燃料電池本体1の空気極3へと送られて電
気化学反応を起こす。燃料電池本体1で電気化学反応を
生じたのち排出されるガスのうち、燃料極2より排出さ
れるオフガスは電気化学反応に寄与しなかった水素を含
んでおり、既に述べたように燃料改質器7へと送られて
燃焼、加熱に使用される。燃焼後の水分を含んだ排出ガ
スは、燃焼排ガス回路18を通して生成水回収器41へ
と送られ、燃焼生成水が回収される。一方、空気極3よ
り排出される空気には電気化学反応で生じた水分が含ま
れており、反応空気排出回路15を通して、上記の燃焼
排ガスと同様に生成水回収器41へと送られ、発電生成
水が回収される。On the other hand, the reaction air is supplied to a reaction air supply circuit 14.
Is supplied to the air electrode 3 of the fuel cell body 1 to cause an electrochemical reaction. Of the gas discharged after the electrochemical reaction has occurred in the fuel cell main body 1, the off-gas discharged from the fuel electrode 2 contains hydrogen that did not contribute to the electrochemical reaction, and as described above, the fuel reforming was performed. It is sent to the vessel 7 and used for combustion and heating. The exhaust gas containing the water after the combustion is sent to the generated water recovery unit 41 through the combustion exhaust gas circuit 18, and the generated water of the combustion is recovered. On the other hand, the air discharged from the air electrode 3 contains moisture generated by the electrochemical reaction, and is sent to the product water recovery unit 41 through the reaction air discharge circuit 15 in the same manner as the above-mentioned combustion exhaust gas. Product water is collected.
【0007】燃料電池本体1の冷却板4に設けられた冷
却管には、水蒸気分離器21からの冷却水が冷却水循環
ポンプ22により冷却水循環回路20を通して送られ
る。発電による生成熱を冷却し、その熱を得て高温とな
った蒸気と水の二相流からなる排出水は、熱回収用熱交
換器23に送られたのち、水蒸気分離器21へ戻され、
水蒸気と冷却水とに分離される。分離された水蒸気は、
水蒸気供給回路10を通して燃料改質に供され、冷却水
は再び燃料電池本体1の冷却板4に設けられた冷却管へ
と送られる。燃料改質に供された水蒸気に対応して減少
した冷却水はイオン交換式の水処理装置47を通して送
られる補給水により補償される。[0007] Cooling water from a steam separator 21 is sent through a cooling water circulation circuit 20 by a cooling water circulation pump 22 to a cooling pipe provided on the cooling plate 4 of the fuel cell body 1. The heat generated by the power generation is cooled, and the discharged water consisting of a two-phase flow of steam and water that has been heated to a high temperature is sent to the heat recovery heat exchanger 23 and then returned to the steam separator 21. ,
Separated into steam and cooling water. The separated steam is
The fuel is reformed through the steam supply circuit 10, and the cooling water is sent again to the cooling pipe provided on the cooling plate 4 of the fuel cell body 1. The cooling water reduced in response to the steam provided for the fuel reforming is compensated by the makeup water sent through the ion-exchange type water treatment device 47.
【0008】熱回収用熱交換器23は、高温の排出水に
蓄えられた熱を回収するためのもので、熱媒循環回路2
5で供給される熱媒を高温の排出水と熱交換させて昇温
し、排出水を冷却するとともに、外部へと熱を回収し有
効活用するものである。なお、熱回収用熱交換器23に
はバイパス配管26と三方調整弁27が設けられてお
り、三方調整弁27の操作によりバイパス配管26と熱
回収用熱交換器23の流量を調整して、圧力計28で知
られる水蒸気分離器21の圧力を一定に制御し、水蒸気
分離器21から燃料改質器7へと送られる水蒸気量の変
動を抑制している。[0008] The heat recovery heat exchanger 23 is for recovering the heat stored in the high-temperature discharged water.
The heat medium supplied in step 5 exchanges heat with high-temperature discharged water to raise the temperature, cools the discharged water, and recovers heat to the outside for effective utilization. The heat recovery heat exchanger 23 is provided with a bypass pipe 26 and a three-way adjustment valve 27, and by operating the three-way adjustment valve 27, the flow rates of the bypass pipe 26 and the heat recovery heat exchanger 23 are adjusted. The pressure of the steam separator 21, which is known from the pressure gauge 28, is controlled to be constant, and the fluctuation of the amount of steam sent from the steam separator 21 to the fuel reformer 7 is suppressed.
【0009】反応空気排出回路15を通して空気極3よ
り排出される空気と、燃焼排ガス回路18からの燃焼後
の水分を含んだ排出ガスとを供給された生成水回収器4
1においては、これらのガスを、底部に貯留された回収
水と直接接触させて冷却し、回収水循環ポンプ42、回
収水冷却器43、ノズル44によって循環して、それぞ
れの生成水を回収している。生成水回収後の排ガスは、
ガス排気回路19を通して外部へと排出される。The product water recovery unit 4 supplied with air discharged from the air electrode 3 through the reaction air discharge circuit 15 and exhaust gas containing water after combustion from the combustion exhaust gas circuit 18.
In 1, these gases are cooled by bringing them into direct contact with the recovered water stored at the bottom, and circulated by a recovered water circulation pump 42, a recovered water cooler 43, and a nozzle 44 to recover each generated water. I have. Exhaust gas after generated water recovery is
The gas is discharged to the outside through the gas exhaust circuit 19.
【0010】回収水冷却器43には、冷却水回路45が
組み込まれており、回収水を冷却するとともに熱を外部
に取り出し有効活用している。一方、生成水回収器41
の底部に貯留された回収水は、必要に応じて、補給水配
管48に組み込まれた補給水ポンプ46によりイオン交
換式の水処理装置47を介して水蒸気分離器21へと供
給され、すでに述べたように燃料改質に供された水蒸気
に対応して減少した冷却水の補給水として用いられる。A cooling water circuit 45 is incorporated in the recovered water cooler 43 to cool the recovered water and extract heat to the outside for effective use. On the other hand, the generated water recovery unit 41
The recovered water stored at the bottom of the water supply is supplied to the steam separator 21 via an ion-exchange type water treatment device 47 by a makeup water pump 46 incorporated in a makeup water pipe 48 as necessary. As described above, it is used as makeup water for cooling water which is reduced in accordance with the steam provided for fuel reforming.
【0011】また、水蒸気分離器21と生成水回収器4
1との間には流量調整用の絞り機構49を備えたブロー
ダウン配管50が設置されている。冷却水は一部この配
管を通して水蒸気分離器21から生成水回収器41へと
送られ、補給水配管48の水処理装置47で清浄化され
て再び水蒸気分離器21に戻され、内蔵する冷却水の水
質を一定に保つ役割を果たしている。The steam separator 21 and the produced water recovery unit 4
A blowdown pipe 50 provided with a throttle mechanism 49 for adjusting a flow rate is provided between the blowdown pipe 50 and the blowdown pipe 50. The cooling water is partially sent from the steam separator 21 to the generated water recovery unit 41 through this pipe, is purified by the water treatment device 47 of the makeup water pipe 48, is returned to the steam separator 21, and is returned to the built-in cooling water. Plays a role in keeping the water quality constant.
【0012】このように、従来の燃料電池発電装置で
は、燃料電池本体1の冷却板4の冷却管から排出される
二相流の排出水を水蒸気分離器21で水蒸気と冷却水に
分離し、分離した水蒸気を水蒸気供給回路10を介して
エゼクタポンプへ送り原燃料と混合して燃料改質に供し
ているが、水蒸気分離器21の圧力が変動するとエゼク
タポンプへ供給される水蒸気量が変動するので、水蒸気
と原燃料の混合割合が変動したり、あるいは燃料ガスの
圧力が変動したりするので、燃料極2へ送られる改質ガ
スの組成、圧力にも影響を及ぼし、ひいては燃料電池の
運転条件が変動することにより燃料電池の寿命短縮につ
ながることとなる。したがって、水蒸気分離器21の圧
力をできるだけ一定に保つことが必要である。As described above, in the conventional fuel cell power generation apparatus, the two-phase flow discharge water discharged from the cooling pipe of the cooling plate 4 of the fuel cell main body 1 is separated by the steam separator 21 into steam and cooling water. The separated steam is sent to the ejector pump via the steam supply circuit 10 and mixed with the raw fuel for fuel reforming. When the pressure of the steam separator 21 fluctuates, the amount of steam supplied to the ejector pump fluctuates. Therefore, the mixing ratio of steam and raw fuel fluctuates, or the pressure of the fuel gas fluctuates, which also affects the composition and pressure of the reformed gas sent to the fuel electrode 2 and, consequently, the operation of the fuel cell. Variations in the conditions lead to a shortened life of the fuel cell. Therefore, it is necessary to keep the pressure of the steam separator 21 as constant as possible.
【0013】上述の燃料電池発電装置では、前述のよう
に、熱回収用熱交換器23にバイパス配管26を設け、
三方調整弁27により熱回収用熱交換器23へ流れる流
量を調整して水蒸気分離器21の圧力を一定に保持する
方策が採られているが、本方式では戻りの冷却水中の蒸
気量の増減で圧力制御を行う方式であるので、三方調整
弁27の動きに対する水蒸気分離器21の圧力変化の応
答性が遅く、水蒸気分離器21の圧力変動を例えば±0.
05〔kg/cm3〕以下に抑えることが困難であるという難点
がある。In the above-described fuel cell power generator, as described above, the heat recovery heat exchanger 23 is provided with the bypass pipe 26,
Although a measure is taken to maintain the pressure of the steam separator 21 constant by adjusting the flow rate flowing to the heat recovery heat exchanger 23 by the three-way regulating valve 27, this method increases or decreases the amount of steam in the returning cooling water. , The response of the pressure change of the steam separator 21 to the movement of the three-way regulating valve 27 is slow, and the pressure fluctuation of the steam separator 21 is, for example, ± 0.
There is a drawback in that it is difficult to keep it below 05 [kg / cm 3 ].
【0014】図5は、上記の第1の従来例の難点を解決
する方法として採用されている第2の従来例の燃料電池
発電装置のガス系、冷却水系の基本的な系統図である。
図4の第1の従来例と同一の機能をもつ構成部品につい
ては同一の符号を付して説明を省略する。第2の従来例
の第1の従来例との相違点は、燃料電池本体1を冷却す
る冷却水循環回路20の戻り配管が水蒸気分離器21の
蒸気空間に連結されており、かつ、従来の熱回収用熱交
換器23および三方調整弁27で構成された系の代わり
に、水蒸気分離器21の圧力を調整する目的で蒸気流量
を調整する圧力調整弁51と、外部の冷却装置に連結し
た熱媒循環装置25と熱交換をさせる蒸気凝縮器52
と、この蒸気凝縮器52に配管のみにて接続された凝縮
水タンク53と、凝縮水タンク53の貯液を水蒸気分離
器21に送る給水ポンプ54とを配管を介して直列に接
続して構成される排熱回収装置が連結され、水蒸気分離
器21との間に蒸気凝縮水の循環回路を形成されている
点にある。なお、凝縮水タンク53は生成水回収器41
と接続されており略大気圧に保持されている。FIG. 5 is a basic system diagram of a gas system and a cooling water system of a fuel cell power generator according to a second conventional example which is adopted as a method for solving the above-mentioned disadvantages of the first conventional example.
Components having the same functions as those of the first conventional example of FIG. 4 are denoted by the same reference numerals, and description thereof is omitted. The difference between the second conventional example and the first conventional example is that the return pipe of the cooling water circulation circuit 20 for cooling the fuel cell body 1 is connected to the steam space of the steam separator 21, Instead of the system constituted by the heat exchanger for recovery 23 and the three-way regulating valve 27, a pressure regulating valve 51 for regulating the steam flow for the purpose of regulating the pressure of the steam separator 21 and a heat coupled to an external cooling device Steam condenser 52 for exchanging heat with medium circulation device 25
And a condensed water tank 53 connected to the steam condenser 52 only by a pipe, and a water supply pump 54 for sending the liquid stored in the condensed water tank 53 to the steam separator 21 in series via a pipe. Is connected to the steam exhaust separator 21 to form a circulation circuit for condensed steam. In addition, the condensed water tank 53 is provided
And is maintained at approximately atmospheric pressure.
【0015】この構成にしたことによって、水蒸気分離
器21の圧力が設定値よりずれを生じた場合、圧力調整
弁51の開度調整により水蒸気分離器21から蒸気凝縮
器52への蒸気流量を変えて、水蒸気分離器21の圧力
を直ちに設定値に戻すことができるので、第2の従来例
の制御方法に比べて応答の速い圧力調整が可能となる。
したがって、水蒸気分離器21の圧力を例えば±0.05
〔kg/cm3〕以下と精度よく制御できるので、燃料改質器
7へ水蒸気量を安定して供給でき、安定した燃料電池発
電装置の運転ができる。With this configuration, when the pressure of the steam separator 21 deviates from the set value, the steam flow from the steam separator 21 to the steam condenser 52 is changed by adjusting the opening of the pressure regulating valve 51. As a result, the pressure of the steam separator 21 can be immediately returned to the set value, so that the pressure can be adjusted more quickly than in the control method of the second conventional example.
Therefore, the pressure of the steam separator 21 is set to, for example, ± 0.05.
Since the control can be performed with a high accuracy of [kg / cm 3 ] or less, the amount of water vapor can be stably supplied to the fuel reformer 7, and the fuel cell power generator can be operated stably.
【0016】[0016]
【発明が解決しようとする課題】一方、燃料電池発電装
置は、運転を停止し安全に保管する際には、燃料電池本
体の温度を少なくとも100℃以下に下げる必要があ
る。そのためには、燃料電池本体を冷却する冷却水は1
00℃より十分低い温度とする必要がある。上述の第2
の従来例の構成においては、水蒸気分離器の圧力が精度
よく制御され、燃料改質器へ水蒸気量を安定して供給で
きるので、安定した燃料電池発電装置の運転ができる
が、水蒸気分離器内の温度が100℃まで下がると蒸気
量が微量となるので圧力調整弁の開度を上げても蒸気凝
縮器に流れて冷却、凝縮される蒸気量は微量に止まり、
蒸気凝縮器により水蒸気分離器内の保有水の温度を10
0℃よりさらに低く冷却することはできない。また、絞
り機構を組み込んだブローダウン配管により水蒸気分離
器内の保有水を生成水回収器へと送り、冷却して補給水
配管により再び水蒸気分離器へと戻して冷却する方法に
おいては、絞り機構により流量が少量に制限されている
ので冷却降下速度が低く抑えられる。したがって、この
構成例においては、水蒸気分離器内の保有水の温度を1
00℃より低くすることが困難で、燃料電池本体を実用
的な冷却降下速度で100℃以下に冷却させることが実
質的に不可能であるという問題点があった。On the other hand, when the operation of the fuel cell power generator is stopped and stored safely, it is necessary to lower the temperature of the fuel cell main body to at least 100 ° C. or less. For that purpose, the cooling water for cooling the fuel cell body is 1
The temperature must be sufficiently lower than 00 ° C. The second mentioned above
In the configuration of the conventional example, since the pressure of the steam separator is accurately controlled and the amount of steam can be stably supplied to the fuel reformer, stable operation of the fuel cell power generator can be performed. When the temperature drops to 100 ° C, the amount of steam becomes very small, so even if the opening of the pressure regulating valve is raised, the amount of steam that flows into the steam condenser and is cooled and condensed remains only a small amount.
The temperature of the water retained in the steam separator is set to 10 by the steam condenser.
It cannot be cooled below 0 ° C. Also, in the method of sending water retained in the steam separator to the generated water recovery unit by a blowdown pipe incorporating a throttle mechanism, cooling, returning the water to the steam separator again by the makeup water pipe, and cooling, the throttle mechanism is used. , The flow rate is limited to a small amount, so that the cooling descent speed can be kept low. Therefore, in this configuration example, the temperature of the water retained in the steam separator is set to 1
There is a problem that it is difficult to lower the temperature below 00 ° C., and it is practically impossible to cool the fuel cell body to 100 ° C. or less at a practical cooling rate.
【0017】本発明は、上記の問題点を考慮してなされ
たもので、その目的は、従来のように水蒸気分離器の圧
力変動が微小で燃料改質器へ水蒸気量を安定して供給で
き、安定した運転ができる燃料電池発電装置において、
燃料電池本体を100℃以下に冷却させることが可能な
冷却水温度の調節方法を提供することにある。The present invention has been made in consideration of the above-mentioned problems, and has as its object that the pressure fluctuation of a steam separator is small as in the prior art and the steam amount can be stably supplied to a fuel reformer. In a fuel cell power generator that can operate stably,
It is an object of the present invention to provide a method for adjusting a cooling water temperature capable of cooling a fuel cell body to 100 ° C. or less.
【0018】[0018]
【課題を解決するための手段】上記の問題点を解決する
ために、本発明においては、 (1) 燃料電池本体へ冷却水を又燃料改質器へ水蒸気を供
給し、燃料電池本体で加熱排出された二相流の冷却排出
水を導入して蒸気と水とに分離する水蒸気分離器と、燃
料電池本体の空気極から排出される反応排出空気ならび
に燃料改質器から排出される燃焼排ガスに含まれる水分
を回収する生成水回収器とを備え、前記生成水回収器の
生成水を前記水蒸気分離器に供給する補給水配管を有す
る燃料電池発電装置において、前記水蒸気分離器と前記
生成水回収器との間を弁を介して接続し、燃料電池発電
装置の運転を停止する時、前記弁を開いて前記水蒸気分
離器内の冷却水を前記生成水回収器へ供給して冷却し、
前記補給水配管により前記水蒸気分離器へと戻すことに
より前記水蒸気分離器内の冷却水の温度を調整すること
とする。In order to solve the above-mentioned problems, according to the present invention, (1) cooling water is supplied to the fuel cell main body and steam is supplied to the fuel reformer, and the fuel cell is heated by the fuel cell main body. A steam separator that introduces the discharged two-phase flow cooling discharge water to separate it into steam and water, reaction discharge air discharged from the air electrode of the fuel cell body, and combustion exhaust gas discharged from the fuel reformer A fuel cell power generation apparatus, comprising: a generated water recovery unit that recovers moisture contained in the water; and a makeup water pipe that supplies water generated by the generated water recovery unit to the steam separator. Connected to the recovery unit via a valve, when stopping the operation of the fuel cell power generation device, open the valve to supply cooling water in the steam separator to the generated water recovery unit to cool,
The temperature of the cooling water in the steam separator is adjusted by returning the water to the steam separator through the makeup water pipe.
【0019】(2) また、前記弁を自動開閉弁とし、前記
水蒸気分離器の冷却水の水質を保持するためにこの冷却
水を前記生成水回収器へ供給するブローダウン配管の絞
り機構と並列に設置して、燃料電池発電装置の通常運転
時にはこの自動開閉弁を閉状態として絞り機構のみにて
連結させることとし、運転停止の際には開状態とするこ
とにより前記水蒸気分離器内の冷却水の温度を調整する
こととする。(2) The valve is an automatic on-off valve, and is provided in parallel with a throttle mechanism of a blow-down pipe for supplying the cooling water to the generated water recovery unit in order to maintain the quality of the cooling water of the steam separator. In the normal operation of the fuel cell power generator, the automatic on-off valve is closed and connected only by the throttle mechanism, and when the operation is stopped, the automatic on-off valve is opened to cool the inside of the steam separator. The temperature of the water will be adjusted.
【0020】(3) また、前記弁を自動調整弁とし、前記
ブローダウン配管に設置し、燃料電池発電装置の通常運
転時には自動調整弁の開度を比較的小さくすることによ
り絞り機構と同様な動作とし、運転停止の際には開度を
大きくすることにより前記水蒸気分離器内の冷却水の温
度を調整することとする。(3) In addition, the valve is an automatic regulating valve, which is installed in the blowdown pipe. During normal operation of the fuel cell power generator, the opening of the automatic regulating valve is made relatively small, so that a throttle mechanism similar to the throttle mechanism is provided. When the operation is stopped, the temperature of the cooling water in the steam separator is adjusted by increasing the opening when the operation is stopped.
【0021】[0021]
【作用】上記(1) のごとく、水蒸気分離器と生成水回収
器との間を弁を介して接続し、燃料電池発電装置の運転
を停止する時、この弁を開いて水蒸気分離器内の冷却水
を生成水回収器へ供給して冷却し、補給水配管により水
蒸気分離器へと戻すことにより冷却水の温度を調整する
こととすれば、弁の開度を大きくすれば多量の冷却水が
例えば約50℃に設定された生成水回収器に送られ、冷
却されるので、循環させて流すことにより、水蒸気分離
器内の冷却水が迅速に100℃より十分低い温度まで冷
却されることとなる。[Function] As described in (1) above, when the operation of the fuel cell power generator is stopped by connecting the steam separator and the generated water recovery unit via a valve, and when the operation of the fuel cell power generator is stopped, the valve is opened. If cooling water is supplied to the product water recovery unit to cool it, and then returned to the steam separator through the makeup water piping to adjust the temperature of the cooling water, a large amount of cooling water can be obtained by increasing the valve opening. Is sent to a product water recovery unit set at, for example, about 50 ° C. and cooled, so that the cooling water in the steam separator is quickly cooled to a temperature sufficiently lower than 100 ° C. by circulating and flowing. Becomes
【0022】また、上記(2) のごとく、前記弁を自動開
閉弁としブローダウン配管に絞り機構と並列に設置する
構成とし、燃料電池発電装置の通常運転時には自動開閉
弁を閉状態とすることとすれば、絞り機構のみにて連通
されることとなるので流量が制限される。また、運転停
止の際には自動開閉弁を開状態とすることとすれば、水
蒸気分離器内の冷却水は相対的に大きい開口部をもつ自
動開閉弁を通して生成水回収器へ多量に流れることとな
るので、低温の生成水回収器において冷却され100℃
より十分低い温度まで冷却されることとなる。Further, as described in the above (2), the valve is an automatic opening / closing valve and is installed in a blowdown pipe in parallel with a throttle mechanism, and the automatic opening / closing valve is closed during normal operation of the fuel cell power generator. In this case, the flow is restricted because only the throttle mechanism communicates. Also, if the automatic shut-off valve is to be opened when the operation is stopped, a large amount of cooling water in the steam separator flows to the generated water collector through the automatic shut-off valve having a relatively large opening. Is cooled in a low-temperature product water recovery unit to 100 ° C.
It will be cooled to a much lower temperature.
【0023】さらに、上記(3) のごとく、前記弁を自動
調整弁としブローダウン配管に設置する構成とし、燃料
電池発電装置の通常運転時には自動調整弁の開度を、絞
り機構と同程度に比較的小さくし、運転停止の際には開
度を大きくするよう調整することとすれば、上述の自動
開閉弁を組み込んだ場合と同様に、冷却水の温度を調節
することができる。Further, as described in (3) above, the valve is configured as an automatic adjustment valve and installed in a blowdown pipe, and during normal operation of the fuel cell power generator, the opening of the automatic adjustment valve is set to be substantially the same as the throttle mechanism. If the temperature is made relatively small and the opening is adjusted to be large when the operation is stopped, the temperature of the cooling water can be adjusted as in the case where the above-mentioned automatic on-off valve is incorporated.
【0024】[0024]
【実施例】以下にこの発明の実施例を図面に基づいて説
明する。図1は、この発明による燃料電池発電装置の冷
却水温度の調節法の第1の実施例に用いられるガス系、
冷却水系の基本的な系統図である。図4に示した第1の
従来例、あるいは図5に示した第2の従来例と同一の機
能をもつ構成部品については同一符号を付して説明を省
略する。本実施例の第2の従来例との相違点は、水蒸気
分離器21と生成水回収器41との間を連結するブロー
ダウン配管50のブローダウン流量調整用の絞り機構4
9と並列に自動開閉弁61が設置されている点にある。
燃料電池発電装置の運転停止の際には自動開閉弁61を
開状態として多量の冷却水をブローダウン配管50を通
して生成水回収器41へ流し、補給水配管48を通して
水蒸気分離器21へ戻して循環させることにより冷却水
は100℃より十分低い温度まで冷却され、燃料電池本
体1の温度を100℃以下に冷却することができる。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a gas system used in a first embodiment of a method for adjusting a cooling water temperature of a fuel cell power generator according to the present invention;
It is a basic system diagram of a cooling water system. Components having the same functions as those of the first conventional example shown in FIG. 4 or the second conventional example shown in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted. The difference of this embodiment from the second conventional example is that the throttle mechanism 4 for adjusting the blowdown flow rate of the blowdown pipe 50 connecting the steam separator 21 and the product water recovery unit 41 is different.
9 in that an automatic on-off valve 61 is provided in parallel.
When the operation of the fuel cell power generation device is stopped, the automatic on-off valve 61 is opened, and a large amount of cooling water flows to the generated water recovery unit 41 through the blowdown pipe 50 and returns to the steam separator 21 through the makeup water pipe 48 for circulation. By doing so, the cooling water is cooled to a temperature sufficiently lower than 100 ° C., and the temperature of the fuel cell main body 1 can be cooled to 100 ° C. or less.
【0025】図2は、この発明による燃料電池発電装置
の冷却水温度の調節法の第2の実施例に用いられるガス
系、冷却水系の基本的な系統図である。従来例と同一の
機能をもつ構成部品については同一符号を付して説明を
省略する。本実施例の第2の従来例との相違点は、水蒸
気分離器21と生成水回収器41との間を連結するブロ
ーダウン配管50に自動調整弁62のみが設置されてい
る点にある。燃料電池発電装置の通常運転時には自動調
整弁の開度を比較的小さくすることにより絞り機構と同
様に動作させ、運転停止の際には開度を大きくして冷却
水を多量に流すことにより、上述の第1の実施例の場合
と同様に、冷却水は100℃より十分低い温度まで冷却
される。FIG. 2 is a basic system diagram of a gas system and a cooling water system used in a second embodiment of the method for adjusting the cooling water temperature of the fuel cell power generator according to the present invention. Components having the same functions as those of the conventional example are denoted by the same reference numerals, and description thereof is omitted. This embodiment is different from the second conventional example in that only an automatic adjustment valve 62 is provided in a blowdown pipe 50 connecting between the steam separator 21 and the product water recovery unit 41. During normal operation of the fuel cell power generator, the opening of the automatic adjustment valve is made relatively small to operate in the same manner as the throttle mechanism, and when operation is stopped, the opening is increased and a large amount of cooling water is flowed. As in the case of the first embodiment, the cooling water is cooled to a temperature sufficiently lower than 100 ° C.
【0026】上記の第1の実施例および第2の実施例に
おいては、水蒸気分離器21に、圧力調整弁51、蒸気
凝縮器52、凝縮水タンク53並びに給水ポンプ54か
らなる蒸気凝縮水の循環系統が設置されており、第2の
従来例と同様に、圧力調整弁51の開閉により水蒸気分
離器21の圧力が精度よく制御され、燃料改質器7に安
定して水蒸気が供給されるので、燃料電池発電装置を安
定して運転することができる。In the first and second embodiments, the circulation of steam condensed water including the pressure regulating valve 51, the steam condenser 52, the condensed water tank 53 and the feed water pump 54 is provided in the steam separator 21. Since the system is installed, similarly to the second conventional example, the pressure of the steam separator 21 is accurately controlled by opening and closing the pressure regulating valve 51, and the steam is supplied to the fuel reformer 7 stably. Thus, the fuel cell power generator can be operated stably.
【0027】図3は、この発明による燃料電池発電装置
の冷却水温度の調節法の第3の実施例に用いられるガス
系、冷却水系の基本的な系統図である。本実施例の基本
系統では、水蒸気分離器21に、圧力調整弁51、蒸気
凝縮器52、凝縮水タンク53並びに給水ポンプ54か
らなる蒸気凝縮水の循環系統が設置されていない点が、
第2の実施例の基本系統との相違点である。FIG. 3 is a basic system diagram of a gas system and a cooling water system used in a third embodiment of the method for adjusting the cooling water temperature of the fuel cell power generator according to the present invention. In the basic system of the present embodiment, the point that the steam separator 21 is not provided with a circulation system of steam condensed water including a pressure regulating valve 51, a steam condenser 52, a condensed water tank 53, and a feedwater pump 54,
This is a difference from the basic system of the second embodiment.
【0028】この構成において、燃料電池発電装置の運
転停止の際には、第2の実施例と同様に、自動調整弁6
2の開度を大きくして冷却水を多量に流すことにより1
00℃より十分低い温度まで冷却される。通常運転時に
は、冷却水を自動調整弁62を通して生成水回収器41
へと送り、発電時の発熱の一部を回収水冷却器43で回
収するものである。このとき自動調整弁62は第1、第
2の実施例における圧力調整弁51と同様の役割をはた
す。即ち、水蒸気分離器21の圧力を圧力計28で監視
して、圧力が設定値より高くなると自動調整弁62の開
度を上げて生成水回収器41へ送られる冷却水の流量を
増加させ、圧力が設定値より低くなると自動調整弁62
の開度を下げて生成水回収器41へ送られる冷却水の流
量を減少させることによって水蒸気分離器21の圧力を
調整する。この実施例の系統では、組み込む装置が簡略
化され安価となるという利点ももつ。In this configuration, when the operation of the fuel cell power generation device is stopped, as in the second embodiment, the automatic regulating valve 6 is turned off.
By increasing the opening of 2 and flowing a large amount of cooling water, 1
Cool to a temperature well below 00 ° C. During normal operation, the cooling water is supplied to the generated water recovery unit 41 through the automatic adjustment valve 62.
And a part of the heat generated at the time of power generation is recovered by the recovered water cooler 43. At this time, the automatic regulating valve 62 plays the same role as the pressure regulating valve 51 in the first and second embodiments. That is, the pressure of the steam separator 21 is monitored by the pressure gauge 28, and when the pressure becomes higher than the set value, the opening of the automatic regulating valve 62 is increased to increase the flow rate of the cooling water sent to the generated water recovery unit 41, When the pressure becomes lower than the set value, the automatic adjustment valve 62
The pressure of the steam separator 21 is adjusted by decreasing the opening degree of the cooling water and reducing the flow rate of the cooling water sent to the generated water recovery unit 41. The system of this embodiment also has the advantage that the device to be incorporated is simplified and inexpensive.
【0029】[0029]
【発明の効果】この発明によれば、 (1) 燃料電池本体へ冷却水を又燃料改質器へ水蒸気を供
給し、燃料電池本体で加熱排出された二相流の冷却排出
水を導入して蒸気と水とに分離する水蒸気分離器と、燃
料電池本体の空気極から排出される反応排出空気ならび
に燃料改質器から排出される燃焼排ガスに含まれる水分
を回収する生成水回収器とを備え、前記生成水回収器の
生成水を前記水蒸気分離器に供給する補給水配管を有す
る燃料電池発電装置において、前記水蒸気分離器と前記
生成水回収器との間を弁を介して接続し、燃料電池発電
装置の運転を停止する時、前記弁を開いて前記水蒸気分
離器内の冷却水を前記生成水回収器へ供給して冷却し、
前記補給水配管により前記水蒸気分離器へと戻すことに
より前記水蒸気分離器内の冷却水の温度を調整する方法
をとることとしたので、前記水蒸気分離器内の冷却水を
迅速に100℃以下に降温させることが可能となり、燃
料電池本体を停止保管時の温度へ確実に冷却できるよう
になった。According to the present invention, (1) cooling water is supplied to the fuel cell body and steam is supplied to the fuel reformer, and two-phase flow cooling and discharging water heated and discharged by the fuel cell body is introduced. A steam separator that separates the steam into water and water, and a product water collector that collects water contained in the reaction exhaust air discharged from the air electrode of the fuel cell body and the combustion exhaust gas discharged from the fuel reformer. In a fuel cell power generator having a make-up water pipe for supplying product water of the product water recovery unit to the steam separator, the fuel cell power generator connects the steam separator and the product water collector via a valve, When stopping the operation of the fuel cell power generation device, open the valve and supply cooling water in the steam separator to the generated water recovery unit to cool it,
Since the temperature of the cooling water in the steam separator is adjusted by returning to the steam separator by the makeup water pipe, the cooling water in the steam separator is quickly reduced to 100 ° C. or less. The temperature can be lowered, and the fuel cell body can be reliably cooled to the temperature at the time of stopped storage.
【0030】(2) また、前記弁を前記水蒸気分離器の冷
却水を前記生成水回収器へ供給するブローダウン配管の
絞り機構に並列に設けられた自動開閉弁とする、あるい
は、前記弁を前記ブローダウン配管に設けられた自動調
整弁とし、燃料電池発電装置の運転を停止する時、自動
開閉弁を開状態とする、あるいは自動調整弁の開度を大
きくとることにより、多量の冷却水を前記水蒸気分離器
と前記生成水回収器との間を循環させることとしたの
で、冷却水を迅速に100℃以下に降温させることが可
能となり、燃料電池本体を停止保管時の温度へ確実に冷
却できるようになった。(2) Further, the valve is an automatic opening / closing valve provided in parallel with a throttle mechanism of a blowdown pipe for supplying cooling water of the steam separator to the product water recovery unit, or When the operation of the fuel cell power generator is stopped, the automatic opening / closing valve is opened or the opening of the automatic adjusting valve is increased, so that a large amount of cooling water is provided. Is circulated between the steam separator and the product water recovery device, so that the temperature of the cooling water can be rapidly lowered to 100 ° C. or less, and the fuel cell body is reliably stopped and kept at the temperature at the time of storage. You can now cool down.
【図1】この発明による燃料電池発電装置の冷却水温度
の調節法の第1の実施例に用いられるガス系、冷却水系
の基本的な系統図FIG. 1 is a basic system diagram of a gas system and a cooling water system used in a first embodiment of a method of adjusting a cooling water temperature of a fuel cell power generator according to the present invention.
【図2】この発明による燃料電池発電装置の冷却水温度
の調節法の第2の実施例に用いられるガス系、冷却水系
の基本的な系統図FIG. 2 is a basic system diagram of a gas system and a cooling water system used in a second embodiment of the method for adjusting the cooling water temperature of the fuel cell power generator according to the present invention.
【図3】この発明による燃料電池発電装置の冷却水温度
の調節法の第3の実施例に用いられるガス系、冷却水系
の基本的な系統図FIG. 3 is a basic system diagram of a gas system and a cooling water system used in a third embodiment of the method for adjusting the cooling water temperature of the fuel cell power generator according to the present invention.
【図4】この種の燃料電池発電装置の第1の従来例を示
すガス系、冷却水系の基本的な系統図FIG. 4 is a basic system diagram of a gas system and a cooling water system showing a first conventional example of this type of fuel cell power generator.
【図5】この種の燃料電池発電装置の第2の従来例を示
すガス系、冷却水系の基本的な系統図FIG. 5 is a basic system diagram of a gas system and a cooling water system showing a second conventional example of this type of fuel cell power generator.
1 燃料電池本体 4冷却板 7 燃料改質器 9 エゼクタポンプ 10 水蒸気供給回路 15 反応空気排出回路 18 燃焼ガス排出回路 19 ガス排気回路 20 冷却水循環回路 21 水蒸気分離器 25 熱媒循環回路 41 生成水回収器 43 回収水冷却器 46 補給水ポンプ 47 水処理装置 48 補給水配管 49 絞り機構 50 ブローダウン配管 51 圧力調整弁 52 蒸気凝縮器 53 凝縮水タンク 61自動開閉弁 62自動調整弁 DESCRIPTION OF SYMBOLS 1 Fuel cell body 4 Cooling plate 7 Fuel reformer 9 Ejector pump 10 Steam supply circuit 15 Reaction air discharge circuit 18 Combustion gas discharge circuit 19 Gas exhaust circuit 20 Cooling water circulation circuit 21 Steam separator 25 Heat medium circulation circuit 41 Generated water recovery 43 Recovered water cooler 46 Make-up water pump 47 Water treatment device 48 Make-up water pipe 49 Throttle mechanism 50 Blow-down pipe 51 Pressure regulating valve 52 Steam condenser 53 Condensed water tank 61 Automatic opening / closing valve 62 Automatic regulating valve
Claims (3)
蒸気を供給し、燃料電池本体で加熱排出された二相流の
冷却排出水を導入して蒸気と水とに分離する水蒸気分離
器と、燃料電池本体の空気極から排出される反応排出空
気ならびに燃料改質器から排出される燃焼排ガスに含ま
れる水分を回収する生成水回収器とを備え、前記生成水
回収器の生成水を前記水蒸気分離器に供給する補給水配
管を有する燃料電池発電装置において、前記水蒸気分離
器と前記生成水回収器との間を弁を介して接続し、燃料
電池発電装置の運転を停止する時、前記弁を開いて前記
水蒸気分離器内の冷却水を前記生成水回収器へ供給して
冷却し、前記補給水配管により前記水蒸気分離器へと戻
すことにより前記水蒸気分離器内の冷却水の温度を調整
することを特徴とする燃料電池発電装置の冷却水温度の
調節方法。1. Steam which supplies cooling water to a fuel cell main body and steam to a fuel reformer, introduces two-phase flow cooling discharge water heated and discharged by the fuel cell main body, and separates into steam and water. A separator, and a generated water recovery unit that recovers water contained in reaction exhaust air discharged from the air electrode of the fuel cell body and combustion exhaust gas discharged from the fuel reformer; In a fuel cell power generator having a makeup water pipe for supplying water to the steam separator, the steam separator and the generated water collector are connected via a valve, and the operation of the fuel cell generator is stopped. At this time, the cooling water in the steam separator is opened by opening the valve to supply the cooling water in the steam separator to the product water recovery unit to be cooled, and returning the cooling water to the steam separator by the makeup water pipe. Characterized by adjusting the temperature of Method of adjusting the temperature of the cooling water that fuel cell power plant.
持するために冷却水を前記水蒸気分離器より前記生成水
回収器へ供給するブローダウン配管の絞り機構と並列に
設けられた自動開閉弁であることを特徴とする請求項1
記載の燃料電池発電装置の冷却水温度の調節方法。2. An automatic valve provided in parallel with a throttle mechanism of a blow-down pipe for supplying cooling water from the steam separator to the product water recovery unit in order to maintain water quality in the steam separator. 2. An on-off valve.
A method for adjusting a cooling water temperature of the fuel cell power generator according to the above.
持するために冷却水を前記水蒸気分離器より前記生成水
回収器へ供給するブローダウン配管に設けられた自動調
節弁であることを特徴とする請求項1記載の燃料電池発
電装置の冷却水温度の調節方法。3. The valve according to claim 1, wherein the valve is an automatic control valve provided on a blow-down pipe for supplying cooling water from the steam separator to the product water recovery unit in order to maintain water quality in the steam separator. The method for adjusting the temperature of cooling water of a fuel cell power generator according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16727894A JP3240840B2 (en) | 1994-07-20 | 1994-07-20 | Method of adjusting cooling water temperature of fuel cell power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16727894A JP3240840B2 (en) | 1994-07-20 | 1994-07-20 | Method of adjusting cooling water temperature of fuel cell power generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0831435A JPH0831435A (en) | 1996-02-02 |
JP3240840B2 true JP3240840B2 (en) | 2001-12-25 |
Family
ID=15846785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16727894A Expired - Fee Related JP3240840B2 (en) | 1994-07-20 | 1994-07-20 | Method of adjusting cooling water temperature of fuel cell power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3240840B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3890754B2 (en) * | 1997-07-10 | 2007-03-07 | 富士電機ホールディングス株式会社 | Phosphoric acid fuel cell power generator |
JP3695309B2 (en) * | 2000-11-02 | 2005-09-14 | 松下電器産業株式会社 | Polymer electrolyte fuel cell system and operation method thereof |
CN1238921C (en) | 2001-05-23 | 2006-01-25 | 松下电器产业株式会社 | Fuel cell power generating device |
JP2003272687A (en) * | 2002-03-20 | 2003-09-26 | Toshiba International Fuel Cells Corp | Fuel cell generating device and fuel cell operating method |
KR100460885B1 (en) * | 2002-07-08 | 2004-12-09 | 현대자동차주식회사 | Cooling system of stack protection apparatus for fuel cell electric vehicle |
DE102004056952A1 (en) * | 2004-11-25 | 2006-06-08 | Nucellsys Gmbh | Fuel cell system comprises a fuel cell having an anode region and a cathode region separated from the anode region by an electrolyte and a first liquid separator having a liquid outlet joined to a second liquid separator |
JP4876435B2 (en) * | 2005-05-20 | 2012-02-15 | パナソニック株式会社 | Polymer electrolyte fuel cell system and operation method thereof |
US20100297513A1 (en) * | 2007-10-11 | 2010-11-25 | Shigeki Yasuda | Fuel cell system |
JP5293781B2 (en) * | 2011-07-22 | 2013-09-18 | パナソニック株式会社 | Polymer electrolyte fuel cell system |
-
1994
- 1994-07-20 JP JP16727894A patent/JP3240840B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0831435A (en) | 1996-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7052787B2 (en) | Solid high polymer type fuel cell power generating device | |
JP4482057B2 (en) | Polymer electrolyte fuel cell system | |
JP2005100873A (en) | Fuel cell system | |
JP3240840B2 (en) | Method of adjusting cooling water temperature of fuel cell power generator | |
US5178969A (en) | Fuel cell powerplant system | |
CA2464966A1 (en) | Method and apparatus for by-product removal in a hydrogen generation system | |
JP3664178B2 (en) | Multistage fuel cell | |
EP1168476B1 (en) | Fuel cell power generating system and operation method | |
JP2811905B2 (en) | Steam generator for fuel cell power generation system | |
JP4050919B2 (en) | Fuel cell system and operation method thereof | |
JPH0817455A (en) | Exhaust heat recovery device for fuel cell generating unit | |
JPH07230819A (en) | Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer | |
JP2002025590A (en) | Fuel cell power generating device and its control method | |
JPH08124587A (en) | Fuel cell power generating plant | |
JP3994324B2 (en) | Fuel cell power generator | |
JP2002100382A (en) | Fuel cell power generator | |
JPH1064566A (en) | Fuel cell power generator and waste heat recovery method therefor | |
JP2003288936A (en) | Fuel cell power generating system and its operation method | |
JPH07192744A (en) | Steam separating system of fuel cell | |
JPH08250143A (en) | Operating method for steam separator of fuel-cell generating system | |
JP2002343392A (en) | Fuel cell system | |
JP3670467B2 (en) | Fuel cell power generation system | |
JPH05144452A (en) | Fuel cell power generating system | |
US11541350B2 (en) | Heat recovery from an electrochemical hydrogen separation system | |
JP2002151095A (en) | Fuel cell generating system and driving method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081019 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091019 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |