JP2000208157A - Fuel cell operation system - Google Patents

Fuel cell operation system

Info

Publication number
JP2000208157A
JP2000208157A JP11008354A JP835499A JP2000208157A JP 2000208157 A JP2000208157 A JP 2000208157A JP 11008354 A JP11008354 A JP 11008354A JP 835499 A JP835499 A JP 835499A JP 2000208157 A JP2000208157 A JP 2000208157A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
sub
pure water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11008354A
Other languages
Japanese (ja)
Inventor
Tetsuo Uozumi
哲生 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11008354A priority Critical patent/JP2000208157A/en
Publication of JP2000208157A publication Critical patent/JP2000208157A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep a conductive ion concentration in cooling water low at any time by removing conductive ions in the cooling water with an ion removing filter provided in sub-piping regardless of an operation condition of a fuel cell. SOLUTION: In this system, the cooling water of pure water is made to flow through a solid polymer fuel cell 1 via main piping 3 and is made to flow through a heat exchanger 5 to be cooled, while the cooling water of pure water stored in a main tank 2 is simultaneously is made to flow through sub-piping 11 to remove conductive ions in the cooling water with an ion removing filter 6 provided in the sub-piping 11, so that a conductive ion concentration in the cooling water is kept not more than a prescribed value at any time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池を運転する燃料電池運転システムに関する。
The present invention relates to a fuel cell operation system for operating a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】近年の環境問題、特に自動車の排気ガス
による大気汚染や2酸化炭素による地球温暖化の問題に
対して、クリーンな排気及び高効率のエネルギー効率を
可能とする燃料電池技術が注目されている。
2. Description of the Related Art In recent years, fuel cell technology that enables clean exhaust and high-efficiency energy efficiency has been focused on environmental problems, in particular, the problems of air pollution caused by automobile exhaust gas and global warming caused by carbon dioxide. Have been.

【0003】燃料電池はその燃料となる水素あるいは水
素リッチな改質ガス、及び空気を供給して電気化学反応
を起こし、化学エネルギーを電気にエネルギーに変換す
るエネルギー変換システムである。そしてその中でも、
高い出力密度を有する固体高分子電解質型燃料電池が自
動車などの移動体用電源とてし注目されている。
[0003] A fuel cell is an energy conversion system in which hydrogen or hydrogen-rich reformed gas as the fuel and air are supplied to cause an electrochemical reaction to convert chemical energy into energy. And among them,
2. Description of the Related Art A solid polymer electrolyte fuel cell having a high output density has attracted attention as a power source for a mobile body such as an automobile.

【0004】このような固体高分子型燃料電池では、通
常運転温度を80°C前後に維持するために冷却水を供
給する必要があり、また、燃料電池内の固体高分子イオ
ン交換膜の水分維持のために純度の高い純水を供給する
必要がある。このため、従来は、図3に示す構成の運転
システムを採用することにより、固体高分子型燃料電池
に対して冷却した純水を供給することにより、両方の必
要を満足させながら発電電力を取出すようにしている。
In such a polymer electrolyte fuel cell, it is necessary to supply cooling water in order to maintain a normal operating temperature of about 80 ° C., and it is necessary to supply water to the polymer electrolyte ion exchange membrane in the fuel cell. It is necessary to supply high purity pure water for maintenance. Therefore, conventionally, by employing a driving system having the configuration shown in FIG. 3, by supplying cooled pure water to the polymer electrolyte fuel cell, the generated power is taken out while satisfying both needs. Like that.

【0005】図3に示した従来の固体高分子型燃料電池
に対する燃料電池運転システムは、次のような構成であ
る。固体高分子型燃料電池1に対してメインタンク2か
らメイン配管3を通じてメインポンプ4により純水冷却
水を供給し、燃料電池1を通過した純水冷却水は、ラジ
エータのような熱交換器5によって冷却した後にメイン
タンク2に帰還させるメイン循環系統を構成している。
[0005] The fuel cell operation system for the conventional polymer electrolyte fuel cell shown in FIG. 3 has the following configuration. Pure water cooling water is supplied to the polymer electrolyte fuel cell 1 by the main pump 4 from the main tank 2 through the main pipe 3, and the pure water cooling water passing through the fuel cell 1 is supplied to a heat exchanger 5 such as a radiator. To form a main circulation system for returning to the main tank 2 after cooling.

【0006】そして、冷却水の冷却を行う熱交換器5よ
り導電性イオンが純水冷却水中に溶け出し、この導電性
イオンが増加すると燃料電池1内でショートして発電量
が低下する問題があるため、冷却水中から導電性イオン
を除去する必要があり、そのために、従来は、メイン配
管3の途上に、熱交換器5から溶け出した導電性イオン
を除去するためのイオン除去フィルター6を設けてい
る。
[0006] Then, the conductive ions dissolve into the pure water cooling water from the heat exchanger 5 for cooling the cooling water, and when the conductive ions increase, a short circuit occurs in the fuel cell 1 and the power generation amount decreases. Therefore, it is necessary to remove the conductive ions from the cooling water. For this reason, conventionally, an ion removal filter 6 for removing the conductive ions dissolved from the heat exchanger 5 is provided on the main pipe 3. Provided.

【0007】さらに、イオン除去フィルター6をメイン
配管3上に設置することにより、燃料電池1が高負荷運
転で冷却水を多く必要とする場合には、イオン除去フィ
ルター6での冷却水の圧力損失が大きくなるので、それ
を補うためにバイパス配管7を設け、また、この低負荷
運転でフィルター6の圧力損失が気にしなくてもよいほ
ど少量の冷却水を使用する場合には、イオン除去を積極
的に進めるためにイオン除去フィルター6に積極的に純
水冷却水を通過させることができるが、そのためにはバ
イパス配管7への冷却水の流通を遮断する必要があり、
バイパス配管7上に流量制御弁8を設けている。
Further, by installing the ion removal filter 6 on the main pipe 3, when the fuel cell 1 requires a large amount of cooling water under a high load operation, the pressure loss of the cooling water in the ion removal filter 6 is reduced. In order to compensate for this, a bypass pipe 7 is provided to compensate for this. In addition, if a small amount of cooling water is used so that the pressure loss of the filter 6 does not need to be considered in this low load operation, the ion removal should be performed. Although the pure water cooling water can be positively passed through the ion removal filter 6 in order to positively advance, it is necessary to cut off the flow of the cooling water to the bypass pipe 7,
A flow control valve 8 is provided on the bypass pipe 7.

【0008】[0008]

【発明が解決しようとする課題】ところが、このような
従来の燃料電池運転システムでは、燃料電池の運転に応
じてバイパス配管上に設置した流量制御弁8を制御しな
ければならなくて制御が複雑になり、しかも高負荷運転
の継続時間が長くなればイオン除去が十分に行えない問
題点があった。
However, in such a conventional fuel cell operation system, the flow control valve 8 provided on the bypass pipe must be controlled in accordance with the operation of the fuel cell, and the control is complicated. However, if the duration of the high-load operation is prolonged, there is a problem that the ion cannot be sufficiently removed.

【0009】本発明は、このような従来の問題点を解決
するためになされたものであって、イオン除去用の冷却
水流路をメイン配管とは独立に設けることにより、従来
必要であったバイパス配管の流量制御のためのバルブ制
御の必要性をなくし、しかも純水冷却水中のイオン濃度
を常に所定値以下に維持しておくことができる燃料電池
運転システムを提供することを目的とする。
The present invention has been made in order to solve such a conventional problem. By providing a cooling water flow path for removing ions independently of a main pipe, a bypass which has been conventionally required is provided. It is an object of the present invention to provide a fuel cell operation system that eliminates the need for valve control for controlling the flow rate of piping and that can always maintain the ion concentration in pure water cooling water at a predetermined value or less.

【0010】本発明はまた、冷却水中のイオン濃度に応
じてイオン除去フィルターを通過させる冷却水流量を制
御し、所定値以下のイオン濃度を安定に維持することが
できる燃料電池運転システムを提供することを目的とす
る。
[0010] The present invention also provides a fuel cell operation system capable of controlling the flow rate of cooling water passing through an ion removal filter in accordance with the ion concentration in the cooling water and stably maintaining an ion concentration of a predetermined value or less. The purpose is to:

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、燃料
電池の温度コントロール用と燃料電池内の固体高分子イ
オン交換膜の加湿用に循環させる純水冷却水をメインタ
ンクよりメインポンプにより固体高分子型燃料電池に供
給し、燃料電池を通過した純水冷却水を熱交換器によっ
て冷却した後、メインタンクに帰還させる燃料電池運転
システムにおいて、前記メインタンクに対して、前記メ
イン配管とは別に、前記純水冷却水を循環させるための
サブ配管及びサブポンプを設け、前記サブ配管上に、前
記純水冷却水に溶け出した導電性イオンを除去するため
のイオン除去フィルターを設けたものである。
According to the first aspect of the present invention, pure water cooling water circulated for temperature control of a fuel cell and for humidification of a solid polymer ion exchange membrane in the fuel cell is supplied from a main tank to a main pump. After supplying pure water cooling water to the polymer electrolyte fuel cell and cooling the pure water cooling water passing through the fuel cell by the heat exchanger, the fuel cell operation system returns to the main tank. Separately, a sub-pipe and a sub-pump for circulating the pure water cooling water are provided, and an ion removal filter for removing conductive ions dissolved in the pure water cooling water is provided on the sub pipe. It is.

【0012】請求項1の発明の燃料電池運転システムで
は、メイン配管流路を通して純水冷却水を固体高分子型
燃料電池に流通させ、熱交換器を通して冷却する一方
で、これと並行して、メインタンクに貯溜されている純
水冷却水を、サブ配管に流通させて、このサブ配管上に
設けられているイオン除去フィルターによって冷却水中
の導電性イオンを除去し、冷却水の導電性イオン濃度を
常に所定値以下に維持する。
In the fuel cell operation system according to the first aspect of the present invention, pure water cooling water flows through the main pipe flow path to the polymer electrolyte fuel cell and is cooled through the heat exchanger. The pure water cooling water stored in the main tank is passed through the sub-pipe, and the conductive ions in the cooling water are removed by an ion removal filter provided on the sub-pipe. Is always kept below a predetermined value.

【0013】これにより、メイン配管流路には燃料電池
の高負荷、低負荷に応じて必要な流量の純水冷却水を自
由に通流させることができ、その一方で、冷却水中の導
電性イオンの濃度も所定値以下に安定して維持すること
ができる。
[0013] Thereby, pure water cooling water at a required flow rate can be freely passed through the main pipe flow path according to the high load and the low load of the fuel cell. The ion concentration can also be stably maintained at a predetermined value or less.

【0014】請求項2の発明は、請求項1の燃料電池運
転システムにおいて、さらに、前記純水冷却水が流通す
る配管途上の任意の場所に設けられた、当該純水冷却水
の導電率を計測するための導電率計と、前記導電率計の
検出した導電率が所定値以下になるように、前記サブポ
ンプを運転制御するサブポンプ制御手段とを備えたもの
であり、導電率計が検出する純水冷却水の導電性イオン
濃度が高くなればサブ配管流路に流す冷却水流量を増加
させてイオン除去作用を増強させ、イオン濃度を常に所
定値以下に維持するようにし、これにより、不必要に多
くの冷却水をサブ配管流路に常時流すことなく、省エネ
ルギ運転を図る。
According to a second aspect of the present invention, in the fuel cell operation system of the first aspect, the conductivity of the pure water cooling water, which is provided at an arbitrary position along a pipe through which the pure water cooling water flows, is further reduced. A conductivity meter for measuring, and sub-pump control means for controlling the operation of the sub-pump so that the conductivity detected by the conductivity meter becomes a predetermined value or less, and the conductivity meter detects the conductivity. If the conductive ion concentration of the pure water cooling water increases, the flow rate of the cooling water flowing through the sub-pipe flow path is increased to enhance the ion removing action, so that the ion concentration is always maintained at a predetermined value or less. Energy saving operation is achieved without constantly flowing as much cooling water as necessary into the sub-pipe flow path.

【0015】[0015]

【発明の効果】以上のように請求項1の発明によれば、
メイン配管流路を通して純水冷却水を固体高分子型燃料
電池に流通させ、熱交換器を通して冷却する一方で、こ
れと並行して、メインタンクに貯溜されている純水冷却
水をサブ配管に流通させ、このサブ配管上に設けられて
いるイオン除去フィルターによって冷却水中の導電性イ
オンを除去するので、メイン配管流路には燃料電池の高
負荷、低負荷それぞれに応じて必要な流量の純水冷却水
を自由に通流させながら、その一方で、冷却水中の導電
性イオンの濃度も所定値以下に維持することができる。
As described above, according to the first aspect of the present invention,
The pure water cooling water is passed through the main pipe flow path to the polymer electrolyte fuel cell and cooled through the heat exchanger, and at the same time, the pure water cooling water stored in the main tank is sent to the sub pipe. It is circulated, and the conductive ion in the cooling water is removed by the ion removal filter provided on this sub-pipe. While allowing the water cooling water to flow freely, the concentration of the conductive ions in the cooling water can be maintained at a predetermined value or less.

【0016】請求項2の発明によれば、請求項1の発明
の効果に加えて、導電率計が検出する純水冷却水の導電
性イオン濃度が高くなればサブ配管流路に流す冷却水流
量を増加させてイオン除去作用を増強させ、イオン濃度
を常に所定値以下に維持するので、不必要に多くの冷却
水をサブ配管流路に常時流すことがなく、省エネルギ運
転が図れる。
According to the invention of claim 2, in addition to the effect of the invention of claim 1, the cooling water flowing through the sub-pipe flow path if the conductive ion concentration of the pure water cooling water detected by the conductivity meter increases. Since the ion removal action is enhanced by increasing the flow rate and the ion concentration is always maintained at a predetermined value or less, unnecessary cooling water does not always flow to the sub-pipe flow path, and energy saving operation can be achieved.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて詳説する。図1は、本発明の第1の実施の形態
の構成を示している。この第1の実施の形態の燃料電池
運転システムのメイン配管系統の構成は図3に示した従
来例と同様であり、固体高分子型燃料電池1に対してメ
インタンク2からメイン配管3を通じてメインポンプ4
により純水冷却水を供給し、燃料電池1を通過した純水
冷却水は、ラジエータのような熱交換器5によって冷却
した後にメインタンク2に帰還させる循環系統を構成し
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows the configuration of the first embodiment of the present invention. The configuration of the main piping system of the fuel cell operation system according to the first embodiment is the same as that of the conventional example shown in FIG. Pump 4
, A pure water cooling water that has passed through the fuel cell 1 is cooled by a heat exchanger 5 such as a radiator, and then returned to the main tank 2.

【0018】そして、本発明の特徴として、メインタン
ク2に対してメイン配管3と並列にに、サブ配管11を
接続し、このサブ配管11上にサブポンプ12を設け、
またイオン交換フィルター6を設けている。そして、サ
ブポンプ12を稼働させることによりサブ配管11内に
純水冷却水を通流させ、イオン除去フィルター6によっ
て常時、純水冷却水中に溶け出している導電性イオンを
除去し、メインタンク2内に貯溜されている冷却水の純
度を高く保つようにしている。
As a feature of the present invention, a sub-pipe 11 is connected to the main tank 2 in parallel with the main pipe 3, and a sub-pump 12 is provided on the sub-pipe 11,
Further, an ion exchange filter 6 is provided. By operating the sub-pump 12, pure water cooling water flows through the sub-pipe 11, and the ion removal filter 6 constantly removes conductive ions dissolved in the pure water cooling water. The purity of the cooling water stored in the tank is kept high.

【0019】この第1の実施の形態の燃料電池運転シス
テムでは、メイン配管系統によって、メインタンク2に
貯溜されている純水冷却水を燃料電池1に供給して発電
を行わせ、燃料電池1を通過した冷却水を熱交換器5に
通して熱を除去した後、メインタンク2に帰還させる。
そしてこれと並行して、サブポンプ12の運転によって
メインタンク2に貯溜されている純水冷却水をサブ配管
11にも通流させ、イオン除去フィルター6によって熱
交換器5から冷却水中に溶け出した導電性イオンを除去
して浄化し、純水冷却水の純度を高く維持する。
In the fuel cell operation system according to the first embodiment, the pure water cooling water stored in the main tank 2 is supplied to the fuel cell 1 by the main piping system to cause the fuel cell 1 to generate electric power. After passing the cooling water passing through the heat exchanger 5 to remove heat, the cooling water is returned to the main tank 2.
In parallel with this, the pure water cooling water stored in the main tank 2 is caused to flow also through the sub-pipe 11 by the operation of the sub-pump 12, and is dissolved out of the heat exchanger 5 into the cooling water by the ion removal filter 6. It removes and purifies conductive ions and maintains the purity of pure water cooling water at a high level.

【0020】この第1の実施の形態によれば、イオン除
去フィルター6をメイン配管3とは独立したサブ配管1
1上に設けたことにより、燃料電池1の運転条件により
純水冷却水使用量が変動した場合でも、純水冷却水にイ
オン除去フィルターの圧力損失が影響を与えることが全
くない。
According to the first embodiment, the ion removal filter 6 is connected to the sub pipe 1 independent of the main pipe 3.
By providing the cooling water on the fuel cell 1, even when the amount of pure water cooling water used varies depending on the operating conditions of the fuel cell 1, the pressure loss of the ion removal filter does not affect the pure water cooling water at all.

【0021】このため、サブ配管11を通流させる冷却
水の流量を必要最低限度のものにしながらも連続的に通
流させて導電性イオンを継続的に除去させる運転方法を
採ることができ、これにより、サブポンプ12として小
型なものを採用することができ、消費する電力は小さく
抑えることができる。
For this reason, it is possible to adopt an operation method in which the flow rate of the cooling water flowing through the sub-pipe 11 is set to the minimum necessary, and the cooling water is flowed continuously to continuously remove the conductive ions. Thus, a small pump can be used as the sub-pump 12, and the power consumption can be reduced.

【0022】加えて、イオン除去フィルター6の圧力損
失が燃料電池1の運転に影響を与えないので、イオン除
去能力に重点を置いたフィルターを使用することがで
き、それだけイオン除去効率を向上させ、ひいてはメイ
ン配管に流れる純水冷却水中に溶け出している導電性イ
オンの濃度を常に低く抑えることができる。
In addition, since the pressure loss of the ion removing filter 6 does not affect the operation of the fuel cell 1, a filter emphasizing the ion removing ability can be used, thereby improving the ion removing efficiency. As a result, the concentration of the conductive ions dissolved in the pure water flowing through the main pipe can be always kept low.

【0023】さらに、メイン配管3上にイオン除去フィ
ルターが存在しないので、メイン配管系統のレイアウト
の自由度が高い。
Further, since there is no ion removal filter on the main pipe 3, the layout of the main pipe system has a high degree of freedom.

【0024】次に、本発明の第2の実施の形態を、図2
に基づいて説明する。第2の実施の形態は、図1に示し
た第1の実施の形態に対して、メイン配管3上又はメイ
ンタンク2内に、冷却水中の導電性イオン濃度を計測す
るための導電率計13を設け、この導電率計13が計測
した導電率が所定値を超えるようになった場合にサブ配
管11上のサブポンプ12を一定時間ずつ起動する構成
にしたことを特徴とする。
Next, a second embodiment of the present invention will be described with reference to FIG.
It will be described based on. The second embodiment is different from the first embodiment shown in FIG. 1 in that a conductivity meter 13 for measuring the concentration of conductive ions in the cooling water is provided on the main pipe 3 or in the main tank 2. The sub-pump 12 on the sub-pipe 11 is activated for a fixed time when the conductivity measured by the conductivity meter 13 exceeds a predetermined value.

【0025】この第2の実施の形態の燃料電池運転シス
テムでは、第1の実施の形態と同様、メインポンプ4を
稼働させることにより、メインタンク2に貯溜されてい
る純水冷却水をメイン配管3を通じて燃料電池1に供給
し、発電後に熱交換器5に通して熱除去し、メインタン
ク2に帰還させる。そしてこれと並行して、メインタン
ク2に貯溜されている純水冷却水をサブポンプ12によ
ってサブ配管11に通流させ、サブ配管11上のイオン
除去フィルター6によって冷却水中に溶け出している導
電性イオンを除去させ、浄化された冷却水をメインタン
ク2に帰還させる。
In the fuel cell operation system according to the second embodiment, the pure water cooling water stored in the main tank 2 is supplied to the main pipe by operating the main pump 4 as in the first embodiment. The fuel is supplied to the fuel cell 1 through a heat exchanger 3 and heat is removed through a heat exchanger 5 after power generation. In parallel with this, the pure water cooling water stored in the main tank 2 is passed through the sub-pipe 11 by the sub-pump 12, and the conductive water dissolved in the cooling water by the ion removal filter 6 on the sub-pipe 11. The ions are removed, and the purified cooling water is returned to the main tank 2.

【0026】そしてこのサブ配管流路上での冷却水の循
環運転は、次のようにして行う。導電率計13はメイン
タンク2内の冷却水、あるいはメイン配管3を通流する
冷却水中に溶け出している導電性イオン濃度を常時監視
している。そして、このイオン濃度が所定値を超えたと
きには、ポンプ制御器14がサブポンプ12を一定時間
だけ起動させ、メインタンク2内の冷却水をサブ配管1
1に循環させ、この循環中にイオン除去フィルター6に
より導電性イオンを除去し、冷却水の純度を改善する。
The circulation operation of the cooling water on the sub-pipe flow path is performed as follows. The conductivity meter 13 constantly monitors the concentration of conductive ions dissolved in the cooling water in the main tank 2 or the cooling water flowing through the main pipe 3. When the ion concentration exceeds a predetermined value, the pump controller 14 activates the sub-pump 12 for a certain period of time to supply the cooling water in the main tank 2 to the sub-pipe 1
1 and the conductive ions are removed by the ion removing filter 6 during the circulation, thereby improving the purity of the cooling water.

【0027】ここで、一定時間だけサブポンプ12を起
動し、イオン除去フィルター6によって冷却水中の導電
性イオンを除去してもイオン濃度が所定値を下回らない
場合には、ポンプ制御器14はさらに一定時間ずつサブ
ポンプ12を繰り返し運転させ、イオン濃度が所定値を
下回れば運転を停止する。
Here, if the ion concentration does not fall below a predetermined value even when the sub-pump 12 is started for a fixed time and the conductive ion in the cooling water is removed by the ion removing filter 6, the pump controller 14 is further fixed. The sub-pump 12 is repeatedly operated for each time, and the operation is stopped when the ion concentration falls below a predetermined value.

【0028】以上のように、第2の実施の形態では、第
1の実施の形態と同様に、燃料電池1の運転条件に関係
なく冷却水中のイオンをサブ配管11上に設けられたイ
オン除去フィルター6によって除去することができ、冷
却水中の導電性イオンの濃度を常に低い値に維持するこ
とができる。また、冷却水中のイオン濃度が所定値を超
えた場合にのみサブポンプ12を運転するので運転効率
が良く、省エネルギ運転が可能となる。
As described above, in the second embodiment, as in the first embodiment, the ions in the cooling water are removed by the ion removal provided on the sub pipe 11 regardless of the operating conditions of the fuel cell 1. It can be removed by the filter 6 and the concentration of the conductive ions in the cooling water can always be kept at a low value. Further, since the sub-pump 12 is operated only when the ion concentration in the cooling water exceeds a predetermined value, the operation efficiency is good and the energy-saving operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の構成を示す系統
図。
FIG. 1 is a system diagram showing a configuration of a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の構成を示す系統
図。
FIG. 2 is a system diagram showing a configuration of a second embodiment of the present invention.

【図3】従来例の構成を示す系統図。FIG. 3 is a system diagram showing a configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1 燃料電池 2 メインタンク 3 メイン配管 4 メインポンプ 5 熱交換器 6 イオン除去フィルター 11 サブ配管 12 サブポンプ 13 導電率計 14 ポンプ制御器 DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Main tank 3 Main piping 4 Main pump 5 Heat exchanger 6 Ion removal filter 11 Sub piping 12 Sub pump 13 Conductivity meter 14 Pump controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池の温度コントロール用と燃料電
池内の固体高分子イオン交換膜の加湿用に循環させる純
水冷却水をメインタンクよりメインポンプにより固体高
分子型燃料電池に供給し、燃料電池を通過した純水冷却
水を熱交換器によって冷却した後、メインタンクに帰還
させる燃料電池運転システムにおいて、 前記メインタンクに対して、前記メイン配管とは別に、
前記純水冷却水を循環させるためのサブ配管及びサブポ
ンプを設け、 前記サブ配管上に、前記純水冷却水に溶け出した導電性
イオンを除去するためのイオン除去フィルターを設けた
ことを特徴とする燃料電池運転システム。
1. Pure water cooling water circulated for temperature control of a fuel cell and for humidification of a solid polymer ion exchange membrane in the fuel cell is supplied from a main tank to the polymer electrolyte fuel cell by a main pump. In a fuel cell operation system in which pure water cooling water that has passed through a battery is cooled by a heat exchanger and then returned to a main tank, for the main tank, separately from the main pipe,
A sub-pipe and a sub-pump for circulating the pure water cooling water are provided, and an ion removal filter for removing conductive ions dissolved in the pure water cooling water is provided on the sub pipe. Fuel cell operation system.
【請求項2】 前記純水冷却水が流通する配管途上の任
意の場所に設けられた、当該純水冷却水の導電率を計測
するための導電率計と、 前記導電率計の検出した導電率が所定値以下になるよう
に、前記サブポンプを運転制御するサブポンプ制御手段
とを備えて成る請求項1に記載の燃料電池運転システ
ム。
2. A conductivity meter provided at an arbitrary position along a pipe through which the pure water cooling water flows to measure the conductivity of the pure water cooling water, and a conductivity detected by the conductivity meter. 2. The fuel cell operation system according to claim 1, further comprising: sub-pump control means for controlling the operation of the sub-pump such that the rate becomes equal to or less than a predetermined value.
JP11008354A 1999-01-14 1999-01-14 Fuel cell operation system Pending JP2000208157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11008354A JP2000208157A (en) 1999-01-14 1999-01-14 Fuel cell operation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11008354A JP2000208157A (en) 1999-01-14 1999-01-14 Fuel cell operation system

Publications (1)

Publication Number Publication Date
JP2000208157A true JP2000208157A (en) 2000-07-28

Family

ID=11690903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11008354A Pending JP2000208157A (en) 1999-01-14 1999-01-14 Fuel cell operation system

Country Status (1)

Country Link
JP (1) JP2000208157A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100383A (en) * 2000-09-25 2002-04-05 Honda Motor Co Ltd Cooling system for fuel cell
JP2002141095A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system and its operating method
JP2002172391A (en) * 2000-12-06 2002-06-18 Japan Organo Co Ltd Ion exchange system
JP2002216817A (en) * 2001-01-24 2002-08-02 Nissan Motor Co Ltd Conductivity control device for fuel cell cooling liquid
JP2002313377A (en) * 2001-04-12 2002-10-25 Nissan Motor Co Ltd Conductivity controlling device of fuel cell system
JP2003123813A (en) * 2001-10-16 2003-04-25 Honda Motor Co Ltd Cooling method of fuel cell
JP2003229152A (en) * 2001-11-30 2003-08-15 Toyo Roki Mfg Co Ltd Ion removal filter for fuel cell
JP2003234113A (en) * 2002-02-08 2003-08-22 Nissan Motor Co Ltd Fuel cell system
JP2003249252A (en) * 2002-02-22 2003-09-05 Nissan Motor Co Ltd Pure water purity maintenance system of fuel cell for mobile body
JP2003346848A (en) * 2002-05-30 2003-12-05 Toyo Radiator Co Ltd Heat exchanger
JP2004127548A (en) * 2002-09-30 2004-04-22 Toyota Central Res & Dev Lab Inc Operation method and operation system of solid polymer type fuel cell
JP2004526280A (en) * 2001-02-02 2004-08-26 ビーエーエスエフ アクチェンゲゼルシャフト Method and apparatus for deionizing fuel cell coolant
JP2004247688A (en) * 2003-02-17 2004-09-02 Canon Inc Refrigerant supplying device
JP2004265712A (en) * 2003-02-28 2004-09-24 Nissan Motor Co Ltd Fuel cell system
JP2005166267A (en) * 2003-11-28 2005-06-23 Nissan Motor Co Ltd Ion exchange filter
JP2005285782A (en) * 2005-05-20 2005-10-13 Matsushita Electric Ind Co Ltd Solid polymer type fuel cell system and its operation method
JP2005332768A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Solid polyelectrolyte fuel cell system
WO2006009323A1 (en) * 2004-07-23 2006-01-26 Toyota Jidosha Kabushiki Kaisha Coolant composition, cooling system and process for producing coolant composition
US7052790B2 (en) 2000-10-20 2006-05-30 Matsushita Electric Industrial Co., Ltd. Fuel cell system and operation method having a condensed water tank open to atmosphere
DE112004001059B4 (en) * 2003-07-30 2007-08-23 Toyota Jidosha Kabushiki Kaisha, Toyota A fuel cell cooling system and method for controlling a circulation of cooling liquid in the fuel cell
KR100778480B1 (en) 2006-07-07 2007-11-29 엘지전자 주식회사 Heat storaging apparatus of fuel cell system
JP2010021005A (en) * 2008-07-10 2010-01-28 Toyota Motor Corp Fuel-cell cooling method and fuel-cell system
KR101102320B1 (en) * 2009-09-25 2012-01-03 헤스본주식회사 Cooling Water Injection Device For Fuel Cell Stack
JP2012009208A (en) * 2010-06-23 2012-01-12 Rinnai Corp Power generator
DE102011113149A1 (en) 2010-09-14 2012-03-15 Showa Water Industries Co., Ltd. Fuel cell system and fuel cell vehicle
US8445158B2 (en) 2005-02-18 2013-05-21 Panasonic Corporation Fuel cell system and operation method thereof
WO2024080610A1 (en) * 2022-10-12 2024-04-18 에스케이이엔에스 주식회사 Method and system for cooling fuel cell using ion filter

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100383A (en) * 2000-09-25 2002-04-05 Honda Motor Co Ltd Cooling system for fuel cell
US7052790B2 (en) 2000-10-20 2006-05-30 Matsushita Electric Industrial Co., Ltd. Fuel cell system and operation method having a condensed water tank open to atmosphere
JP2002141095A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system and its operating method
JP2002172391A (en) * 2000-12-06 2002-06-18 Japan Organo Co Ltd Ion exchange system
JP2002216817A (en) * 2001-01-24 2002-08-02 Nissan Motor Co Ltd Conductivity control device for fuel cell cooling liquid
JP2004526280A (en) * 2001-02-02 2004-08-26 ビーエーエスエフ アクチェンゲゼルシャフト Method and apparatus for deionizing fuel cell coolant
JP2002313377A (en) * 2001-04-12 2002-10-25 Nissan Motor Co Ltd Conductivity controlling device of fuel cell system
JP2003123813A (en) * 2001-10-16 2003-04-25 Honda Motor Co Ltd Cooling method of fuel cell
JP2003229152A (en) * 2001-11-30 2003-08-15 Toyo Roki Mfg Co Ltd Ion removal filter for fuel cell
JP2003234113A (en) * 2002-02-08 2003-08-22 Nissan Motor Co Ltd Fuel cell system
JP2003249252A (en) * 2002-02-22 2003-09-05 Nissan Motor Co Ltd Pure water purity maintenance system of fuel cell for mobile body
JP2003346848A (en) * 2002-05-30 2003-12-05 Toyo Radiator Co Ltd Heat exchanger
JP2004127548A (en) * 2002-09-30 2004-04-22 Toyota Central Res & Dev Lab Inc Operation method and operation system of solid polymer type fuel cell
JP2004247688A (en) * 2003-02-17 2004-09-02 Canon Inc Refrigerant supplying device
US7442454B2 (en) 2003-02-28 2008-10-28 Nissan Motor Co., Ltd. Fuel cell system
JP2004265712A (en) * 2003-02-28 2004-09-24 Nissan Motor Co Ltd Fuel cell system
DE112004001059B4 (en) * 2003-07-30 2007-08-23 Toyota Jidosha Kabushiki Kaisha, Toyota A fuel cell cooling system and method for controlling a circulation of cooling liquid in the fuel cell
US7662496B2 (en) 2003-07-30 2010-02-16 Toyota Jidosha Kabushiki Kaisha Fuel cell cooling system and method for controlling circulation of cooling liquid in fuel cell
JP2005166267A (en) * 2003-11-28 2005-06-23 Nissan Motor Co Ltd Ion exchange filter
JP2005332768A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Solid polyelectrolyte fuel cell system
WO2006009323A1 (en) * 2004-07-23 2006-01-26 Toyota Jidosha Kabushiki Kaisha Coolant composition, cooling system and process for producing coolant composition
US8445158B2 (en) 2005-02-18 2013-05-21 Panasonic Corporation Fuel cell system and operation method thereof
JP2005285782A (en) * 2005-05-20 2005-10-13 Matsushita Electric Ind Co Ltd Solid polymer type fuel cell system and its operation method
KR100778480B1 (en) 2006-07-07 2007-11-29 엘지전자 주식회사 Heat storaging apparatus of fuel cell system
JP2010021005A (en) * 2008-07-10 2010-01-28 Toyota Motor Corp Fuel-cell cooling method and fuel-cell system
KR101102320B1 (en) * 2009-09-25 2012-01-03 헤스본주식회사 Cooling Water Injection Device For Fuel Cell Stack
JP2012009208A (en) * 2010-06-23 2012-01-12 Rinnai Corp Power generator
DE102011113149A1 (en) 2010-09-14 2012-03-15 Showa Water Industries Co., Ltd. Fuel cell system and fuel cell vehicle
US8951689B2 (en) 2010-09-14 2015-02-10 Suzuki Motor Corporation Fuel cell system including coolant additive and ion exchange resin and fuel-cell vehicle
WO2024080610A1 (en) * 2022-10-12 2024-04-18 에스케이이엔에스 주식회사 Method and system for cooling fuel cell using ion filter

Similar Documents

Publication Publication Date Title
JP2000208157A (en) Fuel cell operation system
US6093500A (en) Method and apparatus for operating a fuel cell system
JP2007035509A (en) Fuel cell system
CA2389197C (en) Fuel cell and method of operating same
JP4697380B2 (en) FUEL CELL DEVICE AND FUEL CELL FUEL SUPPLY METHOD
JP2005100873A (en) Fuel cell system
CA2484776A1 (en) Fuel cell cooling system
JP2015166478A (en) water electrolysis system
JP2005302304A (en) Fuel cell system
JP2001176535A (en) Water treatment device of fuel cell power generator and its operating method
JP2003317760A (en) Fuel cell system of small power air cooling type
US20090004520A1 (en) Heat Retention and Heating of Reaction Gas in Fuel Cell System
JP2004296351A (en) Fuel cell system
JP3654871B2 (en) Anode flow recirculation system for fuel cells
JP2007149352A (en) Fuel cell system
JP2002216817A (en) Conductivity control device for fuel cell cooling liquid
JP2008135356A (en) Fuel cell device
JP2005321030A (en) Fuel gas storage and supply apparatus
JP2006086014A (en) Fuel cell system
CN208257658U (en) A kind of DC converter based on fuel cell
JP2010153195A (en) Fuel cell power generation system of fuel cell and its operation method
JP2003036869A (en) Fuel cell system
JP2007242493A (en) Fuel cell system and its operation stopping method
JP2003168457A (en) Fuel cell system
JP2006049140A (en) Fuel cell system