WO2024080610A1 - Method and system for cooling fuel cell using ion filter - Google Patents

Method and system for cooling fuel cell using ion filter Download PDF

Info

Publication number
WO2024080610A1
WO2024080610A1 PCT/KR2023/014239 KR2023014239W WO2024080610A1 WO 2024080610 A1 WO2024080610 A1 WO 2024080610A1 KR 2023014239 W KR2023014239 W KR 2023014239W WO 2024080610 A1 WO2024080610 A1 WO 2024080610A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
coolant
circulation line
temperature
low
Prior art date
Application number
PCT/KR2023/014239
Other languages
French (fr)
Korean (ko)
Inventor
최훈
Original Assignee
에스케이이엔에스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이엔에스 주식회사 filed Critical 에스케이이엔에스 주식회사
Publication of WO2024080610A1 publication Critical patent/WO2024080610A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04044Purification of heat exchange media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell cooling method and system using an ion filter, and more specifically, to enable stable use of the fuel cell by efficiently managing the heat load generated from the fuel cell.
  • the present invention rapidly increases the heat load of the fuel cell by preferentially supplying the coolant from the filter chamber equipped with the ion filter faster than the time when the coolant cooled in the heat exchanger is supplied to the fuel cell when the heat load of the fuel cell suddenly increases. It relates to a fuel cell cooling method and system using an ion filter that can reduce and efficiently manage heat load.
  • a fuel cell is a device that converts energy from chemical changes into electrical energy. It mainly uses hydrogen and oxygen to generate electrical energy, and water is produced as a by-product, so it is eco-friendly and does not produce pollutants. It is a power generation device and is one of the technologies attracting attention in the eco-friendly and renewable energy fields.
  • coolant is mainly used, and the heat generated from the fuel cell is continuously cooled by circulating the coolant cooled in the heat exchanger (radiator) to the fuel cell. do.
  • the heat exchanger for cooling the coolant supplied to the fuel cell mainly cools the coolant through heat exchange with atmospheric air. Due to the characteristics of this heat exchange method, the heat exchange efficiency of the heat exchanger varies depending on the season when the outside temperature changes. This causes a problem in that thermal management of the fuel cell cannot be performed stably.
  • the prior art is to increase the flow rate and heat dissipation of coolant passing through a radiator (heat exchanger), thereby reducing the frequency of entering the high-temperature current limit mode due to overheating of the fuel cell and enabling stable thermal management of the fuel cell.
  • the prior art blocks the path of the coolant circulating through the ion filter that makes up the fuel cell system, increases the flow rate of the coolant circulating through the radiator, and increases the heat dissipation amount of the coolant, thereby quickly dissipating the heat generated from the fuel cell. It was designed to be discharged properly.
  • the prior art blocks the supply of coolant to the ion filter and allows a greater amount of coolant to be supplied to the radiator, thereby allowing a greater amount of heat energy to be discharged from the radiator to the outside.
  • the purpose of the present invention is to provide a fuel cell cooling method and system using an ion filter that can enable stable use of the fuel cell by efficiently managing the heat load generated from the fuel cell. there is.
  • the present invention rapidly increases the heat load of the fuel cell by preferentially supplying the coolant from the filter chamber equipped with the ion filter faster than the time when the coolant cooled in the heat exchanger is supplied to the fuel cell when the heat load of the fuel cell suddenly increases.
  • the purpose is to provide a fuel cell cooling method and system using an ion filter that can reduce the heat load and enable efficient heat load management.
  • the cycle is made to supply the coolant cooled from the heat exchanger again.
  • the purpose is to provide a fuel cell cooling method and system using an ion filter that enables efficient supply of coolant by redirecting (returning) the line.
  • the fuel cell cooling method using an ion filter according to the present invention is that, when high-temperature coolant is normally discharged from the fuel cell, a heat exchanger configured in the main circulation line cools the high-temperature coolant into low-temperature coolant and supplies it to the fuel cell.
  • the cooling water circulation line is connected to the main circulation line so that the low-temperature coolant from the filter chamber equipped with the ion filter is supplied to the fuel cell preferentially compared to the low-temperature coolant supplied from the heat exchanger to the fuel cell. It includes a circulation line conversion step of converting to an auxiliary circulation line that circulates the filter chamber.
  • the circulation line is switched from the main circulation line to the auxiliary circulation line to generate electricity. It may include an electrical conductivity reduction step of reducing conductivity.
  • the circulation line switching step switches the circulation line from a main circulation line to an auxiliary circulation line that circulates the filter chamber when the heat load of the fuel cell suddenly increases, and after the circulation line switching step, a set priority supply time elapses. If so, a circulation line return step of reconverting the circulation line from the auxiliary circulation line to the main circulation line may be further included.
  • low-high temperature coolant which has a relatively low temperature among high-temperature coolants
  • the heat exchanger exchanges heat with the low-high temperature coolant. It is cooled with high-low-temperature coolant, which has a relatively high temperature among low-temperature coolants.
  • high-temperature coolant which has a relatively high temperature among high-temperature coolants
  • the heat exchanger By exchanging heat with high-temperature coolant, it can be cooled with low-temperature coolant, which has a relatively lower temperature among low-temperature coolants.
  • the filter chamber stores low-temperature coolant, which has a relatively low temperature among the low-temperature coolants, and the circulation line switching step is performed when the heat load of the fuel cell rapidly increases and exceeds the allowable range, the heat exchanged in the heat exchanger.
  • the low-temperature coolant stored in the filter chamber can be supplied to the fuel cell preferentially rather than the low-temperature coolant.
  • the circulation line return step is performed when the low-temperature coolant stored in the filter chamber is preferentially supplied to the fuel cell in a set priority supply amount, or when the priority supply time elapses and the low-temperature coolant heat-exchanged in the heat exchanger is supplied to the fuel cell.
  • the circulation line can be re-converted from the auxiliary circulation line to the main circulation line.
  • a fuel cell cooling system using an ion filter includes a fuel cell; a heat exchanger configured to heat exchange the high-temperature coolant discharged from the fuel cell to lower the temperature of the coolant, and then supply the lowered temperature coolant to the fuel cell; a filter chamber configured with an ion filter that lowers the electrical conductivity of the coolant; and a control unit that controls to circulate and supply coolant heat-exchanged in the heat exchanger to the fuel cell under normal circumstances and to preferentially supply coolant in the filter chamber to the fuel cell when the heat load of the fuel cell suddenly increases.
  • a main circulation line configured to move the low-temperature coolant heat-exchanged in the heat exchanger to the fuel cell; and an auxiliary circulation line configured to allow the low-temperature coolant heat-exchanged in the heat exchanger to move to the fuel cell through a filter chamber, wherein the control unit controls the coolant to circulate in the main circulation line at normal times, and when the heat load of the fuel cell increases. Coolant can be controlled to circulate through the auxiliary circulation line.
  • control unit controls the low-temperature coolant to circulate in the auxiliary circulation line during the priority supply time during which at least a portion of the low-temperature coolant stored in the filter chamber is preferentially supplied to the fuel cell when the heat load of the fuel cell increases, and Once this has elapsed, the low-temperature cooling water heat exchanged in the heat exchanger can be controlled to circulate into the main circulation line.
  • the present invention has the advantage of enabling stable use of the fuel cell by efficiently managing the heat load generated from the fuel cell.
  • the present invention reduces the heat load of the fuel cell by preferentially supplying the coolant from the filter chamber equipped with the ion filter faster than the time when the coolant cooled from the heat exchanger is supplied to the fuel cell when the heat load of the fuel cell suddenly increases. It has the advantage of being able to quickly reduce heat load and enable efficient heat load management.
  • the present invention has the advantage of minimizing performance degradation and damage to the fuel cell by minimizing the duration of the thermal overload state in which the heat load of the fuel cell suddenly increases, as well as maintaining stable operation of the fuel cell continuously. there is.
  • the cycle is made to supply the coolant cooled from the heat exchanger again.
  • the present invention can be easily applied to fuel cell cooling systems with various functions and configurations, as well as to various products such as vehicles using fuel cells, and can also be applied to various products in various fields. Therefore, it has the advantage of greatly improving usability and applicability.
  • FIG. 1 is a flowchart showing an embodiment of a fuel cell cooling method using an ion filter according to the present invention.
  • FIG. 2 is a schematic diagram of a fuel cell cooling system using an ion filter for explaining FIG. 1.
  • FIG. 3 is a flowchart showing another embodiment of FIG. 1.
  • FIG. 4 is a flowchart showing a specific embodiment of step 'S100' shown in Figure 3.
  • FIG. 5 is a schematic configuration diagram of a fuel cell cooling system using an ion filter for explaining FIG. 4.
  • FIG. 6 is a flowchart showing a specific embodiment of step 'S300' shown in Figure 3.
  • Figure 7 is a configuration diagram showing an embodiment of a fuel cell cooling system using an ion filter according to the present invention.
  • Figures 8 and 9 are configuration diagrams showing other embodiments of Figure 7.
  • FIG. 1 is a flowchart showing an embodiment of a fuel cell cooling method using an ion filter according to the present invention
  • FIG. 2 is a schematic configuration diagram of a fuel cell cooling system using an ion filter for explaining FIG. 1.
  • the fuel cell cooling method using an ion filter includes a coolant circulation step (S100), a heat load monitoring step (S200), and a circulation line switching step (S300).
  • the fuel cell 100 and the heat exchanger 200 are shown in (a) of FIG. 2.
  • the coolant may be configured to circulate through the main circulation line 410.
  • the filter chamber 300 equipped with the ion filter 310 may be configured to circulate cooling water through the auxiliary circulation line 420, as shown in (b) of FIG. 2.
  • the line through which the coolant circulates can be controlled by the operation of a valve (three-way valve) formed at the part where each line is connected.
  • the heat exchanger 200 configured in the main circulation line 410 converts the high-temperature coolant into low-temperature coolant. The process of cooling and supplying it to the fuel cell 100 is cycled.
  • the circulation line switching step (S300) in the process of monitoring the change in heat load of the fuel cell 100, if the heat load of the fuel cell 100 increases rapidly compared to usual, the main circulation line as shown in (b) of FIG. 2 By switching the circulation line from 410 to the auxiliary circulation line 420, the low-temperature coolant stored in the filter chamber 300 is first supplied to the fuel cell 100.
  • the low-temperature coolant stored in the filter chamber 300 is supplied to the fuel cell 100 at a faster time than the time at which the low-temperature coolant cooled in the heat exchanger 200 is supplied to the fuel cell 100. ) is supplied first.
  • the amount of coolant supplied from the filter chamber 300 to the fuel cell 100 can be supplemented with coolant heat-exchanged in the heat exchanger 200.
  • the circulation line switching step (S300) circulates the circulation line of the coolant circulated between the fuel cell 100 and the heat exchanger 200 to the fuel cell 100, the heat exchanger 200, and the filter chamber 300. It can be converted as much as possible.
  • the amount of coolant supplied from the filter chamber 300 to the fuel cell 100 does not necessarily have to be supplemented with the coolant heat exchanged in the heat exchanger 200, and the flow rate of coolant passing through the fuel cell 100 As long as it is possible to keep constant, it is natural that various methods or configurations can be applied, and examples of some of them will be looked at below.
  • the line through which the coolant moves is not limited to either the main circulation line 410 or the auxiliary circulation line 420, and the two lines can move simultaneously.
  • some of the coolant recovered from the heat exchanger 200 may be circulated through the main circulation line 410, and the other portion may be circulated through the auxiliary circulation line 420.
  • valve 3-way valve
  • connection relationships, etc. can be applied in a variety of ways.
  • the auxiliary circulation line 420 is controlled to circulate during the priority supply time during which at least a portion of the low-temperature coolant stored in the filter chamber 300 is preferentially supplied to the fuel cell 100,
  • the coolant can be controlled to circulate through the main circulation line 420.
  • the priority supply time can be applied in various ways according to the needs of those skilled in the art, and the time required for specific conditions (for example, the time until the coolant heat exchanged in the heat exchanger is supplied to the fuel cell) is met. It can be included.
  • FIG. 3 is a flowchart showing another embodiment of FIG. 1.
  • the fuel cell cooling method using an ion filter may further include a circulation line return step (S400).
  • the circulation line is changed from the main circulation line 410 to the auxiliary circulation line 420.
  • an electrical conductivity reduction step S110 to reduce electrical conductivity.
  • the conditions for circulating the coolant in the auxiliary circulation line 420 may include when the heat load of the fuel cell 100 rapidly increases and when the electrical conductivity of the coolant is dangerous.
  • the auxiliary circulation line 420 can be used to manage the thermal load of the fuel cell 100 as well as the electrical conductivity of the coolant.
  • the circulation line return step (S400) is a process of reconverting the circulation line from the auxiliary circulation line 420 to the main circulation line 410 when the set priority supply time has elapsed, as shown in (b) of Figure 2. This refers to the process of returning to (a).
  • the circulation line return step (S400) may mean returning to the normal coolant circulation process when the heat management problem caused by a sudden increase in the heat load of the fuel cell 100 is resolved.
  • FIG. 4 is a flowchart showing a specific example of step 'S100' shown in FIG. 3
  • FIG. 5 is a schematic configuration diagram of a fuel cell cooling system using an ion filter for explaining FIG. 4.
  • the coolant circulation step (S100) is normally performed by circulating the coolant between the fuel cell 100 and the heat exchanger 200 according to the temperature of the coolant discharged from the fuel cell 100. ) By controlling the operation of the fuel cell 100, thermal management of the fuel cell 100 can be performed.
  • This process is performed when the heat load of the fuel cell 100 is within an allowable range, and the allowable range can be set based on the size of the heat load or the rate of increase of the heat load at the time of measurement.
  • control unit 500 may be performed by the control unit 500 as shown in FIG. 7, but it is not limited to this, and of course, other configurations or new configurations may be added according to the needs of those skilled in the art.
  • the coolant temperature sensor 210 configured in the coolant recovery line 410 as shown in FIG. 5
  • the temperature of the coolant discharged from the fuel cell 100 can be measured (S120).
  • the heat load of the fuel cell 100 changes within the allowable range under the precondition
  • the size of the heat load of the fuel cell 100 or the temperature of the coolant discharged from the fuel cell is relatively low (S130)
  • the low-high temperature coolant which has a relatively low temperature among the high-temperature coolants
  • the heat exchanger 200 heat exchanges the low-temperature coolant with a relatively high temperature among the low-temperature coolants. It can be cooled with high or low temperature coolant.
  • the operation of the coolant pump 220 and the cooling fan 230 shown in FIG. 5 is controlled to control the heat energy to flow into the heat exchanger 200.
  • the flow rate of the coolant (S142) By reducing the flow rate of the coolant (S142), the amount of heat dissipation in the heat exchanger 200 can be lowered.
  • the high-low temperature coolant heat-exchanged through this process can be supplied back to the fuel cell 100 (S143).
  • the coolant pump 220 By controlling the operation of the fan 230, the flow rate of coolant flowing into the heat exchanger 200 is increased (S512), and as the heat dissipation amount increases, the heat exchanger 200 exchanges heat with the high-temperature coolant to make it relatively low-temperature coolant. It can be cooled with low temperature coolant.
  • the heat exchanger 200 controls the operation of the coolant pump 220 and the cooling fan 230 to increase the flow rate, thereby increasing the heat dissipation amount, thereby increasing the relatively low temperature. Cooling water at any temperature can be supplied to the fuel cell 100 (S153).
  • the operation of the coolant pump 220 and the cooling fan 230 may be operated linearly according to the temperature of the coolant flowing into the heat exchanger 200, and the degree of increase in the flow rate of the coolant according to the temperature of the coolant is corresponding to Of course, it can be applied in various ways depending on the operating characteristics of the fuel cell and the needs of those skilled in the art.
  • the filter chamber 300 can store low-temperature coolant, which has a relatively low temperature among low-temperature coolants.
  • the lower temperature stored in the filter chamber 300 is lower than the low temperature coolant heat exchanged in the heat exchanger 200. Cooling water may be preferentially supplied to the fuel cell 100.
  • FIG. 6 is a flowchart showing a specific embodiment of step 'S300' shown in Figure 3.
  • the circulation line can be switched from the main circulation line 410 to the auxiliary circulation line 420 (S320).
  • the low-temperature coolant stored in the filter chamber 300 is preferentially supplied to the fuel cell 100 in a set priority supply amount (S330), or the low-temperature coolant heat-exchanged in the heat exchanger 200 after the priority supply time has elapsed is supplied to the fuel cell 100.
  • S330 set priority supply amount
  • the circulation line can be re-converted from the auxiliary circulation line 420 to the main circulation line 410 (S350).
  • Figure 7 is a configuration diagram showing an embodiment of a fuel cell cooling system using an ion filter according to the present invention.
  • the fuel cell cooling system using an ion filter includes a fuel cell 100, a heat exchanger 200, a filter chamber 300, and a control unit 500.
  • the fuel cell 100 produces electrical energy using hydrogen as a fuel and oxygen in the air, and may include a PEMFC (Proton Exchange Membrane Fuel Cell).
  • PEMFC Proton Exchange Membrane Fuel Cell
  • the heat exchanger 200 is configured to supply cooling water to the fuel cell 100, can be connected to the fuel cell 100 and the main circulation line 410, and can be formed to have a wide contact surface with air.
  • the heat exchanger 200 may have a shape and structure similar to a plate heat exchanger.
  • a coolant temperature sensor 210 that measures the temperature of the coolant flowing into the heat exchanger 200, a coolant pump 220 and a cooling fan 230 that adjust the flow rate and heat dissipation amount of the heat exchanger 200 according to the temperature of the coolant. ) can be configured.
  • this heat exchanger 200 can be configured in various ways, such as the air-cooled type described above as well as the water-cooled type.
  • the filter chamber 300 is composed of an ion filter 310 that lowers the electrical conductivity of the coolant, and can be connected to the fuel cell 100 and the heat exchanger 200 through the auxiliary circulation line 420.
  • the filter chamber 300 is arranged closer to the fuel cell 100 than the heat exchanger 200, based on the time the coolant moves, so that it flows into the fuel cell 100 faster than the coolant of the heat exchanger 200. It may be configured to supply cooling water.
  • the control unit 500 receives and confirms the measured values detected by the heat load detection sensor 110 and the coolant temperature sensor 210 configured in the fuel cell 100, and operates a valve (unmarked) such as a three-way valve in response to the measured values. ) and the operation of the coolant pump 220 and cooling fan 230 can be controlled.
  • control unit 500 normally supplies coolant heat-exchanged in the heat exchanger 200 to the fuel cell 100, and when the heat load of the fuel cell 100 suddenly increases, the control unit 500 supplies the coolant stored in the filter chamber 300 to the fuel cell ( 100) can be controlled to provide priority.
  • control unit 500 circulates and supplies the coolant heat-exchanged in the heat exchanger 200 to the fuel cell 100 at normal times, and when the heat load of the fuel cell 100 suddenly increases, the control unit 500 supplies the coolant in the filter chamber 300 to the fuel cell 100. ), valves, etc. can be controlled to supply priority.
  • Figures 8 and 9 are configuration diagrams showing other embodiments of Figure 7.
  • the coolant cooled in the heat exchanger 200 according to the size of the heat load (coolant heat exchanged before detection of the heat load sudden increase and the filter chamber 300)
  • the coolant stored in can be mixed at a certain ratio and supplied to the fuel cell 100. At this time, the mixing ratio of the two coolants can be determined in response to the size of the detected heat load.
  • the main circulation line 420 may further include a bypass line 440 that allows coolant to circulate through the main circulation line 420 without passing through the heat exchanger 200.
  • the coolant stored in the filter chamber 300 can be supplied to the fuel cell 100, and the high-temperature coolant discharged from the fuel cell 100 can be supplied to the bypass line 400. It can be supplied to the filter chamber 300 through .
  • the ion filter 310 should not be damaged or deteriorated in function due to the high-temperature coolant.
  • (b) in FIG. 8 can be applied when the ion filter 310 can maintain normal performance even if high-temperature coolant flows into the ion filter 310, and this condition is the same in FIG. 9. It can be applied easily.
  • the high-temperature coolant stored in the filter chamber 300 exchanges heat with the outside air through natural convection and becomes low-temperature coolant. It can be cooled.
  • the filter chamber 300 may be arranged in parallel with the heat exchanger 200 and connected to the main circulation line 420.
  • the high-temperature coolant that has absorbed the heat generated in the fuel cell 100 is connected through the main circulation line 410 and the auxiliary circulation line 420 to move to at least one of the heat exchanger 200 and the filter chamber 300.
  • control unit 500 can control the coolant to circulate through the heat exchanger 200 as shown in (a) of FIG. 9 under normal circumstances, and as shown in (b) of FIG. 9 when the heat load of the fuel cell 100 rapidly increases.
  • the filter chamber 300 can be controlled to circulate.
  • control unit 500 operates when at least a portion of the low-temperature coolant stored in the filter chamber 300 is discharged, or when a certain amount of high-temperature coolant recovered from the fuel cell 100 flows into the filter chamber 300, or when the fuel cell
  • the coolant temperature inside the filter chamber 300 reaches a certain temperature due to the high-temperature coolant recovered from (100)
  • the circulation line is closed as shown in (a) of Figure 9. It can be reconverted (returned).
  • heat exchanger 210 coolant temperature sensor
  • Cooling water pump 230 Cooling fan
  • Filter chamber 310 Ion filter
  • Main circulation line 430 Auxiliary circulation line
  • the present invention can be used in the fuel cell field, fuel cell thermal management field, fuel cell cooling field, fuel cell cooling system field, fuel cell coolant control field, as well as similar or related fields, and can be used for products and systems in the field, etc. Reliability and competitiveness can be improved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a method and a system for cooling a fuel cell using an ion filter and, specifically, to a method for cooling a fuel cell using an ion filter and a system for cooling a fuel cell to which same is applied, the method comprising: a coolant circulation step of circulating a process in which, when high-temperature coolant is normally discharged from a fuel cell, a heat exchanger configured in a main circulation line cools the high-temperature coolant into the low-temperature coolant and supplies the coolant to the fuel cell; a heat load monitoring step of monitoring changes in heat load of the fuel cell; and a circulation line conversion step of converting a circulation line of the coolant from the main circulation line to an auxiliary circulation line which circulates a filter chamber so that the low-temperature coolant of the filter chamber configured with an ion filter is supplied to the fuel cell preferentially compared to the low-temperature coolant supplied from the heat exchanger to the fuel cell, when the heat load of the fuel cell rapidly increases compared to normal times.

Description

이온필터를 이용한 연료전지 냉각 방법 및 시스템Fuel cell cooling method and system using ion filter
본 발명은 이온필터를 이용한 연료전지 냉각 방법 및 시스템에 관한 것으로서, 보다 상세하게는 연료전지에서 발생하는 열부하를 효율적으로 관리함으로써, 연료전지의 안정적인 사용이 가능하도록 한 것이다.The present invention relates to a fuel cell cooling method and system using an ion filter, and more specifically, to enable stable use of the fuel cell by efficiently managing the heat load generated from the fuel cell.
특히, 본 발명은 연료전지의 열부하 급상승시, 열교환기에서 냉각된 냉각수가 연료전지로 공급되는 시간보다 빠르게, 이온필터가 구성된 필터챔버의 냉각수를 우선적으로 신속하게 공급함으로써, 연료전지의 열부하를 빠르게 저감하여 효율적인 열부하 관리가 가능하도록 할 수 있는 이온필터를 이용한 연료전지 냉각 방법 및 시스템에 관한 것이다.In particular, the present invention rapidly increases the heat load of the fuel cell by preferentially supplying the coolant from the filter chamber equipped with the ion filter faster than the time when the coolant cooled in the heat exchanger is supplied to the fuel cell when the heat load of the fuel cell suddenly increases. It relates to a fuel cell cooling method and system using an ion filter that can reduce and efficiently manage heat load.
연료전지(Fuel cell)는 화학적 변화에 의한 에너지를 전기에너지로 변환하는 장치를 말하는 것으로, 주로 수소와 산소를 이용하여 전기에너지를 발생시키고 부산물로는 물이 생성되므로, 공해물질을 생성하지 않는 친환경 발전 장치이며, 친환경 및 신재생에너지 분야에서 주목받고 있는 기술 중 하나이다.A fuel cell is a device that converts energy from chemical changes into electrical energy. It mainly uses hydrogen and oxygen to generate electrical energy, and water is produced as a by-product, so it is eco-friendly and does not produce pollutants. It is a power generation device and is one of the technologies attracting attention in the eco-friendly and renewable energy fields.
이러한 연료전지는, 수소와 산소가 반응하는 과정에서 산소가 공급되는 캐소드(양극) 측에서 열이 발생하게 되는데, 연료전지가 최적의 성능을 발휘하기 위해서는 이와 같이 발생하는 열을 외부로 신속하게 배출하고 안정적인 온도를 유지하도록 하는 열관리가 무엇보다 중요하다.In these fuel cells, heat is generated at the cathode (anode) side where oxygen is supplied during the reaction between hydrogen and oxygen. In order for the fuel cell to demonstrate optimal performance, this generated heat must be quickly discharged to the outside. And thermal management to maintain a stable temperature is more important than anything else.
연료전지에서 발생하는 열을 냉각하는 방법으로는, 주로 냉각수를 이용하고 있으며, 열교환기(라디에이터)에서 냉각되는 냉각수를 연료전지로 순환시키는 방법을 통해, 연료전지에서 발생하는 열을 지속적으로 냉각시키게 된다.As a method of cooling the heat generated from the fuel cell, coolant is mainly used, and the heat generated from the fuel cell is continuously cooled by circulating the coolant cooled in the heat exchanger (radiator) to the fuel cell. do.
한편, 연료전지에 공급되는 냉각수를 냉각하기 위한 열교환기는, 주로 대기 중 공기와의 열교환을 통해 냉각수를 냉각하게 되는데, 이러한 열교환방식의 특성으로 인해 외기온도가 달라지는 계절에 따라 열교환기의 열교환효율이 달라지게 되며, 이로 인해 연료전지에 대한 열관리가 안정적으로 이루어지지 못한다는 문제점이 있다.Meanwhile, the heat exchanger for cooling the coolant supplied to the fuel cell mainly cools the coolant through heat exchange with atmospheric air. Due to the characteristics of this heat exchange method, the heat exchange efficiency of the heat exchanger varies depending on the season when the outside temperature changes. This causes a problem in that thermal management of the fuel cell cannot be performed stably.
이러한 문제점을 해결하기 위한 기술 중 하나로, 선행기술문헌인 대한민국 등록특허공보 제10-1592652호 '연료전지 차량의 열 관리 시스템 및 방법'(이하 '선행기술'이라 한다)이 있다.One of the technologies to solve this problem is the prior art document, Republic of Korea Patent Publication No. 10-1592652, 'Thermal management system and method for fuel cell vehicles' (hereinafter referred to as 'prior art').
선행기술은 라디에이터(열교환기)를 통과하는 냉각수의 유량 및 방열량을 증가시킴으로써, 연료전지의 과열에 따른 고온 전류제한모드로의 진입 빈도를 감소시키고, 연료전지의 안정적인 열관리가 가능하도록 한 것이다.The prior art is to increase the flow rate and heat dissipation of coolant passing through a radiator (heat exchanger), thereby reducing the frequency of entering the high-temperature current limit mode due to overheating of the fuel cell and enabling stable thermal management of the fuel cell.
보다 구체적으로 살펴보면, 선행기술은 연료전지 시스템을 구성하는 이온필터를 순환하는 냉각수의 경로를 차단하여 라디에이터를 순환하는 냉각수의 유량을 증가시키고 냉각수의 방열량을 증가시킴으로써, 연료전지에서 발생하는 열을 신속하게 배출하도록 한 것이다.Looking more specifically, the prior art blocks the path of the coolant circulating through the ion filter that makes up the fuel cell system, increases the flow rate of the coolant circulating through the radiator, and increases the heat dissipation amount of the coolant, thereby quickly dissipating the heat generated from the fuel cell. It was designed to be discharged properly.
다시 말해, 선행기술은 이온필터로 냉각수가 공급되는 것을 차단하고, 라디에이터에 더 많은 양의 냉각수가 공급되도록 함으로써, 라디에이터에서 보다 많은 양의 열에너지를 외부로 배출하도록 한 것이다.In other words, the prior art blocks the supply of coolant to the ion filter and allows a greater amount of coolant to be supplied to the radiator, thereby allowing a greater amount of heat energy to be discharged from the radiator to the outside.
다만, 이와 같은 선행기술은 라디에이터에서 냉각된 냉각수가 연료전지에 공급되는 시간이 일정하게 유지되므로, 연료전지의 열부하가 급상승한 시점에서부터, 열부하의 급상승에 따라 방열량이 증가되어 냉각된 냉각수가 연료전지에 공급되는 시점까지의 지연시간은 변화하지 않음을 알 수 있다.However, in this prior art, the time for which coolant cooled from the radiator is supplied to the fuel cell is kept constant, so from the point when the heat load of the fuel cell suddenly increases, the amount of heat radiation increases according to the sudden increase in heat load, and the cooled coolant is supplied to the fuel cell. It can be seen that the delay time until it is supplied does not change.
이로 인해 연료전지는 열부하가 급상승하여 열과부하 상태로 지연시간동안 노출될 수 밖에 없으며, 이로 인해 연료전지에 성능저하, 손상, 파손 등이 발생할 수 있다는 문제점은 선행기술에서도 해결하지 못하고 있음을 알 수 있다.As a result, the heat load of the fuel cell rapidly increases and the fuel cell has no choice but to be exposed to a thermal overload state during the delay time, and it can be seen that the prior art has not been able to solve the problem that performance deterioration, damage, and damage to the fuel cell may occur due to this. there is.
상기와 같은 문제점을 해결하기 위해서, 본 발명은 연료전지에서 발생하는 열부하를 효율적으로 관리함으로써, 연료전지의 안정적인 사용이 가능하도록 할 수 있는 이온필터를 이용한 연료전지 냉각 방법 및 시스템을 제공하는데 목적이 있다.In order to solve the above problems, the purpose of the present invention is to provide a fuel cell cooling method and system using an ion filter that can enable stable use of the fuel cell by efficiently managing the heat load generated from the fuel cell. there is.
특히, 본 발명은 연료전지의 열부하 급상승시, 열교환기에서 냉각된 냉각수가 연료전지로 공급되는 시간보다 빠르게, 이온필터가 구성된 필터챔버의 냉각수를 우선적으로 신속하게 공급함으로써, 연료전지의 열부하를 빠르게 저감하여 효율적인 열부하 관리가 가능하도록 할 수 있는 이온필터를 이용한 연료전지 냉각 방법 및 시스템을 제공하는데 목적이 있다.In particular, the present invention rapidly increases the heat load of the fuel cell by preferentially supplying the coolant from the filter chamber equipped with the ion filter faster than the time when the coolant cooled in the heat exchanger is supplied to the fuel cell when the heat load of the fuel cell suddenly increases. The purpose is to provide a fuel cell cooling method and system using an ion filter that can reduce the heat load and enable efficient heat load management.
또한, 본 발명은 필터챔버에 저장된 냉각수를 우선적으로 공급하는 우선공급시간이 경과되거나, 열교환기에서 냉각된 냉각수가 연료전지로 공급되는 시간이 경과되면, 다시 열교환기에서 냉각된 냉각수를 공급하도록 순환라인을 재전환(리턴)함으로써, 냉각수의 효율적인 공급이 가능하도록 하는 이온필터를 이용한 연료전지 냉각 방법 및 시스템을 제공하는데 목적이 있다.In addition, in the present invention, when the priority supply time for preferentially supplying the coolant stored in the filter chamber has elapsed or the time for supplying the coolant cooled from the heat exchanger to the fuel cell has elapsed, the cycle is made to supply the coolant cooled from the heat exchanger again. The purpose is to provide a fuel cell cooling method and system using an ion filter that enables efficient supply of coolant by redirecting (returning) the line.
상기와 같은 목적을 달성하기 위해서, 본 발명에 따른 이온필터를 이용한 연료전지 냉각 방법은, 평상시 연료전지에서 고온냉각수가 배출되면 주순환라인에 구성된 열교환기가 고온냉각수를 저온냉각수로 냉각하여 연료전지에 공급하는 과정이 순환되는 냉각수순환단계; 연료전지의 열부하 변화를 모니터링하는 열부하모니터링단계; 및 상기 연료전지의 열부하가 평상시에 비하여 급상승하게 되면, 열교환기에서 연료전지로 공급되는 저온냉각수에 비하여 이온필터가 구성된 필터챔버의 저온냉각수를 연료전지에 우선공급하도록, 냉각수의 순환라인을 주순환라인에서 필터챔버를 순환하는 보조순환라인으로 전환하는 순환라인전환단계;를 포함한다.In order to achieve the above object, the fuel cell cooling method using an ion filter according to the present invention is that, when high-temperature coolant is normally discharged from the fuel cell, a heat exchanger configured in the main circulation line cools the high-temperature coolant into low-temperature coolant and supplies it to the fuel cell. A cooling water circulation step in which the process is circulated; A heat load monitoring step of monitoring changes in heat load of the fuel cell; And when the heat load of the fuel cell rapidly increases compared to normal times, the cooling water circulation line is connected to the main circulation line so that the low-temperature coolant from the filter chamber equipped with the ion filter is supplied to the fuel cell preferentially compared to the low-temperature coolant supplied from the heat exchanger to the fuel cell. It includes a circulation line conversion step of converting to an auxiliary circulation line that circulates the filter chamber.
또한, 상기 냉각수순환단계는, 상기 고온냉각수 또는 저온냉각수 중 어느 하나의 전기전도도가 위험수준에 도달하거나, 설정된 전기전도도 저감모드가 동작되면, 상기 순환라인을 주순환라인에서 보조순환라인으로 전환하여 전기전도도를 저감시키는 전기전도도저감단계;를 포함할 수 있다.In addition, in the cooling water circulation step, when the electrical conductivity of either the high-temperature coolant or the low-temperature coolant reaches a dangerous level or the set electrical conductivity reduction mode is activated, the circulation line is switched from the main circulation line to the auxiliary circulation line to generate electricity. It may include an electrical conductivity reduction step of reducing conductivity.
또한, 상기 순환라인전환단계는, 상기 연료전지의 열부하 급상승시 상기 순환라인을 주순환라인에서, 필터챔버를 순환하는 보조순환라인으로 전환하며, 상기 순환라인전환단계 이후에, 설정된 우선공급시간이 경과되면, 순환라인을 보조순환라인에서 주순환라인으로 재전환하는 순환라인리턴단계;를 더 포함할 수 있다.In addition, the circulation line switching step switches the circulation line from a main circulation line to an auxiliary circulation line that circulates the filter chamber when the heat load of the fuel cell suddenly increases, and after the circulation line switching step, a set priority supply time elapses. If so, a circulation line return step of reconverting the circulation line from the auxiliary circulation line to the main circulation line may be further included.
또한, 상기 냉각수순환단계는, 평상시 상기 연료전지의 열부하가 허용범위내에서 상대적으로 낮은 경우, 연료전지로부터 고온냉각수 중 상대적으로 낮은 온도인 낮은고온냉각수가 배출되고, 열교환기는 낮은고온냉각수를 열교환하여 저온냉각수 중 상대적으로 높은 온도인 높은저온냉각수로 냉각하며, 상기 연료전지의 열부하가 허용범위내에서 상대적으로 높은 경우, 연료전지로부터 고온냉각수 중 상대적으로 높은 온도인 높은고온냉각수가 배출되고, 열교환기는 높은고온냉각수를 열교환하여 저온냉각수 중 상대적으로 낮은 온도인 낮은저온냉각수로 냉각할 수 있다.In addition, in the cooling water circulation step, when the heat load of the fuel cell is relatively low within the allowable range, low-high temperature coolant, which has a relatively low temperature among high-temperature coolants, is discharged from the fuel cell, and the heat exchanger exchanges heat with the low-high temperature coolant. It is cooled with high-low-temperature coolant, which has a relatively high temperature among low-temperature coolants. When the heat load of the fuel cell is relatively high within the allowable range, high-temperature coolant, which has a relatively high temperature among high-temperature coolants, is discharged from the fuel cell, and the heat exchanger By exchanging heat with high-temperature coolant, it can be cooled with low-temperature coolant, which has a relatively lower temperature among low-temperature coolants.
또한, 상기 필터챔버는, 상기 저온냉각수 중 상대적으로 낮은 온도인 낮은저온냉각수를 저장하고, 상기 순환라인전환단계는, 상기 연료전지의 열부하가 급상승하여 허용범위를 초과하는 경우, 열교환기에서 열교환된 낮은저온냉각수보다, 필터챔버에 저장된 낮은저온냉각수를 우선적으로 연료전지에 공급할 수 있다.In addition, the filter chamber stores low-temperature coolant, which has a relatively low temperature among the low-temperature coolants, and the circulation line switching step is performed when the heat load of the fuel cell rapidly increases and exceeds the allowable range, the heat exchanged in the heat exchanger. The low-temperature coolant stored in the filter chamber can be supplied to the fuel cell preferentially rather than the low-temperature coolant.
또한, 상기 순환라인리턴단계는, 상기 필터챔버에 저장된 낮은저온냉각수가 설정된 우선공급량만큼 연료전지에 우선공급되거나, 우선공급시간이 경과되어 상기 열교환기에서 열교환된 낮은저온냉각수가 연료전지에 공급되면, 순환라인을 보조순환라인에서 주순환라인으로 재전환할 수 있다.In addition, the circulation line return step is performed when the low-temperature coolant stored in the filter chamber is preferentially supplied to the fuel cell in a set priority supply amount, or when the priority supply time elapses and the low-temperature coolant heat-exchanged in the heat exchanger is supplied to the fuel cell. , the circulation line can be re-converted from the auxiliary circulation line to the main circulation line.
또한, 본 발명에 따른 이온필터를 이용한 연료전지 냉각 시스템은, 연료전지; 상기 연료전지에서 배출된 고온의 냉각수를 열교환하여 냉각수의 온도를 낮춘 후, 온도가 낮아진 저온의 냉각수를 연료전지로 공급하도록 구성된 열교환기; 상기 냉각수의 전기전도도를 낮추는 이온필터가 구성된 필터챔버; 및 평상시 열교환기에서 열교환된 냉각수를 연료전지에 순환공급하고, 연료전지의 열부하 급상승시 필터챔버의 냉각수를 연료전지에 우선공급하도록 제어하는 제어부;를 포함할 수 있다.In addition, a fuel cell cooling system using an ion filter according to the present invention includes a fuel cell; a heat exchanger configured to heat exchange the high-temperature coolant discharged from the fuel cell to lower the temperature of the coolant, and then supply the lowered temperature coolant to the fuel cell; a filter chamber configured with an ion filter that lowers the electrical conductivity of the coolant; and a control unit that controls to circulate and supply coolant heat-exchanged in the heat exchanger to the fuel cell under normal circumstances and to preferentially supply coolant in the filter chamber to the fuel cell when the heat load of the fuel cell suddenly increases.
또한, 상기 열교환기에서 열교환된 저온냉각수가 연료전지로 이동하도록 구성된 주순환라인; 및 상기 열교환기에서 열교환된 저온냉각수가 필터챔버를 거쳐 연료전지로 이동하도록 구성된 보조순환라인;을 포함하며, 상기 제어부는, 평상시 상기 냉각수가 주순환라인을 순환하도록 제어하고, 연료전지의 열부하 상승시 냉각수가 보조순환라인을 순환하도록 제어할 수 있다.Additionally, a main circulation line configured to move the low-temperature coolant heat-exchanged in the heat exchanger to the fuel cell; and an auxiliary circulation line configured to allow the low-temperature coolant heat-exchanged in the heat exchanger to move to the fuel cell through a filter chamber, wherein the control unit controls the coolant to circulate in the main circulation line at normal times, and when the heat load of the fuel cell increases. Coolant can be controlled to circulate through the auxiliary circulation line.
또한, 상기 제어부는, 상기 연료전지의 열부하 상승시, 필터챔버에 저장된 저온냉각수의 적어도 일부가 연료전지로 우선공급되는 우선공급시간 동안 저온냉각수가 보조순환라인으로 순환되도록 제어하고, 해당 우선공급시간이 경과되면 열교환기에서 열교환된 저온냉각수가 주순환라인으로 순환되도록 제어할 수 있다.In addition, the control unit controls the low-temperature coolant to circulate in the auxiliary circulation line during the priority supply time during which at least a portion of the low-temperature coolant stored in the filter chamber is preferentially supplied to the fuel cell when the heat load of the fuel cell increases, and Once this has elapsed, the low-temperature cooling water heat exchanged in the heat exchanger can be controlled to circulate into the main circulation line.
또한, 상기 제어부는, 상기 필터챔버에 저장된 저온냉각수의 적어도 일부가 배출되거나, 상기 연료전지로부터 회수된 고온냉각수가 필터챔버로 일정량 유입되거나, 상기 필터챔버 내부의 냉각수 온도가 일정온도에 도달하면, 상기 우선공급시간이 경과된 것으로 판단할 수 있다.In addition, when at least a portion of the low-temperature coolant stored in the filter chamber is discharged, a certain amount of high-temperature coolant recovered from the fuel cell flows into the filter chamber, or the temperature of the coolant inside the filter chamber reaches a certain temperature, It can be determined that the priority supply time has elapsed.
상기와 같은 해결수단에 의해, 본 발명은 연료전지에서 발생하는 열부하를 효율적으로 관리함으로써, 연료전지의 안정적인 사용이 가능하도록 할 수 있는 장점이 있다.Through the above solution, the present invention has the advantage of enabling stable use of the fuel cell by efficiently managing the heat load generated from the fuel cell.
구체적으로, 본 발명은 연료전지의 열부하 급상승시, 열교환기에서 냉각된 냉각수가 연료전지로 공급되는 시간보다 빠르게, 이온필터가 구성된 필터챔버의 냉각수를 우선적으로 신속하게 공급함으로써, 연료전지의 열부하를 빠르게 저감하여 효율적인 열부하 관리가 가능하도록 할 수 있는 장점이 있다.Specifically, the present invention reduces the heat load of the fuel cell by preferentially supplying the coolant from the filter chamber equipped with the ion filter faster than the time when the coolant cooled from the heat exchanger is supplied to the fuel cell when the heat load of the fuel cell suddenly increases. It has the advantage of being able to quickly reduce heat load and enable efficient heat load management.
이에 따라, 본 발명은 연료전지의 열부하가 급상승한 열과부하 상태의 지속시간을 최소화함으로써, 연료전지의 성능저하, 손상 등을 최소화함은 물론, 연료전지의 안정적인 운용이 지속적으로 유지되도록 하는 장점이 있다.Accordingly, the present invention has the advantage of minimizing performance degradation and damage to the fuel cell by minimizing the duration of the thermal overload state in which the heat load of the fuel cell suddenly increases, as well as maintaining stable operation of the fuel cell continuously. there is.
또한, 본 발명은 필터챔버에 저장된 냉각수를 우선적으로 공급하는 우선공급시간이 경과되거나, 열교환기에서 냉각된 냉각수가 연료전지로 공급되는 시간이 경과되면, 다시 열교환기에서 냉각된 냉각수를 공급하도록 순환라인을 재전환(리턴)함으로써, 냉각수의 효율적인 공급이 가능하도록 하는 장점이 있다.In addition, in the present invention, when the priority supply time for preferentially supplying the coolant stored in the filter chamber has elapsed or the time for supplying the coolant cooled from the heat exchanger to the fuel cell has elapsed, the cycle is made to supply the coolant cooled from the heat exchanger again. There is an advantage in that efficient supply of coolant is possible by redirecting (returning) the line.
이에, 본 발명은 다양한 기능과 구성 등의 연료전지 냉각 시스템에도 쉽게 적용할 수 있을 뿐만 아니라, 연료전지를 이용하는 차량 등의 다양한 제품에도 쉽게 적용할 수 있으며, 이외에도 다양한 분야의 다양한 제품에 적용이 가능하므로, 활용성 및 적용성을 크게 향상시킬 수 있는 장점이 있다.Accordingly, the present invention can be easily applied to fuel cell cooling systems with various functions and configurations, as well as to various products such as vehicles using fuel cells, and can also be applied to various products in various fields. Therefore, it has the advantage of greatly improving usability and applicability.
도 1은 본 발명에 의한 이온필터를 이용한 연료전지 냉각 방법의 일 실시예를 나타내는 흐름도이다.1 is a flowchart showing an embodiment of a fuel cell cooling method using an ion filter according to the present invention.
도 2는 도 1을 설명하기 위한 이온필터를 연료전지 냉각 시스템의 개략적인 구성도이다.FIG. 2 is a schematic diagram of a fuel cell cooling system using an ion filter for explaining FIG. 1.
도 3은 도 1의 다른 일 실시예를 나타내는 흐름도이다.FIG. 3 is a flowchart showing another embodiment of FIG. 1.
도 4는 도 3에 나타난 단계 'S100'의 구체적인 일 실시예를 나타내는 순서도이다.Figure 4 is a flowchart showing a specific embodiment of step 'S100' shown in Figure 3.
도 5는 도 4를 설명하기 위한 이온필터를 연료전지 냉각 시스템의 개략적인 구성도이다.FIG. 5 is a schematic configuration diagram of a fuel cell cooling system using an ion filter for explaining FIG. 4.
도 6은 도 3에 나타난 단계 'S300'의 구체적인 일 실시예를 나타내는 순서도이다.Figure 6 is a flowchart showing a specific embodiment of step 'S300' shown in Figure 3.
도 7은 본 발명에 의한 이온필터를 이용한 연료전지 냉각 시스템의 일 실시예를 나타내는 구성도이다.Figure 7 is a configuration diagram showing an embodiment of a fuel cell cooling system using an ion filter according to the present invention.
도 8 및 도 9는 도 7의 다른 실시예들을 나타내는 구성도이다.Figures 8 and 9 are configuration diagrams showing other embodiments of Figure 7.
본 발명에 따른 이온필터를 이용한 연료전지 냉각 방법 및 시스템에 대한 예는 다양하게 적용할 수 있으며, 이하에서는 첨부된 도면을 참조하여 가장 바람직한 실시 예에 대해 설명하기로 한다.Examples of the fuel cell cooling method and system using an ion filter according to the present invention can be applied in various ways, and the most preferred embodiment will be described below with reference to the attached drawings.
도 1은 본 발명에 의한 이온필터를 이용한 연료전지 냉각 방법의 일 실시예를 나타내는 흐름도이고, 도 2는 도 1을 설명하기 위한 이온필터를 연료전지 냉각 시스템의 개략적인 구성도이다.FIG. 1 is a flowchart showing an embodiment of a fuel cell cooling method using an ion filter according to the present invention, and FIG. 2 is a schematic configuration diagram of a fuel cell cooling system using an ion filter for explaining FIG. 1.
도 1을 참조하면, 이온필터를 이용한 연료전지 냉각 방법은 냉각수순환단계(S100), 열부하모니터링단계(S200) 및 순환라인전환단계(S300)를 포함한다.Referring to FIG. 1, the fuel cell cooling method using an ion filter includes a coolant circulation step (S100), a heat load monitoring step (S200), and a circulation line switching step (S300).
먼저, 도 2를 참조하여 본 발명의 이온필터를 이용한 연료전지 냉각 방법이 적용되는 냉각 시스템의 개략적인 구성을 살펴보면, 연료전지(100)와 열교환기(200)는 도 2의 (a)에 나타난 바와 같이 주순환라인(410)을 통해 냉각수가 순환하도록 구성될 수 있다.First, looking at the schematic configuration of a cooling system to which the fuel cell cooling method using an ion filter of the present invention is applied with reference to FIG. 2, the fuel cell 100 and the heat exchanger 200 are shown in (a) of FIG. 2. As shown, the coolant may be configured to circulate through the main circulation line 410.
그리고, 이온필터(310)가 구성된 필터챔버(300)는 도 2의 (b)에 나타난 바와 같이 보조순환라인(420)을 통해 냉각수가 순환되도록 구성될 수 있다.In addition, the filter chamber 300 equipped with the ion filter 310 may be configured to circulate cooling water through the auxiliary circulation line 420, as shown in (b) of FIG. 2.
이와 같이 냉각수가 순환되는 라인은, 각 라인이 연결되는 부분에 구성된 밸브(3방변)의 동작에 의해 제어될 수 있다.In this way, the line through which the coolant circulates can be controlled by the operation of a valve (three-way valve) formed at the part where each line is connected.
이에, 냉각수순환단계(S100)에서는 도 2의 (a)에 나타난 바와 같이, 평상시 연료전지(100)에서 고온냉각수가 배출되면 주순환라인(410)에 구성된 열교환기(200)가 고온냉각수를 저온냉각수로 냉각하여 연료전지(100)에 공급하는 과정이 순환된다.Accordingly, in the coolant circulation step (S100), as shown in (a) of FIG. 2, when high-temperature coolant is normally discharged from the fuel cell 100, the heat exchanger 200 configured in the main circulation line 410 converts the high-temperature coolant into low-temperature coolant. The process of cooling and supplying it to the fuel cell 100 is cycled.
열부하모니터링단계(S200)에서는 이와 같은 냉각수순환단계(S100)가 진행되는 과정에서, 연료전지(100)의 열부하 변화를 모니터링한다.In the heat load monitoring step (S200), changes in the heat load of the fuel cell 100 are monitored while the coolant circulation step (S100) is in progress.
이때, 연료전지의 열부하가 평상시에 비하여 급상승하게 되면 순환라인전환단계(S300)를 수행하게 된다.At this time, when the heat load of the fuel cell rapidly increases compared to usual, the circulation line switching step (S300) is performed.
순환라인전환단계(S300)에서는, 연료전지(100)의 열부하 변화를 모니터링하는 과정에서, 연료전지(100)의 열부하가 평상시에 비하여 급상승하게 되면, 도 2의 (b)에 나타난 바와 같이 주순환라인(410)에서 보조순환라인(420)으로 순환라인을 전환하여, 필터챔버(300)에 저장된 저온냉각수를 연료전지(100)에 우선공급하게 된다.In the circulation line switching step (S300), in the process of monitoring the change in heat load of the fuel cell 100, if the heat load of the fuel cell 100 increases rapidly compared to usual, the main circulation line as shown in (b) of FIG. 2 By switching the circulation line from 410 to the auxiliary circulation line 420, the low-temperature coolant stored in the filter chamber 300 is first supplied to the fuel cell 100.
다시 말해 순환라인전환단계(S300)에서는, 열교환기(200)에서 냉각된 저온냉각수를 연료전지(100)로 공급하는 시간보다 빠른 시간에, 필터챔버(300)에 저장된 저온냉각수를 연료전지(100)에 우선공급한다.In other words, in the circulation line switching step (S300), the low-temperature coolant stored in the filter chamber 300 is supplied to the fuel cell 100 at a faster time than the time at which the low-temperature coolant cooled in the heat exchanger 200 is supplied to the fuel cell 100. ) is supplied first.
그리고, 도 2의 (b)에 나타난 바와 같이 필터챔버(300)에서 연료전지(100)로 공급되는 양 만큼의 냉각수를, 열교환기(200)에서 열교환된 냉각수로 보충할 수 있다.And, as shown in (b) of FIG. 2, the amount of coolant supplied from the filter chamber 300 to the fuel cell 100 can be supplemented with coolant heat-exchanged in the heat exchanger 200.
결과적으로, 순환라인전환단계(S300)는 연료전지(100)와 열교환기(200) 간에 순환되던 냉각수의 순환라인을, 연료전지(100)와 열교환기(200) 및 필터챔버(300)로 순환되도록 전환할 수 있다.As a result, the circulation line switching step (S300) circulates the circulation line of the coolant circulated between the fuel cell 100 and the heat exchanger 200 to the fuel cell 100, the heat exchanger 200, and the filter chamber 300. It can be converted as much as possible.
다만, 필터챔버(300)에서 연료전지(100)로 공급되는 양 만큼의 냉각수를, 반드시 열교환기(200)에서 열교환된 냉각수로 보충해야 하는 것은 아니며, 연료전지(100)를 통과하는 냉각수의 유량을 일정하게 유지할 수 있도록 하는 것이면, 다양한 방법이나 구성 등을 적용할 수 있음은 당연하며, 하기에서 그 중 일부에 대한 실시예를 살펴보기로 한다.However, the amount of coolant supplied from the filter chamber 300 to the fuel cell 100 does not necessarily have to be supplemented with the coolant heat exchanged in the heat exchanger 200, and the flow rate of coolant passing through the fuel cell 100 As long as it is possible to keep constant, it is natural that various methods or configurations can be applied, and examples of some of them will be looked at below.
또한, 냉각수가 이동하는 라인이 주순환라인(410)이나 보조순환라인(420) 중 어느 하나에 한정되는 것은 아니며, 두 라인을 동시에 이동할 수 있다.Additionally, the line through which the coolant moves is not limited to either the main circulation line 410 or the auxiliary circulation line 420, and the two lines can move simultaneously.
예를 들어, 열교환기(200)로 회수된 냉각수 중 일부는 주순환라인(410)을 통해 순환시키고, 다른 일부는 보조순환라인(420)을 통해 순환시킬 수 있다.For example, some of the coolant recovered from the heat exchanger 200 may be circulated through the main circulation line 410, and the other portion may be circulated through the auxiliary circulation line 420.
이를 위하여, 도 2에 나타난 밸브(3방변)의 동작은 완전열림 및 완전닫힘은 물론, 열림정도를 다양하게 제어하여 냉각수의 유량을 조절할 수 있으며, 이를 위한 밸브의 종류 및 구성, 각 라인과의 연결관계 등은 다양하게 적용이 가능하다.For this purpose, the operation of the valve (3-way valve) shown in Figure 2 can be fully opened and fully closed, as well as controlling the degree of opening in various ways to control the flow rate of the coolant, and the type and configuration of the valve for this, and the connection with each line. Connection relationships, etc. can be applied in a variety of ways.
또한, 연료전지(100)의 열부하 급상승시, 필터챔버(300)에 저장된 저온냉각수의 적어도 일부가 연료전지(100)로 우선공급되는 우선공급시간 동안 보조순환라인(420)이 순환되도록 제어하고, 해당 우선공급시간이 경과되면 주순환라인(420)을 통해 냉각수가 순환되도록 제어할 수 있다. 여기서, 우선공급시간은 당업자의 요구에 따라 다양하게 적용할 수 있으며, 특정 조건(예를 들어, 열교환기에서 열교환된 냉각수가 연료전지에 공급되기까지의 시간)이 충족되기까지 소요되는 시간 등을 포함할 수 있다.In addition, when the heat load of the fuel cell 100 suddenly increases, the auxiliary circulation line 420 is controlled to circulate during the priority supply time during which at least a portion of the low-temperature coolant stored in the filter chamber 300 is preferentially supplied to the fuel cell 100, When the priority supply time has elapsed, the coolant can be controlled to circulate through the main circulation line 420. Here, the priority supply time can be applied in various ways according to the needs of those skilled in the art, and the time required for specific conditions (for example, the time until the coolant heat exchanged in the heat exchanger is supplied to the fuel cell) is met. It can be included.
도 3은 도 1의 다른 일 실시예를 나타내는 흐름도이다.FIG. 3 is a flowchart showing another embodiment of FIG. 1.
도 3을 참조하면, 이온필터를 이용한 연료전지 냉각 방법은 순환라인리턴단계(S400)를 더 포함할 수 있다.Referring to FIG. 3, the fuel cell cooling method using an ion filter may further include a circulation line return step (S400).
먼저, 냉각수순환단계(S100)는 고온냉각수 또는 저온냉각수 중 어느 하나의 전기전도도가 위험수준에 도달하거나, 설정된 전기전도도 저감모드가 동작되면, 순환라인을 주순환라인(410)에서 보조순환라인(420)으로 전환하여 전기전도도를 저감시키는 전기전도도저감단계(S110)를 수행할 수 있다.First, in the coolant circulation step (S100), when the electrical conductivity of either the high-temperature coolant or the low-temperature coolant reaches a critical level or the set electrical conductivity reduction mode is activated, the circulation line is changed from the main circulation line 410 to the auxiliary circulation line 420. ) can be converted to an electrical conductivity reduction step (S110) to reduce electrical conductivity.
다시 말해, 본 발명에서 냉각수를 보조순환라인(420)으로 순환시키는 조건으로, 연료전지(100)의 열부하 급상승시와 더불어, 냉각수의 전기전도도 위험시를 포함할 수 있다.In other words, in the present invention, the conditions for circulating the coolant in the auxiliary circulation line 420 may include when the heat load of the fuel cell 100 rapidly increases and when the electrical conductivity of the coolant is dangerous.
또한, 연료전지를 이용한 차량의 경우, 주간 운행과 같이 연료전지(100)의 열부하가 급상승하는 경우는 물론, 야간 운행 등과 같이 연료전지(100)의 열부하가 안저적으로 관리되는 과정에서도 설정된 시간마다 반복적으로 보조순환라인(420)을 이용하여 전기전도도를 낮출 수 있다.In addition, in the case of a vehicle using a fuel cell, not only when the heat load of the fuel cell 100 increases rapidly, such as during daytime operation, but also when the heat load of the fuel cell 100 is ophthalmically managed, such as during night operation, every set time. Electrical conductivity can be lowered by repeatedly using the auxiliary circulation line 420.
결과적으로, 본 발명의 연료전지 시스템을 적용하는 경우, 연료전지(100)의 열부하 관리는 물론, 냉각수의 전기전도도 관리를 위하여, 보조순환라인(420)을 이용할 수 있다.As a result, when applying the fuel cell system of the present invention, the auxiliary circulation line 420 can be used to manage the thermal load of the fuel cell 100 as well as the electrical conductivity of the coolant.
순환라인리턴단계(S400)는 앞서 설명한 바와 같이, 설정된 우선공급시간이 경과되면, 순환라인을 보조순환라인(420)에서 주순환라인(410)으로 재전환하는 과정으로, 도 2의 (b)에서 (a)로 되돌아가는 과정을 말한다.As described above, the circulation line return step (S400) is a process of reconverting the circulation line from the auxiliary circulation line 420 to the main circulation line 410 when the set priority supply time has elapsed, as shown in (b) of Figure 2. This refers to the process of returning to (a).
다시 말해, 순환라인리턴단계(S400)는 연료전지(100)의 열부하 급상승에 따른 열관리문제가 해결되면 다시 평상시의 냉각수 순환과정으로 되돌아 가는 것을 의미할 수 있다.In other words, the circulation line return step (S400) may mean returning to the normal coolant circulation process when the heat management problem caused by a sudden increase in the heat load of the fuel cell 100 is resolved.
이하에서는, 도 1 및 도 3에 나타난 각 단계들 중 기술적 특징이 되는 단계들에 대하여 보다 구체적으로 살펴보기로 한다.Below, we will look in more detail at the technical features of each step shown in FIGS. 1 and 3.
도 4는 도 3에 나타난 단계 'S100'의 구체적인 일 실시예를 나타내는 순서도이고, 도 5는 도 4를 설명하기 위한 이온필터를 연료전지 냉각 시스템의 개략적인 구성도이다.FIG. 4 is a flowchart showing a specific example of step 'S100' shown in FIG. 3, and FIG. 5 is a schematic configuration diagram of a fuel cell cooling system using an ion filter for explaining FIG. 4.
도 4를 참조하면, 냉각수순환단계(S100)는 평상시 연료전지(100)와 열교환기(200) 간에, 냉각수를 순환시키는 과정에서 연료전지(100)로부터 배출되는 냉각수의 온도에 따라 열교환기(200)의 동작을 제어하여, 연료전지(100)의 열관리를 수행할 수 있다.Referring to FIG. 4, the coolant circulation step (S100) is normally performed by circulating the coolant between the fuel cell 100 and the heat exchanger 200 according to the temperature of the coolant discharged from the fuel cell 100. ) By controlling the operation of the fuel cell 100, thermal management of the fuel cell 100 can be performed.
이러한 과정은 연료전지(100)의 열부하가 허용범위 이내인 경우에서 수행되는 것으로, 허용범위는 측정시점에서 열부하의 크기 또는 열부하의 상승률을 기준으로 설정될 수 있다.This process is performed when the heat load of the fuel cell 100 is within an allowable range, and the allowable range can be set based on the size of the heat load or the rate of increase of the heat load at the time of measurement.
그리고, 해당 과정은 도 7에 나타난 바와 같은 제어부(500)에 의해 이루어질 수 있으나 이에 한정하는 것은 아니며, 당업자의 요구에 따라 다른 구성이나 새로운 구성을 추가하여 수행할 수도 있음은 물론이다.In addition, the process may be performed by the control unit 500 as shown in FIG. 7, but it is not limited to this, and of course, other configurations or new configurations may be added according to the needs of those skilled in the art.
도 4를 구체적으로 살펴보면, 평상시 냉각수가 연료전지(100)와 열교환기(200)를 순환하는 과정에서(S110), 도 5에 나타난 바와 같이 냉각수회수라인(410)에 구성된 냉각수온도센서(210)를 통해 연료전지(100)에서 배출된 냉각수의 온도를 측정할 수 있다(S120).Looking at FIG. 4 in detail, in the process of normal cooling water circulating through the fuel cell 100 and the heat exchanger 200 (S110), the coolant temperature sensor 210 configured in the coolant recovery line 410 as shown in FIG. 5 The temperature of the coolant discharged from the fuel cell 100 can be measured (S120).
이때, 평상시 연료전지(100)의 열부하가 허용범위내에서 변화할 경우를 전제조건으로 하여, 연료전지(100)의 열부하 크기 또는 연료전지에서 배출되는 냉각수의 온도가 상대적으로 낮은 경우(S130), 연료전지(100)로부터 고온냉각수 중 상대적으로 낮은 온도인 낮은고온냉각수가 배출되어 열교환기(200)로 유입되면(S141), 열교환기(200)는 낮은고온냉각수를 열교환하여 저온냉각수 중 상대적으로 높은 온도인 높은저온냉각수로 냉각할 수 있다.At this time, assuming that the heat load of the fuel cell 100 changes within the allowable range under the precondition, when the size of the heat load of the fuel cell 100 or the temperature of the coolant discharged from the fuel cell is relatively low (S130), When the low-high temperature coolant, which has a relatively low temperature among the high-temperature coolants, is discharged from the fuel cell 100 and flows into the heat exchanger 200 (S141), the heat exchanger 200 heat exchanges the low-temperature coolant with a relatively high temperature among the low-temperature coolants. It can be cooled with high or low temperature coolant.
이때, 열교환기(200)는 냉각수에 포함된 열에너지 중 방출할 열에너지가 비교적 적으므로, 도 5에 나타난 냉각수펌프(220) 및 냉각팬(230)의 동작을 제어하여, 열교환기(200)로 유입되는 냉각수의 유량을 감소시키고(S142) 열교환기(200)에서의 방열량을 낮출 수 있다.At this time, since the heat exchanger 200 has relatively little heat energy to be released among the heat energy contained in the coolant, the operation of the coolant pump 220 and the cooling fan 230 shown in FIG. 5 is controlled to control the heat energy to flow into the heat exchanger 200. By reducing the flow rate of the coolant (S142), the amount of heat dissipation in the heat exchanger 200 can be lowered.
이와 같이 과정을 통해 열교환된 높은저온냉각수는 다시 연료전지(100)로 공급될 수 있다(S143).The high-low temperature coolant heat-exchanged through this process can be supplied back to the fuel cell 100 (S143).
만약, 연료전지(100)의 열부하가 허용범위내에서 상대적으로 높은 경우(S130), 연료전지(100)로부터 고온냉각수 중 상대적으로 높은 온도인 높은고온냉각수가 배출되면, 냉각수펌프(220) 및 냉각팬(230)의 동작을 제어하여, 열교환기(200)로 유입되는 냉각수의 유량을 증가시키고(S512), 열교환기(200)는 방열량이 증가됨에 따라 높은고온냉각수를 열교환하여 저온냉각수 중 상대적으로 낮은 온도인 낮은저온냉각수로 냉각할 수 있다.If the heat load of the fuel cell 100 is relatively high within the allowable range (S130), and high-temperature coolant, which is a relatively high temperature among high-temperature coolants, is discharged from the fuel cell 100, the coolant pump 220 and the cooling By controlling the operation of the fan 230, the flow rate of coolant flowing into the heat exchanger 200 is increased (S512), and as the heat dissipation amount increases, the heat exchanger 200 exchanges heat with the high-temperature coolant to make it relatively low-temperature coolant. It can be cooled with low temperature coolant.
다시 말해, 열교환기(200)는 상대적으로 높은 온도의 냉각수가 유입되면, 냉각수펌프(220) 및 냉각팬(230)의 동작을 제어하여 유량을 증가시킴으로써, 방열량을 증가시키고, 이에 따라 상대적으로 낮은 온도의 냉각수를 연료전지(100)에 공급할 수 있다(S153).In other words, when relatively high temperature coolant flows in, the heat exchanger 200 controls the operation of the coolant pump 220 and the cooling fan 230 to increase the flow rate, thereby increasing the heat dissipation amount, thereby increasing the relatively low temperature. Cooling water at any temperature can be supplied to the fuel cell 100 (S153).
이때, 냉각수펌프(220) 및 냉각팬(230)의 동작은, 열교환기(200)로 유입되는 냉각수의 온도에 따라 선형적으로 동작될 수 있으며, 냉각수의 온도에 따른 냉각수의 유량 증가 정도는 해당 연료전지의 동작특성 및 당업자의 요구 등에 따라 다양하게 적용할 수 있음은 물론이다.At this time, the operation of the coolant pump 220 and the cooling fan 230 may be operated linearly according to the temperature of the coolant flowing into the heat exchanger 200, and the degree of increase in the flow rate of the coolant according to the temperature of the coolant is corresponding to Of course, it can be applied in various ways depending on the operating characteristics of the fuel cell and the needs of those skilled in the art.
그리고, 필터챔버(300)는 저온냉각수 중 상대적으로 낮은 온도인 낮은저온냉각수를 저장할 수 있다.Additionally, the filter chamber 300 can store low-temperature coolant, which has a relatively low temperature among low-temperature coolants.
이에, 순환라인전환단계(S300)에서는, 연료전지(100)의 열부하가 급상승하여 허용범위를 초과하는 경우, 열교환기(200)에서 열교환된 낮은저온냉각수보다, 필터챔버(300)에 저장된 낮은저온냉각수를 우선적으로 연료전지(100)에 공급할 수 있다.Accordingly, in the circulation line switching step (S300), when the heat load of the fuel cell 100 rapidly increases and exceeds the allowable range, the lower temperature stored in the filter chamber 300 is lower than the low temperature coolant heat exchanged in the heat exchanger 200. Cooling water may be preferentially supplied to the fuel cell 100.
도 6은 도 3에 나타난 단계 'S300'의 구체적인 일 실시예를 나타내는 순서도이다.Figure 6 is a flowchart showing a specific embodiment of step 'S300' shown in Figure 3.
도 6을 참조하면, 평상시 냉각수가 주순환라인(410)을 통해 연료전지(100)와 열교환기(200)를 순환하는 과정에서(S100) 연료전지(200)의 열부하를 확인하여(S200) 열부하가 정상범위 이내이면(S310), 현재의 순환라인을 유지할 수 있다(S360).Referring to FIG. 6, in the process of normal cooling water circulating between the fuel cell 100 and the heat exchanger 200 through the main circulation line 410 (S100), the heat load of the fuel cell 200 is checked (S200) and the heat load is If it is within the normal range (S310), the current circulation line can be maintained (S360).
만약, 열부하의 급상승이 확인되면(S310), 순환라인을 주순환라인(410)에서 보조순환라인(420)으로 전환할 수 있다(S320).If a sudden increase in heat load is confirmed (S310), the circulation line can be switched from the main circulation line 410 to the auxiliary circulation line 420 (S320).
이후, 필터챔버(300)에 저장된 낮은저온냉각수가 설정된 우선공급량만큼 연료전지(100)에 우선공급되거나(S330), 우선공급시간이 경과되어 열교환기(200)에서 열교환된 낮은저온냉각수가 연료전지(100)에 공급되면(S340), 순환라인을 보조순환라인(420)에서 주순환라인(410)으로 재전환할 수 있다(S350).Thereafter, the low-temperature coolant stored in the filter chamber 300 is preferentially supplied to the fuel cell 100 in a set priority supply amount (S330), or the low-temperature coolant heat-exchanged in the heat exchanger 200 after the priority supply time has elapsed is supplied to the fuel cell 100. When supplied to (100) (S340), the circulation line can be re-converted from the auxiliary circulation line 420 to the main circulation line 410 (S350).
도 7은 본 발명에 의한 이온필터를 이용한 연료전지 냉각 시스템의 일 실시예를 나타내는 구성도이다.Figure 7 is a configuration diagram showing an embodiment of a fuel cell cooling system using an ion filter according to the present invention.
도 7을 참조하면, 이온필터를 이용한 연료전지 냉각 시스템은 연료전지(100), 열교환기(200), 필터챔버(300) 및 제어부(500)를 포함한다.Referring to FIG. 7, the fuel cell cooling system using an ion filter includes a fuel cell 100, a heat exchanger 200, a filter chamber 300, and a control unit 500.
연료전지(100)는 연료인 수소와 공기중의 산소를 이용하여 전기에너지를 생산하는 것으로, PEMFC(Proton Exchange Membrane Fuel Cell; 고분자 전해질 연료전지)를 포함할 수 있다.The fuel cell 100 produces electrical energy using hydrogen as a fuel and oxygen in the air, and may include a PEMFC (Proton Exchange Membrane Fuel Cell).
열교환기(200)는 연료전지(100)에 냉각수를 공급하도록 구성된 것으로, 연료전지(100)와 주순환라인(410)으로 연결될 수 있으며, 공기와의 접촉면이 넓도록 형성될 수 있다. 예를 들어, 열교환기(200)는 판형열교환기와 유사한 형상 및 구조로 구성될 수 있다.The heat exchanger 200 is configured to supply cooling water to the fuel cell 100, can be connected to the fuel cell 100 and the main circulation line 410, and can be formed to have a wide contact surface with air. For example, the heat exchanger 200 may have a shape and structure similar to a plate heat exchanger.
그리고, 열교환기(200)로 유입되는 냉각수의 온도를 측정하는 냉각수온도센서(210), 냉각수의 온도에 따라 열교환기(200)의 유량 및 방열량을 조절하는 냉각수펌프(220) 및 냉각팬(230)이 구성될 수 있다.In addition, a coolant temperature sensor 210 that measures the temperature of the coolant flowing into the heat exchanger 200, a coolant pump 220 and a cooling fan 230 that adjust the flow rate and heat dissipation amount of the heat exchanger 200 according to the temperature of the coolant. ) can be configured.
이러한 열교환기(200)는 앞서 설명한 공랭식뿐만 아니라, 수랭식 등 다양한 방식으로 구성될 수 있음은 당연하다.It is natural that this heat exchanger 200 can be configured in various ways, such as the air-cooled type described above as well as the water-cooled type.
필터챔버(300)는 냉각수의 전기전도도를 낮추는 이온필터(310)가 구성된 것으로, 보조순환라인(420)을 통해 연료전지(100) 및 열교환기(200)와 연결될 수 있다.The filter chamber 300 is composed of an ion filter 310 that lowers the electrical conductivity of the coolant, and can be connected to the fuel cell 100 and the heat exchanger 200 through the auxiliary circulation line 420.
이때, 필터챔버(300)는 냉각수가 이동하는 시간을 기준으로, 열교환기(200)에 비하여 연료전지(100)에 더 가깝게 배치되어, 열교환기(200)의 냉각수보다 빠르게 연료전지(100)에 냉각수를 공급하도록 구성될 수 있다.At this time, the filter chamber 300 is arranged closer to the fuel cell 100 than the heat exchanger 200, based on the time the coolant moves, so that it flows into the fuel cell 100 faster than the coolant of the heat exchanger 200. It may be configured to supply cooling water.
제어부(500)는 연료전지(100)에 구성된 열부하감지센서(110) 및 냉각수온도센서(210)에서 감지된 측정값을 수신하여 확인하고, 해당 측정값에 대응하여 3방변 등의 밸브(미부호)와 냉각수펌프(220) 및 냉각팬(230)의 동작을 제어할 수 있다.The control unit 500 receives and confirms the measured values detected by the heat load detection sensor 110 and the coolant temperature sensor 210 configured in the fuel cell 100, and operates a valve (unmarked) such as a three-way valve in response to the measured values. ) and the operation of the coolant pump 220 and cooling fan 230 can be controlled.
예를 들어, 제어부(500)는 평상시 열교환기(200)에서 열교환된 냉각수를 연료전지(100)에 공급하고, 연료전지(100)의 열부하 급상승시 필터챔버(300)에 저장된 냉각수를 연료전지(100)에 우선공급하도록 제어할 수 있다.For example, the control unit 500 normally supplies coolant heat-exchanged in the heat exchanger 200 to the fuel cell 100, and when the heat load of the fuel cell 100 suddenly increases, the control unit 500 supplies the coolant stored in the filter chamber 300 to the fuel cell ( 100) can be controlled to provide priority.
다시 말해, 제어부(500)는 평상시 열교환기(200)에서 열교환된 냉각수를 연료전지(100)에 순환공급하고, 연료전지(100)의 열부하 급상승시 필터챔버(300)의 냉각수를 연료전지(100)에 우선공급하도록, 밸브 등을 제어할 수 있다.In other words, the control unit 500 circulates and supplies the coolant heat-exchanged in the heat exchanger 200 to the fuel cell 100 at normal times, and when the heat load of the fuel cell 100 suddenly increases, the control unit 500 supplies the coolant in the filter chamber 300 to the fuel cell 100. ), valves, etc. can be controlled to supply priority.
도 8 및 도 9는 도 7의 다른 실시예들을 나타내는 구성도이다.Figures 8 and 9 are configuration diagrams showing other embodiments of Figure 7.
먼저, 도 8의 (a)를 참조하면 연료전지(100)의 열부하 급상승시, 열부하의 크기에 따라 열교환기(200)에서 냉각된 냉각수(열부하 급상승 감지 이전에 열교환된 냉각수와 필터챔버(300)에 저장된 냉각수를 일정비율로 혼합하여 연료전지(100)에 공급할 수 있다. 이때, 두 냉각수의 혼합비율은 감지된 열부하의 크기에 대응하여 결정될 수 있다.First, referring to (a) of FIG. 8, when the heat load of the fuel cell 100 suddenly increases, the coolant cooled in the heat exchanger 200 according to the size of the heat load (coolant heat exchanged before detection of the heat load sudden increase and the filter chamber 300) The coolant stored in can be mixed at a certain ratio and supplied to the fuel cell 100. At this time, the mixing ratio of the two coolants can be determined in response to the size of the detected heat load.
도 8의 (b)를 참조하면, 주순환라인(420)에는 냉각수가 열교환기(200)를 거치지 않고 주순환라인(420)을 순환하도록 하는 바이패스라인(440)이 더 구성될 수 있다.Referring to (b) of FIG. 8, the main circulation line 420 may further include a bypass line 440 that allows coolant to circulate through the main circulation line 420 without passing through the heat exchanger 200.
이에, 연료전지(100)의 열부하 급상승하게 되면, 필터챔버(300)에 저장된 냉각수를 연료전지(100)에 공급할 수 있고, 연료전지(100)에서 배출되는 고온의 냉각수는 바이패스라인(400)을 통해 필터챔버(300)로 공급될 수 있다.Accordingly, when the heat load of the fuel cell 100 rapidly increases, the coolant stored in the filter chamber 300 can be supplied to the fuel cell 100, and the high-temperature coolant discharged from the fuel cell 100 can be supplied to the bypass line 400. It can be supplied to the filter chamber 300 through .
이때, 연료전지(100)에서 배출된 고온의 냉각수가 직접 이온필터(310)에 공급되므로, 해당 이온필터(310)가 고온의 냉각수로 인해 손상이나 기능저하가 발생하지 않아야 한다.At this time, since the high-temperature coolant discharged from the fuel cell 100 is directly supplied to the ion filter 310, the ion filter 310 should not be damaged or deteriorated in function due to the high-temperature coolant.
다시 말해, 도 8의 (b)는 이온필터(310)에 고온의 냉각수가 유입되더라도, 해당 이온필터(310)가 정상적인 성능을 유지할 수 있는 경우에 적용할 수 있으며, 이러한 조건은 도 9에서도 동일하게 적용될 수 있다.In other words, (b) in FIG. 8 can be applied when the ion filter 310 can maintain normal performance even if high-temperature coolant flows into the ion filter 310, and this condition is the same in FIG. 9. It can be applied easily.
이후, 평상시 순환모드로 전환되어 열교환기(200)에서 열교환된 냉각수가 연료전지(100)로 공급되면, 필터챔버(300)에 저장된 고온의 냉각수는 자연대류에 의해 외기와 열교환되어 낮은저온냉각수로 냉각될 수 있다.Afterwards, when the normal circulation mode is switched and the coolant heat-exchanged in the heat exchanger 200 is supplied to the fuel cell 100, the high-temperature coolant stored in the filter chamber 300 exchanges heat with the outside air through natural convection and becomes low-temperature coolant. It can be cooled.
도 9를 참조하면, 필터챔버(300)는 열교환기(200)와 병렬구조로 배치되어, 주순환라인(420)에 연결될 수 있다.Referring to FIG. 9, the filter chamber 300 may be arranged in parallel with the heat exchanger 200 and connected to the main circulation line 420.
보다 구체적으로 살펴보면, 연료전지(100)에서 발생된 열을 흡수한 고온냉각수는, 열교환기(200) 및 필터챔버(300) 중 적어도 하나로 이동하도록 주순환라인(410)과 보조순환라인(420)을 구성 및 연결할 수 있다.Looking more specifically, the high-temperature coolant that has absorbed the heat generated in the fuel cell 100 is connected through the main circulation line 410 and the auxiliary circulation line 420 to move to at least one of the heat exchanger 200 and the filter chamber 300. Can be configured and connected.
이에, 제어부(500)는 평상시 도 9의 (a)에 나타난 바와 같이 냉각수가 열교환기(200)를 통해 순환하도록 제어할 수 있고, 연료전지(100)의 열부하 급상승시 도 9의 (b)에 나타난 바와 같이 필터챔버(300)를 순환하도록 제어할 수 있다.Accordingly, the control unit 500 can control the coolant to circulate through the heat exchanger 200 as shown in (a) of FIG. 9 under normal circumstances, and as shown in (b) of FIG. 9 when the heat load of the fuel cell 100 rapidly increases. As shown, the filter chamber 300 can be controlled to circulate.
그리고, 제어부(500)는 필터챔버(300)에 저장된 저온냉각수의 적어도 일부가 배출되는 경우, 또는 연료전지(100)로부터 회수된 고온냉각수가 필터챔버(300)로 일정량 유입되는 경우, 또는 연료전지(100)로부터 회수된 고온냉각수에 의해 필터챔버(300) 내부의 냉각수 온도가 일정온도에 도달하는 경우, 우선공급시간이 경과된 것으로 판단하고, 도 9의 (a)에 나타난 바와 같이 순환라인을 재전환(리턴)할 수 있다.And, the control unit 500 operates when at least a portion of the low-temperature coolant stored in the filter chamber 300 is discharged, or when a certain amount of high-temperature coolant recovered from the fuel cell 100 flows into the filter chamber 300, or when the fuel cell When the coolant temperature inside the filter chamber 300 reaches a certain temperature due to the high-temperature coolant recovered from (100), it is determined that the priority supply time has elapsed, and the circulation line is closed as shown in (a) of Figure 9. It can be reconverted (returned).
이상에서 본 발명에 의한 이온필터를 이용한 연료전지 냉각 방법 및 시스템에 대하여 설명하였다. 이러한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.Above, the fuel cell cooling method and system using the ion filter according to the present invention have been described. Those skilled in the art will understand that the technical configuration of the present invention can be implemented in other specific forms without changing the technical idea or essential features of the present invention.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로서 이해되어야 한다.Therefore, the embodiments described above should be understood as illustrative in all respects and not restrictive.
[부호의 설명][Explanation of symbols]
100 : 연료전지 110 : 열부하감지센서100: fuel cell 110: heat load detection sensor
200 : 열교환기 210 : 냉각수온도센서200: heat exchanger 210: coolant temperature sensor
220 : 냉각수펌프 230 : 냉각팬220: Cooling water pump 230: Cooling fan
300 : 필터챔버 310 : 이온필터300: Filter chamber 310: Ion filter
410 : 주순환라인 430 : 보조순환라인410: Main circulation line 430: Auxiliary circulation line
440 : 바이패스라인440: bypass line
500 : 제어부500: Control unit
본 발명은 연료전지 분야, 연료전지 열관리 분야, 연료전지 냉각 분야, 연료전지 냉각 시스템 분야, 연료전지용 냉각수 제어 분야는 물론, 이와 유사 내지 연관된 분야에서 활용이 가능하며, 해당 분야의 제품 및 시스템 등에 대한 신뢰성 및 경쟁력을 향상시킬 수 있다.The present invention can be used in the fuel cell field, fuel cell thermal management field, fuel cell cooling field, fuel cell cooling system field, fuel cell coolant control field, as well as similar or related fields, and can be used for products and systems in the field, etc. Reliability and competitiveness can be improved.

Claims (10)

  1. 평상시 연료전지에서 고온냉각수가 배출되면 주순환라인에 구성된 열교환기가 고온냉각수를 저온냉각수로 냉각하여 연료전지에 공급하는 과정이 순환되는 냉각수순환단계;A cooling water circulation step in which, when high-temperature coolant is normally discharged from the fuel cell, a heat exchanger configured in the main circulation line cools the high-temperature coolant into low-temperature coolant and supplies it to the fuel cell;
    연료전지의 열부하 변화를 모니터링하는 열부하모니터링단계; 및A heat load monitoring step of monitoring changes in heat load of the fuel cell; and
    상기 연료전지의 열부하가 평상시에 비하여 급상승하게 되면, 열교환기에서 연료전지로 공급되는 저온냉각수에 비하여 이온필터가 구성된 필터챔버의 저온냉각수를 연료전지에 우선공급하도록, 냉각수의 순환라인을 주순환라인에서 필터챔버를 순환하는 보조순환라인으로 전환하는 순환라인전환단계;를 포함하는,When the heat load of the fuel cell rapidly increases compared to normal times, the coolant circulation line is connected to the main circulation line so that the low-temperature coolant from the filter chamber equipped with the ion filter is supplied to the fuel cell preferentially compared to the low-temperature coolant supplied from the heat exchanger to the fuel cell. Including a circulation line conversion step of converting the filter chamber into an auxiliary circulation line that circulates.
    이온필터를 이용한 연료전지 냉각 방법.Fuel cell cooling method using ion filter.
  2. 제 1항에 있어서,According to clause 1,
    상기 냉각수순환단계는,The coolant circulation step is,
    상기 고온냉각수 또는 저온냉각수 중 어느 하나의 전기전도도가 위험수준에 도달하거나, 설정된 전기전도도 저감모드가 동작되면, 상기 순환라인을 주순환라인에서 보조순환라인으로 전환하여 전기전도도를 저감시키는 전기전도도저감단계;를 포함하는 것을 특징으로 하는,When the electrical conductivity of either the high-temperature coolant or the low-temperature coolant reaches a critical level or the set electrical conductivity reduction mode is activated, the electrical conductivity is reduced by switching the circulation line from the main circulation line to the auxiliary circulation line. Characterized by including ;
    이온필터를 이용한 연료전지 냉각 방법.Fuel cell cooling method using ion filter.
  3. 제 1항에 있어서,According to clause 1,
    상기 순환라인전환단계는,The circulation line conversion step is,
    상기 연료전지의 열부하 급상승시 상기 순환라인을 주순환라인에서, 필터챔버를 순환하는 보조순환라인으로 전환하며,When the heat load of the fuel cell suddenly increases, the circulation line is switched from the main circulation line to an auxiliary circulation line that circulates the filter chamber,
    상기 순환라인전환단계 이후에,After the circulation line conversion step,
    설정된 우선공급시간이 경과되면, 순환라인을 보조순환라인에서 주순환라인으로 재전환하는 순환라인리턴단계;를 더 포함하는 것을 특징으로 하는,Characterized in that it further comprises a circulation line return step of re-converting the circulation line from the auxiliary circulation line to the main circulation line when the set priority supply time has elapsed,
    이온필터를 이용한 연료전지 냉각 방법.Fuel cell cooling method using ion filter.
  4. 제 3항에 있어서,According to clause 3,
    상기 냉각수순환단계는,The coolant circulation step is,
    평상시 상기 연료전지의 열부하가 허용범위내에서 상대적으로 낮은 경우, 연료전지로부터 고온냉각수 중 상대적으로 낮은 온도인 낮은고온냉각수가 배출되고, 열교환기는 낮은고온냉각수를 열교환하여 저온냉각수 중 상대적으로 높은 온도인 높은저온냉각수로 냉각하며,Normally, when the heat load of the fuel cell is relatively low within the allowable range, low-high temperature coolant, which has a relatively low temperature among the high-temperature coolants, is discharged from the fuel cell, and the heat exchanger exchanges heat with the low-temperature coolant to produce relatively high temperature among the low-temperature coolants. Cooled with high-low temperature coolant,
    상기 연료전지의 열부하가 허용범위내에서 상대적으로 높은 경우, 연료전지로부터 고온냉각수 중 상대적으로 높은 온도인 높은고온냉각수가 배출되고, 열교환기는 높은고온냉각수를 열교환하여 저온냉각수 중 상대적으로 낮은 온도인 낮은저온냉각수로 냉각하는 것을 특징으로 하는,When the heat load of the fuel cell is relatively high within the allowable range, high-temperature coolant, which has a relatively high temperature among the high-temperature coolants, is discharged from the fuel cell, and the heat exchanger exchanges heat with the high-temperature coolant to lower the temperature, which is relatively low among the low-temperature coolants. Characterized by cooling with low-temperature coolant,
    이온필터를 이용한 연료전지 냉각 방법.Fuel cell cooling method using ion filter.
  5. 제 4항에 있어서,According to clause 4,
    상기 필터챔버는,The filter chamber is,
    상기 저온냉각수 중 상대적으로 낮은 온도인 낮은저온냉각수를 저장하고,Among the low-temperature coolants, low-temperature coolant with a relatively low temperature is stored,
    상기 순환라인전환단계는,The circulation line conversion step is,
    상기 연료전지의 열부하가 급상승하여 허용범위를 초과하는 경우, 열교환기에서 열교환된 낮은저온냉각수보다, 필터챔버에 저장된 낮은저온냉각수를 우선적으로 연료전지에 공급하는 것을 특징으로 하는,When the heat load of the fuel cell rapidly increases and exceeds the allowable range, the low-temperature coolant stored in the filter chamber is preferentially supplied to the fuel cell rather than the low-temperature coolant exchanged in the heat exchanger.
    이온필터를 이용한 연료전지 냉각 방법.Fuel cell cooling method using ion filter.
  6. 제 5항에 있어서,According to clause 5,
    상기 순환라인리턴단계는,The circular line return step is,
    상기 필터챔버에 저장된 낮은저온냉각수가 설정된 우선공급량만큼 연료전지에 우선공급되거나, 우선공급시간이 경과되어 상기 열교환기에서 열교환된 낮은저온냉각수가 연료전지에 공급되면, 순환라인을 보조순환라인에서 주순환라인으로 재전환하는 것을 특징으로 하는,When the low-temperature coolant stored in the filter chamber is preferentially supplied to the fuel cell according to the set priority supply amount, or when the priority supply time has elapsed and the low-temperature coolant heat-exchanged in the heat exchanger is supplied to the fuel cell, the circulation line is changed from the auxiliary circulation line to the main circulation line. Characterized by reconversion to the line,
    이온필터를 이용한 연료전지 냉각 방법.Fuel cell cooling method using ion filter.
  7. 연료전지;fuel cell;
    상기 연료전지에서 배출된 고온의 냉각수를 열교환하여 냉각수의 온도를 낮춘 후, 온도가 낮아진 저온의 냉각수를 연료전지로 공급하도록 구성된 열교환기;a heat exchanger configured to heat exchange the high-temperature coolant discharged from the fuel cell to lower the temperature of the coolant, and then supply the lowered temperature coolant to the fuel cell;
    상기 냉각수의 전기전도도를 낮추는 이온필터가 구성된 필터챔버; 및a filter chamber configured with an ion filter that lowers the electrical conductivity of the coolant; and
    평상시 열교환기에서 열교환된 냉각수를 연료전지에 순환공급하고, 연료전지의 열부하 급상승시 필터챔버의 냉각수를 연료전지에 우선공급하도록 제어하는 제어부;를 포함하는,A control unit that normally supplies the coolant heat-exchanged in the heat exchanger to the fuel cell in circulation, and controls the coolant in the filter chamber to be supplied preferentially to the fuel cell when the heat load of the fuel cell suddenly increases.
    이온필터를 이용한 연료전지 냉각 시스템.Fuel cell cooling system using ion filter.
  8. 제 7항에 있어서,According to clause 7,
    상기 열교환기에서 열교환된 저온냉각수가 연료전지로 이동하도록 구성된 주순환라인; 및a main circulation line configured to move the low-temperature coolant heat-exchanged in the heat exchanger to the fuel cell; and
    상기 열교환기에서 열교환된 저온냉각수가 필터챔버를 거쳐 연료전지로 이동하도록 구성된 보조순환라인;을 포함하며,It includes an auxiliary circulation line configured to move the low-temperature coolant heat-exchanged in the heat exchanger to the fuel cell through a filter chamber,
    상기 제어부는,The control unit,
    평상시 상기 냉각수가 주순환라인을 순환하도록 제어하고, 연료전지의 열부하 상승시 냉각수가 보조순환라인을 순환하도록 제어하는 것을 특징으로 하는,Characterized in that the coolant is controlled to circulate in the main circulation line in normal times, and the coolant is controlled to circulate in the auxiliary circulation line when the heat load of the fuel cell increases.
    이온필터를 이용한 연료전지 냉각 시스템.Fuel cell cooling system using ion filter.
  9. 제 8항에 있어서,According to clause 8,
    상기 제어부는,The control unit,
    상기 연료전지의 열부하 상승시, 필터챔버에 저장된 저온냉각수의 적어도 일부가 연료전지로 우선공급되는 우선공급시간 동안 저온냉각수가 보조순환라인으로 순환되도록 제어하고, 해당 우선공급시간이 경과되면 열교환기에서 열교환된 저온냉각수가 주순환라인으로 순환되도록 제어하는 것을 특징으로 하는,When the heat load of the fuel cell increases, the low-temperature coolant is controlled to circulate through the auxiliary circulation line during the priority supply time during which at least a portion of the low-temperature coolant stored in the filter chamber is preferentially supplied to the fuel cell, and when the priority supply time elapses, the heat exchanger Characterized in that the heat exchanged low-temperature cooling water is controlled to circulate in the main circulation line.
    이온필터를 이용한 연료전지 냉각 시스템.Fuel cell cooling system using ion filter.
  10. 제 9항에 있어서,According to clause 9,
    상기 제어부는,The control unit,
    상기 필터챔버에 저장된 저온냉각수의 적어도 일부가 배출되거나,At least a portion of the low-temperature coolant stored in the filter chamber is discharged,
    상기 연료전지로부터 회수된 고온냉각수가 필터챔버로 일정량 유입되거나,A certain amount of high-temperature coolant recovered from the fuel cell flows into the filter chamber,
    상기 필터챔버 내부의 냉각수 온도가 일정온도에 도달하면,When the coolant temperature inside the filter chamber reaches a certain temperature,
    상기 우선공급시간이 경과된 것으로 판단하는 것을 특징으로 하는,Characterized in that it is determined that the priority supply time has elapsed,
    이온필터를 이용한 연료전지 냉각 시스템.Fuel cell cooling system using ion filter.
PCT/KR2023/014239 2022-10-12 2023-09-20 Method and system for cooling fuel cell using ion filter WO2024080610A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0130961 2022-10-12
KR1020220130961A KR20240050931A (en) 2022-10-12 2022-10-12 Fuel cell cooling method and system using ion filter

Publications (1)

Publication Number Publication Date
WO2024080610A1 true WO2024080610A1 (en) 2024-04-18

Family

ID=90669580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014239 WO2024080610A1 (en) 2022-10-12 2023-09-20 Method and system for cooling fuel cell using ion filter

Country Status (2)

Country Link
KR (1) KR20240050931A (en)
WO (1) WO2024080610A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208157A (en) * 1999-01-14 2000-07-28 Nissan Motor Co Ltd Fuel cell operation system
JP2004311347A (en) * 2003-04-10 2004-11-04 Nissan Motor Co Ltd Cooling system for fuel cell
JP2008243431A (en) * 2007-03-26 2008-10-09 Calsonic Kansei Corp Liquid circulation system
KR20150077814A (en) * 2013-12-30 2015-07-08 현대자동차주식회사 Temperature management system of fuel cell vehicle and method thereof
KR20160071649A (en) * 2014-12-12 2016-06-22 현대자동차주식회사 Ion filter roof structure of fuel cell for vechcle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208157A (en) * 1999-01-14 2000-07-28 Nissan Motor Co Ltd Fuel cell operation system
JP2004311347A (en) * 2003-04-10 2004-11-04 Nissan Motor Co Ltd Cooling system for fuel cell
JP2008243431A (en) * 2007-03-26 2008-10-09 Calsonic Kansei Corp Liquid circulation system
KR20150077814A (en) * 2013-12-30 2015-07-08 현대자동차주식회사 Temperature management system of fuel cell vehicle and method thereof
KR20160071649A (en) * 2014-12-12 2016-06-22 현대자동차주식회사 Ion filter roof structure of fuel cell for vechcle

Also Published As

Publication number Publication date
KR20240050931A (en) 2024-04-19

Similar Documents

Publication Publication Date Title
US6093500A (en) Method and apparatus for operating a fuel cell system
US20040265662A1 (en) System and method for heat exchange using fuel cell fluids
WO2016105034A1 (en) Electrolyte distribution block having cooling function, and split stack type redox flow battery comprising same
US7799474B2 (en) System and method for managing electrically isolated fuel cell powered devices within an equipment rack
WO2018182376A1 (en) Redox flow battery having electrolyte flow path independently provided therein
WO2017131432A1 (en) Battery module and energy storing device having same
WO2021025426A1 (en) Integrated thermal management circuit for vehicle
WO2024106748A1 (en) High-efficiency integrated absorption cooling system using fuel cell arrangement
WO2020122419A1 (en) Fuel cell control system
WO2020184869A1 (en) Heat management system for vehicle
WO2024080610A1 (en) Method and system for cooling fuel cell using ion filter
WO2024080609A1 (en) Fuel cell cooling method and system
WO2014104747A1 (en) Heat storage tank for use in solar heat power generating system, solar heat power generator for use in same, and solar heat power generating system comprising same
WO2020004929A1 (en) Thermoelectric cooling method and device
US20070132317A1 (en) Back-up power system for a cooling system
WO2022255524A1 (en) Water electrolysis system improving durability by preventing performance degradation inside water electrolysis stack
WO2017003089A1 (en) Solid oxide fuel cell system heated by external heat source
KR102588375B1 (en) Fuel cell system providing thermal solution
WO2004019431A2 (en) End-cell thermal distancing for fuel cell system
WO2021133134A1 (en) Thermal management system of vehicle
WO2013095026A1 (en) Heat recovery unit based on fuel cell and operating method thereof
CN211789283U (en) Hydrogen fuel power generation system
US20040219397A1 (en) Electrically isolated fuel cell powered server
WO2017007198A1 (en) Fuel cell system
WO2014038825A1 (en) Secondary battery module including heat transfer means, and heat transfer method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877538

Country of ref document: EP

Kind code of ref document: A1