JPH0817455A - Exhaust heat recovery device for fuel cell generating unit - Google Patents

Exhaust heat recovery device for fuel cell generating unit

Info

Publication number
JPH0817455A
JPH0817455A JP6151388A JP15138894A JPH0817455A JP H0817455 A JPH0817455 A JP H0817455A JP 6151388 A JP6151388 A JP 6151388A JP 15138894 A JP15138894 A JP 15138894A JP H0817455 A JPH0817455 A JP H0817455A
Authority
JP
Japan
Prior art keywords
water
steam
recovery device
fuel cell
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6151388A
Other languages
Japanese (ja)
Inventor
Shunsuke Oga
俊輔 大賀
Naonobu Yokoyama
尚伸 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6151388A priority Critical patent/JPH0817455A/en
Publication of JPH0817455A publication Critical patent/JPH0817455A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide an exhaust heat recovery device, serving as a steam separator capable of supplying steam stably to a fuel reformer with a fine pressure fluctuation, and serving as a supplemental water collector having high recovery efficiency with low power consumption. CONSTITUTION:An exhaust heat recovery device is constituted by connecting in series through piping a pressure regulator valve 51 regulating a a vapor flow, vapor condenser 52 heat exchanging vapor with a thermal medium circulating circuit 25 connected to a cooling system in the outside, condensed water tank 53 and a supply water pump 54 feeding a storage liquid in the condensed water tank 53 to a steam separator 21, to connect the device to the steam separator 21, so as to form a circulating circuit of steam condensed water. The exhaust heat recovery device of a supplementary water collector 41 is constituted by feeding recovery water by a cooling water circuit 45 to a cooler, set up in the outside, to collect heat, again returning the water through a nozzle 44 to the supplementary water collector 41, and by cooling reaction discharge air and combustion exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃料電池発電装置の
発電時の反応熱および燃焼排ガスの熱を回収するための
燃料電池発電装置の排熱回収装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery system for a fuel cell power generator for recovering reaction heat and heat of combustion exhaust gas during power generation of the fuel cell power generator.

【0002】[0002]

【従来の技術】リン酸型燃料電池は、電解液にリン酸を
用い、メタンガス等の原燃料を水蒸気改質して得られた
燃料ガス中の水素と空気中の酸素とを、それぞれ燃料極
と空気極とに供給し、電気化学反応により発電を行うも
ので、リン酸型燃料電池を組み込んだ燃料電池発電装置
では、発電時に発生する熱を冷却水を供給して除去し、
燃料電池本体の運転温度を一定に維持するとともに、発
生熱を回収して有効活用している。
2. Description of the Related Art A phosphoric acid fuel cell uses phosphoric acid as an electrolytic solution and steam-reforms a raw fuel such as methane gas to obtain hydrogen in a fuel gas and oxygen in the air. To generate electric power by an electrochemical reaction.In a fuel cell power generator incorporating a phosphoric acid fuel cell, heat generated during power generation is removed by supplying cooling water,
The operating temperature of the fuel cell body is kept constant and the heat generated is recovered and used effectively.

【0003】また、原燃料を燃料ガスへ改質するに際し
ては、原燃料に水蒸気を加え燃料改質装置で触媒により
改質を促進する方法が採られているが、改質を定常的に
行うには所要の水蒸気量を定常的に補給する必要があ
り、水蒸気の供給装置には、これに対応した水を常時補
給する必要がある。使用する水は、高純度の水であるこ
とが必要があり、イオン交換式の水処理装置で不純物を
除去したイオン交換水が用いられるのが通例である。一
方、燃料電池の電気化学反応では発電生成水が生じ、ま
た燃料改質器では後述のように加熱用の燃焼に伴い燃焼
生成水が生じるが、これらの生成水は通常の水道水に比
べて不純物が少なく、これらの生成水を燃料改質器への
原水として用いればイオン交換式の水処理装置の負荷を
軽減することができるので、補給水回収装置を付加し
て、これらの生成水を回収する方法が採られている。
Further, when reforming raw fuel into fuel gas, a method is adopted in which steam is added to the raw fuel to promote reforming with a catalyst in a fuel reforming device, but reforming is carried out constantly. It is necessary to constantly replenish the required amount of water vapor, and it is necessary to constantly replenish the water vapor supply device with water corresponding thereto. The water used must be highly pure water, and ion-exchanged water from which impurities have been removed by an ion-exchange water treatment device is usually used. On the other hand, in the electrochemical reaction of the fuel cell, generated water is generated, and in the fuel reformer, combustion generated water is generated due to the combustion for heating as described later. Since there are few impurities, the load on the ion-exchange type water treatment device can be reduced by using these generated water as raw water to the fuel reformer. The method of collection is adopted.

【0004】図3は、従来のこの種の燃料電池発電装置
のガス系、冷却水系の基本的な系統図である。本図で
は、燃料電池本体1は模式的に示されており、図示しな
いリン酸電解質層を燃料極2と空気極3とで挟持して単
位セルを構成し、この単位セルを複数個重ねる毎に冷却
管を有する冷却板4を配設することにより構成されてい
る。
FIG. 3 is a basic system diagram of a gas system and a cooling water system of a conventional fuel cell power generator of this type. In this figure, the fuel cell main body 1 is schematically shown. A phosphoric acid electrolyte layer (not shown) is sandwiched between a fuel electrode 2 and an air electrode 3 to form a unit cell, and each unit cell is stacked. It is configured by arranging a cooling plate 4 having a cooling pipe in the.

【0005】メタンガス等の原燃料は、燃料供給回路8
から供給され、後述する水蒸気分離器21から水蒸気供
給回路10を通して送られた高圧の水蒸気とエゼクタポ
ンプ9によって混合され、燃料改質器7へと送られる。
燃料改質器7では、改質触媒下において、燃料極2から
排出されオフガス供給回路12を通して送られたオフガ
スと燃焼空気供給回路16から供給された空気との燃焼
により加熱されて、水素に富んだガスに改質されたの
ち、改質ガス供給回路11を通して燃料電池本体1の燃
料極2へと供給され、電気化学反応を起こす。
Raw fuel such as methane gas is supplied to the fuel supply circuit 8
The high-pressure steam supplied from the steam separator 21 described later through the steam supply circuit 10 is mixed by the ejector pump 9 and sent to the fuel reformer 7.
The fuel reformer 7 is heated by combustion of the off gas discharged from the fuel electrode 2 and sent through the off gas supply circuit 12 and the air supplied from the combustion air supply circuit 16 under the reforming catalyst, and is rich in hydrogen. After being reformed into the soda gas, it is supplied to the fuel electrode 2 of the fuel cell main body 1 through the reformed gas supply circuit 11 to cause an electrochemical reaction.

【0006】一方、反応空気は、反応空気供給回路14
より供給され燃料電池本体1の空気極3へと送られて電
気化学反応を起こす。燃料電池本体1で電気化学反応を
生じたのち排出されるガスのうち、燃料極2より排出さ
れるオフガスは電気化学反応に寄与しなかった水素を含
んでおり、既に述べたように燃料改質器7へと送られて
燃焼、加熱に使用される。燃焼後の水分を含んだ排出ガ
スは、燃焼排ガス回路18を通して補給水回収器41へ
と送られ、燃焼生成水が回収される。一方、空気極3よ
り排出される空気には電気化学反応で生じた水分が含ま
れており、反応空気排出回路15を通して、上記の燃焼
排ガスと同様に補給水回収器41へと送られ、発電生成
水が回収される。
On the other hand, the reaction air is the reaction air supply circuit 14
Supplied to the air electrode 3 of the fuel cell main body 1 to cause an electrochemical reaction. Of the gas discharged after the electrochemical reaction has occurred in the fuel cell body 1, the off gas discharged from the fuel electrode 2 contains hydrogen that has not contributed to the electrochemical reaction. It is sent to the vessel 7 and used for combustion and heating. The exhaust gas containing water after combustion is sent to the makeup water recovery unit 41 through the combustion exhaust gas circuit 18, and the combustion product water is recovered. On the other hand, the air discharged from the air electrode 3 contains water generated by the electrochemical reaction, and is sent to the makeup water recovery unit 41 through the reaction air discharge circuit 15 to the makeup water recovery unit 41 in the same manner as the combustion exhaust gas described above. The produced water is collected.

【0007】燃料電池本体1の冷却板4に設けられた冷
却管には、水蒸気分離器21からの冷却水が冷却水循環
ポンプ22により冷却水循環回路20を通して送られ
る。発電による生成熱を冷却し、その熱を得て高温とな
った蒸気と水の二相流からなる排出水は、熱回収用熱交
換器23に送られたのち、水蒸気分離器21へ戻され、
水蒸気と冷却水とに分離される。分離された水蒸気は、
水蒸気供給回路10を通して燃料改質に供され、冷却水
は再び燃料電池本体1の冷却板4に設けられた冷却管へ
と送られる。燃料改質に供された水蒸気に対応して減少
した冷却水はイオン交換式の水処理装置47を通して送
られる補給水により補償される。
The cooling water from the steam separator 21 is sent to the cooling pipe provided on the cooling plate 4 of the fuel cell main body 1 through the cooling water circulation circuit 20 by the cooling water circulation pump 22. The discharged water, which is a two-phase flow of steam and water that cools the heat generated by power generation and has a high temperature by receiving the heat, is sent to the heat recovery heat exchanger 23 and then returned to the steam separator 21. ,
It is separated into steam and cooling water. The separated water vapor is
The fuel is reformed through the steam supply circuit 10, and the cooling water is sent again to the cooling pipe provided on the cooling plate 4 of the fuel cell body 1. The cooling water reduced corresponding to the steam used for the fuel reforming is compensated by the makeup water sent through the ion exchange type water treatment device 47.

【0008】熱回収用熱交換器23は、高温の排出水に
蓄えられた熱を回収するためのもので、熱媒循環回路2
5で供給される熱媒を高温の排出水と熱交換させて昇温
し、排出水を冷却するとともに、外部へと熱を回収し有
効活用するものである。なお、熱回収用熱交換器23に
はバイパス配管26と三方調整弁27が設けられてお
り、三方調整弁27の操作によりバイパス配管26と熱
回収用熱交換器23の流量を調整して、圧力計28で知
られる水蒸気分離器21の圧力を一定に制御し、水蒸気
分離器21から燃料改質器7へと送られる水蒸気量の変
動を抑制している。
The heat recovery heat exchanger 23 is for recovering the heat stored in the high-temperature discharge water, and is a heat medium circulation circuit 2
The heat medium supplied in 5 is heat-exchanged with the high-temperature discharge water to raise the temperature and cool the discharge water, and at the same time, the heat is recovered to the outside for effective utilization. The heat recovery heat exchanger 23 is provided with a bypass pipe 26 and a three-way adjustment valve 27. By operating the three-way adjustment valve 27, the flow rates of the bypass pipe 26 and the heat recovery heat exchanger 23 are adjusted, The pressure of the steam separator 21, which is known by the pressure gauge 28, is controlled to be constant to suppress the fluctuation of the amount of steam sent from the steam separator 21 to the fuel reformer 7.

【0009】反応空気排出回路15を通して空気極3よ
り排出される空気と、燃焼排ガス回路18からの燃焼後
の水分を含んだ排出ガスとを供給された補給水回収器4
1においては、これらのガスを、底部に貯留された回収
水と直接接触させて冷却し、回収水循環ポンプ42、回
収水冷却器43、ノズル44によって循環して、それぞ
れの生成水を回収している。生成水回収後の排ガスは、
ガス排気回路19を通して外部へと排出される。
Make-up water collector 4 supplied with air exhausted from air electrode 3 through reaction air exhaust circuit 15 and exhaust gas containing moisture after combustion from combustion exhaust gas circuit 18.
In No. 1, these gases are cooled by directly contacting with the recovered water stored in the bottom portion, and circulated by the recovered water circulation pump 42, the recovered water cooler 43, and the nozzle 44 to recover each produced water. There is. The exhaust gas after collecting the generated water is
The gas is exhausted to the outside through the gas exhaust circuit 19.

【0010】回収水冷却器43には、冷却水回路45が
組み込まれており、回収水を冷却するとともに熱を外部
に取り出し有効活用している。一方、補給水回収器41
の底部に貯留された回収水は、必要に応じて、補給水ポ
ンプ46によりイオン交換式の水処理装置47を介して
水蒸気分離器21へと供給され、すでに述べたように燃
料改質に供された水蒸気に対応して減少した冷却水の補
給水として用いられる。
A cooling water circuit 45 is incorporated in the recovered water cooler 43 to cool the recovered water and take out heat to the outside for effective use. On the other hand, makeup water collector 41
The recovered water stored at the bottom of the water is supplied to the water vapor separator 21 by the makeup water pump 46 via the ion exchange type water treatment device 47 as required, and is used for fuel reforming as described above. It is used as make-up water for the cooling water reduced corresponding to the generated steam.

【0011】[0011]

【発明が解決しようとする課題】上述のように、従来の
燃料電池発電装置では、燃料電池本体1の冷却板4の冷
却管から排出される二相流の排出水を水蒸気分離器21
で水蒸気と冷却水に分離し、分離した水蒸気を水蒸気供
給回路10を介してエゼクタポンプへ送り原燃料と混合
して燃料改質に供しているが、水蒸気分離器21の圧力
が変動するとエゼクタポンプへ供給される水蒸気量が変
動するので、水蒸気と原燃料の混合割合が変動したり、
あるいは燃料ガスの圧力が変動したりするので、燃料極
2へ送られる改質ガスの組成、圧力にも影響を及ぼし、
ひいては燃料電池の運転条件が変動することにより燃料
電池の寿命短縮につながることとなる。したがって、水
蒸気分離器21の圧力をできるだけ一定に保つことが必
要である。
As described above, in the conventional fuel cell power generator, the two-phase flow of the discharged water discharged from the cooling pipe of the cooling plate 4 of the fuel cell body 1 is separated into the water vapor separator 21.
Is separated into steam and cooling water by the steam generator, and the separated steam is sent to the ejector pump through the steam supply circuit 10 to be mixed with the raw fuel for fuel reforming, but when the pressure of the steam separator 21 fluctuates, the ejector pump Since the amount of water vapor supplied to the air fluctuates, the mixing ratio of water vapor and raw fuel fluctuates,
Alternatively, since the pressure of the fuel gas fluctuates, it also affects the composition and pressure of the reformed gas sent to the fuel electrode 2,
Eventually, the operating conditions of the fuel cell fluctuate, which leads to shortening the life of the fuel cell. Therefore, it is necessary to keep the pressure of the steam separator 21 as constant as possible.

【0012】従来の燃料電池発電装置では、前述のよう
に、熱回収用熱交換器23にバイパス配管26を設け、
三方調整弁27により熱回収用熱交換器23へ流れる流
量を調整して水蒸気分離器21の圧力を一定に保持する
方策が採られている。すなわち、水蒸気分離器21の圧
力が設定値より高くなった場合には、バイパス配管26
を流れる流量を減少させ熱回収用熱交換器23に流れる
流量を増加させて、水蒸気分離器21へ戻る冷却水中の
水蒸気の割合を少なくして圧力を下げ、反対に圧力が設
定値より低くなった場合には、バイパス配管26を流れ
る流量を増加させ熱回収用熱交換器23に流れる流量を
減少させて、水蒸気分離器21へ戻る冷却水中の水蒸気
の割合を多くして圧力を上げる制御が行われている。
In the conventional fuel cell power generator, as described above, the heat recovery heat exchanger 23 is provided with the bypass pipe 26,
The three-way adjusting valve 27 is used to adjust the flow rate of the heat recovery heat exchanger 23 to keep the pressure of the steam separator 21 constant. That is, when the pressure of the steam separator 21 becomes higher than the set value, the bypass pipe 26
To increase the flow rate to the heat recovery heat exchanger 23 to reduce the proportion of water vapor in the cooling water returning to the water vapor separator 21 to reduce the pressure, and conversely the pressure becomes lower than the set value. In such a case, it is possible to increase the pressure by increasing the flow rate of the bypass pipe 26 and decreasing the flow rate of the heat recovery heat exchanger 23 to increase the proportion of steam in the cooling water returning to the steam separator 21. Has been done.

【0013】この方法により、水蒸気分離器21の圧力
変動を一定範囲に抑制することができるが、本方式では
戻りの冷却水中の蒸気量の増減で圧力制御を行う方式で
あるので、三方調整弁27の動きに対する水蒸気分離器
21の圧力変化の応答性が遅く、水蒸気分離器21の圧
力変動を±0.05〔kg/cm3〕以下に抑えることが困難であ
るという難点がある。
By this method, the pressure fluctuation of the water vapor separator 21 can be suppressed within a certain range. However, in this method, the pressure is controlled by increasing / decreasing the amount of steam in the returning cooling water, so that the three-way regulating valve is used. The responsiveness of the pressure change of the steam separator 21 to the movement of 27 is slow, and it is difficult to suppress the pressure fluctuation of the steam separator 21 to ± 0.05 [kg / cm 3 ] or less.

【0014】また上述のように、従来の燃料電池発電装
置では、発電生成水を含む反応排出空気と燃焼生成水を
含む燃焼排ガスを貯留された回収水に直接接触させて冷
却する、直接接触式の補給水回収器41が用いられてい
る。この方式の補給水回収器は、反応排出空気と燃焼排
ガスを熱交換器を介して間接的に冷却する間接熱交換式
の補給水回収器に比較して、回収器そのものが安価であ
り、燃焼排ガス中の溶融炭酸ガスを効率的に除去できる
等の利点を持っているが、一方、本方式においては、回
収水循環ポンプ42の所要動力が余分に必要となるこ
と、また排熱を回収する冷却水回路45の温度と補給水
回収器41の底部に貯留された回収水の温度との差が大
きくなることによって、回収水量が低下し、さらに補給
水の高温化に伴って水処理装置47のイオン交換樹脂の
寿命が低下する難点があった。
Further, as described above, in the conventional fuel cell power generator, the reaction exhaust air containing the power generation water and the combustion exhaust gas containing the combustion water are brought into direct contact with the stored recovered water to cool the direct contact type. The makeup water recovery device 41 is used. This type of makeup water collector is less expensive than the indirect heat exchange type makeup water collector that indirectly cools reaction exhaust air and combustion exhaust gas via a heat exchanger, and Although it has the advantage that the molten carbon dioxide gas in the exhaust gas can be removed efficiently, on the other hand, this method requires extra power for the recovered water circulation pump 42 and cooling for recovering the exhaust heat. Since the difference between the temperature of the water circuit 45 and the temperature of the recovered water stored at the bottom of the makeup water recovery device 41 increases, the amount of recovered water decreases, and the temperature of the makeup water of the water treatment device 47 decreases as the temperature of the makeup water increases. There is a problem that the life of the ion exchange resin is shortened.

【0015】本発明は、上記の如き問題点を考慮してな
されたもので、その目的は、 (1) 燃料電池発電装置の水蒸気分離器に連結する排熱回
収装置として、水蒸気分離器の圧力制御の応答性が速
く、圧力変動を±0.05〔kg/cm3〕以下の微小な範囲に抑
制できる排熱回収装置を提供する。 (2) また、燃料電池発電装置の補給水回収器に連結する
排熱回収装置として、補給水回収器を、安価で、燃焼排
ガス中の溶融炭酸ガスを効率的に除去でき、かつ、回収
水の温度を低く抑えて回収効率の高いものとする排熱回
収装置を提供する。
The present invention has been made in consideration of the above problems, and its objects are: (1) The pressure of a steam separator as an exhaust heat recovery device connected to the steam separator of a fuel cell power generator. (EN) Provided is an exhaust heat recovery device which has fast control response and can suppress pressure fluctuation within a minute range of ± 0.05 [kg / cm 3 ] or less. (2) In addition, as an exhaust heat recovery device connected to the makeup water recovery device of the fuel cell power generator, a makeup water recovery device is inexpensive, can efficiently remove the molten carbon dioxide gas in the combustion exhaust gas, and collects the recovered water. Provided is an exhaust heat recovery device that suppresses the temperature of the exhaust gas to a low level to achieve high recovery efficiency.

【0016】ことにある。There is one thing.

【0017】[0017]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明においては、 (1) 燃料電池本体へ冷却水を又燃料改質器へ水蒸気を供
給し、加熱排出される二相流の冷却排出水を導入して水
蒸気と水とに分離する水蒸気分離器に、圧力調整弁と、
外部の冷却回路に連結した熱媒循環回路と熱交換させる
蒸気凝縮器と、この蒸気凝縮器に一体化接続あるいは配
管のみにて接続され、略大気圧に保持された凝縮水タン
クと、凝縮水タンクの貯液を水蒸気分離器に送る給水ポ
ンプとを配管を介して直列に接続して構成される排熱回
収装置を連結し、水蒸気分離器との間に蒸気凝縮水の循
環回路を形成するものとする。
In order to solve the above-mentioned problems, in the present invention, (1) cooling water is supplied to the fuel cell main body and steam is supplied to the fuel reformer, and heat is discharged. In the steam separator which introduces the cooling discharge water of the phase flow and separates it into steam and water, a pressure adjusting valve,
A steam condenser for exchanging heat with a heat medium circulation circuit connected to an external cooling circuit, a condensed water tank integrally connected to this steam condenser or connected only by piping, and a condensed water tank kept at about atmospheric pressure, and condensed water. A waste water heat recovery device, which is configured by connecting a feed water pump that feeds the stored liquid in the tank to the steam separator in series via a pipe, is connected to form a circulation circuit of steam condensed water with the steam separator. I shall.

【0018】(2) また、燃料電池本体から排出される反
応排出空気と燃料改質器から排出される燃焼排ガスを、
補給水回収器に直接導き、底部の回収水と直接接触させ
て水分を回収するとともに、この回収水を燃料電池発電
装置の外部の冷却装置の熱交換器との間を循環させて熱
回収を行う排熱回収装置を設けるものとする。
(2) The reaction exhaust air discharged from the fuel cell body and the combustion exhaust gas discharged from the fuel reformer are
Directly lead to the make-up water collector to directly contact the bottom collected water to collect water, and circulate this collected water between the heat exchanger of the cooling device outside the fuel cell power generator to recover heat. An exhaust heat recovery device shall be provided.

【0019】[0019]

【作用】上記のように、 (1) 圧力調整弁と、外部の冷却装置に連結した熱媒循環
装置と熱交換させる蒸気凝縮器と、この蒸気凝縮器に一
体化接続あるいは配管のみにて接続され略大気圧に保持
された凝縮水タンクと、凝縮水タンクの貯液を水蒸気分
離器に送る給水ポンプとを配管を介して直列に接続して
構成される排熱回収装置を、水蒸気分離器に連結し蒸気
凝縮水の循環回路を形成することとすれば、水蒸気分離
器の圧力が設定値より高くなった場合には、圧力調整用
のバルブの開度を上げれば水蒸気分離器から蒸気凝縮器
への蒸気流量が増加して、水蒸気分離器の圧力は直ちに
下がり、反対に、水蒸気分離器の圧力が設定値より低く
なった場合には、前記バルブの開度を下げれば水蒸気分
離器から蒸気凝縮器への蒸気流量が減少して、水蒸気分
離器の圧力は直ちに上がるので、従来の制御方法に比べ
て応答の速い圧力調整が可能となり、圧力変動を±0.05
〔kg/cm3〕以下の微小な範囲に抑制することが容易とな
る。
[Operation] As described above, (1) The pressure regulating valve, the steam condenser for exchanging heat with the heat medium circulating device connected to the external cooling device, and the steam condenser are integrally connected or connected only by piping. An exhaust heat recovery device that is configured by connecting a condensed water tank that is maintained at approximately atmospheric pressure and a water supply pump that feeds the liquid stored in the condensed water tank to the steam separator in series via piping If the pressure of the steam separator becomes higher than the set value, the steam condensate will be condensed from the steam separator by increasing the opening of the valve for adjusting the pressure. The steam flow rate to the steam generator increases, the pressure of the steam separator immediately decreases, and on the contrary, when the pressure of the steam separator falls below the set value, decrease the opening of the valve to remove steam from the steam separator. The steam flow to the steam condenser is reduced and water Since the pressure of the gas separator immediately rises, it is possible to fast pressure control response than the conventional control method, ± pressure fluctuations 0.05
It becomes easy to control to a minute range of [kg / cm 3 ] or less.

【0020】なお、蒸気凝縮器で外部の熱媒循環回路へ
と回収される熱量は、蒸気流量の増大とともに増加す
る。したがって、熱媒循環回路の流量を一定に保持すれ
ば、熱媒の蒸気凝縮器熱交換器の入口および出口での温
度の差は蒸気流量の増大とともに増加する。 (2) また、燃料電池本体から排出される反応排出空気と
燃料改質器から排出される燃焼排ガスを、補給水回収器
に直接導き、底部の回収水と直接接触させて水分を回収
するとともに、この回収水を燃料電池発電装置の外部の
冷却装置の熱交換器との間を循環させて熱回収を行う排
熱回収装置を設けるものとすれば、回収水は外部の冷却
装置で冷却された低温の冷却水で直接冷却されるので、
従来の回収水冷却器を介して冷却する場合に比べて低い
温度に保持することができ、回収効率が向上する。ま
た、冷却水を外部の冷却装置の熱交換器との間を循環さ
せることとしたので、回収水冷却器を用いた場合のよう
な回収水循環ポンプを設置する必要がなく、低消費電力
で安価な補給水回収器とすることができる。
The amount of heat recovered by the steam condenser to the external heat medium circulation circuit increases as the steam flow rate increases. Therefore, if the flow rate of the heat medium circulation circuit is kept constant, the difference in temperature between the inlet and the outlet of the steam condenser heat exchanger of the heat medium increases as the vapor flow rate increases. (2) In addition, the reaction exhaust air discharged from the fuel cell main body and the combustion exhaust gas discharged from the fuel reformer are directly guided to the makeup water collector, and are brought into direct contact with the collected water at the bottom to collect water. If an exhaust heat recovery device that circulates the recovered water between the heat exchanger of the cooling device outside the fuel cell power generator and recovers the heat is provided, the recovered water is cooled by the external cooling device. Because it is directly cooled with low temperature cooling water,
The temperature can be maintained at a lower temperature as compared with the case of cooling through a conventional collected water cooler, and the recovery efficiency is improved. Also, because the cooling water is circulated between the heat exchanger of the external cooling device, there is no need to install a recovered water circulation pump as in the case of using a recovered water cooler, and low power consumption and low cost It can be used as a make-up water collector.

【0021】[0021]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1は、この発明の第1の実施例の排熱回収装
置を組み込んだ燃料電池発電装置のガス系、冷却水系の
基本的な系統図である。図3の従来例と同一の機能をも
つ構成部品については同一の符号を付して説明を省略す
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a basic system diagram of a gas system and a cooling water system of a fuel cell power generator incorporating the exhaust heat recovery system of the first embodiment of the present invention. Components having the same functions as those of the conventional example shown in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted.

【0022】本実施例の従来例との相違点は、 (1) 燃料電池本体1を冷却する冷却水循環回路20の戻
り配管が水蒸気分離器21の蒸気空間に連結されてお
り、かつ、従来の熱回収用熱交換器23および三方調整
弁27で構成された系の代わりに、水蒸気分離器21の
圧力を調整する目的で蒸気流量を調整する圧力調整弁5
1と、外部の冷却装置に連結した熱媒循環装置25と熱
交換をさせる蒸気凝縮器52と、この蒸気凝縮器52に
配管のみにて接続された凝縮水タンク53と、凝縮水タ
ンク53の貯液を水蒸気分離器21に送る給水ポンプ5
4とを配管を介して直列に接続して構成される排熱回収
装置が連結され、水蒸気分離器21との間に蒸気凝縮水
の循環回路を形成している。なお、凝縮水タンク53は
補給水回収器41と接続されており略大気圧に保持され
ている。
The difference between this embodiment and the conventional example is as follows: (1) The return pipe of the cooling water circulation circuit 20 for cooling the fuel cell main body 1 is connected to the vapor space of the water vapor separator 21 and Instead of the system composed of the heat recovery heat exchanger 23 and the three-way adjusting valve 27, a pressure adjusting valve 5 for adjusting the steam flow rate for the purpose of adjusting the pressure of the steam separator 21.
1, a steam condenser 52 for exchanging heat with the heat medium circulating device 25 connected to an external cooling device, a condensed water tank 53 connected to the steam condenser 52 only by piping, and a condensed water tank 53. Water supply pump 5 for sending the stored liquid to the steam separator 21
4 and 4 are connected in series via a pipe, and an exhaust heat recovery device is connected to form a circulation circuit of steam condensed water with the steam separator 21. The condensed water tank 53 is connected to the makeup water recovery device 41 and is maintained at substantially atmospheric pressure.

【0023】(2) また、燃料電池本体1から排出される
反応排出空気と燃料改質器7から排出される燃焼排ガス
を直接導き、底部の回収水と直接接触させて水分を回収
する補給水回収装置41において、この回収水を、冷却
水回路45により燃料電池発電装置の外部の冷却装置と
の間を循環させて熱回収する方式の排熱回収装置を設け
ている。
(2) Also, make-up water for directly guiding the reaction exhaust air discharged from the fuel cell main body 1 and the combustion exhaust gas discharged from the fuel reformer 7, and making direct contact with the recovered water at the bottom to recover water. The recovery device 41 is provided with an exhaust heat recovery device of a type in which the recovered water is circulated between the cooling water circuit 45 and a cooling device outside the fuel cell power generator to recover heat.

【0024】ことにある。(1) の構成にしたことによっ
て、水蒸気分離器21の圧力が設定値よりずれを生じた
場合、圧力調整弁51の開度調整により水蒸気分離器2
1から蒸気凝縮器52への蒸気流量を変えて、水蒸気分
離器21の圧力を直ちに設定値に戻すことが可能であ
り、従来の制御方法に比べて応答の速い圧力調整が可能
となる。したがって、水蒸気分離器21の圧力を精度よ
く制御できるので、燃料改質器7へ水蒸気量を安定して
供給でき、安定した燃料電池発電装置の運転ができる。
また、(2) の構成にしたことによって、回収水を低い温
度に保持することができ、回収効率が向上する。また、
回収水循環ポンプを設置する必要がなく、低消費電力で
安価な補給水回収装置とすることができる。
There is one thing. When the pressure of the steam separator 21 deviates from the set value due to the configuration of (1), the steam separator 2 is adjusted by adjusting the opening degree of the pressure adjusting valve 51.
It is possible to immediately return the pressure of the steam separator 21 to the set value by changing the flow rate of steam from 1 to the steam condenser 52, and it is possible to adjust the pressure with a quick response compared to the conventional control method. Therefore, the pressure of the steam separator 21 can be accurately controlled, so that the amount of steam can be stably supplied to the fuel reformer 7, and the fuel cell power generator can be operated stably.
Further, by adopting the configuration of (2), it is possible to keep the recovered water at a low temperature and improve the recovery efficiency. Also,
It is not necessary to install a recovered water circulation pump, and it is possible to provide an inexpensive makeup water recovery device with low power consumption.

【0025】図2は、この発明の第2の実施例の排熱回
収装置を組み込んだ燃料電池発電装置のガス系、冷却水
系の基本的な系統図である。第1の実施例との差は、水
蒸気分離器21に設置した排熱回収装置の蒸気凝縮器5
2と凝縮水タンク53を一体化したことにあり、その機
能は第1の実施例と同一である。図4は、図2に示した
この発明の第2の実施例における蒸気分離器21に設け
た排熱回収装置の熱媒循環回路25と、補給水回収器4
1に設けた排熱回収装置の冷却水回路45の具体的な構
成例を示したものである。
FIG. 2 is a basic system diagram of a gas system and a cooling water system of a fuel cell power generator incorporating the exhaust heat recovery system of the second embodiment of the present invention. The difference from the first embodiment is that the steam condenser 5 of the exhaust heat recovery device installed in the steam separator 21.
2 and the condensed water tank 53 are integrated, and the function thereof is the same as that of the first embodiment. FIG. 4 shows a heat medium circulation circuit 25 of the exhaust heat recovery device provided in the vapor separator 21 according to the second embodiment of the present invention shown in FIG.
1 shows a specific configuration example of a cooling water circuit 45 of the exhaust heat recovery device provided in FIG.

【0026】熱媒循環回路25においては、例えば85
℃の高温水を送り、蒸気凝縮器52での熱交換により加
熱されて例えば90℃に昇温した高温水を、クーリング
タワー63を循環する冷却水ならびにファンコイルユニ
ット62を循環する冷温水と組み合わされた蒸気焚冷温
水器61により冷却し、所定の温度として再び蒸気凝縮
器52へと循環させている。また、冷却水回路45にお
いては、例えば50℃となった回収水を、クーリングタ
ワー66を循環する冷却水と熱交換器65で熱交換させ
て例えば40℃に冷却し、ノズル44より補給水回収器
41に導き、反応排出空気と燃焼排ガスに直接接触させ
て水分を回収している。なお、熱交換器65で熱交換さ
れた回収水の一部は、必要に応じて、調節弁67で流量
調整して熱交換器64に送られ、熱媒循環回路25の冷
却に使用される。このように二つの排熱回収装置を連結
して効果的に使用するためには、熱媒循環回路25に供
給される高温水の温度が補給水回収器41の冷却水回路
45の供給水の温度より高いことが必要であり、供給さ
れる高温水の温度を60℃以上として用いれば、より効
果的である。
In the heat medium circulation circuit 25, for example, 85
The high-temperature water that has been heated by the heat exchange in the steam condenser 52 and has been heated to, for example, 90 degrees Celsius is combined with the cooling water that circulates in the cooling tower 63 and the cold-hot water that circulates in the fan coil unit 62. It is cooled by the steam-fired cold water heater 61 and is circulated again to the steam condenser 52 at a predetermined temperature. Further, in the cooling water circuit 45, for example, the recovered water having a temperature of 50 ° C. is heat-exchanged with the cooling water circulating in the cooling tower 66 by the heat exchanger 65 to be cooled to, for example, 40 ° C., and the makeup water recovery device is supplied from the nozzle 44. 41, and the water is recovered by directly contacting the reaction exhaust air and the combustion exhaust gas. It should be noted that a part of the recovered water that has been heat-exchanged by the heat exchanger 65 is adjusted in flow rate by the adjustment valve 67, if necessary, and is sent to the heat exchanger 64 to be used for cooling the heat medium circulation circuit 25. . As described above, in order to effectively use the two exhaust heat recovery devices by connecting them, the temperature of the high-temperature water supplied to the heat medium circulation circuit 25 depends on the supply water of the cooling water circuit 45 of the makeup water recovery device 41. It is necessary that the temperature is higher than the temperature, and it is more effective if the temperature of the supplied high temperature water is 60 ° C. or higher.

【0027】なお、図5は補給水回収器41に設けた排
熱回収装置を従来方式とした場合の系統を示したもので
ある。この方式においても水蒸気分離器の圧力の応答の
速い制御ができ、有効な排熱回収が可能であるが、この
方式に比べて、前述の方式では、さらに回収水冷却器4
3と回収水循環ポンプ42が不要となり、設備的にも、
消費電力的にも、また回収水の低温化の点からみても有
利である。
FIG. 5 shows a system in which the exhaust heat recovery device provided in the makeup water recovery device 41 is of the conventional type. Even in this method, the pressure response of the water vapor separator can be controlled quickly, and effective exhaust heat recovery is possible. However, compared with this method, in the above method, the recovered water cooler 4
3 and the recovered water circulation pump 42 are unnecessary, and in terms of equipment,
It is also advantageous in terms of power consumption and in terms of lowering the temperature of the recovered water.

【0028】[0028]

【発明の効果】この発明によれば、燃料電池発電装置に
用いられる排熱回収装置において、 (1) 水蒸気分離器に連結し、蒸気凝縮水の循環回路を形
成する排熱回収装置を、水蒸気分離器の内部圧力を調整
する圧力調整弁と、蒸気を外部の冷却装置に連結した熱
媒循環回路と熱交換させる蒸気凝縮器と、この蒸気凝縮
器に一体化接続あるいは配管のみにて接続され、略大気
圧に保持された凝縮水タンクと、凝縮水タンクの貯液を
水蒸気分離器に送る給水ポンプとを、配管を介して直列
に接続して構成することとしたので、水蒸気分離器の圧
力の応答の速い制御が可能となり、水蒸気分離器の圧力
を精度よく一定に保持することができるので、燃料改質
器への水蒸気量が安定して制御でき、燃料電池本体へ送
られる燃料改質ガスの圧力、流量が安定化され、燃料電
池発電装置を安定して運転することができる。
According to the present invention, in the exhaust heat recovery apparatus used in the fuel cell power generator, (1) the exhaust heat recovery apparatus connected to the steam separator to form the circulation circuit of the steam condensed water is A pressure control valve that controls the internal pressure of the separator, a steam condenser that exchanges heat with the heat medium circulation circuit that connects the steam to an external cooling device, and an integrated connection or only a pipe to this steam condenser. Since the condensed water tank held at approximately atmospheric pressure and the water supply pump for sending the stored liquid of the condensed water tank to the steam separator are configured to be connected in series via the pipe, Since the control of the pressure response is fast and the pressure of the steam separator can be kept constant with high accuracy, the amount of steam to the fuel reformer can be controlled stably and the fuel reforming sent to the fuel cell main unit can be controlled. Low gas pressure and flow rate Reduction is, the fuel cell system can be stably operated.

【0029】なお、さらに本構成においては、水蒸気分
離器の蒸気および水を閉回路中に循環させながら外部に
熱を回収する方式としているので、蒸気および水の品質
が外部の設備に影響されることなく安定に保つことがで
きる。 (2) 空気極からの反応排出空気と燃料改質器からの燃焼
排ガスを導入してこれらの水分を回収する補給水回収器
に用いる排熱回収装置を、この回収水を燃料電池発電装
置の外部に設置の冷却装置に供給して熱回収し、冷却し
て再び補給水回収装置に戻し、前記の反応排出空気と燃
焼排ガスに直接接触させてこれらを冷却する構成とした
ので、補給水回収器が安価に構成でき燃焼排ガス中の溶
融炭酸ガスが効率的に除去できるのみならず、回収水の
循環ポンプが不要となるので消費電力を小さくすること
ができ、かつ、回収水が外部の冷却装置で直接冷却され
るので、回収水温度を低い温度に設定することが可能で
あり回収効率を上げることができる。
Furthermore, in this configuration, since the heat and steam of the steam separator are circulated in the closed circuit to recover heat to the outside, the quality of the steam and water is affected by the external equipment. Can be kept stable without. (2) An exhaust heat recovery device used for a makeup water recovery device that introduces reaction exhaust air from the air electrode and combustion exhaust gas from the fuel reformer to recover these water, and uses this recovered water in the fuel cell power generator. It is configured to supply heat to an external cooling device, cool it, return it to the makeup water recovery device, and directly contact the reaction exhaust air and combustion exhaust gas to cool them. The reactor can be constructed at low cost and the molten carbon dioxide gas in the combustion exhaust gas can be removed efficiently, and the circulating pump for the recovered water is not required, so the power consumption can be reduced and the recovered water can be cooled externally. Since it is directly cooled by the device, it is possible to set the temperature of the recovered water to a low temperature and improve the recovery efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例の排熱回収装置を組み
込んだ燃料電池発電装置のガス系、冷却水系の基本的な
系統図
FIG. 1 is a basic system diagram of a gas system and a cooling water system of a fuel cell power generator incorporating an exhaust heat recovery device according to a first embodiment of the present invention.

【図2】この発明の第2の実施例の排熱回収装置を組み
込んだ燃料電池発電装置のガス系、冷却水系の基本的な
系統図
FIG. 2 is a basic system diagram of a gas system and a cooling water system of a fuel cell power generator incorporating an exhaust heat recovery device of a second embodiment of the present invention.

【図3】従来のこの種の燃料電池発電装置のガス系、冷
却水系の基本的な系統図
FIG. 3 is a basic system diagram of a gas system and a cooling water system of a conventional fuel cell power generator of this type.

【図4】この発明の第2の実施例における蒸気分離器に
設けた排熱回収装置の熱媒循環系と、補給水回収器に設
けた排熱回収装置の冷却水系の具体的な構成図
FIG. 4 is a specific configuration diagram of a heat medium circulation system of an exhaust heat recovery device provided in a vapor separator and a cooling water system of an exhaust heat recovery device provided in a makeup water recovery device according to a second embodiment of the present invention.

【図5】蒸気分離器に設けたこの発明の第2の実施例に
おける排熱回収装置の熱媒循環系と、補給水回収器に設
けた従来の排熱回収装置の冷却水系の具体的な構成図
FIG. 5 is a specific example of a heat medium circulating system of an exhaust heat recovery device according to a second embodiment of the present invention provided in a steam separator and a cooling water system of a conventional exhaust heat recovery device provided in a makeup water recovery device. Diagram

【符号の説明】[Explanation of symbols]

1 燃料電池本体 4 冷却板 7 燃料改質器 8 燃料供給回路 9 エゼクタポンプ 10 水蒸気供給回路 14 反応空気供給回路 15 反応空気排出回路 16 燃焼空気供給回路 18 燃焼ガス排出回路 19 ガス排気回路 20 冷却水循環回路 21 水蒸気分離器 25 熱媒循環回路 41 補給水回収器 44 ノズル 45 冷却水回路 46 補給水ポンプ 47 水処理装置 51 圧力調整弁 52 蒸気凝縮器 53 凝縮水タンク 54 給水ポンプ 1 Fuel Cell Main Body 4 Cooling Plate 7 Fuel Reformer 8 Fuel Supply Circuit 9 Ejector Pump 10 Steam Supply Circuit 14 Reactive Air Supply Circuit 15 Reactive Air Discharge Circuit 16 Combustion Air Supply Circuit 18 Combustion Gas Discharge Circuit 19 Gas Exhaust Circuit 20 Cooling Water Circulation Circuit 21 Water vapor separator 25 Heat medium circulation circuit 41 Make-up water collector 44 Nozzle 45 Cooling water circuit 46 Make-up water pump 47 Water treatment device 51 Pressure adjusting valve 52 Steam condenser 53 Condensed water tank 54 Water supply pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】燃料電池本体へ冷却水を又燃料改質器へ水
蒸気を供給し、燃料電池本体で加熱排出された二相流の
冷却排出水を導入して蒸気と水とに分離する水蒸気分離
器に連結され、蒸気凝縮水の循環回路を形成する排熱回
収装置において、水蒸気分離器の内部圧力を調整する圧
力調整弁と、蒸気を外部の冷却装置に連結した熱媒循環
回路と熱交換させる蒸気凝縮器と、この蒸気凝縮器に一
体化接続あるいは配管のみにて接続され、略大気圧に保
持された凝縮水タンクと、凝縮水タンクの貯液を水蒸気
分離器に送る給水ポンプとを、配管を介して直列に接続
して構成したことを特徴とする燃料電池発電装置の排熱
回収装置。
1. Steam for supplying cooling water to a fuel cell main body and steam to a fuel reformer and introducing cooling exhaust water of a two-phase flow heated and discharged in the fuel cell main body to separate steam and water. In an exhaust heat recovery device that is connected to a separator and forms a circulation circuit for steam condensed water, a pressure control valve that adjusts the internal pressure of the steam separator and a heat medium circulation circuit that connects steam to an external cooling device and heat A steam condenser to be exchanged, a condensed water tank that is integrally connected to this steam condenser or connected only by piping, and is maintained at approximately atmospheric pressure, and a water supply pump that sends the stored liquid of the condensed water tank to the steam separator. An exhaust heat recovery device for a fuel cell power generator, wherein the exhaust gas heat recovery device is connected in series via a pipe.
【請求項2】燃料電池本体の空気極から排出される反応
排出空気と、さらには燃料改質器から排出される燃焼排
ガスを導入し、冷却してこれらに含まれる水分を回収水
として回収する燃料電池発電装置の補給水回収器に用い
る排熱回収装置において、前記回収水を、前記補給水回
収器と燃料電池発電装置の外部に設置の冷却装置で冷却
される熱交換器との間を循環させて熱回収することを特
徴とする燃料電池発電装置の排熱回収装置。
2. The reaction exhaust air discharged from the air electrode of the fuel cell main body and the combustion exhaust gas discharged from the fuel reformer are introduced and cooled to recover water contained therein as recovered water. In an exhaust heat recovery device used for a makeup water recovery device of a fuel cell power generation device, the recovered water is passed between the makeup water recovery device and a heat exchanger cooled by a cooling device installed outside the fuel cell power generation device. An exhaust heat recovery device for a fuel cell power generator, which circulates to recover heat.
JP6151388A 1994-07-04 1994-07-04 Exhaust heat recovery device for fuel cell generating unit Pending JPH0817455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6151388A JPH0817455A (en) 1994-07-04 1994-07-04 Exhaust heat recovery device for fuel cell generating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6151388A JPH0817455A (en) 1994-07-04 1994-07-04 Exhaust heat recovery device for fuel cell generating unit

Publications (1)

Publication Number Publication Date
JPH0817455A true JPH0817455A (en) 1996-01-19

Family

ID=15517497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6151388A Pending JPH0817455A (en) 1994-07-04 1994-07-04 Exhaust heat recovery device for fuel cell generating unit

Country Status (1)

Country Link
JP (1) JPH0817455A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174785A (en) * 2003-12-12 2005-06-30 Toyo Radiator Co Ltd Fuel cell system
WO2005043658A3 (en) * 2003-11-04 2006-01-12 Nissan Motor Fuel cell system and water recovery method thereof
CN108428911A (en) * 2018-02-07 2018-08-21 中国矿业大学 A kind of heat management system and method for high-temperature solid fuel battery pile
CN108913216A (en) * 2018-08-06 2018-11-30 唐山科源环保技术装备有限公司 The method for controlling the self-produced vapor superpressure discharge of gas generator
CN114956224A (en) * 2022-04-11 2022-08-30 青岛宏聚环保工程有限公司 Mechanical compression type evaporation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043658A3 (en) * 2003-11-04 2006-01-12 Nissan Motor Fuel cell system and water recovery method thereof
CN100461520C (en) * 2003-11-04 2009-02-11 日产自动车株式会社 Fuel cell system and water recovery method thereof
JP2005174785A (en) * 2003-12-12 2005-06-30 Toyo Radiator Co Ltd Fuel cell system
JP4508622B2 (en) * 2003-12-12 2010-07-21 株式会社ティラド Fuel cell system
CN108428911A (en) * 2018-02-07 2018-08-21 中国矿业大学 A kind of heat management system and method for high-temperature solid fuel battery pile
CN108913216A (en) * 2018-08-06 2018-11-30 唐山科源环保技术装备有限公司 The method for controlling the self-produced vapor superpressure discharge of gas generator
CN108913216B (en) * 2018-08-06 2023-06-09 唐山科源环保技术装备有限公司 Method for controlling overpressure discharge of self-produced steam of gas producer
CN114956224A (en) * 2022-04-11 2022-08-30 青岛宏聚环保工程有限公司 Mechanical compression type evaporation system

Similar Documents

Publication Publication Date Title
US6316134B1 (en) Fuel cell electric power generation system
JP4482057B2 (en) Polymer electrolyte fuel cell system
US7507487B2 (en) Solid polymer fuel cell with reactant air humidified by a processed water tank
JPS61135066A (en) Operation of fuel battery power plant
KR20020086641A (en) Solid high polymer type fuel cell power generating device
RU2332753C2 (en) Thermoregulation in electrochemical fuel elements
US20030118504A1 (en) Method and apparatus for by-product removal in a hydrogen generation system
JP3240840B2 (en) Method of adjusting cooling water temperature of fuel cell power generator
EP1168476B1 (en) Fuel cell power generating system and operation method
JP2811905B2 (en) Steam generator for fuel cell power generation system
JPH0817455A (en) Exhaust heat recovery device for fuel cell generating unit
US8328886B2 (en) Fuel processor having temperature control function for co shift reactor and method of operating the fuel processor
JPH08124587A (en) Fuel cell power generating plant
JP2002100382A (en) Fuel cell power generator
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP5102511B2 (en) Fuel cell system
JPH08250143A (en) Operating method for steam separator of fuel-cell generating system
JP3997466B2 (en) Fuel cell power generator and operation control method thereof
JPH07192744A (en) Steam separating system of fuel cell
JPH04138671A (en) Fuel cell
JP2002008690A (en) Fuel cell power generation system and its running method
JP2001035520A (en) Waste heat recovering apparatus for fuel cell generating apparatus
JP2005158660A (en) Fuel cell power generating device
JP2002151095A (en) Fuel cell generating system and driving method thereof
JPH0922715A (en) Power generating device by fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14