JP3670467B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system Download PDF

Info

Publication number
JP3670467B2
JP3670467B2 JP31970397A JP31970397A JP3670467B2 JP 3670467 B2 JP3670467 B2 JP 3670467B2 JP 31970397 A JP31970397 A JP 31970397A JP 31970397 A JP31970397 A JP 31970397A JP 3670467 B2 JP3670467 B2 JP 3670467B2
Authority
JP
Japan
Prior art keywords
fuel cell
cooling water
steam
carbon monoxide
battery cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31970397A
Other languages
Japanese (ja)
Other versions
JPH11154526A (en
Inventor
美枝子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31970397A priority Critical patent/JP3670467B2/en
Publication of JPH11154526A publication Critical patent/JPH11154526A/en
Application granted granted Critical
Publication of JP3670467B2 publication Critical patent/JP3670467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、排熱回収系を備えた燃料電池発電システムに係り、特に高温の蒸気を高い効率で取り出し、さらに総合効率を高めるようにした燃料電池発電システムに関するものである。
【0002】
【従来の技術】
従来から、燃料電池発電システムは、常用の都市ガス,LNG等のメタンを主成分とした炭化水素系燃料を水素ガスに改質し、この水素ガスを空気中等から得られた酸素と電気化学的に反応させて、電気エネルギーに変換するものである。そのため、クリーンエネルギーとして評価が高い。
【0003】
また、発電効率が高いのみならず、温水および蒸気として排熱をすべて利用した場合の総合効率は80%以上になる。特に、蒸気形態の高温排熱は、吸収式冷凍機としての利用価値が高く、近年蒸気取り出しの需要は益々高くなってきている。そのため、最近では、システムの排熱を回収する排熱回収系を備えた燃料電池発電システムが提案されてきている。
【0004】
図6は、この種の従来の排熱回収系を備えた燃料電池発電システムの系統構成の一例を示す概要図である。
図6において、改質器1は、炭化水素系燃料を蒸気と混合し、改質して水素を主成分とする改質ガスを発生する。
【0005】
一酸化炭素変成器2は、改質器1で発生した改質ガス中の一酸化炭素を二酸化炭素に変成する。
燃料電池本体3は、燃料極3a、空気極3b、および電池冷却板3cを備えて成り、一酸化炭素変成器2で変成された改質ガスを燃料極3aに導入すると共に空気を空気極3bに導入し、改質ガス中の水素と空気中の酸素とを電気化学的に反応させて電気エネルギーに変換する。
【0006】
気水分離器4は、燃料電池本体3で発電時に発生した熱(反応熱)を電池冷却板3cを介して熱交換させることにより回収した電池冷却水を、水と蒸気の二相流化した状態で導入し、水蒸気および水に分離する。
【0007】
そして、気水分離器4で分離された水を電池冷却水循環ポンプ5により、一部を一酸化炭素変成器2への冷却水として分岐して供給し、改質器1の燃焼排ガス回収熱交換器6を介して気水分離器4に送り、残りを温度調整用熱交換器7で電池冷却板3c入口温度まで冷却して、燃料電池本体3への冷却水として供給するように電池冷却水系を構成している。
【0008】
また、気水分離器4内で発生した蒸気の一部は、改質器1に送って改質反応に利用する。
一方、気水分離器4の下流側には蒸気発生器8を設けており、燃料電池本体3の反応熱を電池冷却板3cを介して回収する燃料電池本体3の冷却水、すなわち気水分離器4で分離された水を加熱側媒体として導入し、電池冷却水系とは隔壁を介して隔離された排熱回収装置9および循環ポンプ10からなる排熱回収系の水媒体である被加熱側媒体に上記回収熱を伝達することにより、この水媒体から蒸気を発生させる。
【0009】
そして、この蒸気発生器8により発生した蒸気は、排熱回収装置9に送って排熱として利用するようにしている。
なお、このような構成の排熱回収系は、燃料電池本体3での発電時の熱を蒸気発生器8の被加熱媒体で回収できるため、間接取り出し方式と称している。
【0010】
【発明が解決しようとする課題】
しかしながら、以上のような間接蒸気取り出し方式を採用した従来の燃料電池発電システムにおいては、燃料電池本体3の冷却条件を優先していることから、蒸気取出しのために蒸気発生器8の加熱側媒体である電池冷却水の流量を増加させることができない。そのため、温度レベルの高い蒸気を高効率で得ることができないという問題がある。
本発明の目的は、高温の蒸気を高い効率で取り出すことができ、さらに総合効率を高めることが可能な燃料電池発電システムを提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、請求項1の発明の燃料電池発電システムは、炭化水素系燃料を蒸気と混合し、改質して水素を主成分とする改質ガスを発生する改質器と、改質器で発生した改質ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成器と、燃料極、空気極、および電池冷却板を備え、一酸化炭素変成器で変成された改質ガスを燃料極に導入すると共に空気を空気極に導入し、当該改質ガス中の水素と空気中の酸素とを電気化学的に反応させて電気エネルギーに変換する燃料電池本体と、燃料電池本体で発電時に発生した熱(反応熱)を電池冷却板を介して熱交換させることにより回収した電池冷却水を水と蒸気の二相流化した状態で導入し、水蒸気および水に分離する気水分離器と、気水分離器で分離された水の一部を一酸化炭素変成器への冷却水として供給すると共に、残りを電池冷却板入口温度まで冷却して燃料電池本体への冷却水として供給する電池冷却水系と、気水分離器の下流側に設けられ、燃料電池本体の反応熱を電池冷却板を介して回収する燃料電池本体の冷却水と、改質器の燃焼排ガスの排熱を回収する一酸化炭素変成器の冷却水とを、それぞれ加熱側媒体として導入し、電池冷却水系とは隔離された排熱回収系の媒体である被加熱側媒体に回収熱を伝達することにより、当該被加熱側媒体から蒸気を発生させる蒸気発生器とを備えている。
【0012】
従って、請求項1の発明の燃料電池発電システムにおいては、気水分離器の下流側に設置された蒸気発生器の加熱側媒体として、燃料電池本体の反応熱を回収した燃料電池本体の冷却水と、改質器の燃焼排ガスの排熱を回収した一酸化炭素変成器の冷却水とを用いて、電池冷却水系とは隔離された排熱回収系の被加熱側媒体に回収熱を伝達して、被加熱側媒体から蒸気を発生させることにより、高温の蒸気を高い効率で取り出すことができ、さらに総合効率を高めることができる。
【0013】
また、請求項2の発明の燃料電池発電システムは、炭化水素系燃料を蒸気と混合し、改質して水素を主成分とする改質ガスを発生する改質器と、改質器で発生した改質ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成器と、燃料極、空気極、および電池冷却板を備え、一酸化炭素変成器で変成された改質ガスを燃料極に導入すると共に空気を空気極に導入し、当該改質ガス中の水素と空気中の酸素とを電気化学的に反応させて電気エネルギーに変換する燃料電池本体と、燃料電池本体で発電時に発生した熱(反応熱)を電池冷却板を介して熱交換させることにより回収した電池冷却水を水と蒸気の二相流化した状態で導入し、水蒸気および水に分離する気水分離器と、気水分離器で分離された水の一部を一酸化炭素変成器への冷却水として供給すると共に、残りを電池冷却板入口温度まで冷却して燃料電池本体への冷却水として供給する電池冷却水系と、気水分離器の下流側に設けられ、燃料電池本体の反応熱を電池冷却板を介して回収する燃料電池本体の冷却水と、改質器の燃焼排ガスとを、それぞれ加熱側媒体として導入し、電池冷却水系とは隔離された排熱回収系の媒体である被加熱側媒体に回収熱を伝達することにより、当該被加熱側媒体から蒸気を発生させる蒸気発生器とを備えている。
【0014】
従って、請求項2の発明の燃料電池発電システムにおいては、気水分離器の下流側に設置された蒸気発生器の加熱側媒体として、燃料電池本体の反応熱を回収した燃料電池本体の冷却水と、改質器の燃焼排ガスとを用いて、電池冷却水系とは隔離された排熱回収系の被加熱側媒体に回収熱を伝達して、被加熱側媒体から蒸気を発生させることにより、高温の蒸気を高い効率で取り出すことができ、さらに総合効率を高めることができる。
【0015】
さらに、請求項3の発明の燃料電池発電システムは、炭化水素系燃料を蒸気と混合し、改質して水素を主成分とする改質ガスを発生する改質器と、改質器で発生した改質ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成器と、燃料極、空気極、および電池冷却板を備え、一酸化炭素変成器で変成された改質ガスを燃料極に導入すると共に空気を空気極に導入し、当該改質ガス中の水素と空気中の酸素とを電気化学的に反応させて電気エネルギーに変換する燃料電池本体と、燃料電池本体で発電時に発生した熱(反応熱)を電池冷却板を介して熱交換させることにより回収した電池冷却水を水と蒸気の二相流化した状態で導入し、水蒸気および水に分離する気水分離器と、気水分離器で分離された水の一部を一酸化炭素変成器への冷却水として供給すると共に、残りを電池冷却板入口温度まで冷却して燃料電池本体への冷却水として供給する電池冷却水系と、気水分離器の下流側に設けられ、燃料電池本体の反応熱を電池冷却板を介して回収する燃料電池本体の冷却水と、燃料電池本体の空気極排ガスとを、それぞれ加熱側媒体として導入し、電池冷却水系とは隔離された排熱回収系の媒体である被加熱側媒体に回収熱を伝達することにより、当該被加熱側媒体から蒸気を発生させる蒸気発生器とを備えている。
【0016】
従って、請求項3の発明の燃料電池発電システムにおいては、気水分離器の下流側に設置された蒸気発生器の加熱側媒体として、燃料電池本体の反応熱を回収した燃料電池本体の冷却水と、燃料電池本体の空気極排ガスとを用いて、電池冷却水系とは隔離された排熱回収系の被加熱側媒体に回収熱を伝達して、被加熱側媒体から蒸気を発生させることにより、高温の蒸気を高い効率で取り出すことができ、さらに総合効率を高めることができる。
【0017】
一方、請求項4の発明の燃料電池発電システムは、上記請求項1乃至請求項3のいずれか1項の発明の燃料電池発電システムにおいて、燃料電池本体の冷却水の一部を、一酸化炭素変成器の冷却水の上流側から分岐させて気水分離器に戻す一酸化炭素変成器バイパスラインと、一酸化炭素変成器バイパスラインに設けられ、当該一酸化炭素変成器バイパスラインの冷却水流量を制御する流量制御手段とを付加している。
【0018】
従って、請求項4の発明の燃料電池発電システムにおいては、燃料電池本体の冷却水の一部を一酸化炭素変成器の冷却水の上流側から分岐させて気水分離器に戻し、さらにその冷却水流量を制御することにより、運転条件に応じて電池冷却水流量を変更することが可能となるため、上記請求項1乃至請求項3の発明の場合よりも、より高温の蒸気をより高い効率で取り出すことができ、また信頼性の高い運転を行なうことができる。
【0019】
また、請求項5の発明の燃料電池発電システムは、上記請求項1乃至請求項4のいずれか1項の発明の燃料電池発電システムにおいて、蒸気発生器の下流側に設けられたバックアップ用熱交換器と、一酸化炭素変成器の冷却水入口側に設けられた温度検出手段と、蒸気発生器の電池冷却水下流側に設けられた第1の温度制御弁と、バックアップ用熱交換器の加熱側下流側に設けられた第2の温度制御弁と、温度検出手段の検出値が一定となるように第1および第2の温度制御弁の開度を制御する制御手段とを付加している。
【0020】
従って、請求項5の発明の燃料電池発電システムにおいては、一酸化炭素変成器の冷却水入口側の温度が一定となるように、蒸気発生器の電池冷却水下流側およびバックアップ用熱交換器の加熱側下流側の電池冷却水流量を制御することにより、蒸気を使用しない場合にも、信頼性の高い安定した運転を行なうことができる。
【0021】
【発明の実施の形態】
本発明では、気水分離器の下流側に設置された蒸気発生器の加熱側媒体として、燃料電池本体での発電時に発生した余剰熱および高温熱源を用いて、電池冷却水系とは隔離された排熱回収系の被加熱側媒体に回収熱を伝達することにより、被加熱側媒体から蒸気を発生させるものである。
【0022】
以下、上記のような考え方に基づく本発明の実施の形態について、図面を参照して詳細に説明する。
(第1の実施の形態:請求項1に対応)
図1は、本実施の形態による燃料電池発電システムの系統構成例を示す概要図であり、図6と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0023】
すなわち、本実施の形態の燃料電池発電システムは、図1に示すように、図6における蒸気発生器8として、前記燃料電池本体3の反応熱を電池冷却板3cを介して回収する燃料電池本体3の冷却水、すなわち前記気水分離器4で分離された水を第1の加熱側媒体として導入すると共に、前記改質器1の燃焼排ガスの排熱を回収する一酸化炭素変成器2の冷却水を第2の加熱側媒体として導入し、電池冷却水系とは隔離された排熱回収装置9および循環ポンプ10からなる排熱回収系の媒体である被加熱側媒体(本例では水)に回収熱を伝達することにより、この被加熱側媒体から蒸気を発生させる蒸気発生器8を備えた構成としている。
【0024】
そして、第2の加熱側媒体である改質器1の燃焼排ガスの排熱を回収するために、一酸化炭素変成器2の冷却水を燃焼排ガス回収熱交換器6を介して、蒸気発生器8に導き、蒸気発生器8から気水分離器4へ戻す構成としている。
【0025】
次に、以上のように構成した本実施の形態の燃料電池発電システムの作用について説明する。
図1において、気水分離器4で分離された一部の水(電池冷却水)は、電池冷却水循環ポンプ5に導かれ、電池冷却水循環ポンプ5の下流側に設けられた蒸気発生器8の第1の加熱側媒体として導入される。
【0026】
その後、この水の一部は、一酸化炭素変成器2の冷却水として分岐され、改質器1の燃焼排ガス回収熱交換器6の低温側を経て、蒸気発生器8の第2の加熱側媒体として導入され、気水分離器4に戻される。
【0027】
また、気水分離器4で分離された残りの水は、温度調整用熱交換器7で電池冷却板c入口温度に温度調整されて後、燃料電池本体3の電池冷却板3cに戻される。
【0028】
以上により、気水分離器4で分離された水と、一酸化炭素変成器2の冷却水とが回収した回収熱が、蒸気発生器8で排熱回収系の被加熱側媒体に伝達されて、被加熱側媒体から160℃程度の高温の蒸気が発生する。
【0029】
そして、この蒸気発生器8により発生した蒸気は、排熱回収系の循環ポンプ10で排熱回収装置9に送られて、排熱として利用される。
上述したように、本実施の形態では、気水分離器4の下流側に設置された蒸気発生器8の加熱側媒体として、燃料電池本体3の反応熱を回収した燃料電池本体3の冷却水と、改質器1の燃焼排ガスの排熱(熱エネルギー)を回収した一酸化炭素変成器2の冷却水とを用いて、電池冷却水系とは隔離された排熱回収系の被加熱側媒体に回収熱を伝達して、被加熱側媒体から蒸気を発生させるようにしているので、蒸気発生器8の被加熱媒体から160℃程度の高温の蒸気を高い効率で取り出すことが可能となる。
【0030】
また、蒸気発生器8は、加熱側媒体および被加熱側媒体がそれぞれ水であるので、容積を小型化することが可能となる。
これにより、排熱蒸気の温度および回収効率が高く、さらに総合効率を高めた燃料電池発電システムを得ることができる。
【0031】
(第2の実施の形態:請求項2に対応)
図2は、本実施の形態による燃料電池発電システムの系統構成例を示す概要図であり、図6と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0032】
すなわち、本実施の形態の燃料電池発電システムは、図2に示すように、図6における蒸気発生器8として、前記燃料電池本体3の反応熱を電池冷却板3cを介して回収する燃料電池本体3の冷却水、すなわち前記気水分離器4で分離された水を第1の加熱側媒体として導入すると共に、前記改質器1の燃焼排ガスを第2の加熱側媒体として導入し、電池冷却水系とは隔離された排熱回収装置9および循環ポンプ10からなる排熱回収系の媒体である被加熱側媒体(本例では水)に回収熱を伝達することにより、この被加熱側媒体から蒸気を発生させる蒸気発生器8を備えた構成としている。
【0033】
また、前記燃焼排ガス回収熱交換器6の高温側媒体として、燃料電池本体3の空気極3b側排ガスを導入する構成としている
【0034】
次に、以上のように構成した本実施の形態の燃料電池発電システムの作用について説明する。
図2において、気水分離器4で分離された一部の水(電池冷却水)は、電池冷却水循環ポンプ5に導かれ、電池冷却水循環ポンプ5の下流側に設けられた蒸気発生器8の第1の加熱側媒体として導入される。
【0035】
その後、この水の一部は、一酸化炭素変成器2の冷却水として分岐され、改質器1の燃焼排ガス回収熱交換器6の低温側に導入され、燃焼排ガス回収熱交換器6の高温側に導入されている燃料電池本体3の空気極3b側排ガスと熱交換した後に、気水分離器4に戻される。
【0036】
また、改質器1の燃焼排ガスは、蒸気発生器8の第2の加熱側媒体として導入される
さらに、気水分離器4で分離された残りの水は、温度調整用熱交換器7で電池冷却板c入口温度に温度調整されて後、燃料電池本体3の電池冷却板3cに戻される。
【0037】
以上により、気水分離器4で分離された水と、改質器1の燃焼排ガスとが、蒸気発生器8で排熱回収系の被加熱側媒体に伝達されて、被加熱側媒体から160℃程度の高温の蒸気が発生する。
【0038】
そして、この蒸気発生器8により発生した蒸気は、排熱回収系の循環ポンプ10で排熱回収装置9に送られて、排熱として利用される。
上述したように、本実施の形態では、気水分離器4の下流側に設置された蒸気発生器8の加熱側媒体として、燃料電池本体3の反応熱を回収した燃料電池本体3の冷却水と、高温媒体である改質器1の燃焼排ガスの排熱(熱エネルギー)とを用いて、電池冷却水系とは隔離された排熱回収系の被加熱側媒体に回収熱を伝達して、被加熱側媒体から蒸気を発生させるようにしているので、蒸気発生器8の被加熱媒体から160℃程度の高温の蒸気を高い効率で取り出すことが可能となる。
【0039】
また、燃焼排ガス回収熱交換器6の高温側媒体として、燃料電池本体3の空気極3b側排ガスを用いるようにしているので、改質器1の燃焼排ガスおよび燃料電池本体3の空気極3b側排ガスの両方の持つ熱エネルギーを排熱として回収することが可能となる。
【0040】
これにより、排熱蒸気の温度および回収効率がより一層高く、さらに総合効率をより一層高めた燃料電池発電システムを得ることができる。
(第3の実施の形態:請求項3に対応)
図3は、本実施の形態による燃料電池発電システムの系統構成例を示す概要図であり、図6と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0041】
すなわち、本実施の形態の燃料電池発電システムは、図3に示すように、図6における蒸気発生器8として、前記燃料電池本体3の反応熱を電池冷却板3cを介して回収する燃料電池本体3の冷却水、すなわち前記気水分離器4で分離された水を第1の加熱側媒体として導入すると共に、燃料電池本体3の空気極3b側排ガスを第2の加熱側媒体として導入し、電池冷却水系とは隔離された排熱回収装置9および循環ポンプ10からなる排熱回収系の媒体である被加熱側媒体(本例では水)に回収熱を伝達することにより、この被加熱側媒体から蒸気を発生させる蒸気発生器8を備えた構成としている。
【0042】
また、第2の加熱側媒体である燃料電池本体3の空気極3b側排ガスを、蒸気発生器8へ導く構成としている。
次に、以上のように構成した本実施の形態の燃料電池発電システムの作用について説明する。
【0043】
図3において、気水分離器4で分離された一部の水(電池冷却水)は、電池冷却水循環ポンプ5に導かれ、電池冷却水循環ポンプ5の下流側に設けられた蒸気発生器8の第1の加熱側媒体として導入される。
【0044】
その後、この水の一部は、一酸化炭素変成器2の冷却水として分岐され、改質器1の燃焼排ガス回収熱交換器6の低温側を経て、気水分離器4に戻される
【0045】
さらに、気水分離器4で分離された残りの水は、温度調整用熱交換器7で電池冷却板c入口温度に温度調整されて後、燃料電池本体3の電池冷却板3cに戻される。
【0046】
以上により、気水分離器4で分離された水と、燃料電池本体3の空気極3b側排ガスとが、蒸気発生器8で排熱回収系の被加熱側媒体に伝達されて、被加熱側媒体から160℃程度の高温の蒸気が発生する。
【0047】
そして、この蒸気発生器8により発生した蒸気は、排熱回収系の循環ポンプ10で排熱回収装置9に送られて、排熱として利用される。
上述したように、本実施の形態では、気水分離器4の下流側に設置された蒸気発生器8の加熱側媒体として、燃料電池本体3の反応熱を回収した燃料電池本体3の冷却水と、燃料電池本体3の空気極3b側排ガス(熱エネルギー)とを用いて、電池冷却水系とは隔離された排熱回収系の被加熱側媒体に回収熱を伝達して、被加熱側媒体から蒸気を発生させるようにしているので、蒸気発生器8の被加熱媒体から160℃程度の高温の蒸気を高い効率で取り出すことが可能となる。
【0048】
また、燃焼排ガス回収熱交換器6の高温側媒体として、改質器1の燃焼排ガスを用いるようにしているので、改質器1の燃焼排ガスおよび燃料電池本体3の空気極3b側排ガスの両方の持つ熱エネルギーを排熱として回収することが可能となる。
【0049】
これにより、排熱蒸気の温度および回収効率がより一層高く、さらに総合効率をより一層高めた燃料電池発電システムを得ることができる。
(第4の実施の形態:請求項1、請求項4に対応)
図4は、本実施の形態による燃料電池発電システムの系統構成例を示す概要図であり、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0050】
すなわち、本実施の形態の燃料電池発電システムは、図4に示すように、図1における前記燃料電池本体3の冷却水の一部を、前記一酸化炭素変成器2の冷却水の上流側から分岐させて前記気水分離器4に戻す一酸化炭素変成器バイパスライン11を、一酸化炭素変成器2の冷却水ラインと並列に設けると共に、この一酸化炭素変成器バイパスライン11に、例えば弁からなり一酸化炭素変成器バイパスライン11の冷却水流量を制御する流量制御手段12を設けた構成としている。
【0051】
次に、以上のように構成した本実施の形態の燃料電池発電システムの作用について説明する。
なお、図1と同一部分の作用についてはその説明を省略し、ここでは異なる部分の作用についてのみ述べる。
【0052】
図4において、燃料電池本体3の冷却水の一部は、一酸化炭素変成器2の冷却水の上流側から分岐し、一酸化炭素変成器バイパスライン11を通して気水分離器4に戻される。
【0053】
このため、燃料電池本体3の冷却水、すなわち気水分離器4で分離された水を、燃料電池本体3の冷却条件を変更することなく増加させることができる。そして、この場合、蒸気発生器8の冷却水流量を増加させることにより、燃料電池本体3の反応熱を回収した電池冷却水から蒸気発生器8で回収できる熱エネルギーが増加する。
【0054】
以上により、蒸気発生器8の被加熱側媒体から、前記第1の実施の形態の場合よりもより一層高温の蒸気を、より一層高い効率で取り出すことができる。
一方、上記電池冷却水流量を増加させることにより、気水分離器4の圧力が下がるため、改質器1での改質反応に必要な蒸気量を確保できなくなる可能性がある。
【0055】
この点、本実施の形態では、一酸化炭素変成器バイパスライン11に流量制御手段12を設けていることにより、気水分離器4の圧力、および運転条件に応じて、一酸化炭素変成器バイパスライン11の冷却水流量の変更が柔軟にできる。
【0056】
以上により、信頼性の高いかつより一層高い蒸気効率の燃料電池発電システムが得られる。
上述したように、本実施の形態では、前記第1の実施の形態の燃料電池発電システムにおいて、燃料電池本体3の冷却水の一部を、一酸化炭素変成器2の冷却水の上流側から、一酸化炭素変成器2をバイパスして気水分離器4に戻すようにしているので、蒸気発生器8の被加熱媒体から、第1の実施の形態の場合よりもより一層高温の蒸気を、より一層高い効率で取り出すことが可能となる。
【0057】
また、気水分離器4の圧力、および運転条件に応じて、一酸化炭素変成器バイパスライン11の冷却水流量を変更するようにしているので、信頼性の高いかつより一層高い蒸気効率の燃料電池発電システムを得ることが可能となる。
【0058】
(第5の実施の形態:請求項5に対応)
図5は、本実施の形態による燃料電池発電システムの系統構成例を示す概要図であり、図4と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
【0059】
すなわち、本実施の形態の燃料電池発電システムは、図5に示すように、図4における蒸気発生器8の下流側にバックアップ用熱交換器13を設け、一酸化炭素変成器2の冷却水入口側に温度検出手段14を設け、また蒸気発生器8の電池冷却水下流側に第1の温度制御弁15を設け、バックアップ用熱交換器13の加熱側下流側に第2の温度制御弁16を設け、さらに温度検出手段14の検出値が一定となるように、第1および第2の温度制御弁15および16の開度を制御する制御器17を設けた構成としている。
【0060】
次に、以上のように構成した本実施の形態の燃料電池発電システムの作用について説明する。
なお、図4と同一部分の作用についてはその説明を省略し、ここでは異なる部分の作用についてのみ述べる。
【0061】
図5において、排熱回収装置9での蒸気の利用量が少ない場合、もしくは蒸気を利用していない場合には、蒸気発生器8で電池冷却水(第1の加熱側)にて回収される熱量が減少するため、一酸化炭素変成器2の冷却水入口温度が上昇する。
【0062】
そして、この一酸化炭素変成器2の冷却水入口温度の上昇は、一酸化炭素変成器2での反応を抑制して、燃料中の一酸化炭素量が増加し、燃料電池本体3の一酸化炭素による被毒が進むことになる。
【0063】
この点、本実施の形態では、電池冷却水ラインに第1および第2の温度制御弁15および16を設けて、一酸化炭素変成器2の冷却水入口に設けられている温度検出手段14の検出値が、電流値により設定されている温度となるように、第1および第2の温度制御弁15および16の開度を制御することにより、蒸気の利用量が少ない場合、もしくは蒸気を利用していない場合にも、前述した蒸気を取り出す場合と同様の運転を行なうことができる。
【0064】
すなわち、この場合、温度検出手段14の検出温度に基づいて、蒸気発生器8の電池冷却水(第1の加熱側)下流に設置された第1の温度制御弁15の開度が制御器17により決定され、蒸気発生器8へ送水される電池冷却水流量が設定される。
【0065】
また、電池冷却水の全量が蒸気発生器8へ送水された揚合においても、温度検出手段14の検出温度が適温とならない場合には、バックアップ用熱交換器13の加熱側下流側に設置された第2の温度制御弁16が動作して、適温となるようにバックアップ用熱交換器13ヘ送水される流量が、制御器17により決定される。
【0066】
以上より、蒸気を使用しない場合にも、安定した運転を行なうことができる。上述したように、本実施の形態では、前記第4の実施の形態の燃料電池発電システムにおいて、一酸化炭素変成器2の冷却水入口側の温度が一定となるように、蒸気発生器8の電池冷却水下流側、およびバックアップ用熱交換器13の加熱側下流側の電池冷却水流量を制御するようにしているので、蒸気を使用しない場合にも、信頼性の高い安定した運転を行なうことが可能となる。
【0067】
(他の実施の形態)
(a)前記第4の実施の形態では、本発明を前記第1の実施の形態に適用した場合について説明したが、これに限らず、前記第4の実施の形態を、前記第2の実施の形態、あるいは第3の実施の形態についても、同様に適用して前述の場合と同様の作用効果を得ることが可能である。
【0068】
(b)前記第5の実施の形態では、本発明を前記第4の実施の形態に適用した場合について説明したが、これに限らず、前記第5の実施の形態を、前記第1の実施の形態、第2の実施の形態、あるいは第3の実施の形態についても、同様に適用して前述の場合と同様の作用効果を得ることが可能である。
【0069】
【発明の効果】
以上説明したように、本発明の燃料電池発電システムによれば、気水分離器の下流側に設置された蒸気発生器の加熱側媒体として、燃料電池本体での発電時に発生した余剰熱および高温熱源を用いて、電池冷却水系とは隔離された排熱回収系の被加熱側媒体に回収熱を伝達することにより、被加熱側媒体から蒸気を発生させるようにしているので、高温の蒸気を高い効率で取り出すことができ、さらに総合効率を高めることが可能となる。
【0070】
また、本発明の燃料電池発電システムによれば、燃料電池本体の冷却水の一部を一酸化炭素変成器の冷却水の上流側から分岐させて気水分離器に戻し、さらにその冷却水流量を制御するようにしているので、運転条件に応じて電池冷却水流量を変更することができるため、より高温の蒸気をより高い効率で取り出すことができ、また信頼性の高い運転を行なうことが可能となる。
【0071】
さらに、本発明の燃料電池発電システムによれば、一酸化炭素変成器の冷却水入口側の温度が一定となるように、蒸気発生器の電池冷却水下流側およびバックアップ用熱交換器の加熱側下流側の電池冷却水流量を制御するようにしているので、蒸気を使用しない場合にも、信頼性の高い安定した運転を行なうことが可能となる。
【図面の簡単な説明】
【図1】本発明による燃料電池発電システムの第1の実施の形態を示す概要図。
【図2】本発明による燃料電池発電システムの第2の実施の形態を示す概要図。
【図3】本発明による燃料電池発電システムの第3の実施の形態を示す概要図。
【図4】本発明による燃料電池発電システムの第4の実施の形態を示す概要図。
【図5】本発明による燃料電池発電システムの第5の実施の形態を示す概要図。
【図6】従来の燃料電池発電システムの系統構成例を示す概要図。
【符号の説明】
1…改質器、
2…一酸化炭素変成器、
3…燃料電池本体、
3a…燃料極、
3b…空気極、
3c…電池冷却板、
4…気水分離器、
5…電池冷却水循環ポンプ、
6…燃焼排ガス回収熱交換器、
7…温度調整用熱交換器、
8…蒸気発生器、
9…排熱回収装置、
10…循環ポンプ、
11…一酸化炭素変成器バイパスライン、
12…流量制御手段、
13…バックアップ用熱交換器、
14…温度検出手段、
15…第1の温度制御弁、
16…第2の温度制御弁、
17…制御器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell power generation system including an exhaust heat recovery system, and more particularly, to a fuel cell power generation system that takes out high-temperature steam with high efficiency and further increases the overall efficiency.
[0002]
[Prior art]
Conventionally, a fuel cell power generation system has reformed a hydrocarbon fuel mainly composed of methane such as ordinary city gas and LNG into hydrogen gas, and this hydrogen gas is electrochemically combined with oxygen obtained from the air and the like. Is converted into electrical energy. Therefore, it is highly evaluated as clean energy.
[0003]
Moreover, not only the power generation efficiency is high, but the total efficiency when all the exhaust heat is used as hot water and steam is 80% or more. In particular, high-temperature exhaust heat in the form of steam has a high utility value as an absorption refrigeration machine, and in recent years, the demand for steam extraction has been increasing. Therefore, recently, a fuel cell power generation system including an exhaust heat recovery system that recovers exhaust heat of the system has been proposed.
[0004]
FIG. 6 is a schematic diagram showing an example of a system configuration of a fuel cell power generation system provided with this type of conventional exhaust heat recovery system.
In FIG. 6, a reformer 1 mixes a hydrocarbon-based fuel with steam and reforms to generate a reformed gas mainly composed of hydrogen.
[0005]
The carbon monoxide converter 2 converts carbon monoxide in the reformed gas generated by the reformer 1 into carbon dioxide.
The fuel cell body 3 includes a fuel electrode 3a, an air electrode 3b, and a battery cooling plate 3c. The reformed gas transformed by the carbon monoxide transformer 2 is introduced into the fuel electrode 3a and air is supplied to the air electrode 3b. Then, hydrogen in the reformed gas and oxygen in the air are electrochemically reacted to convert them into electrical energy.
[0006]
The steam / water separator 4 converts the battery cooling water recovered by exchanging heat (reaction heat) generated during power generation in the fuel cell main body 3 through the battery cooling plate 3c into a two-phase flow of water and steam. It is introduced in the state and separated into water vapor and water.
[0007]
Then, a part of the water separated by the steam separator 4 is branched and supplied as cooling water to the carbon monoxide converter 2 by the battery cooling water circulation pump 5, and the combustion exhaust gas recovery heat exchange of the reformer 1 is supplied. The battery cooling water system is sent to the steam separator 4 via the vessel 6 and the remainder is cooled to the inlet temperature of the battery cooling plate 3 c by the temperature adjusting heat exchanger 7 and supplied as cooling water to the fuel cell body 3. Is configured.
[0008]
A part of the steam generated in the steam separator 4 is sent to the reformer 1 and used for the reforming reaction.
On the other hand, a steam generator 8 is provided on the downstream side of the steam separator 4, and the coolant of the fuel cell body 3 that recovers the reaction heat of the fuel cell body 3 via the battery cooling plate 3c, that is, steam water separation. Water to be heated, which is an aqueous medium of an exhaust heat recovery system composed of an exhaust heat recovery device 9 and a circulation pump 10 which are separated from the battery cooling water system through a partition wall. By transferring the recovered heat to the medium, steam is generated from the aqueous medium.
[0009]
The steam generated by the steam generator 8 is sent to the exhaust heat recovery device 9 for use as exhaust heat.
Note that the exhaust heat recovery system having such a configuration is referred to as an indirect extraction method because the heat at the time of power generation in the fuel cell body 3 can be recovered by the heated medium of the steam generator 8.
[0010]
[Problems to be solved by the invention]
However, in the conventional fuel cell power generation system employing the indirect steam extraction system as described above, the cooling condition of the fuel cell main body 3 is prioritized, so that the heating side medium of the steam generator 8 is used for steam extraction. It is not possible to increase the flow rate of battery cooling water. Therefore, there is a problem that steam having a high temperature level cannot be obtained with high efficiency.
An object of the present invention is to provide a fuel cell power generation system capable of taking out high-temperature steam with high efficiency and further improving the overall efficiency.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a fuel cell power generation system according to claim 1 is a reformer that mixes a hydrocarbon fuel with steam and reforms to generate a reformed gas mainly composed of hydrogen. A carbon monoxide converter that converts carbon monoxide in the reformed gas generated by the reformer into carbon dioxide, a fuel electrode, an air electrode, and a battery cooling plate, and is converted by the carbon monoxide converter. A fuel cell body that introduces the reformed gas into the fuel electrode and introduces air into the air electrode, and electrochemically reacts hydrogen in the reformed gas with oxygen in the air to convert it into electrical energy; The battery cooling water recovered by exchanging heat (reaction heat) generated during power generation in the fuel cell main body through the battery cooling plate is introduced in a two-phase flow of water and steam, and separated into water vapor and water. A part of the water separated by the steam separator. A cooling water system that supplies the carbonized carbon transformer as cooling water, cools the remainder to the battery cooling plate inlet temperature, and supplies it as cooling water to the fuel cell body, and is provided downstream of the steam separator, Cooling water for the fuel cell body that recovers the reaction heat of the fuel cell body through the battery cooling plate, and cooling water for the carbon monoxide converter that recovers the exhaust heat of the combustion exhaust gas from the reformer, And a steam generator that generates steam from the heated medium by transferring the recovered heat to the heated medium that is a medium of the exhaust heat recovery system that is isolated from the battery cooling water system. Yes.
[0012]
Therefore, in the fuel cell power generation system according to the first aspect of the present invention, the cooling water for the fuel cell body that has recovered the reaction heat of the fuel cell body as the heating side medium of the steam generator installed downstream of the steam separator. And the cooling water of the carbon monoxide converter that recovered the exhaust heat of the combustion exhaust gas from the reformer to transfer the recovered heat to the heated medium of the exhaust heat recovery system isolated from the battery cooling water system. Thus, by generating steam from the medium to be heated, high-temperature steam can be taken out with high efficiency, and overall efficiency can be further increased.
[0013]
According to a second aspect of the present invention, there is provided a fuel cell power generation system comprising: a reformer that mixes a hydrocarbon fuel with steam and reforms to generate a reformed gas mainly composed of hydrogen; A carbon monoxide converter that converts carbon monoxide in the reformed gas into carbon dioxide, a fuel electrode, an air electrode, and a battery cooling plate. The reformed gas that has been converted by the carbon monoxide converter is supplied to the fuel electrode. In addition to the fuel cell body that introduces air into the air electrode and converts hydrogen in the reformed gas and oxygen in the air to electrochemical reaction to convert it into electrical energy, generated during power generation in the fuel cell body A steam / water separator that introduces the battery cooling water recovered by exchanging the heat (reaction heat) through the battery cooling plate in a two-phase flow state of water and steam, and separates the water into steam and water; Cooling a portion of the water separated by the steam separator to the carbon monoxide transformer As well as a battery cooling water system that cools the remainder to the battery cooling plate inlet temperature and supplies it as cooling water to the fuel cell main body, and is provided downstream of the steam / water separator, and the reaction heat of the fuel cell main body is The cooling water of the fuel cell body recovered via the cooling plate and the combustion exhaust gas of the reformer are introduced as heating side media, respectively, and the heated target medium is an exhaust heat recovery system separated from the battery cooling water system. A steam generator for generating steam from the heated medium by transmitting the recovered heat to the side medium.
[0014]
Therefore, in the fuel cell power generation system according to the second aspect of the present invention, the cooling water for the fuel cell body that has recovered the reaction heat of the fuel cell body as the heating side medium of the steam generator installed downstream of the steam separator. And by using the combustion exhaust gas of the reformer, by transferring the recovered heat to the heated medium of the exhaust heat recovery system isolated from the battery cooling water system, and generating steam from the heated medium, High-temperature steam can be taken out with high efficiency, and the overall efficiency can be further increased.
[0015]
Furthermore, the fuel cell power generation system according to the invention of claim 3 is characterized in that a hydrocarbon-based fuel is mixed with steam and reformed to generate a reformed gas mainly composed of hydrogen, and generated by the reformer. A carbon monoxide converter that converts carbon monoxide in the reformed gas into carbon dioxide, a fuel electrode, an air electrode, and a battery cooling plate. The reformed gas that has been converted by the carbon monoxide converter is supplied to the fuel electrode. In addition to the fuel cell body that introduces air into the air electrode and converts hydrogen in the reformed gas and oxygen in the air to electrochemical reaction to convert it into electrical energy, generated during power generation in the fuel cell body A steam / water separator that introduces the battery cooling water recovered by exchanging the heat (reaction heat) through the battery cooling plate in a two-phase flow state of water and steam, and separates the water into steam and water; A portion of the water separated by the steam separator is cooled to the carbon monoxide transformer. A cooling water system for supplying water as cooling water to the temperature at the inlet of the battery cooling plate and supplying it as cooling water to the fuel cell main body and a downstream of the steam / water separator are provided to reduce the reaction heat of the fuel cell main body. This is a waste heat recovery system medium that introduces the cooling water of the fuel cell body recovered through the battery cooling plate and the air electrode exhaust gas of the fuel cell body as the heating side medium and is isolated from the battery cooling water system. A steam generator configured to generate steam from the heated medium by transmitting the recovered heat to the heated medium;
[0016]
Therefore, in the fuel cell power generation system according to the third aspect of the present invention, the cooling water for the fuel cell body that has recovered the reaction heat of the fuel cell body as the heating side medium of the steam generator installed downstream of the steam separator. And the exhaust gas from the fuel cell main body to transfer the recovered heat to the heated medium of the exhaust heat recovery system that is isolated from the battery cooling water system, thereby generating steam from the heated medium. The high-temperature steam can be taken out with high efficiency, and the overall efficiency can be further increased.
[0017]
On the other hand, a fuel cell power generation system according to a fourth aspect of the present invention is the fuel cell power generation system according to any one of the first to third aspects, wherein a part of the cooling water of the fuel cell main body is carbon monoxide. A carbon monoxide transformer bypass line branched from the upstream side of the cooling water of the transformer and returned to the steam separator, and a cooling water flow rate of the carbon monoxide transformer bypass line provided in the carbon monoxide transformer bypass line And a flow rate control means for controlling.
[0018]
Therefore, in the fuel cell power generation system of the invention of claim 4, a part of the cooling water of the fuel cell main body is branched from the upstream side of the cooling water of the carbon monoxide transformer and returned to the steam separator, and further the cooling thereof By controlling the water flow rate, it becomes possible to change the battery cooling water flow rate according to the operating conditions, so that higher temperature steam is more efficient than in the case of the inventions of claims 1 to 3. And can be operated with high reliability.
[0019]
A fuel cell power generation system according to a fifth aspect of the present invention is the fuel cell power generation system according to any one of the first to fourth aspects, wherein the heat exchange for backup is provided downstream of the steam generator. , A temperature detection means provided on the cooling water inlet side of the carbon monoxide transformer, a first temperature control valve provided on the battery cooling water downstream side of the steam generator, and heating of the backup heat exchanger A second temperature control valve provided on the downstream side and a control means for controlling the opening degree of the first and second temperature control valves are added so that the detection value of the temperature detection means becomes constant. .
[0020]
Therefore, in the fuel cell power generation system according to the fifth aspect of the invention, the downstream side of the battery cooling water of the steam generator and the back-up heat exchanger are arranged so that the temperature on the cooling water inlet side of the carbon monoxide transformer is constant. By controlling the battery coolant flow rate on the downstream side of the heating side, reliable and stable operation can be performed even when steam is not used.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as the heating-side medium of the steam generator installed downstream of the steam separator, the surplus heat generated during power generation in the fuel cell main body and the high-temperature heat source are used to isolate the battery cooling water system. Steam is generated from the heated medium by transferring the recovered heat to the heated medium of the exhaust heat recovery system.
[0022]
Hereinafter, embodiments of the present invention based on the above-described concept will be described in detail with reference to the drawings.
(First embodiment: corresponding to claim 1)
FIG. 1 is a schematic diagram showing a system configuration example of a fuel cell power generation system according to the present embodiment. The same parts as those in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted. Only different parts will be described here. .
[0023]
That is, in the fuel cell power generation system of the present embodiment, as shown in FIG. 1, as the steam generator 8 in FIG. 6, the fuel cell main body recovers the reaction heat of the fuel cell main body 3 through the cell cooling plate 3c. 3, that is, water separated by the steam / water separator 4 is introduced as a first heating-side medium, and the carbon monoxide converter 2 for recovering exhaust heat of the combustion exhaust gas of the reformer 1. Cooled water is introduced as the second heating side medium, and the heated side medium (water in this example) is a medium of the exhaust heat recovery system composed of the exhaust heat recovery device 9 and the circulation pump 10 separated from the battery cooling water system. The steam generator 8 is configured to generate steam from the heated medium by transmitting the recovered heat to the medium.
[0024]
  And the exhaust heat of the combustion exhaust gas of the reformer 1 which is a 2nd heating side medium is collect | recovered.for,Cooling water from the carbon monoxide transformer 2It is led to the steam generator 8 through the combustion exhaust gas recovery heat exchanger 6,The steam generator 8 returns to the steam separator 4.
[0025]
Next, the operation of the fuel cell power generation system of the present embodiment configured as described above will be described.
In FIG. 1, a part of the water (battery cooling water) separated by the steam / water separator 4 is guided to the battery cooling water circulation pump 5 and is supplied from the steam generator 8 provided downstream of the battery cooling water circulation pump 5. Introduced as the first heating-side medium.
[0026]
Thereafter, a part of this water is branched as cooling water for the carbon monoxide converter 2, passes through the low temperature side of the combustion exhaust gas recovery heat exchanger 6 of the reformer 1, and then the second heating side of the steam generator 8. It is introduced as a medium and returned to the steam separator 4.
[0027]
  Further, the remaining water separated by the steam separator 4 is transferred to the battery cooling plate by the temperature adjusting heat exchanger 7.3After the temperature is adjusted to the c inlet temperature, the temperature is returned to the battery cooling plate 3 c of the fuel cell main body 3.
[0028]
Thus, the recovered heat recovered by the water separated by the steam separator 4 and the cooling water of the carbon monoxide converter 2 is transmitted to the heated medium of the exhaust heat recovery system by the steam generator 8. Then, high-temperature steam of about 160 ° C. is generated from the heated medium.
[0029]
The steam generated by the steam generator 8 is sent to the exhaust heat recovery device 9 by the circulation pump 10 of the exhaust heat recovery system and used as exhaust heat.
As described above, in the present embodiment, the cooling water of the fuel cell body 3 that has recovered the reaction heat of the fuel cell body 3 as the heating side medium of the steam generator 8 installed downstream of the steam separator 4. And the heated side medium of the exhaust heat recovery system isolated from the battery cooling water system using the cooling water of the carbon monoxide converter 2 that recovered the exhaust heat (thermal energy) of the combustion exhaust gas of the reformer 1 Since the recovery heat is transmitted to generate steam from the heated medium, high-temperature steam of about 160 ° C. can be taken out from the heated medium of the steam generator 8 with high efficiency.
[0030]
Moreover, since the heating side medium and the to-be-heated side medium are each water, the steam generator 8 can reduce a volume.
As a result, a fuel cell power generation system can be obtained in which the temperature and recovery efficiency of the exhaust heat steam are high and the overall efficiency is further improved.
[0031]
(Second embodiment: corresponding to claim 2)
FIG. 2 is a schematic diagram showing a system configuration example of the fuel cell power generation system according to the present embodiment. The same parts as those in FIG. 6 are denoted by the same reference numerals and the description thereof is omitted, and only different parts are described here. .
[0032]
That is, in the fuel cell power generation system of the present embodiment, as shown in FIG. 2, as the steam generator 8 in FIG. 6, the fuel cell main body recovers the reaction heat of the fuel cell main body 3 through the cell cooling plate 3c. 3 cooling water, that is, water separated by the steam / water separator 4 is introduced as a first heating-side medium, and combustion exhaust gas from the reformer 1 is introduced as a second heating-side medium to cool the battery. By transferring the recovered heat to the heated medium (water in this example), which is the medium of the exhaust heat recovery system composed of the exhaust heat recovery device 9 and the circulation pump 10 isolated from the water system, The steam generator 8 for generating steam is provided.
[0033]
  Further, as the high temperature side medium of the combustion exhaust gas recovery heat exchanger 6, the exhaust gas of the air electrode 3b side of the fuel cell main body 3 is introduced..
[0034]
Next, the operation of the fuel cell power generation system of the present embodiment configured as described above will be described.
In FIG. 2, a part of the water (battery cooling water) separated by the steam / water separator 4 is led to the battery cooling water circulation pump 5 and is supplied to the steam generator 8 provided downstream of the battery cooling water circulation pump 5. Introduced as the first heating-side medium.
[0035]
Thereafter, a part of this water is branched as cooling water for the carbon monoxide converter 2 and introduced into the low temperature side of the combustion exhaust gas recovery heat exchanger 6 of the reformer 1, and the high temperature of the combustion exhaust gas recovery heat exchanger 6. After exchanging heat with the exhaust gas from the air electrode 3 b side of the fuel cell main body 3 introduced to the side, the fuel cell body 3 is returned to the steam separator 4.
[0036]
  The combustion exhaust gas from the reformer 1 is introduced as the second heating side medium of the steam generator 8.Be.
  Further, the remaining water separated by the steam separator 4 is transferred to the battery cooling plate by the temperature adjusting heat exchanger 7.3After the temperature is adjusted to the c inlet temperature, the temperature is returned to the battery cooling plate 3 c of the fuel cell main body 3.
[0037]
As described above, the water separated by the steam separator 4 and the combustion exhaust gas of the reformer 1 are transmitted to the heated medium of the exhaust heat recovery system by the steam generator 8 and 160 from the heated medium. High temperature steam of about ℃ is generated.
[0038]
The steam generated by the steam generator 8 is sent to the exhaust heat recovery device 9 by the circulation pump 10 of the exhaust heat recovery system and used as exhaust heat.
As described above, in the present embodiment, the cooling water of the fuel cell body 3 that has recovered the reaction heat of the fuel cell body 3 as the heating side medium of the steam generator 8 installed downstream of the steam separator 4. And the exhaust heat (heat energy) of the combustion exhaust gas from the reformer 1 that is a high temperature medium, and transfer the recovered heat to the heated medium of the exhaust heat recovery system isolated from the battery cooling water system, Since steam is generated from the medium to be heated, high-temperature steam of about 160 ° C. can be taken out from the medium to be heated of the steam generator 8 with high efficiency.
[0039]
Further, since the exhaust gas on the air electrode 3b side of the fuel cell body 3 is used as the high temperature side medium of the combustion exhaust gas recovery heat exchanger 6, the combustion exhaust gas of the reformer 1 and the air electrode 3b side of the fuel cell body 3 are used. It becomes possible to recover the thermal energy of both exhaust gases as exhaust heat.
[0040]
Thereby, it is possible to obtain a fuel cell power generation system in which the temperature and recovery efficiency of the exhaust heat steam are further increased and the overall efficiency is further increased.
(Third embodiment: corresponding to claim 3)
FIG. 3 is a schematic diagram showing an example of a system configuration of the fuel cell power generation system according to the present embodiment. The same parts as those in FIG. 6 are denoted by the same reference numerals and the description thereof is omitted, and only different parts are described here. .
[0041]
That is, in the fuel cell power generation system of the present embodiment, as shown in FIG. 3, as the steam generator 8 in FIG. 6, the fuel cell main body recovers the reaction heat of the fuel cell main body 3 through the cell cooling plate 3c. 3 cooling water, that is, water separated by the steam separator 4 is introduced as the first heating side medium, and the air electrode 3b side exhaust gas of the fuel cell body 3 is introduced as the second heating side medium, By transferring the recovered heat to the heated medium (water in this example), which is the medium of the exhaust heat recovery system comprising the exhaust heat recovery device 9 and the circulation pump 10 isolated from the battery cooling water system, this heated side The steam generator 8 that generates steam from the medium is provided.
[0042]
  Further, the exhaust gas from the air electrode 3b side of the fuel cell main body 3 which is the second heating side medium is converted into a steam generator.Lead to 8It is configured.
  Next, the operation of the fuel cell power generation system of the present embodiment configured as described above will be described.
[0043]
In FIG. 3, a part of the water (battery cooling water) separated by the steam separator 4 is guided to the battery cooling water circulation pump 5, and is supplied to the steam generator 8 provided on the downstream side of the battery cooling water circulation pump 5. Introduced as the first heating side medium.
[0044]
  Thereafter, a part of this water is branched as cooling water for the carbon monoxide converter 2 and returned to the steam separator 4 through the low temperature side of the combustion exhaust gas recovery heat exchanger 6 of the reformer 1..
[0045]
  Further, the remaining water separated by the steam separator 4 is transferred to the battery cooling plate by the temperature adjusting heat exchanger 7.3After the temperature is adjusted to the c inlet temperature, the temperature is returned to the battery cooling plate 3 c of the fuel cell main body 3.
[0046]
As described above, the water separated by the steam separator 4 and the exhaust gas on the air electrode 3b side of the fuel cell main body 3 are transmitted to the heated medium of the exhaust heat recovery system by the steam generator 8 to be heated. Steam with a high temperature of about 160 ° C. is generated from the medium.
[0047]
The steam generated by the steam generator 8 is sent to the exhaust heat recovery device 9 by the circulation pump 10 of the exhaust heat recovery system and used as exhaust heat.
As described above, in the present embodiment, the cooling water of the fuel cell body 3 that has recovered the reaction heat of the fuel cell body 3 as the heating side medium of the steam generator 8 installed downstream of the steam separator 4. And the exhaust gas (thermal energy) on the air electrode 3b side of the fuel cell main body 3 to transfer the recovered heat to the heated medium of the exhaust heat recovery system isolated from the battery cooling water system. Therefore, steam at a high temperature of about 160 ° C. can be taken out from the heated medium of the steam generator 8 with high efficiency.
[0048]
Since the combustion exhaust gas of the reformer 1 is used as the high temperature side medium of the combustion exhaust gas recovery heat exchanger 6, both the combustion exhaust gas of the reformer 1 and the exhaust gas on the air electrode 3b side of the fuel cell body 3 are used. It is possible to recover the heat energy of the as exhaust heat.
[0049]
Thereby, it is possible to obtain a fuel cell power generation system in which the temperature and recovery efficiency of the exhaust heat steam are further increased and the overall efficiency is further increased.
(Fourth Embodiment: Corresponding to Claims 1 and 4)
FIG. 4 is a schematic diagram showing an example of a system configuration of the fuel cell power generation system according to the present embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted, and only different parts are described here. .
[0050]
That is, as shown in FIG. 4, the fuel cell power generation system of the present embodiment is configured so that a part of the cooling water of the fuel cell main body 3 in FIG. 1 is supplied from the upstream side of the cooling water of the carbon monoxide transformer 2. A carbon monoxide transformer bypass line 11 branched and returned to the steam / water separator 4 is provided in parallel with the cooling water line of the carbon monoxide transformer 2, and the carbon monoxide transformer bypass line 11 is connected to, for example, a valve. The flow rate control means 12 for controlling the cooling water flow rate of the carbon monoxide transformer bypass line 11 is provided.
[0051]
Next, the operation of the fuel cell power generation system of the present embodiment configured as described above will be described.
The description of the operation of the same part as in FIG. 1 is omitted, and only the operation of the different part will be described here.
[0052]
In FIG. 4, a part of the cooling water of the fuel cell main body 3 branches from the upstream side of the cooling water of the carbon monoxide converter 2 and is returned to the steam separator 4 through the carbon monoxide converter bypass line 11.
[0053]
  Therefore, the cooling water of the fuel cell main body 3That is, water separated by the steam separator 4Can be increased without changing the cooling conditions of the fuel cell body 3. And in this caseSteam generator 8By increasing the cooling water flow rate, the thermal energy that can be recovered by the steam generator 8 from the battery cooling water from which the reaction heat of the fuel cell body 3 has been recovered increases.
[0054]
As described above, higher-temperature steam can be taken out from the heated medium of the steam generator 8 with higher efficiency than in the case of the first embodiment.
On the other hand, by increasing the battery cooling water flow rate, the pressure of the steam / water separator 4 decreases, so that there is a possibility that the amount of steam necessary for the reforming reaction in the reformer 1 cannot be secured.
[0055]
In this regard, in the present embodiment, by providing the flow rate control means 12 in the carbon monoxide transformer bypass line 11, the carbon monoxide transformer bypass according to the pressure of the steam separator 4 and the operating conditions. The cooling water flow rate of the line 11 can be changed flexibly.
[0056]
As described above, a highly reliable fuel cell power generation system with higher vapor efficiency can be obtained.
As described above, in this embodiment, in the fuel cell power generation system of the first embodiment, a part of the cooling water of the fuel cell main body 3 is supplied from the upstream side of the cooling water of the carbon monoxide transformer 2. Since the carbon monoxide transformer 2 is bypassed and returned to the steam separator 4, steam at a higher temperature is heated from the heated medium of the steam generator 8 than in the first embodiment. Therefore, it is possible to take out with higher efficiency.
[0057]
Further, since the flow rate of the cooling water in the carbon monoxide transformer bypass line 11 is changed according to the pressure of the steam separator 4 and the operating conditions, the fuel with higher reliability and higher steam efficiency can be obtained. A battery power generation system can be obtained.
[0058]
(Fifth embodiment: corresponding to claim 5)
FIG. 5 is a schematic diagram showing an example of a system configuration of the fuel cell power generation system according to the present embodiment. The same parts as those in FIG. 4 are denoted by the same reference numerals and the description thereof is omitted, and only different parts are described here. .
[0059]
That is, in the fuel cell power generation system of the present embodiment, as shown in FIG. 5, a backup heat exchanger 13 is provided on the downstream side of the steam generator 8 in FIG. 4, and the cooling water inlet of the carbon monoxide converter 2 is provided. The temperature detection means 14 is provided on the side, the first temperature control valve 15 is provided on the downstream side of the battery cooling water of the steam generator 8, and the second temperature control valve 16 is provided on the downstream side of the heating side of the backup heat exchanger 13. And a controller 17 for controlling the opening degree of the first and second temperature control valves 15 and 16 so that the detection value of the temperature detecting means 14 is constant.
[0060]
Next, the operation of the fuel cell power generation system of the present embodiment configured as described above will be described.
The description of the operation of the same part as in FIG. 4 is omitted, and only the operation of the different part will be described here.
[0061]
In FIG. 5, when the amount of steam used in the exhaust heat recovery device 9 is small or when steam is not used, the steam generator 8 recovers the battery cooling water (first heating side). Since the amount of heat decreases, the cooling water inlet temperature of the carbon monoxide transformer 2 increases.
[0062]
The rise in the cooling water inlet temperature of the carbon monoxide converter 2 suppresses the reaction in the carbon monoxide converter 2 and increases the amount of carbon monoxide in the fuel. Carbon poisoning will progress.
[0063]
In this respect, in the present embodiment, the first and second temperature control valves 15 and 16 are provided in the battery cooling water line, and the temperature detecting means 14 provided at the cooling water inlet of the carbon monoxide transformer 2 is provided. By controlling the opening degree of the first and second temperature control valves 15 and 16 so that the detected value becomes the temperature set by the current value, the steam usage is small or the steam is used. Even if not, the same operation as in the case of taking out the steam can be performed.
[0064]
That is, in this case, the opening degree of the first temperature control valve 15 installed downstream of the battery cooling water (first heating side) of the steam generator 8 is based on the temperature detected by the temperature detecting means 14. The battery cooling water flow rate determined by the above and sent to the steam generator 8 is set.
[0065]
In addition, when the temperature detected by the temperature detection means 14 does not reach an appropriate temperature even when the whole amount of the battery cooling water is sent to the steam generator 8, the battery cooling water is installed downstream of the backup heat exchanger 13 on the heating side. The controller 17 determines the flow rate of water supplied to the backup heat exchanger 13 so that the second temperature control valve 16 operates and reaches an appropriate temperature.
[0066]
As described above, even when steam is not used, stable operation can be performed. As described above, in the present embodiment, in the fuel cell power generation system of the fourth embodiment, the steam generator 8 is configured so that the temperature on the cooling water inlet side of the carbon monoxide transformer 2 is constant. Since the battery cooling water flow rate is controlled on the battery cooling water downstream side and on the heating side downstream side of the backup heat exchanger 13, even when steam is not used, reliable and stable operation is performed. Is possible.
[0067]
(Other embodiments)
(A) Although the case where the present invention is applied to the first embodiment has been described in the fourth embodiment, the present invention is not limited to this, and the fourth embodiment is not limited to the second embodiment. The present embodiment or the third embodiment can be applied in the same manner to obtain the same operational effects as those described above.
[0068]
(B) Although the case where the present invention is applied to the fourth embodiment has been described in the fifth embodiment, the present invention is not limited to this, and the fifth embodiment is not limited to the first embodiment. The present embodiment, the second embodiment, or the third embodiment can be applied in the same manner to obtain the same effects as those described above.
[0069]
【The invention's effect】
As described above, according to the fuel cell power generation system of the present invention, as the heating-side medium of the steam generator installed on the downstream side of the steam separator, excess heat and high temperature generated during power generation in the fuel cell body are used. Steam is generated from the heated medium by transferring the recovered heat to the heated medium of the exhaust heat recovery system that is isolated from the battery cooling water system using a heat source. It can be taken out with high efficiency, and the overall efficiency can be further increased.
[0070]
Further, according to the fuel cell power generation system of the present invention, a part of the cooling water of the fuel cell main body is branched from the upstream side of the cooling water of the carbon monoxide transformer and returned to the steam separator, and further the cooling water flow rate Since the battery cooling water flow rate can be changed according to operating conditions, higher temperature steam can be taken out with higher efficiency and reliable operation can be performed. It becomes possible.
[0071]
Further, according to the fuel cell power generation system of the present invention, the downstream side of the battery cooling water of the steam generator and the heating side of the backup heat exchanger so that the temperature of the cooling water inlet side of the carbon monoxide transformer is constant. Since the flow rate of the battery cooling water on the downstream side is controlled, it is possible to perform a reliable and stable operation even when steam is not used.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a first embodiment of a fuel cell power generation system according to the present invention.
FIG. 2 is a schematic diagram showing a second embodiment of a fuel cell power generation system according to the present invention.
FIG. 3 is a schematic diagram showing a third embodiment of a fuel cell power generation system according to the present invention.
FIG. 4 is a schematic diagram showing a fourth embodiment of a fuel cell power generation system according to the present invention.
FIG. 5 is a schematic diagram showing a fifth embodiment of a fuel cell power generation system according to the present invention.
FIG. 6 is a schematic diagram showing a system configuration example of a conventional fuel cell power generation system.
[Explanation of symbols]
1 ... reformer,
2 ... carbon monoxide transformer,
3 ... Fuel cell body,
3a ... Fuel electrode,
3b ... Air electrode,
3c ... battery cooling plate,
4 ... Steam separator,
5 ... Battery cooling water circulation pump,
6 ... Combustion exhaust gas recovery heat exchanger,
7 ... heat exchanger for temperature adjustment,
8 ... Steam generator,
9 ... Waste heat recovery device,
10 ... circulation pump,
11 ... carbon monoxide transformer bypass line,
12 ... Flow rate control means,
13 ... Backup heat exchanger,
14 ... temperature detection means,
15 ... first temperature control valve,
16 ... second temperature control valve,
17 ... Controller.

Claims (5)

炭化水素系燃料を蒸気と混合し、改質して水素を主成分とする改質ガスを発生する改質器と、
前記改質器で発生した改質ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成器と、
燃料極、空気極、および電池冷却板を備え、前記一酸化炭素変成器で変成された改質ガスを前記燃料極に導入すると共に空気を前記空気極に導入し、当該改質ガス中の水素と空気中の酸素とを電気化学的に反応させて電気エネルギーに変換する燃料電池本体と、
前記燃料電池本体で発電時に発生した熱(反応熱)を前記電池冷却板を介して熱交換させることにより回収した電池冷却水を水と蒸気の二相流化した状態で導入し、水蒸気および水に分離する気水分離器と、
前記気水分離器で分離された水の一部を前記一酸化炭素変成器への冷却水として供給すると共に、残りを電池冷却板入口温度まで冷却して前記燃料電池本体への冷却水として供給する電池冷却水系と、
前記気水分離器の下流側に設けられ、前記燃料電池本体の反応熱を前記電池冷却板を介して回収する前記燃料電池本体の冷却水と、前記改質器の燃焼排ガスの排熱を回収する前記一酸化炭素変成器の冷却水とを、それぞれ加熱側媒体として導入し、前記電池冷却水系とは隔離された排熱回収系の媒体である被加熱側媒体に前記回収熱を伝達することにより、当該被加熱側媒体から蒸気を発生させる蒸気発生器と、
を備えて成ることを特徴とする燃料電池発電システム。
A reformer that mixes a hydrocarbon-based fuel with steam and reforms to generate a reformed gas mainly composed of hydrogen;
A carbon monoxide converter for converting carbon monoxide in the reformed gas generated in the reformer into carbon dioxide;
A fuel electrode, an air electrode, and a battery cooling plate are provided, the reformed gas transformed by the carbon monoxide transformer is introduced into the fuel electrode and air is introduced into the air electrode, and hydrogen in the reformed gas is introduced. A fuel cell body that electrochemically reacts oxygen with oxygen in the air to convert it into electrical energy,
Battery cooling water recovered by exchanging heat (reaction heat) generated during power generation in the fuel cell main body through the battery cooling plate is introduced in a state where water and steam are two-phase flow, and water vapor and water A steam separator that separates into
A part of the water separated by the steam separator is supplied as cooling water to the carbon monoxide converter, and the rest is cooled to the cell cooling plate inlet temperature and supplied as cooling water to the fuel cell body. Battery cooling water system,
The cooling water for the fuel cell body, which is provided downstream of the steam separator and collects the reaction heat of the fuel cell body through the battery cooling plate, and the exhaust heat of the combustion exhaust gas of the reformer is recovered. And introducing the cooling water of the carbon monoxide transformer as a heating-side medium, and transferring the recovered heat to a heated-side medium that is a medium of an exhaust heat recovery system that is isolated from the battery cooling water system. A steam generator for generating steam from the heated medium;
A fuel cell power generation system comprising:
炭化水素系燃料を蒸気と混合し、改質して水素を主成分とする改質ガスを発生する改質器と、
前記改質器で発生した改質ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成器と、
燃料極、空気極、および電池冷却板を備え、前記一酸化炭素変成器で変成された改質ガスを前記燃料極に導入すると共に空気を前記空気極に導入し、当該改質ガス中の水素と空気中の酸素とを電気化学的に反応させて電気エネルギーに変換する燃料電池本体と、
前記燃料電池本体で発電時に発生した熱(反応熱)を前記電池冷却板を介して熱交換させることにより回収した電池冷却水を水と蒸気の二相流化した状態で導入し、水蒸気および水に分離する気水分離器と、
前記気水分離器で分離された水の一部を前記一酸化炭素変成器への冷却水として供給すると共に、残りを電池冷却板入口温度まで冷却して前記燃料電池本体への冷却水として供給する電池冷却水系と、
前記気水分離器の下流側に設けられ、前記燃料電池本体の反応熱を前記電池冷却板を介して回収する前記燃料電池本体の冷却水と、前記改質器の燃焼排ガスとを、それぞれ加熱側媒体として導入し、前記電池冷却水系とは隔離された排熱回収系の媒体である被加熱側媒体に前記回収熱を伝達することにより、当該被加熱側媒体から蒸気を発生させる蒸気発生器と、
を備えて成ることを特徴とする燃料電池発電システム。
A reformer that mixes a hydrocarbon-based fuel with steam and reforms to generate a reformed gas mainly composed of hydrogen;
A carbon monoxide converter for converting carbon monoxide in the reformed gas generated in the reformer into carbon dioxide;
A fuel electrode, an air electrode, and a battery cooling plate are provided, the reformed gas transformed by the carbon monoxide transformer is introduced into the fuel electrode and air is introduced into the air electrode, and hydrogen in the reformed gas is introduced. A fuel cell body that electrochemically reacts oxygen with oxygen in the air to convert it into electrical energy,
Battery cooling water recovered by exchanging heat (reaction heat) generated during power generation in the fuel cell main body through the battery cooling plate is introduced in a state where water and steam are two-phase flow, and water vapor and water A steam separator that separates into
A part of the water separated by the steam separator is supplied as cooling water to the carbon monoxide converter, and the rest is cooled to the cell cooling plate inlet temperature and supplied as cooling water to the fuel cell body. Battery cooling water system,
Provided on the downstream side of the steam separator, the cooling water of the fuel cell body for recovering the reaction heat of the fuel cell body through the battery cooling plate and the combustion exhaust gas of the reformer are heated respectively. Steam generator for generating steam from the heated medium by introducing the recovered heat to the heated medium that is introduced as a side medium and is isolated from the battery cooling water system When,
A fuel cell power generation system comprising:
炭化水素系燃料を蒸気と混合し、改質して水素を主成分とする改質ガスを発生する改質器と、
前記改質器で発生した改質ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成器と、
燃料極、空気極、および電池冷却板を備え、前記一酸化炭素変成器で変成された改質ガスを前記燃料極に導入すると共に空気を前記空気極に導入し、当該改質ガス中の水素と空気中の酸素とを電気化学的に反応させて電気エネルギーに変換する燃料電池本体と、
前記燃料電池本体で発電時に発生した熱(反応熱)を前記電池冷却板を介して熱交換させることにより回収した電池冷却水を水と蒸気の二相流化した状態で導入し、水蒸気および水に分離する気水分離器と、
前記気水分離器で分離された水の一部を前記一酸化炭素変成器への冷却水として供給すると共に、残りを電池冷却板入口温度まで冷却して前記燃料電池本体への冷却水として供給する電池冷却水系と、
前記気水分離器の下流側に設けられ、前記燃料電池本体の反応熱を前記電池冷却板を介して回収する前記燃料電池本体の冷却水と、前記燃料電池本体の空気極排ガスとを、それぞれ加熱側媒体として導入し、前記電池冷却水系とは隔離された排熱回収系の媒体である被加熱側媒体に前記回収熱を伝達することにより、当該被加熱側媒体から蒸気を発生させる蒸気発生器と、
を備えて成ることを特徴とする燃料電池発電システム。
A reformer that mixes a hydrocarbon-based fuel with steam and reforms to generate a reformed gas mainly composed of hydrogen;
A carbon monoxide converter for converting carbon monoxide in the reformed gas generated in the reformer into carbon dioxide;
A fuel electrode, an air electrode, and a battery cooling plate are provided, the reformed gas transformed by the carbon monoxide transformer is introduced into the fuel electrode and air is introduced into the air electrode, and hydrogen in the reformed gas is introduced. A fuel cell body that electrochemically reacts oxygen with oxygen in the air to convert it into electrical energy,
Battery cooling water recovered by exchanging heat (reaction heat) generated during power generation in the fuel cell main body through the battery cooling plate is introduced in a state where water and steam are two-phase flow, and water vapor and water A steam separator that separates into
A part of the water separated by the steam separator is supplied as cooling water to the carbon monoxide converter, and the rest is cooled to the cell cooling plate inlet temperature and supplied as cooling water to the fuel cell body. Battery cooling water system,
The cooling water for the fuel cell body, which is provided on the downstream side of the steam separator and collects the reaction heat of the fuel cell body via the battery cooling plate, and the air electrode exhaust gas of the fuel cell body, Steam generation that is introduced as a heating-side medium and generates steam from the heated-side medium by transferring the recovered heat to the heated-side medium that is a waste heat recovery system medium isolated from the battery cooling water system And
A fuel cell power generation system comprising:
前記請求項1乃至請求項3のいずれか1項に記載の燃料電池発電システムにおいて、
前記燃料電池本体の冷却水の一部を、前記一酸化炭素変成器の冷却水の上流側から分岐させて前記気水分離器に戻す一酸化炭素変成器バイパスラインと、
前記一酸化炭素変成器バイパスラインに設けられ、当該一酸化炭素変成器バイパスラインの冷却水流量を制御する流量制御手段と、
を付加して成ることを特徴とする燃料電池発電システム。
In the fuel cell power generation system according to any one of claims 1 to 3,
A carbon monoxide transformer bypass line for branching a part of the cooling water of the fuel cell main body from the upstream side of the cooling water of the carbon monoxide transformer and returning it to the steam separator;
A flow rate control means for controlling the cooling water flow rate of the carbon monoxide transformer bypass line provided in the carbon monoxide transformer bypass line;
A fuel cell power generation system comprising:
前記請求項1乃至請求項4のいずれか1項に記載の燃料電池発電システムにおいて、
前記蒸気発生器の下流側に設けられたバックアップ用熱交換器と、
前記一酸化炭素変成器の冷却水入口側に設けられた温度検出手段と、
前記蒸気発生器の電池冷却水下流側に設けられた第1の温度制御弁と、
前記バックアップ用熱交換器の加熱側下流側に設けられた第2の温度制御弁と、
前記温度検出手段の検出値が一定となるように前記第1および第2の温度制御弁の開度を制御する制御手段と、
を付加して成ることを特徴とする燃料電池発電システム。
In the fuel cell power generation system according to any one of claims 1 to 4,
A backup heat exchanger provided downstream of the steam generator;
Temperature detection means provided on the cooling water inlet side of the carbon monoxide transformer;
A first temperature control valve provided on the downstream side of the battery cooling water of the steam generator;
A second temperature control valve provided on the heating side downstream side of the backup heat exchanger;
Control means for controlling the opening of the first and second temperature control valves so that the detection value of the temperature detection means is constant;
A fuel cell power generation system comprising:
JP31970397A 1997-11-20 1997-11-20 Fuel cell power generation system Expired - Fee Related JP3670467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31970397A JP3670467B2 (en) 1997-11-20 1997-11-20 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31970397A JP3670467B2 (en) 1997-11-20 1997-11-20 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH11154526A JPH11154526A (en) 1999-06-08
JP3670467B2 true JP3670467B2 (en) 2005-07-13

Family

ID=18113246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31970397A Expired - Fee Related JP3670467B2 (en) 1997-11-20 1997-11-20 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP3670467B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176527A (en) * 1999-12-16 2001-06-29 Daikin Ind Ltd Fuel cell system and fuel cell cogeneration system
CN109546179A (en) * 2019-01-07 2019-03-29 中氢新能技术有限公司 A kind of methanol recapitalization fuel cell pile cooling system

Also Published As

Publication number Publication date
JPH11154526A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
US8206857B2 (en) Fuel cell combined heat and power generation
JP5214190B2 (en) Fuel cell system and operation method thereof
JPH11233129A (en) Solid electrolyte fuel cell generating system
JP4358338B2 (en) Fuel cell combined power plant system
JP3943405B2 (en) Fuel cell power generation system
JP4195974B2 (en) Fuel cell cogeneration system
JP3670467B2 (en) Fuel cell power generation system
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JP3956208B2 (en) Fuel cell power generation system and operation method thereof
JP2004196611A (en) Fuel reforming apparatus and fuel cell system
JP3139574B2 (en) Fuel cell generator
JP2002025590A (en) Fuel cell power generating device and its control method
JP2004039430A (en) Fuel cell generator and its operation method
JP4176130B2 (en) Fuel cell power generation system
JP2002170583A (en) Fuel battery cogeneration system
JP3994324B2 (en) Fuel cell power generator
JP2002100382A (en) Fuel cell power generator
JP2006156015A (en) Fuel cell system and fuel gas supply method
JPH06103994A (en) Fuel cell power generating system
JP3936310B2 (en) Fuel cell surplus steam condensing type steam separator
JPH0443567A (en) Waste heat recovery device for fuel cell power generating plant
JP2001210343A (en) Hot water storage/hot water supply system
JPH07302605A (en) Cooling water circulation system control device of fuel cell power generating system
JPH08329966A (en) Direct steam taking out fuel cell power generating system
JPH08195214A (en) Phosphoric acid fuel cell generating system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees