JPH0443567A - Waste heat recovery device for fuel cell power generating plant - Google Patents
Waste heat recovery device for fuel cell power generating plantInfo
- Publication number
- JPH0443567A JPH0443567A JP2147203A JP14720390A JPH0443567A JP H0443567 A JPH0443567 A JP H0443567A JP 2147203 A JP2147203 A JP 2147203A JP 14720390 A JP14720390 A JP 14720390A JP H0443567 A JPH0443567 A JP H0443567A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat exchanger
- fuel cell
- exhaust
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 61
- 238000011084 recovery Methods 0.000 title claims abstract description 55
- 239000002918 waste heat Substances 0.000 title claims abstract description 17
- 239000000498 cooling water Substances 0.000 claims abstract description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000002737 fuel gas Substances 0.000 claims abstract description 24
- 230000017525 heat dissipation Effects 0.000 claims description 31
- 238000010248 power generation Methods 0.000 claims description 14
- 239000002826 coolant Substances 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 210000004027 cell Anatomy 0.000 abstract description 41
- 239000012530 fluid Substances 0.000 abstract description 7
- 210000005056 cell body Anatomy 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract 2
- 238000010276 construction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 210000000476 body water Anatomy 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は特にシステム構成要素数を節約した燃料電池発
電プラントの排熱回収装置に関する。DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Field of Application) The present invention particularly relates to an exhaust heat recovery device for a fuel cell power plant that saves the number of system components.
(従来の技術)
第3図を用いて従来の技術を説明する。燃料電池本体1
では触媒存在下で水素と酸素の電気化学的反応で直流電
力を発生される。すなわち、燃料電池本体1の燃料極に
対し、原燃料から水素を豊富に含むガスへの改質を本図
には示さない燃料改質系統で行った後に、改質燃料供給
系統aにより改質燃料を燃料ガスコンタクトクーラ2に
供給し、改質燃料中の湿分を脱湿し、冷却して燃料極供
給ガス系統すにより燃料ガスが供給され、燃料ガス中の
水素分の一部が発電のための反応に消費された後、燃料
極出口ガス系統Cに°より本図には示さない改質器また
は補助バーナに送気される。(Prior art) The conventional technology will be explained using FIG. Fuel cell body 1
DC power is generated through an electrochemical reaction between hydrogen and oxygen in the presence of a catalyst. That is, after the fuel electrode of the fuel cell main body 1 is reformed from raw fuel to a hydrogen-rich gas by a fuel reforming system not shown in this diagram, the fuel electrode is reformed by the reformed fuel supply system a. The fuel is supplied to the fuel gas contact cooler 2, the moisture in the reformed fuel is dehumidified, and the fuel gas is cooled and supplied through the fuel electrode supply gas system, and a portion of the hydrogen content in the fuel gas is used to generate electricity. After being consumed in the reaction, the gas is sent through the fuel electrode outlet gas line C to a reformer or auxiliary burner, which is not shown in this figure.
一方、燃料電池本体1の空気極に対し、本図には示さな
い空気昇圧系統からの空気が空気供給系統dにより供給
され、空気中の酸素の一部が発電のための反応に消費さ
れた後、発電反応で生成した水分の大部分を含んだ排空
気として空気極出口排空気系統eにより空気極排空気再
熱器3に送気され、空気極排空気コンタクトクーラ4に
より脱湿、冷却された排空気の昇温を行い、温度降下し
た排空気を再び空気極排空気コンタクトクーラ4に送気
するとともに、昇温した排空気は排空気系統fにより本
図には示さない改質器または補助バーナに送気される。On the other hand, air from an air booster system (not shown in this figure) is supplied to the air electrode of the fuel cell main body 1 through the air supply system d, and a portion of the oxygen in the air is consumed in the reaction for power generation. After that, the exhaust air containing most of the moisture generated in the power generation reaction is sent to the air electrode exhaust air reheater 3 by the air electrode outlet exhaust air system e, and is dehumidified and cooled by the air electrode exhaust air contact cooler 4. The temperature of the exhausted exhaust air is raised, and the temperature-dropped exhaust air is again sent to the air electrode exhaust air contact cooler 4, and the heated exhaust air is sent to the reformer (not shown in the figure) through the exhaust air system f. Or air is sent to the auxiliary burner.
一方、燃料電池本体1で生じた反応熱のうち、直流電力
発電に供されない熱は、排熱として燃料電池本体1の冷
却器において燃料電池本体冷却水供給ポンプ5により燃
料電池本体冷却水供給系統gを介して供給される冷却水
に熱交換され、昇温された冷却水は燃料電池本体冷却水
もどり系統りにより蒸気分離器6に送水され、改質蒸気
と温水は、降水管iにより燃料電池本体冷却水供給ポン
プ5に送水され、また改質蒸気は本図には示さない燃料
改質系統に対して改質蒸気供給系統jにより供給される
。On the other hand, of the reaction heat generated in the fuel cell main body 1, the heat that is not used for DC power generation is converted into waste heat by the fuel cell main body cooling water supply pump 5 in the fuel cell main body cooling water supply system in the fuel cell main body 1 cooler. The heated cooling water is sent to the steam separator 6 by the cooling water return system of the fuel cell main body, and the reformed steam and hot water are transferred to the fuel cell through the downcomer pipe i. Water is supplied to the battery main body cooling water supply pump 5, and the reformed steam is supplied to a fuel reforming system not shown in this figure by a reformed steam supply system j.
燃料ガスコンタクトクーラ2と空気極排空気コンタクト
クーラ4で冷却時に生じる凝縮水の冷却のための燃料ガ
ス凝縮水ループk、排空気凝縮水ループQ、を有しこれ
らのループは燃料ガス凝縮水循環ポンプ7と排空気凝縮
水循環ポンプ8を有し、また増加した水分量を水処理設
備などの系外ヘブローする燃料ガス凝縮水ブロー系統m
、排空気凝縮水ブロー系統nを有している。The fuel gas contact cooler 2 and the air electrode exhaust air contact cooler 4 have a fuel gas condensate loop K and an exhaust air condensate loop Q for cooling the condensed water generated during cooling, and these loops are connected to a fuel gas condensate circulation pump. 7 and an exhaust air condensate circulation pump 8, and a fuel gas condensate blowing system m that blows the increased moisture amount to outside the system such as water treatment equipment.
, an exhaust air condensate blow system n.
燃料電池システムからの排熱放散は排熱放散冷却水供給
ヘッダーQより、燃料電池システム内に設けられた排熱
放散用熱交換器すなわち燃料ガス凝縮水ループ熱交換器
9、排空気凝縮水ループ熱交換器10及び燃料電池本体
冷却水系統排熱交換器11に冷却水を送り、これらから
の冷却水戻りを排熱放散冷却水もどりヘッダーPに集め
、排熱放散空気冷却器12により空気中に排熱を放散す
るとともに、排熱放散冷却水を冷却して排熱放散系統冷
却水供給ポンプ13により排熱放散冷却水供給ヘッダー
Qに排熱放散冷却水を供給する。The exhaust heat from the fuel cell system is dissipated through the exhaust heat dissipation cooling water supply header Q, the exhaust heat dissipation heat exchanger installed in the fuel cell system, that is, the fuel gas condensed water loop heat exchanger 9, and the exhaust air condensed water loop. Cooling water is sent to the heat exchanger 10 and the fuel cell main body cooling water system waste heat exchanger 11, and the return cooling water from these is collected in the waste heat dissipation cooling water return header P, and is sent to the air by the waste heat dissipation air cooler 12. At the same time, the exhaust heat dissipation cooling water is cooled and the exhaust heat dissipation cooling water is supplied to the exhaust heat dissipation cooling water supply header Q by the exhaust heat dissipation system cooling water supply pump 13.
さて、以上の構成を有する燃料電池システムにおいて、
熱回収を行う場合、第3図の実施例では燃料ガス凝縮水
ループk、排空気凝縮水ループρ。Now, in the fuel cell system having the above configuration,
In the case of heat recovery, in the embodiment of FIG. 3, the fuel gas condensate loop k and the exhaust air condensate loop ρ are used.
燃料電池本体冷却水系統gの3点から熱回収を行う例に
ついて示すが、これらの系統に設置された排熱放散用熱
交換器9 、10.11の上流に排熱回収用熱交換器、
すなわち燃料ガス凝縮水ループ排熱回収熱交換器15.
排空気凝縮水ループ排熱回収熱交換器16.燃料電池本
体冷却水系統排熱回収熱交換器17をR1している。An example will be shown in which heat is recovered from three points in the cooling water system g of the fuel cell main body.Upstream of the exhaust heat dissipation heat exchangers 9 and 10.11 installed in these systems, there are exhaust heat recovery heat exchangers,
That is, fuel gas condensed water loop exhaust heat recovery heat exchanger 15.
Exhaust air condensate loop exhaust heat recovery heat exchanger 16. The fuel cell main body cooling water system exhaust heat recovery heat exchanger 17 is R1.
これらに対し熱利用システム18からの熱回収水を熱回
収水供給ポンプ19により熱回収水供給ヘッダーqを介
して供給し、昇温された熱回収水を熱回収水もどりヘッ
ダーrを介して熱利用システム18に送水して熱回収水
により回収された熱の利用を行った後、低温となった熱
回収水を熱回収水供給ポンプ19に送水している。To these, the heat recovery water from the heat utilization system 18 is supplied by the heat recovery water supply pump 19 via the heat recovery water supply header q, and the heated heat recovery water is supplied to the heat recovery water via the heat recovery water return header r. After the water is sent to the utilization system 18 and the heat recovered by the heat recovery water is utilized, the heat recovery water that has become low temperature is sent to the heat recovery water supply pump 19.
また排熱放散熱交換器9 、10.11には上流側に設
置された排熱回収熱交換器15.16.17で排熱回収
により系統流体の温度が低下し、排熱放散熱交換器によ
る排熱放散システムへの必要熱伝達量が減じられるため
、高温側流体をバイパスさせるバイパス系統が付設して
おり、また排熱回収熱交換器15.16.17には熱利
用システムへの熱伝達が不要な場合のため、熱回収水側
にバイパス系統を付設している。In addition, in the exhaust heat dissipation heat exchangers 9 and 10.11, the temperature of the system fluid decreases due to exhaust heat recovery in the exhaust heat recovery heat exchangers 15, 16, and 17 installed on the upstream side. In order to reduce the required heat transfer amount to the waste heat dissipation system, a bypass system is installed to bypass the high-temperature side fluid, and the waste heat recovery heat exchanger 15.16. A bypass system is installed on the heat recovery water side in case transmission is not required.
(発明が解決しようとする課題)
以上述べた従来の技術は以下に述べる欠点を有する。す
なわち、排熱放散熱交換器9.10.11と排熱回収熱
交換器15.16.17を別個に設置しており、排熱回
収熱交換器15.16.17及び熱回収を行う場合と行
わない場合に応じた系統温度制御に関連した制御装置、
バイパス系統など追加設備が多く設置面積や容積の増大
、設備コストの増大、システム構成要素増大によるシス
テム信頼性の低下、制御の複雑性を招くものであり、必
ずしも良好なシステム構成とはいえない。(Problems to be Solved by the Invention) The conventional techniques described above have the following drawbacks. In other words, when the exhaust heat dissipation heat exchanger 9.10.11 and the exhaust heat recovery heat exchanger 15.16.17 are installed separately, and the exhaust heat recovery heat exchanger 15.16.17 and heat recovery are performed. and control equipment related to system temperature control depending on the case where it is not carried out,
This system is not necessarily a good system configuration because it requires a lot of additional equipment such as a bypass system, which increases the installation area and volume, increases equipment costs, decreases system reliability due to the increase in system components, and complicates control.
本発明の目的は、燃料電池発電プラントから排熱を回収
するための経済的で簡便であり、かつ制御性及びコンパ
クト性にもすぐれた燃料電池発電プラントの排熱回収装
置を提供するものである。An object of the present invention is to provide a waste heat recovery device for a fuel cell power generation plant that is economical, simple, and has excellent controllability and compactness for recovering exhaust heat from a fuel cell power generation plant. .
(11題を解決するための手段)
本発明の燃料電池発電プラントの排熱回収装置は、燃料
電池発電プラントの燃料ガス供給系統および空気極排気
系統に燃料ガス凝縮水熱交換器および排空気凝縮水ルー
プ熱交換器をそれぞれ設置し、これらの側熱交換器で昇
温された排熱放散システム冷却媒体を燃料電池本体冷却
水供給系統に設置した燃料電池本体冷却水系統熱交換器
の冷却媒体として用い、この燃料電池本体冷却水系統熱
交換器で昇温された排熱放散システム熱媒体の排熱を系
外に放散するための排熱放散系統に設けた排熱放散空気
冷却器の上流側に排熱一括回収熱交換器を設け、かつこ
の排熱一括回収熱交換器に排熱回収要求量に応じて流量
制御される熱交換器バイパス系統を設けたことを特徴と
するものである。(Means for Solving Problem 11) The exhaust heat recovery device for a fuel cell power generation plant of the present invention includes a fuel gas condensate water heat exchanger and an exhaust air condensation system in a fuel gas supply system and an air electrode exhaust system of a fuel cell power generation plant. Each water loop heat exchanger is installed, and the exhaust heat dissipation system coolant heated by these side heat exchangers is used as the coolant of the fuel cell main cooling water system heat exchanger installed in the fuel cell main cooling water supply system. Upstream of the exhaust heat dissipation air cooler installed in the exhaust heat dissipation system to dissipate the exhaust heat of the heat medium heated by the heat exchanger in the fuel cell main body cooling water system heat exchanger to the outside of the system. A heat exchanger for collective exhaust heat recovery is provided on the side, and the heat exchanger is equipped with a heat exchanger bypass system whose flow rate is controlled according to the amount of exhaust heat recovery required. .
(作 用)
本発明において燃料ガス凝縮水ループ熱交換器、排空気
凝縮水ループ熱交換器により排熱放散冷却水に熱交換し
た後合流させ、燃料電池本体冷却水系統熱交換器に流入
させて熱交換させた後、この下流側に付設した排熱一括
回収熱交換器により一括して燃料電池発電プラントから
の熱回収を図る。(Function) In the present invention, the fuel gas condensed water loop heat exchanger and the exhaust air condensed water loop heat exchanger exchange heat with the exhaust heat dissipation cooling water, and then the mixture is combined and flows into the fuel cell main body cooling water system heat exchanger. After exchanging heat, a heat exchanger for collective exhaust heat recovery installed on the downstream side attempts to recover heat from the fuel cell power generation plant all at once.
(実施例)
以下本発明を第1図および第2図に示す実施例を参照し
て説明する。第1図は本発明の特徴をもっともよく表わ
す図であり、燃料電池本体冷却水供給系統g、燃料ガス
凝縮水ループに、排空気凝縮水ループΩから熱回収を行
う場合について記したものであり1本実施例はこれらの
熱回収対象系統に従来の排熱回収熱交換器を付設せず、
熱利用システムの運用上、熱回収を行う場合、行わない
場合にかかわらず、燃料電池システムからの分割熱をま
ず全て排熱放散システム冷却水に付与すること、しかも
燃料ガス凝縮水ループ熱交換器9、排空気凝縮水ループ
熱交換器10から流出した排熱放散冷却水を合流し、こ
れを燃料電池本体水系統熱交換器11に供給すること、
排熱一括回収のためこの出口冷却水系統に排熱一括回収
熱交換器20を付設したことによって構成される。(Example) The present invention will be described below with reference to an example shown in FIGS. 1 and 2. FIG. 1 is a diagram that best represents the features of the present invention, and shows the case where heat is recovered from the exhaust air condensate loop Ω to the fuel cell main body cooling water supply system g, the fuel gas condensate loop. 1 In this embodiment, a conventional exhaust heat recovery heat exchanger is not attached to these heat recovery target systems,
In the operation of the heat utilization system, regardless of whether heat recovery is performed or not, all of the split heat from the fuel cell system must first be applied to the cooling water of the exhaust heat dissipation system, and the fuel gas condensed water loop heat exchanger must be used. 9. merging the exhaust heat dissipation cooling water flowing out from the exhaust air condensed water loop heat exchanger 10 and supplying it to the fuel cell main body water system heat exchanger 11;
It is constructed by attaching an exhaust heat collective recovery heat exchanger 20 to this outlet cooling water system for collective exhaust heat recovery.
次にこのように構成された本発明の燃料電池発電プラン
トの排熱回収装置の作用を説明する。第1図において、
排熱回収対象系統を付設せず排熱放散のために付設され
ていた熱交換器を用いることにより、本熱交換器の出口
温度を予かしめ定められた値にするように高温側に流体
側バイパス流量調節弁を制御するだけでよく、新たな制
御機能を付与する必要がなくなる。Next, the operation of the exhaust heat recovery device for the fuel cell power generation plant of the present invention configured as described above will be explained. In Figure 1,
By using a heat exchanger that was installed for exhaust heat dissipation without installing an exhaust heat recovery system, the high temperature side and the fluid side are used to maintain the outlet temperature of the heat exchanger at a predetermined value. It is only necessary to control the bypass flow rate control valve, and there is no need to provide a new control function.
しかも本実施例では排熱回収の対象系統のうち。Moreover, in this example, this is one of the target systems for exhaust heat recovery.
より低い温度レベルにある燃料ガス凝縮水ループにおよ
び排空気凝縮水ループΩの各々に付設した排熱放散用熱
交換器である燃料ガス凝縮水ループ熱交換器9及び排空
気凝縮水ループ熱交換器10の両ループからの排熱を排
熱放散システム冷却水に与え、これらを合流した後、よ
り高い温度レベルの高温側流体を有する燃料電池本体冷
却水供給系統gに付設した燃料電池本体冷却水系統熱交
換器11に冷却水を供給し、その下流側で排熱一括回収
熱交換器20で一括して熱回収を行う。A fuel gas condensed water loop heat exchanger 9 and an exhaust air condensed water loop heat exchanger, which are heat exchangers for dissipating exhaust heat, are attached to each of the fuel gas condensed water loop and the exhaust air condensed water loop Ω at a lower temperature level. The exhaust heat from both loops of the device 10 is applied to the exhaust heat dissipation system cooling water, and after these are combined, the fuel cell main body cooling water connected to the fuel cell main body cooling water supply system g having the high temperature side fluid at a higher temperature level is added. Cooling water is supplied to the water system heat exchanger 11, and heat is recovered all at once by the exhaust heat collective recovery heat exchanger 20 on the downstream side thereof.
本発明においては、燃料電池本体1では燃料電池本体冷
却水に対し、排熱を付与するがこれらは温水の温度上昇
のための顕熱分、蒸気発生のための潜熱分として使用さ
れ、2相流となった燃料電池本体冷却水は蒸気分離器6
で分離されるため。In the present invention, the fuel cell main body 1 imparts exhaust heat to the fuel cell main body cooling water, but this is used as sensible heat to raise the temperature of hot water and latent heat to generate steam, and is used as two-phase heat. The cooling water for the fuel cell main body that has become a flow is sent to the steam separator 6.
Because it is separated by.
電池本体入口における冷却水温度にするために温度降下
分は少くてよく、熱交換器11の高温側バイパス流量に
比して熱交換器通過流量は少くてよい。In order to maintain the cooling water temperature at the inlet of the battery main body, the temperature drop may be small, and the flow rate passing through the heat exchanger may be small compared to the high temperature side bypass flow rate of the heat exchanger 11.
ところで、一般に水/水熱交換器の場合、高温側と低温
側の重量流量と平均比熱の積について小なる方を大なる
方で割った値が小さくなればなるほど熱交換が効率的で
規模が小さくて済むため、熱交換器11の低温側流体重
量流量は大であればあるほどよいのであるが、熱交換器
9,10の低温側流体出口を分流して温度上昇した冷却
水を用いて熱交換器11を冷却することによってこれが
可能となる。さらに排熱放散冷却水ヘッダQから熱交換
器9 、10.11に各々別個に送水する場合に比べ、
排熱放散系統冷却水供給ポンプ13の容量が少なくて済
み、また系統も簡略することができる。By the way, in general, in the case of water/water heat exchangers, the smaller the product of the weight flow rate and average specific heat on the high temperature side and the low temperature side divided by the larger one, the smaller the value, the more efficient the heat exchange and the larger the scale. The larger the fluid weight flow rate on the low-temperature side of the heat exchanger 11 is, the better, since it can be made smaller. This is made possible by cooling the heat exchanger 11. Furthermore, compared to the case where water is sent separately from the exhaust heat dissipation cooling water header Q to the heat exchangers 9 and 10.11,
The capacity of the exhaust heat dissipation system cooling water supply pump 13 can be small, and the system can be simplified.
さて、燃料電池本体冷却水系統熱交換器11の低温側流
体下流側に排熱一括回収熱交換器20を付設し、これか
ら熱回収を行えば1本熱回収系統の運用にかかわらず、
排熱放散空気冷却器12はその出口温度を予かしめ定め
られた所定の範囲に納めるよう運転すればよく複雑な制
御上の考慮は不要である。Now, if the exhaust heat collective recovery heat exchanger 20 is attached to the low-temperature side fluid downstream side of the fuel cell main body cooling water system heat exchanger 11, and heat recovery is performed from now on, regardless of the operation of one heat recovery system,
The exhaust heat dissipation air cooler 12 only needs to be operated so that its outlet temperature falls within a predetermined range, and there is no need for complicated control considerations.
なお第2図は本発明の他の実施例を示すもので、熱交換
器9,10で排熱放散冷却水に熱交換検分流し、熱交換
器11で熱交換後その下流で一括して燃料電池システム
からの排熱回収を行うことは同様であるが、排熱放散冷
却水を熱利用システムに送水し、熱利用を行った後排熱
放散システム18に戻させるものである。In addition, FIG. 2 shows another embodiment of the present invention, in which the heat exchanger is passed through the exhaust heat dissipation cooling water in the heat exchangers 9 and 10, and after the heat exchange is performed in the heat exchanger 11, the fuel is sent all at once downstream. The exhaust heat recovery from the battery system is similar, but the exhaust heat dissipation cooling water is sent to the heat utilization system and is returned to the exhaust heat dissipation system 18 after the heat is utilized.
以上のように本発明は、燃料電池発電プラントから排熱
回収を経済的に、高信頼性のもとに、またプラントをよ
りコンパクトなものとすることができる。As described above, the present invention makes it possible to economically recover exhaust heat from a fuel cell power generation plant with high reliability, and to make the plant more compact.
第1図は本発明の燃料電池発電プラントの排熱回収装置
の一実施例を示す系統図、第2図は本発明の他の実施例
を示す系統図、第3図は従来の燃料電池発電プラントの
排熱回収装置を示す系統図である。
1・・・燃料電池本体
2・・・燃料ガスコンタクトクーラ
3・・・空気極排空気再熱器
4・・・空気極排空気コンタクトクーラ5・・・燃料電
池本体冷却水供給ポンプ6・・・蒸気分離器
7・・・燃料ガス凝縮水循環ポンプ
8・・・排熱凝縮水循環ポンプ
9・・・燃料ガス凝縮水ループ熱交換器10・・・排空
気凝縮水ループ熱交換器11・・・燃料電池本体冷却水
系統熱交換器12・・・排熱放散空気冷却器
13・・・排熱放散系統冷却水冷却ポンプ15・・・燃
料ガス凝縮水ループ排熱回収熱交換器16・・・排空気
凝縮水ループ排熱回収熱交換器17・・・燃料電池本体
冷却水系統排熱回収熱交換器18・・・熱利用システム
19・・・熱回収水供給ポンプ
20・・・排熱一括回収熱交換器Fig. 1 is a system diagram showing one embodiment of the exhaust heat recovery device for a fuel cell power generation plant of the present invention, Fig. 2 is a system diagram showing another embodiment of the present invention, and Fig. 3 is a system diagram showing a conventional fuel cell power generation plant. It is a system diagram showing an exhaust heat recovery device of a plant. 1... Fuel cell main body 2... Fuel gas contact cooler 3... Air electrode exhaust air reheater 4... Air electrode exhaust air contact cooler 5... Fuel cell main body cooling water supply pump 6...・Steam separator 7...Fuel gas condensed water circulation pump 8...Exhaust heat condensed water circulation pump 9...Fuel gas condensed water loop heat exchanger 10...Exhaust air condensed water loop heat exchanger 11... Fuel cell body cooling water system heat exchanger 12...exhaust heat dissipation air cooler 13...exhaust heat dissipation system cooling water cooling pump 15...fuel gas condensed water loop exhaust heat recovery heat exchanger 16... Exhaust air condensed water loop Exhaust heat recovery heat exchanger 17...Fuel cell main body cooling water system Exhaust heat recovery heat exchanger 18...Heat utilization system 19...Heat recovery water supply pump 20...Exhaust heat all at once recovery heat exchanger
Claims (1)
排気系統に燃料ガス凝縮水熱交換器および排空気凝縮水
ループ熱交換器をそれぞれ設置し、これらの両熱交換器
で昇温された排熱放散システム冷却媒体を燃料電池本体
冷却水供給系統に設置した燃料電池本体冷却水系統熱交
換器の冷却媒体として用い、この燃料電池本体冷却水系
統熱交換器で昇温された排熱放散システム熱媒体の排熱
を系外に放散するための排熱放散系統に設けた排熱放散
空気冷却器の上流側に排熱一括回収熱交換器を設け、か
つこの排熱一括回収熱交換器に排熱回収要求量に応じて
流量制御される熱交換器バイパス系統を設けたことを特
徴とする燃料電池発電プラントの排熱回収装置。A fuel gas condensate water heat exchanger and an exhaust air condensate loop heat exchanger are installed in the fuel gas supply system and air electrode exhaust system of the fuel cell power generation plant, respectively, and the waste heat raised by these heat exchangers is dissipated. The system cooling medium is used as the cooling medium of the fuel cell main cooling water system heat exchanger installed in the fuel cell main cooling water supply system, and the exhaust heat dissipation system heat medium is heated by the fuel cell main cooling water system heat exchanger. An exhaust heat collective recovery heat exchanger is installed upstream of the exhaust heat dissipation air cooler installed in the exhaust heat dissipation system to dissipate the waste heat outside the system. An exhaust heat recovery device for a fuel cell power generation plant, characterized in that it is provided with a heat exchanger bypass system whose flow rate is controlled according to the amount of recovery request.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2147203A JPH0443567A (en) | 1990-06-07 | 1990-06-07 | Waste heat recovery device for fuel cell power generating plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2147203A JPH0443567A (en) | 1990-06-07 | 1990-06-07 | Waste heat recovery device for fuel cell power generating plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0443567A true JPH0443567A (en) | 1992-02-13 |
Family
ID=15424896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2147203A Pending JPH0443567A (en) | 1990-06-07 | 1990-06-07 | Waste heat recovery device for fuel cell power generating plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0443567A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0559653A1 (en) * | 1990-11-13 | 1993-09-15 | Perry Oceanographics, Inc. | Closed loop reactant/product management system for electrochemical galvanic energy devices |
JPH0765849A (en) * | 1992-02-03 | 1995-03-10 | Terasaki Denki Sangyo Kk | Thermoelectric co-generation system |
EP0741428A1 (en) * | 1995-05-04 | 1996-11-06 | FINMECCANICA S.p.A. AZIENDA ANSALDO | A supply system for fuel cells of the S.P.E. (SOLID POLYMER ELECTROLYTE) type for hybrid vehicles). |
WO1997033330A1 (en) * | 1996-03-06 | 1997-09-12 | Siemens Aktiengesellschaft | Process for utilising the enthalpy contained in the waste gases of a low-temperature fuel cell, and plant for carrying out said process |
-
1990
- 1990-06-07 JP JP2147203A patent/JPH0443567A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0559653A1 (en) * | 1990-11-13 | 1993-09-15 | Perry Oceanographics, Inc. | Closed loop reactant/product management system for electrochemical galvanic energy devices |
EP0559653A4 (en) * | 1990-11-13 | 1995-04-19 | Perry Oceanographics Inc | Closed loop reactant/product management system for electrochemical galvanic energy devices |
JPH0765849A (en) * | 1992-02-03 | 1995-03-10 | Terasaki Denki Sangyo Kk | Thermoelectric co-generation system |
EP0741428A1 (en) * | 1995-05-04 | 1996-11-06 | FINMECCANICA S.p.A. AZIENDA ANSALDO | A supply system for fuel cells of the S.P.E. (SOLID POLYMER ELECTROLYTE) type for hybrid vehicles). |
US5605770A (en) * | 1995-05-04 | 1997-02-25 | Finmeccanica S.P.A. Azienda Ansaldo | Supply system for fuel cells of the S.P.E. (solid polymer electrolyte) type for hybrid vehicles |
WO1997033330A1 (en) * | 1996-03-06 | 1997-09-12 | Siemens Aktiengesellschaft | Process for utilising the enthalpy contained in the waste gases of a low-temperature fuel cell, and plant for carrying out said process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6861169B2 (en) | Cogeneration of power and heat by an integrated fuel cell power system | |
JP2010508633A (en) | Fuel cell heat exchange system and method | |
CN105576269A (en) | Thermal control system of fixed mini-type fuel cell cogeneration device | |
JP2004111397A (en) | Humidification of reactant stream in fuel cell | |
JPS5828176A (en) | Fuel-cell generation system | |
JPH0443567A (en) | Waste heat recovery device for fuel cell power generating plant | |
JPH11102720A (en) | Fuel cell power generating device | |
JP2000030726A (en) | Solid polymer fuel cell system | |
GB2458112A (en) | Heat and Process Water Recovery System | |
JP2920018B2 (en) | Fuel cell power generator | |
JP2001068135A (en) | Reforming system for fuel cell | |
JP5277573B2 (en) | Fuel cell power generator | |
JP3743254B2 (en) | Fuel cell power generator | |
US20150311542A1 (en) | Electrical installation having a cooled fuel cell comprising an absorption heat engine | |
JP2002100382A (en) | Fuel cell power generator | |
JP4440676B2 (en) | Fuel cell power generation hot water supply system | |
JP3670467B2 (en) | Fuel cell power generation system | |
JPH0554903A (en) | Fuel cell power generation system | |
JPH10334932A (en) | Fuel cell power generating system and exhaust heat recovery method therein | |
JP2002289242A (en) | Fuel cell exhaust heat recovery system | |
JP4076476B2 (en) | Fuel cell power generation system and operation method thereof | |
JP3936310B2 (en) | Fuel cell surplus steam condensing type steam separator | |
JPH08195214A (en) | Phosphoric acid fuel cell generating system | |
JPH05144452A (en) | Fuel cell power generating system | |
JPH0541229A (en) | Fuel cell power generating system |