JP3627716B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP3627716B2
JP3627716B2 JP2002091538A JP2002091538A JP3627716B2 JP 3627716 B2 JP3627716 B2 JP 3627716B2 JP 2002091538 A JP2002091538 A JP 2002091538A JP 2002091538 A JP2002091538 A JP 2002091538A JP 3627716 B2 JP3627716 B2 JP 3627716B2
Authority
JP
Japan
Prior art keywords
fuel cell
temperature
conductivity
humidifying
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002091538A
Other languages
Japanese (ja)
Other versions
JP2003288922A (en
Inventor
太郎 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002091538A priority Critical patent/JP3627716B2/en
Publication of JP2003288922A publication Critical patent/JP2003288922A/en
Application granted granted Critical
Publication of JP3627716B2 publication Critical patent/JP3627716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は車両用の燃料電池システムに関する。
【0002】
【従来の技術】
特開2001−155750は車両用燃料電池システムを開示している。
【0003】
現在車両への搭載が検討されている燃料電池は固体高分子膜タイプが主である。このタイプの燃料電池は固体高分子膜が湿潤状態にないと発電効率が悪化するので、燃料電池に供給する空気と燃料ガスの少なくとも一方を加湿する必要がある。
【0004】
加湿の方法としては、燃料電池上流に加湿器を設けて燃料電池に供給する空気もしくは燃料ガスの少なくとも一方を加湿する方法、燃料電池内部に水を循環させてその水で加湿する方法がある。
【0005】
【発明が解決しようとしている問題点】
ところで、上記加湿のための水の導電率が高い場合、水を介して短絡電流が流れる現象が発生し、発電電力の一部が無駄に消費される。燃料電池に供給される空気や燃料ガスを加湿した場合も燃料電池内部でその蒸気が凝縮すれば同様に短絡電流が流れる場合がある。このような短絡電流は制御の効かない電流が流れていることと同様であり、消費電力が増大する原因となる。
【0006】
本発明は、かかる技術的課題を鑑みてなされたもので、加湿用の水の導電率が高い場合に燃料電池を運転させつつ加湿用の水の導電率を下げることを目的とする。
【0007】
【問題点を解決するための手段】
燃料電池システムにおいて、燃料電池へ供給する燃料ガスと空気の少なくとも一方を加湿するための加湿手段と、加湿用の水の導電率を低下させる導電率低下手段と、加湿用の水の導電率を検出する手段とを備え、検出された加湿用の水の導電率が所定値より高い場合に加湿手段による加湿を禁止して燃料電池を無加湿運転させるとともに、導電率低下手段の導電率低下能力を高めるようにする。
【0008】
【作用及び効果】
本発明によれば、加湿用の水の導電率が高い場合は燃料電池を無加湿状態で運転し、その間に加湿用の水の導電率を比較的時間をかけて低下させることができるので、長期保存後加湿用の水の導電率が高くなっている場合でも燃料電池を早期に起動できる。
【0009】
【発明の実施の形態】
以下、添付図面に基づき本発明の実施の形態について説明する。
【0010】
図1は本発明に係る燃料電池システムの概略構成を示す。図示するシステムはアノードに水素を水素タンク17から直接供給するダイレクト水素型の燃料電池を用いたシステムであるが、液体燃料を改質して得られる水素リッチなガスを供給する改質型燃料電池であってもよい。
【0011】
燃料電池1には、例えば内部に固体高分子電解質膜を挟んで空気を流通させるカソード極と水素を供給するアノード極が形成されている。また、燃料電池1には燃料電池本体の温度をコントロールする低融点の熱媒体(以下LLCと略す)を通す通路9も形成されている。さらに、固体高分子電解質膜の加湿および凝縮水の回収のため、多孔質材料を介してカソード、アノードと純水のやり取りが可能な構造の純水流路3(加湿手段)も備わっている。ただし、加湿は供給する空気や水素を外部加湿器により加湿するタイプであってもよい。
【0012】
また、燃料電池1の温度を検出する手段としての温度センサ2が設けられており、温度センサ2で燃料電池本体の温度をモニタする。配管3は前記加湿用の純水を燃料電池1へ循環させる配管であり、循環のエネルギは水ポンプ4で与えている。また、本実施例では加湿用の水のバッファタンク5を備える構成としている。
【0013】
加湿用の水の導電率を検出する手段として導電率センサ6が設けられており、弁7は加湿用の水を燃料電池1に供給するかイオン交換樹脂8へ供給するかを切り替える三方弁である。三方弁7を切り替えて加湿用の水をイオン交換樹脂8(導電率低下手段)に供給すれば、加湿用の水の導電率を下げることができる。三方弁7は加湿用の水を燃料電池1に供給している場合でも加湿用の水の一部をイオン交換樹脂8にも供給し、常時加湿用の水の導電率を低下させるように構成しても良い。
【0014】
配管9は不凍液(LLC)の配管であり、加湿用の水の配管と区別できるよう二重線で図示されている。LLCはLLCポンプ10によって配管9を流れ、燃料電池1に供給される。燃料電池1から流出したLLCは加湿用の水のバッファタンク5に導かれ、氷点下等の低温時は加湿用の水とともに図示しないヒータによって加温できるように構成される。加湿用の水のバッファタンク5を出たLLCは三方弁11へ導かれ、LLCの温度と制御要求温度に応じてラジエータ12を通るライン13か通らないライン14かに流路を切り替えられる。三方弁11を切り替えてLLCをラジエータ12に供給すればLLCの温度を下げて燃料電池1の温度を下げることができる。ラジエータ12(及び三方弁11)が燃料電池1の温調手段を構成する。
【0015】
燃料電池1への水素の供給は、水素タンク17の水素を調節弁18で流量、圧力を調整して行う。また、空気は空気温度センサ22、空気湿度センサ23で温度、湿度を検出された後、ブロア、コンプレッサ等の空気供給機20より燃料電池1へ供給される。
【0016】
また、各弁やポンプ等を制御するために1または2以上のマイクロプロセッサ、メモリ、入出力インターフェース等を含んで構成されるコントロールユニット21(制御手段)が設けられている。コントロールユニット21には加湿用の水の導電率が導電率センサ6より、燃料電池1の温度が燃料電池本体温度センサ2より、吸入空気の温度が空気温度検出手段としての空気温度計22、吸入空気の湿度が空気湿度検出手段としての空気湿度計23より送られる。コントロールユニット21は、それらの情報を基に水ポンプ4、三方弁7、LLCポンプ10、三方弁11、調節弁18を制御する。
【0017】
以下、コントロールユニット21の制御内容について説明する。
【0018】
図2はコントロールユニット21の制御ブロック図を示したものである。これによると、先ずブロックB1で、加湿用水の導電率が燃料電池1への加湿用水の供給を許可できるレベルか禁止するレベルかを判定する。禁止するレベルであれば次に、ブロックB2で加湿用水の導電率を緊急に低下させる制御を実行する。さらにブロックB3で無加湿運転が可能な環境にあるかを判定し、無加湿運転の可否を決定する。また、現状は無加湿運転が困難でも運転条件を変更すれば可能となる場合はその運転条件となるようにブロックB4で運転条件を整える。その後無加湿運転が可能と判断された場合はブロックB5で燃料電池1を無加湿状態で運転する。
【0019】
次に、各手段での詳細な制御内容について説明する。図3はコントロールユニット21が行う加湿用水導電率判定処理の内容を示したフローチャートであり、図2のブロックB1における処理に対応する。
【0020】
これによると、まず、ステップS1では導電率センサ6の出力に応じた加湿用水の導電率Cを読み込み、読み込んだ導電率Cと所定値SLCとをステップS2で比較する。ここで所定値SLCはこれ以上の導電率で運転を続行すると燃料電池1が損傷するなどの問題が発生する値である。もちろん問題が発生するぎりぎりの値を所定値SLCとして定義する必要はなく、製造ばらつき等の影響も含め充分に余裕を持った値と定義してよい。
【0021】
ステップS2での比較の結果、加湿用水の導電率Cが所定値SLC未満であればこのまま燃料電池1を運転してよいと判断してステップS3で導電率悪化フラグFCを「0」とし、導電率が悪化していないことを宣言して本フローを終了する。加湿用水の導電率Cが所定値SLC以上であればステップS4で導電率悪化フラグFCを「1」とし、導電率が悪化しているためこのまま運転していてはいけないことを宣言して本フローを終了する。
【0022】
図4はコントロールユニット21が行う加湿用水導電率低減運転処理の内容を示したフローチャートであり、図2のブロックB2における処理に対応する。
【0023】
これによると、まず、ステップS11では加湿用水導電率判定処理で設定したフラグFCが「1」であるかすなわち加湿用水の導電率が異常値を示したかを判定する。異常でない場合は何もせずに本フローを終了するが、異常である(FC=1)場合は加湿用水の導電率を早急に低下させるべくステップS12、S13の処理を実施する。
【0024】
ステップS12では水ポンプ4から流出した加湿用水のほぼ全量がイオン交換樹脂8を通るように三方弁7を切り替える。次に、ステップS13では水ポンプ4にて送液する加湿用水の流量を増大させ、好ましくは最高流量とする。以上の制御を行うことでバッファタンク5内の加湿用水の導電率は迅速に低減される。
【0025】
図5はコントロールユニット21が行う無加湿運転許可処理の内容を示したフローチャートであり、図2のブロックB3における処理に対応する。
【0026】
ステップS21では加湿用水導電率判定処理で設定したフラグFCが1であるかすなわち加湿用水の導電率が異常値を示したかを判定する。異常でない場合はステップS28で無加湿運転を不許可(FUH=O)かつ燃料電池1の運転を許可して通常運転状態をキープし本フローを終了する。
【0027】
異常である場合はステップS22で燃料電池1の温度TSTKを温度センサ2から、吸入空気の温度TAIRを空気温度センサ22から、吸入空気の湿度HAIRを空気湿度センサ23からそれぞれ読み込む。そして、ステップS23では読み込んだ吸入空気温度TAIR、湿度HAIRに応じてマップM1を参照することで無加湿運転可能判定温度TSLUHを設定する。無加湿運転可能判定温度TSLUHは吸入空気の温度TAIRが高くなるほど、また湿度HAIRが高くなるほど高い温度に設定される。これは吸入空気の湿度が高いほど吸入空気中の水分が多くなり、吸入空気の温度が高いほど吸入空気中に多くの水分を含むことができるので、吸入空気の湿度、温度が高いほど燃料電池1が無加湿で運転することが可能な温度も高くなるからである。
【0028】
無加湿運転可能判定温度TSLUHは燃料電池1の温度がこの温度を超えていれば無加湿運転が不可能であることを意味する温度である。すなわち燃料電池1の温度が無加湿運転可能判定温度TSLUH以上であれば吸入空気によって流入する水分と燃料電池1内部で生成される水とオフガスによって排出される水分のバランスより水分が減少し、燃料電池1の運転が不可能となる環境となっていることを意味する。
【0029】
従ってステップS24で燃料電池1の温度TSTKが無加湿運転可能判定温度TSLUH以下であればステップS27で無加湿運転を許可(FUH=1)かつ燃料電池1の運転も許可して本フローを終了する。ステップS24で燃料電池1の温度TSTKが無加湿運転可能判定温度TSLUHを超えていればステップS25で無加湿運転を不許可(FUH=O)かつ燃料電池1の運転も禁止とする。但し、その後のステップS26で燃料電池1の温調手段(ラジエータ12)の燃料電池冷却能力で燃料電池1の温度を無加湿運転可能判定温度TSLUH以下まで下げることができる場合は、以下に説明する燃料電池1の温度を下げる制御(運転環境調整処理)を行う。
【0030】
図6はコントロールユニット21が行う運転環境調整処理の内容を示したフローチャートであり、図2のブロックB4における処理に対応する。
【0031】
これによると、まず、ステップS31で吸入空気の温度TAIRを空気温度センサ22から、吸入空気の湿度HAIRを空気湿度センサ23からそれぞれ読み込み、読み込んだ吸入空気温度TAIR、湿度HAIRに基づき、燃料電池1の温調手段で燃料電池1を冷却すれば燃料電池1の温度を無加湿運転可能な温度まで下げることができるか否かをステップS32でマップM2を参照するにより判断する。
【0032】
吸入空気湿度が高いということは吸入空気中の水分が多いことであるので、無加湿運転は実現しやすい。従って吸入空気湿度HAIRが高いほうでは無加湿運転可能領域(FCONT=1)が広くなる。一方、吸入空気温度TAIRが高い場合は吸入空気中に含むことができる水分の量は多くなるものの、LLCの温度と空気の温度差が少なくなり燃料電池1を冷却しづらい環境となるため無加湿運転可能領域は狭くなる。これらのバランスにより無加湿運転領域は変化する。以上より、ステップS32のマップM2における無加湿運転可能領域は部品の製造ばらつき等も含めて実験によって決定されるのが望ましい。
【0033】
次にステップS33で燃料電池1を冷却することで無加湿運転が可能か(FCONT=1)不可能か(FCONT=0)を判定し、不可能であればこのまま本フローを終了するが、可能であればステップS34で三方弁11をラジエータ12側へ切り替えてLLCをラジエータ12で冷却するように制御するとともにLLCの流量を増量して燃料電池1内に高温部を作らないように制御して、燃料電池1を無加湿運転可能な温度まで冷却する。
【0034】
図7はコントロールユニット21が行う無加湿運転処理の内容を示したフローチャートであり、図2のブロックB5における処理に対応する。
【0035】
これによると、ステップS41で無加湿運転が許可されているか(FUH=1)を判定し、不許可であればこのままフローを終了するが、許可されていればステップS42で燃料電池の出力を所定値PUHへ制限する。これは燃料電池1を高負荷で運転させると燃料電池1の温度が上昇し、無加湿運転か困難となるからである。
【0036】
次にステップS43で燃料電池1の温度TSTKを温度センサ2から、吸入空気の温度TAIRを空気温度センサ22から、吸入空気の湿度HAIRを空気湿度センサ23から読み込み、ステップS44で無加湿運転上限温度TUHを読み込んだ空気温度TAIR、空気湿度HAIRに基づいてマップM3を参照することで設定する。この無加湿運転上限温度TUHは無加湿運転許可処理のステップS23で参照した無加湿運転可能判定温度TSLUHよりも充分低い値となる。すなわちこの温度に燃料電池1を制御すれば、無加湿運転可能判定温度TSLUH以上となり無加湿運転が不許可となることがなく、かつ、可能な限り高い温度で運転できるため、効率の悪化も少なくなる。
【0037】
従ってステップS45で燃料電池1の温度TSTKが無加湿運転上限温度TUHを超えているかを判定し、超えていれば燃料電池1を冷却するために三方弁11をラジエ−タ12側へ切り替えるとともにLLC流量を増量して燃料電池1内に高温部を作らないように制御し、超えていなければ三方弁11をラジエータ12を通過しないバイパス側へ切り替えてなるべく効率の良い運転の可能な温度まで燃料電池1を加温する。
【0038】
以上の処理を実施することで、運転中あるいは長期保存後の起動においても、加湿用水の導電率が悪化しており燃料電池の加湿が不能であった場合でも、燃料電池を無加湿運転可能な状態に維持して運転を継続できる。運転を継続している間に加湿用水の導電率を充分下げることができるので、運転を中断しなくても通常の運転状態へ移行することができる。
【0039】
以上説明したように、本実施形態は、燃料電池システムにおいて、燃料電池へ供給する燃料ガスと空気の少なくとも一方を加湿するための加湿手段と、加湿用の水の導電率を低下させる導電率低下手段と、加湿用の水の導電率を検出する手段と、検出された加湿用の水の導電率が所定値より高い場合に加湿手段による加湿を禁止して燃料電池を無加湿運転させるとともに、導電率低下手段の導電率低下能力を高める制御手段とを備えたことにより、加湿用の水の導電率が高い場合は燃料電池を無加湿運転させ、その間に加湿用の水の導電率を比較的時間をかけて低下させることができ、長期保存後加湿用の水の導電率が高くなっている場合でも導電率の低下を待つことなく燃料電池を早期に起動できる。
【0040】
また、導電率低下手段をイオン交換樹脂に流通させることで加湿用の水の導電率を低下させる手段とし、制御手段がイオン交換樹脂に流通させる加湿用の水の流量を増大することで導電率低下手段の導電率低下能力を高めるようにしたことにより、簡単な構成で本発明を実現でき、コストの低減や車両への搭載性、レイアウト性を高めることができる。
【0041】
また、燃料電池の無加湿運転は燃料電池の温度が低いときに可能になるので、燃料電池の温度を検出する手段をさらに備え、制御手段が、検出された燃料電池の温度が無加湿運転可能判定温度より低いときに無加湿運転が可能と判断し無加湿運転を行わせるようにすれば、無加湿運転の可否を高い精度で判断でき、加湿が必要な状況で加湿が行われないといった事態を回避できる。
【0042】
また、吸入空気の湿度が高いほど吸入空気中の水分が多くなり、吸入空気の温度が高いほど吸入空気中に多くの水分を含むことができるので、吸入空気の湿度、温度が高いほど燃料電池が無加湿で運転することが可能な温度も高くなる。本実施形態では、燃料電池に供給する空気の湿度あるいは温度を検出する手段をさらに備え、制御手段が、検出された供給空気の湿度あるいは温度に基づき無加湿運転可能判定温度を設定、具体的には、検出された供給空気の湿度あるいは温度が高いほど無加湿運転可能判定温度を高く設定するので、無加湿運転が可能か否かをさらに高い精度で判断できる。
【0043】
また、燃料電池の温度を制御する温調手段をさらに備え、制御手段は、検出された加湿用の水の導電率が所定値より高くかつ検出された燃料電池の温度が無加湿運転可能判定温度より高いとき、温調手段により燃料電池の温度を無加湿運転可能判定温度以下に下げることができるか判断し、無加湿運転可能判定温度以下に下げることができると判断したときは温調手段により燃料電池の温度を下げる。これにより、燃料電池の温度が高く無加湿運転が不可能な場合であっても、燃料電池の温度を無加湿運転可能な温度まで下げることが可能なときは温調手段によって燃料電池の冷却が行われ、燃料電池に無加湿運転を行わせる機会をできる限り確保することができる。
【0044】
また、燃料電池が無加湿運転を行うときは燃料電池の運転負荷の上限を下げるように制御手段を構成したので、燃料電池が高負荷で運転することによる温度上昇が抑えられ、燃料電池の温度上昇により無加湿運転ができなくなるのを回避できる。
【0045】
なお、上記実施形態の構成ではLLCは抜き取る構成となっていないため、LLCの導電率が高い場合には燃料電池へのガス供給ができなくなってしまう可能性がある。しかしながら、そのような場合はLLCのみ循環させて図示していないイオン交換樹脂にてLLCの導電率を低下させ、LLCの導電率が所定値以下になるまで燃料電池へのガス供給は行わない構成とすればよい。その間は図示しない蓄電池からの電力で走行する構成が有効と考えられる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池システムの概略構成図である。
【図2】コントロールユニットの制御ブロック図である。
【図3】加湿用水導電率判定処理の内容を示したフローチャートである。
【図4】加湿用水導電率低減運転処理の内容を示したフローチャートである。
【図5】無加湿運転許可処理の内容を示したフローチャートである。
【図6】運転環境調整処理の内容を示したフローチャートである。
【図7】無加湿運転処理の内容を示したフローチャートである。
【符号の説明】
1 燃料電池
2 温度センサ
4 水ポンプ
6 導電率センサ
7 三方弁
8 イオン交換樹脂
10 LLCポンプ
11 三方弁
12 ラジエータ
21 コントロールユニット
22 空気温度センサ
23 空気湿度センサ
[0001]
[Industrial application fields]
The present invention relates to a fuel cell system for a vehicle.
[0002]
[Prior art]
Japanese Patent Laid-Open No. 2001-155750 discloses a vehicle fuel cell system.
[0003]
Currently, fuel cells that are being considered for installation in vehicles are mainly of the polymer electrolyte membrane type. In this type of fuel cell, since the power generation efficiency deteriorates unless the solid polymer membrane is in a wet state, it is necessary to humidify at least one of air and fuel gas supplied to the fuel cell.
[0004]
As a humidifying method, there is a method in which a humidifier is provided upstream of the fuel cell to humidify at least one of air or fuel gas supplied to the fuel cell, and a method in which water is circulated inside the fuel cell and humidified with the water.
[0005]
[Problems to be solved by the invention]
By the way, when the electrical conductivity of the water for the said humidification is high, the phenomenon in which a short circuit current flows through water will generate | occur | produce and a part of generated electric power is consumed wastefully. Even when air or fuel gas supplied to the fuel cell is humidified, if the vapor condenses inside the fuel cell, a short-circuit current may flow in the same manner. Such a short-circuit current is the same as a non-controlling current flowing, and causes an increase in power consumption.
[0006]
The present invention has been made in view of such technical problems, and an object of the present invention is to reduce the conductivity of the humidifying water while operating the fuel cell when the conductivity of the humidifying water is high.
[0007]
[Means for solving problems]
In the fuel cell system, humidification means for humidifying at least one of fuel gas and air supplied to the fuel cell, conductivity reduction means for reducing the conductivity of the water for humidification, and conductivity of the water for humidification Detecting means, and when the detected conductivity of the water for humidification is higher than a predetermined value, the humidification by the humidifying means is prohibited and the fuel cell is operated without humidification. To increase.
[0008]
[Action and effect]
According to the present invention, when the conductivity of the humidifying water is high, the fuel cell is operated in a non-humidified state, and during that time, the conductivity of the humidifying water can be lowered over time, Even when the conductivity of the water for humidification is high after long-term storage, the fuel cell can be started early.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0010]
FIG. 1 shows a schematic configuration of a fuel cell system according to the present invention. The illustrated system is a system using a direct hydrogen fuel cell that supplies hydrogen directly to the anode from the hydrogen tank 17, but a reformed fuel cell that supplies a hydrogen-rich gas obtained by reforming liquid fuel. It may be.
[0011]
In the fuel cell 1, for example, a cathode electrode that circulates air with a solid polymer electrolyte membrane sandwiched therein and an anode electrode that supplies hydrogen are formed. The fuel cell 1 is also formed with a passage 9 through which a low melting point heat medium (hereinafter abbreviated as LLC) for controlling the temperature of the fuel cell body. Further, a pure water passage 3 (humidifying means) having a structure capable of exchanging pure water with the cathode and the anode through a porous material for humidifying the solid polymer electrolyte membrane and collecting condensed water is also provided. However, the humidification may be a type in which supplied air or hydrogen is humidified by an external humidifier.
[0012]
A temperature sensor 2 is provided as means for detecting the temperature of the fuel cell 1, and the temperature sensor 2 monitors the temperature of the fuel cell body. The pipe 3 is a pipe that circulates the pure water for humidification to the fuel cell 1, and the energy of the circulation is given by the water pump 4. In the present embodiment, the configuration is provided with a buffer tank 5 for humidifying water.
[0013]
A conductivity sensor 6 is provided as means for detecting the conductivity of the humidifying water, and the valve 7 is a three-way valve that switches between supplying the humidifying water to the fuel cell 1 or the ion exchange resin 8. is there. If the water for humidification is supplied to the ion exchange resin 8 (conductivity reduction means) by switching the three-way valve 7, the conductivity of the water for humidification can be lowered. The three-way valve 7 is configured so that even when humidifying water is supplied to the fuel cell 1, a part of the humidifying water is also supplied to the ion exchange resin 8, and the conductivity of the humidifying water is constantly reduced. You may do it.
[0014]
The pipe 9 is an antifreeze liquid (LLC) pipe and is shown by a double line so that it can be distinguished from a pipe for water for humidification. The LLC flows through the pipe 9 by the LLC pump 10 and is supplied to the fuel cell 1. The LLC that has flowed out of the fuel cell 1 is guided to a humidifying water buffer tank 5 so that it can be heated by a heater (not shown) together with the humidifying water at low temperatures such as below freezing. The LLC that has left the buffer tank 5 for humidifying water is guided to the three-way valve 11, and the flow path is switched between the line 13 that passes through the radiator 12 and the line 14 that does not pass through, depending on the temperature of the LLC and the required control temperature. If the three-way valve 11 is switched to supply LLC to the radiator 12, the temperature of the LLC can be lowered and the temperature of the fuel cell 1 can be lowered. The radiator 12 (and the three-way valve 11) constitutes temperature control means of the fuel cell 1.
[0015]
Hydrogen is supplied to the fuel cell 1 by adjusting the flow rate and pressure of the hydrogen in the hydrogen tank 17 using the control valve 18. Air is supplied to the fuel cell 1 from an air supply machine 20 such as a blower or a compressor after the temperature and humidity are detected by the air temperature sensor 22 and the air humidity sensor 23.
[0016]
In addition, a control unit 21 (control means) configured to include one or more microprocessors, a memory, an input / output interface, and the like is provided to control each valve, pump, and the like. In the control unit 21, the conductivity of water for humidification is from the conductivity sensor 6, the temperature of the fuel cell 1 is from the fuel cell body temperature sensor 2, the temperature of the intake air is an air thermometer 22 as an air temperature detecting means, Air humidity is sent from an air hygrometer 23 as air humidity detecting means. The control unit 21 controls the water pump 4, the three-way valve 7, the LLC pump 10, the three-way valve 11, and the adjustment valve 18 based on such information.
[0017]
Hereinafter, the control content of the control unit 21 will be described.
[0018]
FIG. 2 shows a control block diagram of the control unit 21. According to this, first, in block B1, it is determined whether the conductivity of the humidifying water is a level at which the supply of the humidifying water to the fuel cell 1 can be permitted or prohibited. If it is a prohibited level, next, in block B2, control for urgently reducing the conductivity of the humidifying water is executed. Further, in block B3, it is determined whether or not the environment is capable of non-humidifying operation, and whether or not non-humidifying operation is possible is determined. Further, if it is possible to change the operating conditions even if the non-humidified operation is difficult at present, the operating conditions are adjusted in the block B4 so that the operating conditions are satisfied. Thereafter, when it is determined that a non-humidifying operation is possible, the fuel cell 1 is operated in a non-humidified state in block B5.
[0019]
Next, detailed control contents in each means will be described. FIG. 3 is a flowchart showing the content of the humidifying water conductivity determination process performed by the control unit 21, and corresponds to the process in block B1 of FIG.
[0020]
According to this, first, in step S1, the conductivity C of the humidifying water corresponding to the output of the conductivity sensor 6 is read, and the read conductivity C and the predetermined value SLC are compared in step S2. Here, the predetermined value SLC is a value that causes a problem such as damage to the fuel cell 1 if the operation is continued at a higher conductivity. Of course, it is not necessary to define the marginal value at which a problem occurs as the predetermined value SLC, and it may be defined as a value having a sufficient margin including the influence of manufacturing variations.
[0021]
If the conductivity C of the humidifying water is less than the predetermined value SLC as a result of the comparison in step S2, it is determined that the fuel cell 1 can be operated as it is, and the conductivity deterioration flag FC is set to “0” in step S3. Declare that the rate has not deteriorated and end this flow. If the conductivity C of the humidifying water is greater than or equal to the predetermined value SLC, the conductivity deterioration flag FC is set to “1” in step S4, and the fact that the conductivity has deteriorated declares that it should not be operated as it is. Exit.
[0022]
FIG. 4 is a flowchart showing the content of the humidifying water conductivity reduction operation process performed by the control unit 21, and corresponds to the process in block B2 of FIG.
[0023]
According to this, first, in step S11, it is determined whether the flag FC set in the humidification water conductivity determination process is “1”, that is, whether the conductivity of the humidification water shows an abnormal value. If it is not abnormal, this flow is terminated without doing anything, but if it is abnormal (FC = 1), the processing of steps S12 and S13 is performed in order to quickly reduce the conductivity of the humidifying water.
[0024]
In step S <b> 12, the three-way valve 7 is switched so that substantially all of the humidifying water flowing out from the water pump 4 passes through the ion exchange resin 8. Next, in step S13, the flow rate of the humidifying water fed by the water pump 4 is increased, preferably the highest flow rate. By performing the above control, the conductivity of the humidifying water in the buffer tank 5 is rapidly reduced.
[0025]
FIG. 5 is a flowchart showing the content of the non-humidifying operation permission process performed by the control unit 21, and corresponds to the process in block B3 of FIG.
[0026]
In step S21, it is determined whether the flag FC set in the humidifying water conductivity determination process is 1, that is, whether the humidifying water conductivity shows an abnormal value. If not abnormal, the non-humidified operation is not permitted (FUH = O) and the operation of the fuel cell 1 is permitted in step S28, the normal operation state is kept, and this flow is terminated.
[0027]
If abnormal, the temperature TSTK of the fuel cell 1 is read from the temperature sensor 2, the intake air temperature TAIR is read from the air temperature sensor 22, and the intake air humidity HAIR is read from the air humidity sensor 23 in step S22. In step S23, the non-humidifying operation possible determination temperature TSLUH is set by referring to the map M1 according to the read intake air temperature TAIR and humidity HAIR. The non-humidified operation possible determination temperature TSLUH is set to a higher temperature as the intake air temperature TAIR becomes higher and as the humidity HAIR becomes higher. The higher the humidity of the intake air, the more moisture in the intake air. The higher the temperature of the intake air, the more moisture can be contained in the intake air. Therefore, the higher the humidity and temperature of the intake air, the higher the fuel cell. This is because the temperature at which 1 can be operated without humidification also increases.
[0028]
The non-humidifying operation possible determination temperature TSLUH is a temperature that means that the non-humidifying operation is impossible if the temperature of the fuel cell 1 exceeds this temperature. That is, if the temperature of the fuel cell 1 is equal to or higher than the determination temperature TSLUH that can be operated without humidification, the moisture is reduced by the balance between the moisture flowing in by the intake air, the water generated inside the fuel cell 1 and the moisture discharged by the off-gas. This means that the environment is such that the battery 1 cannot be operated.
[0029]
Accordingly, if the temperature TSTK of the fuel cell 1 is equal to or lower than the determination temperature TSLUH that allows the non-humidifying operation in step S24, the non-humidifying operation is permitted (FUH = 1) and the operation of the fuel cell 1 is permitted in step S27, and this flow is finished. . If the temperature TSTK of the fuel cell 1 exceeds the non-humidifying operation enable determination temperature TSLUH in step S24, the non-humidifying operation is not permitted (FUH = O) and the operation of the fuel cell 1 is also prohibited in step S25. However, when the temperature of the fuel cell 1 can be lowered to the non-humidified operation determination temperature TSLUH or less by the fuel cell cooling capacity of the temperature adjustment means (radiator 12) of the fuel cell 1 in the subsequent step S26, it will be described below. Control (operation environment adjustment processing) for lowering the temperature of the fuel cell 1 is performed.
[0030]
FIG. 6 is a flowchart showing the contents of the operating environment adjustment process performed by the control unit 21, and corresponds to the process in block B4 of FIG.
[0031]
According to this, first, in step S31, the temperature TAIR of the intake air is read from the air temperature sensor 22 and the humidity HAIR of the intake air is read from the air humidity sensor 23. Based on the read intake air temperature TAIR and humidity HAIR, the fuel cell 1 Whether the temperature of the fuel cell 1 can be lowered to a temperature at which the non-humidifying operation can be performed by cooling the fuel cell 1 with this temperature control means is determined by referring to the map M2 in step S32.
[0032]
A high intake air humidity means that there is a lot of moisture in the intake air, and therefore, a non-humidified operation is easy to realize. Accordingly, when the intake air humidity HAIR is higher, the non-humidified operation possible region (FCONT = 1) becomes wider. On the other hand, when the intake air temperature TAIR is high, the amount of water that can be contained in the intake air increases, but the temperature difference between the temperature of the LLC and the air becomes small and it becomes difficult to cool the fuel cell 1, so no humidification is performed. The operable range is narrowed. The non-humidified operation region changes depending on these balances. From the above, it is desirable that the non-humidifying operation possible region in the map M2 in step S32 is determined by experiment including manufacturing variations of parts.
[0033]
Next, in step S33, it is determined whether the non-humidified operation is possible by cooling the fuel cell 1 (FCONT = 1) or impossible (FCONT = 0). If so, in step S34, the three-way valve 11 is switched to the radiator 12 side to control the LLC to be cooled by the radiator 12, and the flow rate of the LLC is increased so as not to create a high temperature portion in the fuel cell 1. Then, the fuel cell 1 is cooled to a temperature at which the humidification operation can be performed.
[0034]
FIG. 7 is a flowchart showing the content of the non-humidifying operation process performed by the control unit 21, and corresponds to the process in block B5 of FIG.
[0035]
According to this, it is determined whether or not non-humidified operation is permitted in step S41 (FUH = 1), and if not permitted, the flow is terminated as it is, but if permitted, the output of the fuel cell is predetermined in step S42. Limit to the value PUH. This is because when the fuel cell 1 is operated at a high load, the temperature of the fuel cell 1 rises, and it becomes difficult to perform the humidification operation.
[0036]
Next, in step S43, the temperature TSTK of the fuel cell 1 is read from the temperature sensor 2, the intake air temperature TAIR is read from the air temperature sensor 22, and the intake air humidity HAIR is read from the air humidity sensor 23. In step S44, the unhumidified operation upper limit temperature is read. The TUH is set by referring to the map M3 based on the air temperature TAIR and the air humidity HAIR read in. This non-humidifying operation upper limit temperature TUH is a value sufficiently lower than the non-humidifying operation enabling determination temperature TSLUH referred to in step S23 of the non-humidifying operation permission process. That is, if the fuel cell 1 is controlled to this temperature, the non-humidifying operation possible determination temperature TSLUH is not exceeded, the non-humidifying operation is not permitted, and the operation can be performed at the highest possible temperature, so that the deterioration in efficiency is small. Become.
[0037]
Therefore, in step S45, it is determined whether the temperature TSTK of the fuel cell 1 exceeds the non-humidifying operation upper limit temperature TUH. If it exceeds, the three-way valve 11 is switched to the radiator 12 side to cool the fuel cell 1, and LLC The flow rate is increased to control the fuel cell 1 so as not to form a high temperature portion, and if it does not exceed, the three-way valve 11 is switched to the bypass side that does not pass through the radiator 12 until the fuel cell reaches a temperature at which operation can be performed as efficiently as possible. Warm 1
[0038]
By performing the above processing, the fuel cell can be operated in a non-humidified manner even when the conductivity of the humidifying water is deteriorated and the fuel cell cannot be humidified even during operation or startup after long-term storage. Operation can be continued while maintaining the state. Since the conductivity of the humidifying water can be sufficiently lowered while the operation is continued, the normal operation state can be shifted without interrupting the operation.
[0039]
As described above, in this embodiment, in the fuel cell system, the humidification means for humidifying at least one of the fuel gas and air supplied to the fuel cell, and the conductivity decrease for decreasing the conductivity of the water for humidification. A means for detecting the conductivity of the humidifying water, and when the detected conductivity of the humidifying water is higher than a predetermined value, prohibiting humidification by the humidifying means and causing the fuel cell to operate without humidification, The control means for increasing the conductivity lowering ability of the conductivity lowering means is provided, so that the fuel cell is operated without humidification when the conductivity of the humidifying water is high, and the conductivity of the humidifying water is compared during that time. The fuel cell can be started early without waiting for a decrease in the conductivity even when the conductivity of the water for humidification is high after long-term storage.
[0040]
Further, the conductivity lowering means is used as a means for lowering the conductivity of the humidifying water through the ion exchange resin, and the control means is used to increase the flow rate of the humidifying water passed through the ion exchange resin. By increasing the conductivity lowering ability of the lowering means, the present invention can be realized with a simple configuration, and cost reduction, mountability on a vehicle, and layout can be improved.
[0041]
Further, since the fuel cell can be operated without humidification when the temperature of the fuel cell is low, the fuel cell is further provided with a means for detecting the temperature of the fuel cell, and the control means can be operated without the humidification of the detected temperature of the fuel cell. If it is determined that non-humidified operation is possible when the temperature is lower than the judgment temperature and the non-humidified operation is performed, it is possible to determine whether or not non-humidified operation is possible with high accuracy, and humidification is not performed in situations where humidification is required. Can be avoided.
[0042]
In addition, the higher the humidity of the intake air, the more moisture in the intake air, and the higher the temperature of the intake air, the more moisture can be contained in the intake air. Therefore, the higher the humidity and temperature of the intake air, the higher the fuel cell. However, the temperature that can be operated without humidification also increases. In this embodiment, it further comprises means for detecting the humidity or temperature of the air supplied to the fuel cell, and the control means sets the non-humidified operation determination temperature based on the detected humidity or temperature of the supplied air, specifically, Since the higher the humidity or temperature of the detected supply air, the higher the determination temperature for non-humidifying operation is set, it can be determined with higher accuracy whether or not the non-humidifying operation is possible.
[0043]
The temperature control means further controls the temperature of the fuel cell, and the control means has a detected conductivity of the humidifying water higher than a predetermined value, and the detected temperature of the fuel cell is a non-humidified operation determination temperature. When the temperature is higher, it is determined whether the temperature of the fuel cell can be lowered below the determination temperature at which the non-humidifying operation is possible by the temperature adjustment means. Reduce the temperature of the fuel cell. As a result, even when the temperature of the fuel cell is high and non-humidified operation is impossible, when the temperature of the fuel cell can be lowered to a temperature at which non-humidified operation can be performed, the fuel cell is cooled by the temperature control means. As a result, it is possible to ensure as much as possible the opportunity for the fuel cell to perform a non-humidifying operation.
[0044]
In addition, when the fuel cell performs a non-humidifying operation, the control means is configured to lower the upper limit of the operating load of the fuel cell, so that the temperature rise due to the fuel cell operating at a high load is suppressed, and the temperature of the fuel cell It is possible to prevent the non-humidifying operation from becoming impossible due to the rise.
[0045]
In the configuration of the above embodiment, since the LLC is not extracted, there is a possibility that the gas cannot be supplied to the fuel cell when the LLC conductivity is high. However, in such a case, only the LLC is circulated, the LLC conductivity is lowered with an ion exchange resin (not shown), and the gas supply to the fuel cell is not performed until the LLC conductivity falls below a predetermined value. And it is sufficient. In the meantime, it is thought that the structure which drive | works with the electric power from the storage battery which is not shown in figure is effective.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a fuel cell system according to the present invention.
FIG. 2 is a control block diagram of a control unit.
FIG. 3 is a flowchart showing the content of a humidifying water conductivity determination process.
FIG. 4 is a flowchart showing the contents of a humidifying water conductivity reduction operation process.
FIG. 5 is a flowchart showing the content of a non-humidifying operation permission process.
FIG. 6 is a flowchart showing the contents of an operation environment adjustment process.
FIG. 7 is a flowchart showing the contents of a non-humidifying operation process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Temperature sensor 4 Water pump 6 Conductivity sensor 7 Three-way valve 8 Ion exchange resin 10 LLC pump 11 Three-way valve 12 Radiator 21 Control unit 22 Air temperature sensor 23 Air humidity sensor

Claims (8)

燃料電池と、
前記燃料電池へ供給する燃料ガスと空気のうち少なくとも一方を加湿するための加湿手段と、
加湿用の水の導電率を低下させる導電率低下手段と、
加湿用の水の導電率を検出する手段と、
検出された前記加湿用の水の導電率が所定値より高い場合に前記加湿手段による加湿を禁止して前記燃料電池を無加湿運転させるとともに、前記導電率低下手段の導電率低下能力を高める制御手段と、
を備えたことを特徴とする燃料電池システム。
A fuel cell;
Humidifying means for humidifying at least one of fuel gas and air supplied to the fuel cell;
A conductivity lowering means for lowering the conductivity of water for humidification;
Means for detecting the conductivity of the water for humidification;
Control for prohibiting humidification by the humidifying means when the detected conductivity of the humidifying water is higher than a predetermined value, causing the fuel cell to perform a non-humidifying operation, and increasing the conductivity reducing ability of the conductivity reducing means Means,
A fuel cell system comprising:
前記導電率低下手段はイオン交換樹脂に流通させることで前記加湿用の水の導電率を低下させる手段であり、
前記制御手段は前記イオン交換樹脂に流通させる前記加湿用の水の流量を増大することで前記導電率低下手段の導電率低下能力を高めることを特徴とする請求項1に記載の燃料電池システム。
The conductivity lowering means is a means for lowering the conductivity of the water for humidification by allowing it to flow through an ion exchange resin.
2. The fuel cell system according to claim 1, wherein the control unit increases a conductivity decreasing capability of the conductivity decreasing unit by increasing a flow rate of the humidifying water flowing through the ion exchange resin. 3.
前記燃料電池の温度を検出する手段をさらに備え、
前記制御手段が、検出された前記燃料電池の温度が所定の無加湿運転可能判定温度より低いときに前記無加湿運転が可能と判断し前記燃料電池を無加湿運転させることを特徴とする請求項1に記載の燃料電池システム。
Means for detecting the temperature of the fuel cell;
The control means determines that the non-humidifying operation is possible when the detected temperature of the fuel cell is lower than a predetermined non-humidifying operation determination temperature, and causes the fuel cell to perform a non-humidifying operation. 2. The fuel cell system according to 1.
前記燃料電池に供給する空気の湿度を検出する手段をさらに備え、
前記制御手段が、検出された供給空気の湿度に基づき前記無加湿運転可能判定温度を設定することを特徴とする請求項3に記載の燃料電池システム。
Means for detecting the humidity of the air supplied to the fuel cell;
The fuel cell system according to claim 3, wherein the control means sets the non-humidified operation determination temperature based on the detected humidity of the supplied air.
前記制御手段が、検出された供給空気の湿度が高いほど前記無加湿運転可能判定温度を高く設定することを特徴とする請求項4に記載の燃料電池システム。5. The fuel cell system according to claim 4, wherein the control unit sets the non-humidified operation determination temperature higher as the detected humidity of the supplied air is higher. 前記燃料電池に供給する空気の温度を検出する手段をさらに備え、
前記制御手段が、検出された供給空気の温度に基づき前記無加湿運転可能判定温度を設定することを特徴とする請求項3に記載の燃料電池システム。
Means for detecting the temperature of air supplied to the fuel cell;
The fuel cell system according to claim 3, wherein the control unit sets the non-humidified operation possible determination temperature based on the detected temperature of the supply air.
前記燃料電池の温度を制御する温調手段をさらに備え、  Further comprising temperature control means for controlling the temperature of the fuel cell;
前記制御手段が、検出された前記加湿用の水の導電率が所定値より高くかつ検出された前記燃料電池の温度が前記無加湿運転可能判定温度より高いとき、前記温調手段により燃料電池の温度を前記無加湿運転可能判定温度以下に下げることができるか判断し、前記無加湿運転可能判定温度以下に下げることができると判断したときは前記温調手段により前記燃料電池の温度を下げることを特徴とする請求項3に記載の燃料電池システム。  When the detected electric conductivity of the humidifying water is higher than a predetermined value and the detected temperature of the fuel cell is higher than the determination temperature for enabling the non-humidifying operation, the temperature adjusting means It is determined whether the temperature can be lowered below the non-humidified operation determination temperature, and when it is determined that the temperature can be decreased below the non-humidified operation determination temperature, the temperature of the fuel cell is decreased by the temperature adjusting means. The fuel cell system according to claim 3.
前記制御手段が、前記燃料電池が無加湿運転を行うとき、前記燃料電池の運転負荷の上限を下げることを特徴とする請求項1に記載の燃料電池システム。  2. The fuel cell system according to claim 1, wherein when the fuel cell performs a non-humidifying operation, the control unit reduces an upper limit of an operation load of the fuel cell.
JP2002091538A 2002-03-28 2002-03-28 Fuel cell system Expired - Fee Related JP3627716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091538A JP3627716B2 (en) 2002-03-28 2002-03-28 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091538A JP3627716B2 (en) 2002-03-28 2002-03-28 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2003288922A JP2003288922A (en) 2003-10-10
JP3627716B2 true JP3627716B2 (en) 2005-03-09

Family

ID=29236598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091538A Expired - Fee Related JP3627716B2 (en) 2002-03-28 2002-03-28 Fuel cell system

Country Status (1)

Country Link
JP (1) JP3627716B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116706158B (en) * 2023-06-28 2023-12-22 北京亿华通科技股份有限公司 Air side air inlet temperature and humidity combined control device of fuel cell

Also Published As

Publication number Publication date
JP2003288922A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP5309602B2 (en) Fuel cell system and operation method thereof
JP4976695B2 (en) Fuel cell system
JP4884604B2 (en) Fuel cell cooling system
JP4867094B2 (en) Fuel cell system
US10193177B2 (en) Fuel cell system and operating method therefor
JP5324756B2 (en) Multi-pressure controlled control to minimize RH excursion during transients
JP5282397B2 (en) Fuel cell system
JP4098484B2 (en) Fuel cell system
JP2007305334A (en) Fuel cell system
JP4114459B2 (en) Fuel cell system
JP4575693B2 (en) Fuel cell system
JP4144321B2 (en) Fuel cell system
JP2005259526A (en) Conditioning method for fuel cell
JP2007087779A (en) Fuel cell system
JP2002313387A (en) Fuel cell warm-up device
JP3627716B2 (en) Fuel cell system
JP2005116256A (en) Fuel cell cogeneration system
JP2005322527A (en) Fuel cell system
JP5287368B2 (en) Fuel cell system
JP2008053144A (en) Fuel cell system
JP6136185B2 (en) Fuel cell system
JP2002289232A (en) Temperature control device for feed gas fed to fuel cell
JP4765329B2 (en) Fuel cell system
JP2004119044A (en) Fuel cell system for moving body
JP4167999B2 (en) Fuel cell system and control method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees