JP3695309B2 - Polymer electrolyte fuel cell system and operation method thereof - Google Patents

Polymer electrolyte fuel cell system and operation method thereof Download PDF

Info

Publication number
JP3695309B2
JP3695309B2 JP2000335482A JP2000335482A JP3695309B2 JP 3695309 B2 JP3695309 B2 JP 3695309B2 JP 2000335482 A JP2000335482 A JP 2000335482A JP 2000335482 A JP2000335482 A JP 2000335482A JP 3695309 B2 JP3695309 B2 JP 3695309B2
Authority
JP
Japan
Prior art keywords
water
cooling water
fuel cell
water tank
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000335482A
Other languages
Japanese (ja)
Other versions
JP2002141095A (en
Inventor
彰成 中村
正高 尾関
哲也 上田
達雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000335482A priority Critical patent/JP3695309B2/en
Priority to PCT/JP2001/009133 priority patent/WO2002035632A1/en
Priority to CN018053033A priority patent/CN1217439C/en
Priority to EP01978823A priority patent/EP1333518B1/en
Priority to US10/169,489 priority patent/US7052790B2/en
Priority to KR10-2002-7007895A priority patent/KR100526223B1/en
Publication of JP2002141095A publication Critical patent/JP2002141095A/en
Application granted granted Critical
Publication of JP3695309B2 publication Critical patent/JP3695309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体高分子形燃料電池を用いて発電を行なう固体高分子形燃料電池システムに関するものである。
【0002】
【従来の技術】
以下に、従来の固体高分子形燃料電池システムについて、図面を参照しながら説明する。
【0003】
図6は従来の固体高分子形燃料電池システムの構成図であり、固体高分子形の燃料電池1に対して冷却水タンク2から冷却水路3を通じて冷却水ポンプ4により純水冷却水を供給し、燃料電池1を通過した純水冷却水は、ラジエータのような熱交換器5によって冷却された後に冷却水タンク2に帰還する冷却水循環系統を構成している。
【0004】
この時、冷却水の冷却を行なう熱交換器5より導電性イオンが純水冷却水中に溶け出し、この導電性イオンが増加すると燃料電池1内でショートして発電量が低下する問題があるため、冷却水中から導電性イオンを除去する必要があり、そのために、冷却水路3の途上に、熱交換器5から溶け出した伝導性イオンを除去するためのイオン交換樹脂を用いたイオン除去フィルター6を設けている。
【0005】
また、イオン除去フィルター6を冷却水路3上に設置することにより、燃料電池1が高負荷運転で冷却水を多く必要とする場合には、イオン除去フィルター6での冷却水の圧力損失が大きくなるので、圧力損失の低減を図るためのバイパス路7を設け、また、低負荷運転でイオン除去フィルター6の圧力損失が影響を与えない程度の少量の冷却水を使用する場合には、イオン除去フィルター6に積極的に純水冷却水を通過させることのできる流量制御弁8をバイパス路7上に設けている。
【0006】
【発明が解決しようとする課題】
固体高分子形燃料電池システムは通常70〜80℃の冷却水を循環させて運転する。上記従来例に示した固体高分子形燃料電池システムの冷却水路3は密閉構成を取っているため、システムを運転すると運転前の常温冷却水から発電中の高温冷却水に冷却水温度が変化し、それに従って冷却水タンク2内部の圧力および冷却水路3の水圧が上昇する。またシステム運転の停止時には、発電中の高温冷却水から運転終了後の常温冷却水に冷却水温度が変化し、それに従って冷却水タンク2内部の圧力および冷却水路3の水圧が下降する。したがって、温度変化による圧力変動に耐えうる冷却水タンク2および冷却水路3の構造にする必要がある。
【0007】
また、イオン除去フィルター6は冷却水路3にあるため、冷却水の流量が増えることによりイオン除去フィルター6を通過する冷却水量が増加し、その結果、冷却水路3の圧力損失が増加する。従来例ではこれを回避するにバイパス路7および流量調整弁8を用いているが、部品点数の増加によりコストが増加する。
【0008】
また、冷却水ポンプ4の能力を上げるという方法もあるが、これもコスト増加とともにシステムを運転する補機の消費電力が増加し、システムの総合的な効率を下げる要因となる。
【0009】
また、イオン交換樹脂(特に陰イオン交換樹脂)は、耐用温度が比較的低いものがほとんどであるが、固体高分子形の燃料電池1を冷却する冷却水の温度は70〜80℃程度である。そのため、冷却水路3に備えられたイオン除去フィルター6内部のイオン交換樹脂は、耐用温度の点で厳しい条件での長時間運転により熱劣化がおこり、寿命が短くなり易く、さらに、冷却水の水質が良好な場合においても、同様に70〜80℃程度の冷却水が流れる。これは非効率であるとともに、イオン除去フィルター6内部のイオン交換樹脂の寿命をさらに短くする。
【0010】
本発明は、上記従来の固体高分子形燃料電池システムが有する課題を考慮して、低コストで簡単な構成で、冷却水の水質維持のために用いるイオン交換樹脂の長寿命化を図り高効率な固体高分子形燃料電池システムとその運転方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
以上のような課題を解決するため、本発明は、燃料ガスと酸化剤ガスを用いて発電を行なう固体高分子形の燃料電池と、前記燃料電池を冷却する冷却水を貯える冷却水タンクと、前記燃料電池より排出される排気燃料ガスを冷却し該排気燃料ガスに含まれる水蒸気を凝縮させる燃料側凝縮手段および/または前記燃料電池より排出される排気酸化剤ガスを冷却し該排気酸化剤ガスに含まれる水蒸気を凝縮させる酸化剤側凝縮手段と、前記燃料側凝縮手段および/または前記酸化剤側凝縮手段で凝縮した凝縮水を貯える大気に開放された凝縮水タンクとを具備し、前記冷却水タンクより前記凝縮水タンクに前記冷却水タンクの余剰冷却水を排出する水排出路を設け、前記冷却水タンクは前記水排出路及び前記凝縮水タンクを通じて大気開放されていることを特徴とする固体高分子形燃料電池システムである。
【0012】
また、本発明は、前記凝縮水タンクより前記冷却水タンクに水を供給する水供給手段を有する水供給路を具備し、前記水供給路に前記冷却水タンクに供給する水の水質を調整する水質処理手段を設け、前記水供給手段を作動することにより前記水供給路を通じて前記水処理手段にて水質調整された水を前記冷却水タンクに供給することを特徴とする固体高分子形燃料電池システムである。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0017】
(実施の形態1)
図1は、本発明の実施の形態1における固体高分子形燃料電池システムを示す構成図である。燃料ガスと酸化剤ガスを用いて発電を行なう固体高分子形の燃料電池11と、燃料電池11を冷却する冷却水を貯える冷却水タンク12と、冷却水を循環させる冷却水路13と、冷却水を冷却水路13に循環させる手段としての冷却水ポンプ14と、冷却水を冷却する熱交換器15と、燃料電池11より排出される排気燃料ガスを冷却し含まれる水蒸気を凝縮させる燃料側凝縮器16と、燃料電池11から排出される排気空気を冷却し含まれる水蒸気を凝縮させる空気側凝縮器17と、燃料側凝縮器16と空気側凝縮器器17とで凝縮した水を蓄える大気に開放された凝縮水タンク18と、凝縮水を冷却水タンク12に送る水供給ポンプ19を設けた水供給路20と、冷却水タンク12内部の余剰冷却水を排出する水排出路21とを備えている。
【0018】
次に、本実施の形態における固体高分子形燃料電池システムの運転動作を説明する。
【0019】
燃料電池11に供給する燃料ガスと酸化剤ガスは、温度・湿度調整されたガスである。燃料ガスとしては水素ガスを用いてもよいし、メタン等の炭化水素ガスを水蒸気改質することによって得られるような水素リッチな燃料ガスでも良い。また、酸化剤ガスは酸素ガスを用いてもよいし、空気等の酸素を含むガスでもよい。
【0020】
燃料電池11の電気化学反応によって燃料ガス内の水素と酸化剤ガス内の酸素が消費され、酸化剤ガス側に水が生成される。燃料電池11から排出された酸化剤ガスは酸化剤側凝縮器17に導かれ外気と熱交換することにより温度が低下し、排出空気に含まれる水蒸気は凝縮して水として凝縮タンク18に回収される。一方、燃料電池11から排出された排気燃料ガスは燃料側凝縮器16に導かれ外気と熱交換することにより温度が低下し、排気燃料ガスに含まれる水蒸気は凝縮し水として凝縮タンク18に回収される。
【0021】
さらに、発電を行なう燃料電池11の温度を70℃以上で一定に保つために、冷却水路13を通して、冷却水ポンプ14で水を循環させ、熱交換器15において燃料電池11で発生した熱を外部へ放出する。また冷却水タンク12内部の冷却水が減少したときは、水供給路20の水供給ポンプ19を作動させることにより冷却水タンク12に凝縮水タンク18の水を供給する。このとき水が過剰に入ったとしても、水排出路21により余剰冷却水は凝縮タンク18に排出される。さらに、冷却水タンク12の上方にある気体は水排出路21を通じて大気開放された凝縮水タンク18と接続されているため、冷却水タンク12内部の圧力は常に大気開放された状態と同等である。
【0022】
上記本実施の形態における固体高分子形燃料電池システムの構成をとると、冷却水タンク12内部の圧力は常に大気開放された状態と同等である。そのためシステム運転前の常温から発電中の高温に冷却水温度が変化すると、温度上昇により冷却水タンク12の上方にある気体が膨張すると共に冷却水がそのときの温度の飽和水蒸気圧に対応して蒸発する。つまり、冷却水タンク12の上方にある気体は飽和水蒸気を含む湿り気体となる。このとき冷却水タンク12内部の圧力は常に大気開放された状態と同等である。この湿り気体は、水排出路21を通じて外気に放熱しつつ凝縮水タンク18に入る。凝縮水タンク18内部の水は通常40℃以下のため、凝縮水タンク内部の気体は40℃以下の飽和水蒸気を含む気体である。したがって、冷却水タンク12からの湿り気体は、水排出路21と凝縮水タンク18により40℃程度に冷却され、過飽和分の水蒸気は凝縮し水として凝縮水タンク18に回収される。
【0023】
定常運転中は、冷却水タンク内部の温度は70℃以上の一定温度であるため、冷却水タンク12の上方の気体は体積変化しないし、冷却水の蒸発もほとんど起こらない。またシステム運転の停止時には、発電中の高温冷却水から運転終了後の常温冷却水に冷却水温度が変化することにより冷却水タンク12内部の気体が体積収縮するとともに水蒸気が凝縮する。このとき減少した体積に相当する気体が大気開放された凝縮水タンク18から水排出路21を通じて冷却水タンク12に流入するため、冷却水タンク12内部の圧力は停止時においても常に大気開放された状態と同等である。
【0024】
すなわち、本実施の形態に示す固体高分子形燃料電池システムの構成をとることによって、冷却水タンク12内部の圧力を常に大気開放と同等の状態に保つことができ、冷却水タンク12および冷却水路13を圧力変動に耐えうる構造にする必要がない。
【0025】
なお、本実施の形態では、燃料側凝縮器16と酸化剤側凝縮器17の両方を設けているが、燃料側凝縮器16と酸化剤側凝縮器17のどちらか一方を設けても同等の効果がある。
【0026】
さらに、本実施の形態では、燃料側凝縮器16と酸化剤側凝縮器17は、外気と熱交換する空冷式熱交換器として説明したが、水と熱交換する水冷式熱交換器を用いても同等の効果がある。
【0027】
(実施の形態2)
図2は、本発明の実施の形態2における固体高分子形燃料電池システムを示す構成図である。ただし、図1と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。
【0028】
本実施の形態では、水供給路20にイオン除去フィルター22を備えている点で図1に示した実施の形態1と異なっている。
【0029】
イオン除去フィルター22はイオン交換樹脂を用いて水に含まれているイオンを除去するものであり、冷却水タンク12に供給する水の水質調整を行なう。
【0030】
上記本実施の形態に示す固体高分子形燃料電池システムの構成をとると、実施の形態1で示した作用とともに、冷却水タンク12に供給する水を水質調整できる。しかも凝縮水は40℃程度であるため、イオン交換樹脂の耐用温度以下での使用が可能となり、熱劣化は防止することができる。
【0031】
また、上記本実施の形態に示す固体高分子形燃料電池システムの構成をとると、以下に示すような運転も実現できる。
【0032】
冷却水タンク12内部の冷却水が減少していないときに水供給ポンプ19を作動させる。すると、水供給路20を通じて水質調整された水が冷却水タンク12に供給される。それに応じて過剰となった冷却水は水排出路21を通じて排出され、凝縮水タンク18に回収される。冷却水タンク12に供給される水は、排出される水と比較して水質は良好である。そのため、冷却水の水質を良化することができる。
【0033】
また、凝縮水タンク18に回収される冷却水は70℃以上の高温であるが、燃料側凝縮器16および空気側凝縮器17で凝縮し回収される凝縮水は40℃程度であるため、イオン除去フィルター22を通過する水はイオン交換樹脂の耐用温度を超えることはない。すなわちイオン交換樹脂の熱劣化がなく、イオン除去フィルター22の長寿命化を実現しつつシステム運転中においても冷却水の水質維持を行なうことができる。
【0034】
また、これによりシステム運転中に常時水供給ポンプ19を作動させて、常時冷却水の水質維持を行なうことも可能となる。
【0035】
さらに、上記本実施の形態に示す固体高分子形燃料電池システムの構成では、イオン除去フィルター22は水供給路20にある。そのため、従来例に示したようなバイパス路7および流量調整弁8を用いる必要も、冷却水ポンプ4の能力を上げる必要もない。すなわち、部品点数の増加や能力アップによるコスト増加や補機の消費電力増加のない、低コストで高効率な固体高分子形燃料電池システムを実現できる。
【0036】
したがって、本実施の形態に示す固体高分子形燃料電池システムの構成をとることによって、実施の形態1にて説明した作用とともに、冷却水の水質維持かつイオン除去フィルター22の長寿命化を実現するとともに、低コストでシステムの総合的な効率を向上することが実現できる。
【0037】
さらに、本実施の形態に示す固体高分子形燃料電池システムの効果的な運転方法を説明する。
【0038】
本運転方法とは、システム運転の起動時と終了時のどちらか一方または両方のときに、水供給ポンプ19を作動させて冷却水の水質を維持する運転方法である。
【0039】
システム起動時の冷却水は低温である。それにより冷却水タンク12に供給される水と排出される水との温度差はほとんどないため、熱ロスがほとんどない。また、システム運転の終了時の場合、燃料電池11での発熱がないため冷却水は供給される水と排出される水との熱量分だけ熱量が減少し、その熱量に応じて冷却水温度が下がる。すなわち、冷却水および燃料電池11をより早く冷却するため終了時間を短縮できる効果がある。
【0040】
本運転方法は、発電中に燃料電池から発生する熱を回収し給湯・暖房等に熱利用する固体高分子形燃料電池コージェネレーションシステムにおいてより効果的である。
【0041】
(実施の形態3)
図3は、本発明の実施の形態3における固体高分子形燃料電池システムを示す構成図である。ただし、図2と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。
【0042】
本実施の形態に示す固体高分子形燃料電池システムでは、水供給ポンプ19の作動を制御する制御部23があり、制御部23にはシステムの運転回数をカウントし記録する運転回数記録手段24と運転回数を初期状態にリセットする運転回数リセット手段25を備えている。
【0043】
運転回数記憶手段24は、システム運転の終了後に運転回数nに1加えた値n+1を記憶し直す。また、運転回数リセット手段25は水供給ポンプ19の作動終了後に運転回数記憶手段24の運転回数nを初期状態の0に変更する。
【0044】
次に、本実施の形態における固体高分子形燃料電池システムの運転動作を説明する。
【0045】
運転回数記憶手段24が記憶している運転回数nと水供給ポンプ19を作動させるための運転回数のしきい値n1を比較して、n>n1のとき、制御部23から指令を出し、水供給ポンプ19を作動する。水供給ポンプ19作動終了の指令を制御部23から水供給ポンプ19に出して水供給ポンプ19の作動を終了した後、運転回数リセット手段25にて運転回数記憶手段24の運転回数nを初期状態の0にする。n<n1またはn=n1のとき、水供給ポンプ19は作動しない。
【0046】
制御部23から水供給ポンプ19に出す指令は、作動可能ないずれの時間でもよい。また、複数回指令を出しても良い。複数回指令を出す場合は、その最終指令による水供給ポンプ19の作動・作動終了の後に、運転回数リセット手段25にて運転回数記憶手段24の運転回数nを初期状態の0にする。
【0047】
したがって本実施の形態に示す固体高分子形燃料電池システムの構成をとり、水供給ポンプ19の作動を運転回数で管理することによって、冷却水の水質維持に作動する水供給ポンプ19を最適作動することができる。それにより最適な冷却水の水質維持を可能にし、かつ、イオン除去フィルター22の寿命をより長寿命化することが可能である。すなわち、冷却水の水質維持を行なうイオン除去フィルター22の長寿命化を実現できる固体高分子方燃料電池システムである。
【0048】
なお本実施の形態では、運転回数記憶手段24はシステム運転の終了後に運転回数nに1加えた値n+1を記憶し直す、としたが、運転回数をnからn+1に記憶し直すのは、起動、終了を含むシステム運転のいずれの時であっても同じ効果が得られる。
【0049】
(実施の形態4)
図4は、本発明の実施の形態4における固体高分子形燃料電池システムを示す構成図である。ただし、図2と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。
【0050】
本実施の形態に示す固体高分子形燃料電池システムでは、水供給ポンプ19の作動を制御する制御部26があり、制御部26にはシステムの運転時間をカウントし記録する運転時間記録手段27と運転時間を初期状態にリセットする運転時間リセット手段28を備えている。
【0051】
運転時間記憶手段27は、システム運転の積算時間をカウントしその時間を記憶し直す。また、運転時間リセット手段28は水供給ポンプ19の作動終了後に運転時間記憶手段27の運転時間を初期状態の0に変更する。
【0052】
次に、本実施の形態における固体高分子形燃料電池システムの運転動作を説明する。
【0053】
運転時間記憶手段27が記憶している運転時間Tと水供給ポンプ19を作動させるための運転時間のしきい値T1を比較して、T>T1のとき、制御部26から指令を出し、水供給ポンプ19を作動する。水供給ポンプ19作動終了の指令を制御部26から水供給ポンプ19に出して水供給ポンプ19の作動を終了した後、運転時間リセット手段28にて運転時間記憶手段27の運転時間Tを初期状態の0にする。T<T1またはT=T1のとき、水供給ポンプ19は作動しない。
【0054】
制御部26から水供給ポンプ19に出す指令は、作動可能ないずれの時間でもよい。また、複数回指令を出しても良い。複数回指令を出す場合は、その最終指令による水供給ポンプ19の作動・作動終了の後に、運転時間リセット手段28にて運転時間記憶手段27の運転時間Tを初期状態の0にする。
【0055】
したがって本実施の形態に示す固体高分子形燃料電池システムの構成をとり、水供給ポンプ19の作動を運転時間で管理することによって、冷却水の水質維持に作動する水供給ポンプ19を最適作動することができる。それにより最適な冷却水の水質維持を可能にし、かつ、イオン除去フィルター22の寿命をより長寿命化することが可能である。すなわち、冷却水の水質維持を行なうイオン除去フィルター22の長寿命化を実現できる固体高分子方燃料電池システムである。
【0056】
(実施の形態5)
図5は、本発明の実施の形態5における固体高分子形燃料電池システムを示す構成図である。ただし、図2と同部材かつ同機能を有するものについては同一符号を付与しており、説明を省略する。
【0057】
本実施の形態に示す固体高分子形燃料電池システムでは、冷却水路13を循環する冷却水の水質を検知する水質検知器29と、水供給ポンプ19の作動を制御する制御部30を備えている。
【0058】
また制御部30には第1の水準値と第2の水準値を備え、第1の水準値は水質検知器29の示す値がその値より悪化した場合に水供給ポンプ19を作動させるしきい値であり、第2の水準値は水供給ポンプ19作動中に水質検知器29の示す値がその値より良化した場合に水供給ポンプ19の作動を停止させるしきい値である。
【0059】
本実施の形態では特に水質検知器29として導電率計を用いる。さらに第1の水準値として導電率a1を、第2の水準値として導電率a2を使用する。
【0060】
次に、本実施の形態における固体高分子形燃料電池システムの運転動作を説明する。
【0061】
水質検知器29で計測された導電率aが、水供給ポンプ19を作動させるための第1の水準値である導電率a1を比較して、a>a1のとき、制御部30から指令を出し、水供給ポンプ19を作動する。水供給ポンプ19は、a<a2となるまで作動し続ける。
【0062】
水供給ポンプ19の作動中に、水質検知器29で計測された導電率aが、水供給ポンプ19の作動を停止させるための第2の水準値である導電率a2を比較して、a<a2のとき、制御部30から指令を出し、水供給ポンプ19の作動を停止する。水供給ポンプ19は、再度a>a1となるまで停止し続ける。
【0063】
なお、制御部30から水供給ポンプ19に出す指令は、作動可能ないずれの時間でもよい。
【0064】
したがって本実施の形態に示す固体高分子形燃料電池システムの構成をとり、水供給ポンプ19の作動を冷却水の水質で管理することによって、冷却水の水質維持に作動する水供給ポンプ19を最適作動することができる。それにより最適な冷却水の水質維持を可能にし、かつ、イオン除去フィルター22の寿命をより長寿命化することが可能である。すなわち、冷却水の水質維持を行なうイオン除去フィルター22の長寿命化を実現できる固体高分子方燃料電池システムである。
【0065】
なお、本実施の形態では特に冷却水の水質検知方法として導電率計を用いた導電率計測について説明を行なったが、pHを用いて冷却水の水質を管理しても同様の効果が得られる。
【0066】
【発明の効果】
以上説明したことから明らかなように、本発明は、冷却水路の圧力を常に大気開放と同等の状態に保つことができる固体高分子形燃料電池システムを提供するが実現できる。
【0067】
また、冷却水の水質維持を実現し、かつイオン除去フィルターの熱劣化を防ぎ長寿命化を実現するとともに、低コストでシステムの総合的な効率の高い固体高分子形燃料電池システムを提供することが実現できる。
【0068】
なお、システム運転の起動時、終了時のいずれか一方または両方に水供給手段を作動することにより、熱ロスが少なく、また終了時間の短かい固体高分子形燃料電池システムを提供することが実現できる。
【0069】
さらに、水供給手段の作動を運転回数または運転時間または冷却水の水質で管理することにより最適な冷却水の水質維持を可能にし、イオン除去フィルターの長寿命化が可能な固体高分子形燃料電池システムを提供することが実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における固体高分子形燃料電池システムを示す構成図
【図2】本発明の実施の形態2における固体高分子形燃料電池システムを示す構成図
【図3】本発明の実施の形態3における固体高分子形燃料電池システムを示す構成図
【図4】本発明の実施の形態4における固体高分子形燃料電池システムを示す構成図
【図5】本発明の実施の形態5における固体高分子形燃料電池システムを示す構成図
【図6】従来の固体高分子形燃料電池システムを示す構成図
【符号の説明】
11 燃料電池
12 冷却水タンク
13 冷却水路
14 冷却水ポンプ
15 熱交換器
22 イオン除去フィルター
16 燃料側凝縮器
17 空気側凝縮器
18 凝縮水タンク
19 水供給ポンプ
20 水供給路
21 水排出路
23,26,30 制御部
24 運転回数記憶手段
25 運転回数リセット手段
27 運転時間記憶手段
28 運転時間リセット手段
29 水質検知器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell system that generates power using a polymer electrolyte fuel cell.
[0002]
[Prior art]
Hereinafter, a conventional polymer electrolyte fuel cell system will be described with reference to the drawings.
[0003]
FIG. 6 is a block diagram of a conventional polymer electrolyte fuel cell system. Pure water cooling water is supplied to a polymer electrolyte fuel cell 1 from a cooling water tank 2 through a cooling water channel 3 by a cooling water pump 4. The pure water cooling water that has passed through the fuel cell 1 constitutes a cooling water circulation system that returns to the cooling water tank 2 after being cooled by a heat exchanger 5 such as a radiator.
[0004]
At this time, conductive ions are dissolved in the pure water cooling water from the heat exchanger 5 that cools the cooling water, and if the conductive ions increase, there is a problem that a short circuit occurs in the fuel cell 1 and the power generation amount decreases. Therefore, it is necessary to remove conductive ions from the cooling water. For this reason, an ion removal filter 6 using an ion exchange resin for removing conductive ions dissolved from the heat exchanger 5 in the middle of the cooling water channel 3. Is provided.
[0005]
In addition, by installing the ion removal filter 6 on the cooling water channel 3, when the fuel cell 1 requires a large amount of cooling water in a high load operation, the pressure loss of the cooling water in the ion removal filter 6 increases. Therefore, the bypass path 7 for reducing the pressure loss is provided, and when using a small amount of cooling water that does not affect the pressure loss of the ion removal filter 6 in low load operation, the ion removal filter is used. 6 is provided on the bypass passage 7 with a flow rate control valve 8 through which pure water cooling water can be actively passed.
[0006]
[Problems to be solved by the invention]
The polymer electrolyte fuel cell system is usually operated by circulating cooling water at 70 to 80 ° C. Since the cooling water channel 3 of the polymer electrolyte fuel cell system shown in the above conventional example has a hermetic configuration, when the system is operated, the cooling water temperature changes from normal temperature cooling water before operation to high temperature cooling water during power generation. Accordingly, the pressure inside the cooling water tank 2 and the water pressure in the cooling water channel 3 rise. When the system operation is stopped, the cooling water temperature changes from the high-temperature cooling water during power generation to the normal temperature cooling water after the operation is completed, and the pressure inside the cooling water tank 2 and the water pressure in the cooling water channel 3 are lowered accordingly. Therefore, it is necessary to make the structure of the cooling water tank 2 and the cooling water channel 3 that can withstand pressure fluctuation due to temperature change.
[0007]
Further, since the ion removal filter 6 is in the cooling water channel 3, the amount of cooling water passing through the ion removal filter 6 increases as the flow rate of the cooling water increases, and as a result, the pressure loss in the cooling water channel 3 increases. In the conventional example, in order to avoid this, the bypass path 7 and the flow rate adjusting valve 8 are used, but the cost increases due to an increase in the number of parts.
[0008]
In addition, there is a method of increasing the capacity of the cooling water pump 4, but this also increases the power consumption of the auxiliary machine that operates the system as the cost increases, and causes a decrease in the overall efficiency of the system.
[0009]
In addition, most ion exchange resins (particularly anion exchange resins) have a relatively low service temperature, but the temperature of cooling water for cooling the polymer electrolyte fuel cell 1 is about 70 to 80 ° C. . Therefore, the ion exchange resin inside the ion removal filter 6 provided in the cooling water channel 3 is subject to thermal deterioration due to long-term operation under severe conditions in terms of the service temperature, and the life is likely to be shortened. Even when the temperature is good, cooling water of about 70 to 80 ° C. flows in the same manner. This is inefficient and further shortens the life of the ion exchange resin inside the ion removal filter 6.
[0010]
In consideration of the problems of the conventional polymer electrolyte fuel cell system described above, the present invention achieves a high efficiency by extending the life of the ion exchange resin used for maintaining the water quality of the cooling water with a simple structure at a low cost. An object of the present invention is to provide a solid polymer electrolyte fuel cell system and an operation method thereof.
[0011]
[Means for Solving the Problems]
In order to solve the problems as described above, the present invention provides a polymer electrolyte fuel cell that generates power using fuel gas and oxidant gas, a cooling water tank that stores cooling water for cooling the fuel cell, Fuel side condensing means for cooling exhaust fuel gas discharged from the fuel cell and condensing water vapor contained in the exhaust fuel gas and / or exhaust oxidant gas discharged from the fuel cell to cool the exhaust oxidant gas An oxidant side condensing means for condensing water vapor contained in the fuel, and a condensate water tank opened to the atmosphere for storing condensed water condensed by the fuel side condensing means and / or the oxidant side condensing means. the water discharge passage for discharging excess cooling water in the cooling water tank to the condensed water tank from the water tank is provided, the cooling water tank opened to the atmosphere through the water discharge path, and the condensed water tank A solid polymer electrolyte fuel cell system, characterized in that there.
[0012]
The present invention further includes a water supply path having water supply means for supplying water from the condensed water tank to the cooling water tank, and adjusts the quality of the water supplied to the cooling water tank in the water supply path. A solid polymer fuel cell comprising: a water quality treatment means; and operating the water supply means to supply water having its water quality adjusted by the water treatment means to the cooling water tank through the water supply passage. System.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
(Embodiment 1)
FIG. 1 is a configuration diagram showing a polymer electrolyte fuel cell system according to Embodiment 1 of the present invention. A polymer electrolyte fuel cell 11 that generates power using fuel gas and oxidant gas, a cooling water tank 12 that stores cooling water that cools the fuel cell 11, a cooling water channel 13 that circulates the cooling water, and cooling water A cooling water pump 14 as means for circulating the cooling water to the cooling water passage 13, a heat exchanger 15 for cooling the cooling water, and a fuel side condenser for cooling the exhaust fuel gas discharged from the fuel cell 11 and condensing the water vapor contained therein. 16, the air-side condenser 17 that cools the exhaust air discharged from the fuel cell 11 and condenses the water vapor contained therein, and the water that is condensed by the fuel-side condenser 16 and the air-side condenser 17 is opened to the atmosphere. A condensed water tank 18, a water supply path 20 provided with a water supply pump 19 for sending condensed water to the cooling water tank 12, and a water discharge path 21 for discharging excess cooling water inside the cooling water tank 12. .
[0018]
Next, the operation of the polymer electrolyte fuel cell system in the present embodiment will be described.
[0019]
The fuel gas and oxidant gas supplied to the fuel cell 11 are gas whose temperature and humidity are adjusted. Hydrogen gas may be used as the fuel gas, or a hydrogen-rich fuel gas obtained by steam reforming a hydrocarbon gas such as methane. Further, the oxidant gas may be oxygen gas or a gas containing oxygen such as air.
[0020]
Hydrogen in the fuel gas and oxygen in the oxidant gas are consumed by the electrochemical reaction of the fuel cell 11, and water is generated on the oxidant gas side. The oxidant gas discharged from the fuel cell 11 is led to the oxidant-side condenser 17 and the temperature is lowered by exchanging heat with the outside air, and the water vapor contained in the discharged air is condensed and collected as water in the condensation tank 18. The On the other hand, the exhaust fuel gas discharged from the fuel cell 11 is led to the fuel-side condenser 16 to exchange heat with the outside air, so that the temperature is lowered, and the water vapor contained in the exhaust fuel gas is condensed and recovered as water in the condensation tank 18. Is done.
[0021]
Further, in order to keep the temperature of the fuel cell 11 that generates power constant at 70 ° C. or higher, water is circulated by the cooling water pump 14 through the cooling water passage 13, and the heat generated in the fuel cell 11 in the heat exchanger 15 is externally supplied. To release. When the cooling water in the cooling water tank 12 decreases, the water supply pump 19 in the water supply path 20 is operated to supply the water in the condensed water tank 18 to the cooling water tank 12. Even if water enters excessively at this time, the excess cooling water is discharged to the condensing tank 18 through the water discharge passage 21. Further, since the gas above the cooling water tank 12 is connected to the condensed water tank 18 opened to the atmosphere through the water discharge passage 21, the pressure inside the cooling water tank 12 is always equivalent to the state opened to the atmosphere. .
[0022]
If the configuration of the polymer electrolyte fuel cell system in the present embodiment is taken, the pressure inside the cooling water tank 12 is always equivalent to the state opened to the atmosphere. Therefore, when the cooling water temperature changes from the normal temperature before the system operation to the high temperature during power generation, the gas above the cooling water tank 12 expands due to the temperature rise, and the cooling water corresponds to the saturated water vapor pressure at that temperature. Evaporate. That is, the gas above the cooling water tank 12 becomes a wet gas containing saturated water vapor. At this time, the pressure inside the cooling water tank 12 is always equivalent to the state in which the air is opened to the atmosphere. This wet gas enters the condensed water tank 18 while radiating heat to the outside air through the water discharge passage 21. Since the water inside the condensed water tank 18 is usually 40 ° C. or lower, the gas inside the condensed water tank is a gas containing saturated water vapor at 40 ° C. or lower. Therefore, the wet gas from the cooling water tank 12 is cooled to about 40 ° C. by the water discharge path 21 and the condensed water tank 18, and the supersaturated water vapor is condensed and collected as water in the condensed water tank 18.
[0023]
During steady operation, the temperature inside the cooling water tank is a constant temperature of 70 ° C. or higher, so the volume of the gas above the cooling water tank 12 does not change, and the cooling water hardly evaporates. Further, when the system operation is stopped, the gas in the cooling water tank 12 shrinks in volume and the water vapor condenses as the cooling water temperature changes from the high-temperature cooling water during power generation to the normal temperature cooling water after the operation ends. At this time, the gas corresponding to the reduced volume flows into the cooling water tank 12 through the water discharge passage 21 from the condensed water tank 18 opened to the atmosphere, so that the pressure inside the cooling water tank 12 was always opened to the atmosphere even when stopped. It is equivalent to the state.
[0024]
That is, by adopting the configuration of the polymer electrolyte fuel cell system shown in the present embodiment, the pressure inside the cooling water tank 12 can always be maintained in a state equivalent to that in the atmosphere, and the cooling water tank 12 and the cooling water channel can be maintained. It is not necessary to make 13 a structure that can withstand pressure fluctuation.
[0025]
In this embodiment, both the fuel side condenser 16 and the oxidant side condenser 17 are provided. However, even if either the fuel side condenser 16 or the oxidant side condenser 17 is provided, it is equivalent. effective.
[0026]
Further, in the present embodiment, the fuel side condenser 16 and the oxidant side condenser 17 have been described as air-cooled heat exchangers that exchange heat with the outside air, but a water-cooled heat exchanger that exchanges heat with water is used. Has the same effect.
[0027]
(Embodiment 2)
FIG. 2 is a configuration diagram showing a polymer electrolyte fuel cell system according to Embodiment 2 of the present invention. However, the same members and functions as those in FIG.
[0028]
The present embodiment is different from the first embodiment shown in FIG. 1 in that an ion removal filter 22 is provided in the water supply path 20.
[0029]
The ion removal filter 22 removes ions contained in water using an ion exchange resin, and adjusts the quality of water supplied to the cooling water tank 12.
[0030]
When the configuration of the polymer electrolyte fuel cell system shown in the present embodiment is adopted, the water quality supplied to the cooling water tank 12 can be adjusted together with the operation shown in the first embodiment. And since condensed water is about 40 degreeC, it becomes possible to use below the durable temperature of an ion exchange resin, and thermal deterioration can be prevented.
[0031]
Further, when the configuration of the polymer electrolyte fuel cell system shown in the present embodiment is adopted, the following operation can also be realized.
[0032]
When the cooling water inside the cooling water tank 12 is not decreasing, the water supply pump 19 is operated. Then, the water whose water quality has been adjusted is supplied to the cooling water tank 12 through the water supply path 20. Accordingly, the excess cooling water is discharged through the water discharge passage 21 and collected in the condensed water tank 18. The water supplied to the cooling water tank 12 has better water quality than the discharged water. Therefore, the quality of the cooling water can be improved.
[0033]
Moreover, although the cooling water collect | recovered by the condensed water tank 18 is 70 degreeC or more high temperature, since the condensed water condensed and collect | recovered with the fuel side condenser 16 and the air side condenser 17 is about 40 degreeC, it is ion The water passing through the removal filter 22 does not exceed the service temperature of the ion exchange resin. That is, there is no thermal deterioration of the ion exchange resin, and the water quality of the cooling water can be maintained even during system operation while realizing a long life of the ion removal filter 22.
[0034]
This also makes it possible to always maintain the water quality of the cooling water by operating the water supply pump 19 during system operation.
[0035]
Furthermore, in the configuration of the polymer electrolyte fuel cell system shown in the present embodiment, the ion removal filter 22 is in the water supply path 20. Therefore, it is not necessary to use the bypass 7 and the flow rate adjusting valve 8 as shown in the conventional example, and it is not necessary to increase the capacity of the cooling water pump 4. That is, it is possible to realize a low-cost and high-efficiency polymer electrolyte fuel cell system that does not increase the cost due to the increase in the number of parts or increase the capacity or increase the power consumption of auxiliary equipment.
[0036]
Therefore, by adopting the configuration of the polymer electrolyte fuel cell system shown in the present embodiment, it is possible to maintain the water quality of the cooling water and extend the life of the ion removal filter 22 together with the operation described in the first embodiment. At the same time, the overall efficiency of the system can be improved at low cost.
[0037]
Further, an effective operation method of the polymer electrolyte fuel cell system shown in the present embodiment will be described.
[0038]
This operation method is an operation method in which the water supply pump 19 is operated to maintain the quality of the cooling water at one or both of starting and ending the system operation.
[0039]
Cooling water at the time of system startup is low temperature. Thereby, since there is almost no temperature difference between the water supplied to the cooling water tank 12 and the discharged water, there is almost no heat loss. Further, at the end of the system operation, since there is no heat generation in the fuel cell 11, the amount of heat of the cooling water is reduced by the amount of heat between the supplied water and the discharged water, and the cooling water temperature depends on the amount of heat. Go down. That is, there is an effect that the end time can be shortened because the cooling water and the fuel cell 11 are cooled earlier.
[0040]
This operation method is more effective in a polymer electrolyte fuel cell cogeneration system that recovers heat generated from the fuel cell during power generation and uses it for hot water supply or heating.
[0041]
(Embodiment 3)
FIG. 3 is a block diagram showing a polymer electrolyte fuel cell system according to Embodiment 3 of the present invention. However, the same members and functions as those in FIG.
[0042]
In the polymer electrolyte fuel cell system shown in the present embodiment, there is a control unit 23 that controls the operation of the water supply pump 19, and the control unit 23 includes an operation frequency recording means 24 that counts and records the operation frequency of the system. An operation number reset means 25 for resetting the operation number to an initial state is provided.
[0043]
The number-of-operations storage means 24 re-stores a value n + 1 obtained by adding 1 to the number of operations n after the end of system operation. Further, the operation number reset means 25 changes the operation number n of the operation number storage means 24 to 0 in the initial state after the operation of the water supply pump 19 is completed.
[0044]
Next, the operation of the polymer electrolyte fuel cell system in the present embodiment will be described.
[0045]
The operation number n stored in the operation number storage means 24 is compared with the threshold value n1 of the operation number for operating the water supply pump 19, and when n> n1, a command is issued from the controller 23 to The supply pump 19 is activated. A command for ending the operation of the water supply pump 19 is sent from the control unit 23 to the water supply pump 19 and the operation of the water supply pump 19 is terminated. Set to 0. When n <n1 or n = n1, the water supply pump 19 does not operate.
[0046]
The command issued from the control unit 23 to the water supply pump 19 may be any operable time. Further, the command may be issued a plurality of times. When the command is issued a plurality of times, the operation number reset unit 25 sets the operation number n of the operation number storage unit 24 to 0 in the initial state after the operation and the operation end of the water supply pump 19 by the final command.
[0047]
Therefore, the structure of the polymer electrolyte fuel cell system shown in the present embodiment is adopted, and the operation of the water supply pump 19 is managed by the number of operations, whereby the water supply pump 19 that operates to maintain the quality of the cooling water is optimally operated. be able to. As a result, it is possible to maintain the optimum water quality of the cooling water and to prolong the life of the ion removal filter 22. That is, it is a solid polymer fuel cell system that can realize a long life of the ion removal filter 22 that maintains the water quality of the cooling water.
[0048]
In the present embodiment, the operation number storage means 24 stores the value n + 1, which is obtained by adding 1 to the operation number n after the end of the system operation. The same effect can be obtained at any time of system operation including termination.
[0049]
(Embodiment 4)
FIG. 4 is a configuration diagram showing a polymer electrolyte fuel cell system according to Embodiment 4 of the present invention. However, the same members and functions as those in FIG.
[0050]
In the polymer electrolyte fuel cell system shown in the present embodiment, there is a control unit 26 for controlling the operation of the water supply pump 19, and the control unit 26 includes an operation time recording means 27 for counting and recording the operation time of the system. An operation time reset means 28 for resetting the operation time to the initial state is provided.
[0051]
The operation time storage means 27 counts the accumulated time of system operation and stores the time again. The operation time resetting means 28 changes the operation time of the operation time storage means 27 to 0 in the initial state after the operation of the water supply pump 19 is completed.
[0052]
Next, the operation of the polymer electrolyte fuel cell system in the present embodiment will be described.
[0053]
The operation time T stored in the operation time storage means 27 is compared with the operation time threshold value T1 for operating the water supply pump 19, and when T> T1, a command is issued from the control unit 26 to The supply pump 19 is activated. A command for ending the operation of the water supply pump 19 is issued from the control unit 26 to the water supply pump 19 and the operation of the water supply pump 19 is terminated. Set to 0. When T <T1 or T = T1, the water supply pump 19 does not operate.
[0054]
The command issued from the control unit 26 to the water supply pump 19 may be any time during which operation is possible. Further, the command may be issued a plurality of times. When the command is issued a plurality of times, the operation time T of the operation time storage means 27 is set to 0 in the initial state by the operation time reset means 28 after the operation / operation of the water supply pump 19 is completed according to the final instruction.
[0055]
Therefore, by taking the configuration of the polymer electrolyte fuel cell system shown in the present embodiment and managing the operation of the water supply pump 19 by the operation time, the water supply pump 19 that operates to maintain the water quality of the cooling water is optimally operated. be able to. As a result, it is possible to maintain the optimum water quality of the cooling water and to prolong the life of the ion removal filter 22. That is, it is a solid polymer fuel cell system that can realize a long life of the ion removal filter 22 that maintains the water quality of the cooling water.
[0056]
(Embodiment 5)
FIG. 5 is a block diagram showing a polymer electrolyte fuel cell system according to Embodiment 5 of the present invention. However, the same members and functions as those in FIG.
[0057]
The polymer electrolyte fuel cell system shown in the present embodiment includes a water quality detector 29 that detects the quality of cooling water circulating in the cooling water channel 13 and a control unit 30 that controls the operation of the water supply pump 19. .
[0058]
Further, the control unit 30 includes a first level value and a second level value. The first level value is a threshold value for operating the water supply pump 19 when the value indicated by the water quality detector 29 is deteriorated from the value. The second level value is a threshold value for stopping the operation of the water supply pump 19 when the value indicated by the water quality detector 29 becomes better than that value during the operation of the water supply pump 19.
[0059]
In this embodiment, a conductivity meter is used as the water quality detector 29 in particular. Further, the conductivity a1 is used as the first level value, and the conductivity a2 is used as the second level value.
[0060]
Next, the operation of the polymer electrolyte fuel cell system in the present embodiment will be described.
[0061]
The electrical conductivity a measured by the water quality detector 29 is compared with the electrical conductivity a1 which is the first level value for operating the water supply pump 19, and when a> a1, an instruction is issued from the control unit 30. The water supply pump 19 is activated. The water supply pump 19 continues to operate until a <a2.
[0062]
During the operation of the water supply pump 19, the conductivity a measured by the water quality detector 29 is compared with the conductivity a2 which is the second level value for stopping the operation of the water supply pump 19, and a < At a2, a command is issued from the control unit 30, and the operation of the water supply pump 19 is stopped. The water supply pump 19 continues to stop until a> a1 again.
[0063]
Note that the command issued from the control unit 30 to the water supply pump 19 may be any operable time.
[0064]
Therefore, the structure of the polymer electrolyte fuel cell system shown in the present embodiment is adopted, and the operation of the water supply pump 19 is managed by the quality of the cooling water, so that the water supply pump 19 that operates to maintain the quality of the cooling water is optimal. Can be operated. As a result, it is possible to maintain the optimum water quality of the cooling water and to prolong the life of the ion removal filter 22. That is, it is a solid polymer fuel cell system that can realize a long life of the ion removal filter 22 that maintains the water quality of the cooling water.
[0065]
In this embodiment, conductivity measurement using a conductivity meter has been described as a cooling water quality detection method in particular, but the same effect can be obtained even if the water quality of the cooling water is controlled using pH. .
[0066]
【The invention's effect】
As is apparent from the above description, the present invention can be realized by providing a polymer electrolyte fuel cell system capable of always maintaining the pressure of the cooling water channel in a state equivalent to that in the atmosphere.
[0067]
Also, to maintain the water quality of the cooling water, to prevent the thermal deterioration of the ion removal filter and to extend the life, and to provide a solid polymer fuel cell system with low overall cost and high system efficiency. Can be realized.
[0068]
In addition, it is possible to provide a polymer electrolyte fuel cell system with less heat loss and shorter end time by operating the water supply means at the start or end of system operation. it can.
[0069]
Furthermore, by controlling the operation of the water supply means based on the number of operations or operation time or the quality of the cooling water, it is possible to maintain the optimum cooling water quality and extend the life of the ion removal filter. Providing a system can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a polymer electrolyte fuel cell system according to Embodiment 1 of the present invention. FIG. 2 is a block diagram showing a polymer electrolyte fuel cell system according to Embodiment 2 of the present invention. FIG. 4 is a block diagram showing a polymer electrolyte fuel cell system according to Embodiment 3 of the present invention. FIG. 4 is a block diagram showing a polymer electrolyte fuel cell system according to Embodiment 4 of the present invention. FIG. 6 is a block diagram showing a conventional polymer electrolyte fuel cell system in Embodiment 5. FIG. 6 is a block diagram showing a conventional polymer electrolyte fuel cell system.
DESCRIPTION OF SYMBOLS 11 Fuel cell 12 Cooling water tank 13 Cooling water path 14 Cooling water pump 15 Heat exchanger 22 Ion removal filter 16 Fuel side condenser 17 Air side condenser 18 Condensed water tank 19 Water supply pump 20 Water supply path 21 Water discharge path 23, 26, 30 Control unit 24 Operation number storage means 25 Operation number reset means 27 Operation time storage means 28 Operation time reset means 29 Water quality detector

Claims (2)

燃料ガスと酸化剤ガスを用いて発電を行なう固体高分子形の燃料電池と、前記燃料電池を冷却する冷却水を貯える冷却水タンクと、前記燃料電池より排出される排気燃料ガスを冷却し該排気燃料ガスに含まれる水蒸気を凝縮させる燃料側凝縮手段および/または前記燃料電池より排出される排気酸化剤ガスを冷却し該排気酸化剤ガスに含まれる水蒸気を凝縮させる酸化剤側凝縮手段と、前記燃料側凝縮手段および/または前記酸化剤側凝縮手段で凝縮した凝縮水を貯える大気に開放された凝縮水タンクとを具備し、前記冷却水タンクより前記凝縮水タンクに前記冷却水タンクの余剰冷却水を排出する水排出路を設け、前記冷却水タンクは前記水排出路及び前記凝縮水タンクを通じて大気開放されていることを特徴とする固体高分子形燃料電池システム。A fuel cell of the polymer electrolyte for generating electric power using a fuel gas and an oxidant gas, and cooling water tank to store the cooling water for cooling the fuel cell, the exhaust fuel gas is cooled to be discharged from the fuel cell an oxidant side condensing means for condensing the water vapor contained exhaust oxidant gas discharged from the fuel side condensing means and / or said fuel cell to condense the water vapor in the cooled exhaust oxidant gas contained in the exhaust fuel gas, A condensate water tank opened to the atmosphere for storing condensed water condensed by the fuel side condensing means and / or the oxidant side condensing means, and an excess of the cooling water tank from the cooling water tank to the condensed water tank the water discharge passage for discharging the cooling water is provided, the cooling water tank polymer electrolyte fuel cell characterized by being open to the atmosphere through the water discharge path, and the condensed water tank Stem. 前記凝縮水タンクより前記冷却水タンクに水を供給する水供給手段を有する水供給路を具備し、前記水供給路に前記冷却水タンクに供給する水の水質を調整する水質処理手段を設け、前記水供給手段を作動することにより前記水供給路を通じて前記水処理手段にて水質調整された水を前記冷却水タンクに供給することを特徴とする請求項1記載の固体高分子形燃料電池システム。A water supply path having water supply means for supplying water from the condensed water tank to the cooling water tank, and provided with water quality processing means for adjusting the quality of water supplied to the cooling water tank in the water supply path; polymer electrolyte fuel cell system according to claim 1, wherein the supplying water conditioning water in the water treatment means to the cooling water tank through the water supply passage by operating the water supply means .
JP2000335482A 2000-10-20 2000-11-02 Polymer electrolyte fuel cell system and operation method thereof Expired - Lifetime JP3695309B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000335482A JP3695309B2 (en) 2000-11-02 2000-11-02 Polymer electrolyte fuel cell system and operation method thereof
PCT/JP2001/009133 WO2002035632A1 (en) 2000-10-20 2001-10-18 Fuel cell system and method of operating the system
CN018053033A CN1217439C (en) 2000-10-20 2001-10-18 Fuel cell system and method of operating the system
EP01978823A EP1333518B1 (en) 2000-10-20 2001-10-18 Fuel cell system and method of operating the system
US10/169,489 US7052790B2 (en) 2000-10-20 2001-10-18 Fuel cell system and operation method having a condensed water tank open to atmosphere
KR10-2002-7007895A KR100526223B1 (en) 2000-10-20 2001-10-18 Fuel cell system and method of operating the system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000335482A JP3695309B2 (en) 2000-11-02 2000-11-02 Polymer electrolyte fuel cell system and operation method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005147857A Division JP4876435B2 (en) 2005-05-20 2005-05-20 Polymer electrolyte fuel cell system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2002141095A JP2002141095A (en) 2002-05-17
JP3695309B2 true JP3695309B2 (en) 2005-09-14

Family

ID=18811216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335482A Expired - Lifetime JP3695309B2 (en) 2000-10-20 2000-11-02 Polymer electrolyte fuel cell system and operation method thereof

Country Status (1)

Country Link
JP (1) JP3695309B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783631B2 (en) * 2002-02-22 2006-06-07 日産自動車株式会社 Pure water purity maintenance system for mobile fuel cell
JP4481577B2 (en) 2003-02-28 2010-06-16 日産自動車株式会社 Fuel cell system
KR100494944B1 (en) * 2003-07-28 2005-06-13 현대자동차주식회사 Cooling water system for fuel cell electric vehicle
JP4066361B2 (en) 2003-07-30 2008-03-26 トヨタ自動車株式会社 Fuel cell cooling system
JP4550491B2 (en) * 2004-06-15 2010-09-22 ヤマハ発動機株式会社 Fuel cell system and transportation equipment using the same
JP4843909B2 (en) * 2004-05-21 2011-12-21 トヨタ自動車株式会社 Solid polymer electrolyte fuel cell system
US20090130529A1 (en) * 2005-02-18 2009-05-21 Matsushita Electric Industrial Co., Ltd. Fuel Cell System and Operation Method Thereof
JP5123465B2 (en) * 2005-02-18 2013-01-23 パナソニック株式会社 Fuel cell power generation system
JP5041704B2 (en) * 2006-01-19 2012-10-03 パナソニック株式会社 FUEL CELL POWER GENERATION SYSTEM, ITS OPERATION METHOD, PROGRAM, AND RECORDING MEDIUM
JP4988260B2 (en) * 2006-07-06 2012-08-01 パナソニック株式会社 Fuel cell system
KR20080053886A (en) * 2006-12-11 2008-06-16 후지 덴키 홀딩스 가부시키가이샤 Fuel cell power generation device
JP5163204B2 (en) * 2008-03-19 2013-03-13 富士電機株式会社 Fuel cell power generator
JP5460208B2 (en) * 2009-09-28 2014-04-02 京セラ株式会社 Fuel cell cogeneration system
KR101291571B1 (en) 2010-12-22 2013-08-08 지에스칼텍스 주식회사 Water Supply Apparatus for Fuel Cell
JP5768980B2 (en) * 2012-02-07 2015-08-26 トヨタ自動車株式会社 Fuel cell system
KR101336393B1 (en) 2012-06-26 2013-12-04 현대하이스코 주식회사 Fuel cell system with excellent heat exchange efficiency
EP2869379B1 (en) * 2012-06-28 2019-11-13 Panasonic Intellectual Property Management Co., Ltd. Solid oxide fuel cell system
JP6167280B2 (en) * 2013-01-08 2017-07-26 パナソニックIpマネジメント株式会社 Fuel cell system
JP2016157597A (en) * 2015-02-25 2016-09-01 株式会社Ihi Fuel cell power generation device and method
JP7400695B2 (en) * 2020-11-04 2023-12-19 トヨタ自動車株式会社 fuel cell system
CN117117243B (en) * 2023-10-25 2024-01-12 佛山市清极能源科技有限公司 Fuel cell system cooling liquid conductivity balance control system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077832B2 (en) * 1991-11-15 2000-08-21 東京瓦斯株式会社 Makeup water recovery equipment for fuel cell power generators
JP3240840B2 (en) * 1994-07-20 2001-12-25 富士電機株式会社 Method of adjusting cooling water temperature of fuel cell power generator
JP2924671B2 (en) * 1994-11-11 1999-07-26 三菱電機株式会社 Water treatment system for fuel cell power plant
JPH0922716A (en) * 1995-07-04 1997-01-21 Fuji Electric Co Ltd Cooling water refilling device of water-cooled fuel cell
JP2000208157A (en) * 1999-01-14 2000-07-28 Nissan Motor Co Ltd Fuel cell operation system

Also Published As

Publication number Publication date
JP2002141095A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
JP3695309B2 (en) Polymer electrolyte fuel cell system and operation method thereof
US7816048B2 (en) Fuel-cell power-generation system and method
JP4876435B2 (en) Polymer electrolyte fuel cell system and operation method thereof
RU2332753C2 (en) Thermoregulation in electrochemical fuel elements
JP4513168B2 (en) Combined system of fuel cell device and hot water supply device
JP2005100873A (en) Fuel cell system
JP2012155978A (en) Fuel cell system
JP4098484B2 (en) Fuel cell system
JP4225112B2 (en) Fuel cell cogeneration system
JP4845899B2 (en) Fuel cell system
JP7113725B2 (en) fuel cell system
JP5293781B2 (en) Polymer electrolyte fuel cell system
JP4087840B2 (en) Fuel cell system
KR100957365B1 (en) Humidification and condensation device for fuel cell system
JP2007258020A (en) Method of shutting down solid polymer fuel cell cogeneration system
JP2005116256A (en) Fuel cell cogeneration system
JP2000030727A (en) Fuel cell system
JP3831836B2 (en) Solid polymer fuel cell power generator
JP4945938B2 (en) Fuel cell system
KR102347322B1 (en) Thermal Management Method and Device For PEFMC
JP7511514B2 (en) Fuel Cell Control System
JP4167999B2 (en) Fuel cell system and control method thereof
JP3627716B2 (en) Fuel cell system
JP2012151062A (en) Fuel cell device
JP2016100279A (en) Fuel battery system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R151 Written notification of patent or utility model registration

Ref document number: 3695309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

EXPY Cancellation because of completion of term