WO2016105034A1 - Electrolyte distribution block having cooling function, and split stack type redox flow battery comprising same - Google Patents

Electrolyte distribution block having cooling function, and split stack type redox flow battery comprising same Download PDF

Info

Publication number
WO2016105034A1
WO2016105034A1 PCT/KR2015/013947 KR2015013947W WO2016105034A1 WO 2016105034 A1 WO2016105034 A1 WO 2016105034A1 KR 2015013947 W KR2015013947 W KR 2015013947W WO 2016105034 A1 WO2016105034 A1 WO 2016105034A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
housing
supply
distribution block
stack
Prior art date
Application number
PCT/KR2015/013947
Other languages
French (fr)
Korean (ko)
Inventor
방유경
김수환
하태정
김태윤
엄명섭
Original Assignee
오씨아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨아이 주식회사 filed Critical 오씨아이 주식회사
Publication of WO2016105034A1 publication Critical patent/WO2016105034A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery, and more particularly, to an electrolyte distribution block having a cooling function for dividing a stack into small groups so that the electrolyte can be uniformly distributed and maintaining the proper temperature of the electrolyte. It relates to a stack split type redox flow cell.
  • a redox flow battery is a device that converts chemical energy of an electrolyte into electrical energy through a battery cell.
  • the operating voltage of the battery cell has a relatively low voltage, such as 1.0 ⁇ 1.7V. Therefore, the stack is formed by stacking cells in series to increase the operating voltage.
  • the stack has a structure in which a plurality of battery cells are electrically connected in series and share electrolytes in parallel.
  • the magnitude of the shunt current tends to increase. Therefore, to reduce the shunt current, the number of stacked cells is provided to limit the number of distribution plates, and the piping for uniformly distributing the electrolytes supplied to the plurality of distribution plates has a problem of becoming complicated.
  • An object of the present invention is to divide and stack a stack of redox flow batteries into small groups so that the electrolyte can be more uniformly supplied to each cell.
  • Another object of the present invention is to provide a distribution block for uniformly distributing an electrolyte solution into a stack divided into small groups and simultaneously cooling the electrolyte solution so that the electrolyte solution can maintain a proper temperature.
  • the present invention is the main pipe connected to the electrolyte tank; A plurality of branch pipes branched from the main pipe and formed to have the same length up to a connector connected to the stack; A housing accommodating the branch pipe; It provides an electrolyte distribution block having a cooling function comprising; and cooling means for cooling the branch pipe.
  • the branch pipe is preferably provided with a connector that is exposed to the outside of the housing and connected to the stack.
  • the cooling means may use a blowing fan provided in the housing, or may use a refrigerant circuit for supplying and circulating a cooling fluid into the housing.
  • the plurality of branch pipes are preferably formed to be bent in a zigzag on the same plane.
  • the connector of the plurality of branch pipes is preferably formed on one surface of the housing at equal intervals.
  • the present invention is the N unit stack stacked M cells; 2N distribution plates stacked on both sides of each unit stack and having a pair of supply passages connected to a pair of electrolyte inlets of each unit stack, and a pair of outlet passages connected to a pair of electrolyte outlets;
  • a supply distribution block including a pair of supply main pipes connected to the electrolyte tank, supply branch pipes branched from the electrolyte supply pipes to the supply paths of the distribution plates, and a housing accommodating the supply branch pipes; And a pair of discharge main pipes connected to the electrolyte tank, a discharge branch pipe branched from the electrolyte supply pipe to N, and connected to the discharge flow path of each distribution plate, and a housing accommodating the discharge branch pipes. It provides a stack split redox flow battery comprising a.
  • the supply branch pipe and the discharge branch pipe is preferably provided with a connector that is exposed to the outside of the housing and connected to the stack.
  • the supply distribution block or the discharge distribution block may include cooling means for cooling the inside of the housing,
  • the cooling means may be a blowing fan provided in the housing or a refrigerant circuit for supplying and circulating a cooling fluid into the housing.
  • the supply branch pipe of the supply distribution block and the discharge branch pipe of the discharge distribution block have the same length
  • the plurality of branch pipes are formed to be bent in a zigzag on the same plane, it is more preferable if the branch pipes branched from different main pipes are formed at different heights.
  • the distribution block according to the present invention has the effect that the electrolyte can be uniformly supplied to each cell by allowing the electrolyte supplied from the electrolyte tank to have the same flow and be distributed and supplied to the stack.
  • the distribution block according to the present invention is provided with a cooling means to cool the electrolyte flowing through the branch pipe, thereby bringing the effect that the electrolyte can maintain a proper temperature even during long time operation.
  • the redox flow battery according to the present invention divides a cell into a unit stack and supplies an electrolyte solution to a unit stack through the divided block so that a uniform electrolyte can be supplied to all the cells, and the electrolyte solution has a proper temperature. It can maintain the effect of improving the performance of the redox flow battery.
  • FIG. 1 is a perspective view showing an electrolyte distribution block having a cooling function according to an embodiment of the present invention
  • Figure 2 is a plan view showing a branch pipe of the electrolyte distribution block having a cooling function according to an embodiment of the present invention
  • Figure 3 is a perspective view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention
  • Figure 4 is a perspective view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention
  • FIG. 5 is a cross-sectional view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention.
  • FIG. 6 is a side view showing a stack split type redox flow battery to which a distribution block having a cooling function according to an embodiment of the present invention is applied;
  • FIG. 7 is a schematic view showing an electrolyte path inside a unit stack and a distribution plate on both sides of a unit stack according to an exemplary embodiment of the present invention.
  • distribution block 120 main piping
  • cooling means 200 distribution block
  • unit stack 402 first electrolyte inlet
  • first electrolyte outlet 406 second electrolyte inlet
  • FIG. 1 is a perspective view showing an electrolyte distribution block having a cooling function according to an embodiment of the present invention
  • Figure 2 is a plan view showing a branch pipe of the electrolyte distribution block having a cooling function according to an embodiment of the present invention.
  • the electrolyte distribution block according to the present invention is connected to the electrolyte storage tank of the redox flow battery, serves to distribute the electrolyte into the stack, and at the same time to allow the electrolyte to be cooled inside the distribution block.
  • the temperature of the electrolyte affects the stability of the electrolyte.
  • the redox flow battery In order to prevent precipitation of vanadium ions and to ensure the stability of the electrolyte, the redox flow battery must be maintained within a certain temperature range.
  • the present invention relates to an electrolyte distribution block having a cooling function that allows the distribution block having a distribution function of the electrolyte to perform the electrolyte cooling function, thereby enabling the redox flow battery to exhibit optimal performance.
  • the electrolyte distribution block 100 is a plurality of branch pipes formed in the same length to the main pipe 120 and the branch connected to the electrolyte tank and connected to the stack connected to the electrolyte tank. 140, a housing 160 accommodating the branch pipe 140, and cooling means 180 for cooling the branch pipe 140.
  • the distribution block 100 is to connect the electrolyte tank and the stack to uniformly distribute the electrolyte solution to each stack and to supply the electrolyte solution supplied from the electrolyte tank to each stack to have the same flow resistance.
  • the electrolyte flows more than the design flow rate to the stack side with less flow resistance, the electrolyte flows less than the design flow rate to the stack side with a high flow resistance, and the electrolyte is excessive in some areas. In some areas, the electrolyte is insufficient and the overall system is degraded.
  • the distribution block 100 according to the present invention is characterized in that the branch pipes 140 have the same cross-sectional area and have the same length so that the electrolyte supplied to each stack in the electrolyte tank has the same flow resistance.
  • the cross-sectional area of the branch pipe 140 is smaller than the cross-sectional area of the main pipe 120, and it is preferable that the sum of the cross-sectional areas of the branch pipe 140 is smaller than the cross-sectional area of the main pipe 120.
  • Branch pipe 140 is installed in the limited space as long as possible characterized by reducing the shunt current by lengthening the movement path of the fluid between the branch pipe (140).
  • the plurality of branch pipes have the same flow resistance by making the length and cross-sectional area of the plurality of branch pipes the same.
  • the present invention is characterized in that the branch pipe 140 is formed to be bent in a zigzag on the same plane in the housing 160.
  • the surface area of the branch pipes 140 can be enlarged in the housing, and the length of the pipe can be taken as long as possible in a limited space.
  • the cooling means to be described later has the effect of cooling the electrolyte by cooling the outside of the branch pipe 140, because the cooling efficiency is improved by increasing the surface area of the branch pipe to enlarge the cooling effect of the branch pipe. .
  • a heat dissipation fin may be provided on the outer circumferential surface of the branch pipe 140 or irregularities may be formed. This is to increase the contact area with air or the refrigerant to more effectively cool the electrolyte flowing through the branch pipe 140.
  • the connector 145 is formed to be exposed to one surface of the housing 160 as shown, it is preferably formed at equal intervals.
  • the connector 145 is connected to the distribution plate, which will be described later, the distribution plate is stacked on both sides of the unit stack, it will have a uniform interval. Therefore, it is preferable that the connector 145 is evenly spaced apart from the distribution plate.
  • the connection between the connector 145 and each distribution plate is not easy, and it is not preferable because the same length of pipes must be used to connect them.
  • the housing 160 accommodates the branch pipe 140 and provides a space for cooling the branch pipe 140. This is to allow the branch pipe to exchange heat with the heat exchange medium (air or refrigerant) in the housing 160.
  • the heat exchange medium air or refrigerant
  • a blowing fan may be used as shown.
  • the housing 160 is preferably provided with a communication hole 162 for intake and exhaust of air.
  • the housing 160 is preferably provided with a communication hole 162 for intake and exhaust of air.
  • the blowing fan may operate to discharge the air inside the housing to the outside, and in this case, the communication hole 162 may serve as an inflow hole for introducing outside air.
  • the blowing fan may operate to introduce air into the housing, and in this case, the communication hole 162 serves as a discharge hole to allow air inside the housing to be discharged to the outside.
  • the illustrated embodiment has an air-cooled configuration in which a blowing fan is provided as the cooling means, but the cooling means may be configured to be water-cooled.
  • FIG. 3 is a perspective view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention.
  • the cooling means is configured by water cooling.
  • the configuration of the main pipe 120, the branch pipe 140 and the connector 145 is the same as the previous embodiment, the difference in the structure of the housing 160, the housing 160 is connected to a separate refrigerant circulation circuit Have
  • the housing 160 should accommodate the branch pipe 140 in a watertight structure, and discharge the refrigerant heat-exchanged from the housing 160 and the refrigerant supply pipe 172 for supplying the refrigerant to the housing 160. It is provided with a refrigerant discharge pipe (174).
  • the heat-exchanged refrigerant discharged through the refrigerant discharge pipe 174 may be cooled through a cooling tower or a heat exchanger, and then circulated back to the refrigerant supply pipe 172.
  • a coolant may be used as the refrigerant or another refrigerant may be used.
  • Figure 4 is a perspective view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention
  • Figure 5 is a cross-sectional view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention.
  • the present embodiment includes a pair of main pipes 210 and 230, a plurality of branch pipes 220 and 240 branched from the main pipes 210 and 230, a housing 260 to accommodate the branch pipes 220 and 240, and the branch pipes 220 and 240.
  • Cooling means 280 for cooling are provided for cooling.
  • This embodiment has two main pipes (210, 230), each of the plurality of branch pipes (220, 240) formed in the main pipe (210,230) is characterized in that formed.
  • the redox flow battery produces electric power through ion exchange between two kinds of electrolytes, and is a structure in which two kinds of electrolytes are supplied.
  • a pair of main pipes 210 and 230 are connected to different electrolyte tanks so that two kinds of electrolytes may be supplied through one electrolyte distribution block, and branch pipes 220 and 240 may be connected to each of the main pipes 210 and 230. It was forked. That is, the first electrolyte is supplied to one main pipe 210, and the second electrolyte is supplied to the other main pipe 230.
  • the pair of main pipes 210 and 230 are formed at different heights, and the branch pipes 220 and 240 branched from the main pipes 210 and 230 are arranged in a zigzag on the same plane, thereby forming a two-layer structure of the branch pipes 220 and 240. It is desirable to.
  • This structure ensures a space between the branch pipes (220, 240) to facilitate heat exchange, and is effective in reducing the size of the entire distribution block.
  • FIG. 6 is a side view illustrating a stack split type redox flow battery to which a distribution block having a cooling function according to an exemplary embodiment of the present invention is applied.
  • Redox flow battery is a device for converting the chemical energy of the electrolyte into electrical energy through the battery cell, the operating voltage of the cell is low to 1V level, stacking a plurality of cells in series to form a stack. For example, if the operating voltage of one cell is 1.0V, 200 cells are stacked and stacked to obtain a voltage of 200V.
  • the stacked stack has a structure in which the electrolytes are shared in parallel. When too many cells are stacked, the shunt current is excessively generated, resulting in a decrease in efficiency.
  • the stack split type redox flow battery has a structure in which distribution plates 420 and 440 are disposed on both sides of the unit stack 400 so that electrolyte can be individually supplied to and discharged from each unit stack 400. to provide.
  • 120 cells are to be stacked, instead of stacking 120 cells at once, divide them into 40 unit stacks, stack distribution plates on both sides of each unit stack, and The whole stack is configured by stacking three unit stacks in a stacked state.
  • Each unit stack 400 includes a first electrolyte inlet, a first electrolyte outlet, a second electrolyte inlet, and a second electrolyte outlet, which are connected to distribution plates 420 and 440 stacked on both sides of the unit stack, and distributed. Plates 420 and 420 are connected to the electrolyte tank through distribution blocks 500 and 600.
  • the electrolyte has a bottom-up flow.
  • the upper distribution distribution block 600 is provided. Through this, the first electrolyte and the second electrolyte are recovered and circulated to the electrolyte tank.
  • the supply distribution block 500 and the discharge distribution block 600 are composed of the above-described electrolyte distribution block.
  • the supply distribution block 500 serves to uniformly distribute the electrolyte supplied from the electrolyte tank to each distribution plate 420 and 440 and to cool the electrolyte.
  • the supply distribution block 500 is provided with a pair of supply main pipes 510 and 530 connected to the respective electrolyte tanks, and a plurality of supply branch pipes 520 and 540 branched from the supply main pipes 510 and 530 to be connected to the supply flow paths of the distribution plates. And a housing 560 accommodating the supply branch pipes 520 and 540, and cooling means (not shown) for cooling the inside of the housing 560.
  • the discharge distribution block 600 serves to return the electrolyte discharged from each unit stack 400 to the electrolyte tank and to cool the electrolyte.
  • the discharge distribution block 600 includes a pair of discharge main pipes 610 and 630 connected to the respective electrolyte tanks, and a plurality of discharge branch pipes 620 and 640 branched from the discharge main pipes 610 and 630 to be connected to the discharge flow path of each distribution plate. And a housing 660 accommodating the discharge branch pipes 620 and 640, and cooling means (not shown) for cooling the inside of the housing 660.
  • the electrolyte solution is discharged from the unit stack 400 and passes through the discharge branch pipes 520 and 540 through the distribution plates 420 and 440, and then is collected into the discharge main pipes 510 and 530, and then returned to the electrolyte tank.
  • the supply distribution block 500 and the discharge distribution block 600 have different names, but are structurally connected to the main pipe by a plurality of branch pipes, and the branch pipes are housed inside the housing and cooled by cooling means. Have the same structure.
  • FIG. 7 is a schematic view showing an electrolyte path inside a unit stack and a distribution plate on both sides of a unit stack according to an exemplary embodiment of the present invention.
  • the unit stack 400 includes a first electrolyte inlet 402, a first electrolyte outlet 404, a second electrolyte inlet 406, and a second electrolyte outlet 408.
  • the first electrolyte is introduced into the first electrolyte inlet 402 and distributed to each cell and then discharged into the first electrolyte outlet 404.
  • the second electrolyte is introduced into the second electrolyte inlet 406 and distributed to each cell and then discharged into the second electrolyte outlet 408.
  • the distribution plate 440 on the right side of the unit stack 400 includes a supply passage 442 connected to the first electrolyte inlet 402 and a discharge passage 444 connected to the second electrolyte outlet 408.
  • the distribution plate 420 on the left side of the unit stack 400 includes a supply passage 422 connected to the second electrolyte inlet 406, and a discharge passage 424 connected to the first electrolyte outlet 404.
  • Supply passages 422 and 442 formed in the distribution plates 420 and 440 are connected to supply branch pipes 520 and 540 of the supply distribution block 500 connected to the bottom of the stack, and discharge passages 424 and 444 formed in the distribution plates 420 and 440 are stacked. It is connected to the discharge branch pipes (620, 640) of the discharge distribution block 600 is connected to the lower portion of the.
  • connection may be made directly by fitting, or may be made using a separate connection pipe. In the case of using separate connection pipes, it is preferable to make the length of each connection pipe the same so that the electrolyte flowing through each unit stack receives the same flow resistance.
  • the electrolyte supplied to each unit stack receives the same flow resistance by making the length of the branch pipe the same. It can be uniformly distributed and can be cooled through the distribution block, thereby improving the performance of the redox flow battery.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a redox flow battery and, more specifically, to: an electrolyte distribution block having a cooling function so as to a uniformly distribute an electrolyte by splitting a stack into small groups and so as to allow the electrolyte to be maintained at an appropriate temperature; and a split stack type redox flow battery comprising the same. The present invention provides an electrolyte distribution block having a cooling function, comprising: a main pipe connected to an electrolyte tank; a plurality of branch pipes branched from the main pipe and formed, in the same length, up to a connector connected to a stack; a housing for accommodating the branch pipes; and a cooling means for cooling the branch pipes.

Description

냉각 기능을 구비하는 전해액 분배블럭 및 이를 포함하는 스택 분할형 레독스 흐름 전지Electrolyte distribution block with cooling function and stack split redox flow cell comprising the same
본 발명은 레독스 흐름 전지에 관한 것으로, 보다 상세하게는 스택을 소그룹으로 분할하여 전해액이 균일하게 분배될 수 있도록 하며 전해액이 적정온도를 유지할 수 있도록 하는 냉각 기능을 구비하는 전해액 분배블럭 및 이를 포함하는 스택 분할형 레독스 흐름 전지에 관한 것이다.The present invention relates to a redox flow battery, and more particularly, to an electrolyte distribution block having a cooling function for dividing a stack into small groups so that the electrolyte can be uniformly distributed and maintaining the proper temperature of the electrolyte. It relates to a stack split type redox flow cell.
레독스 흐름 전지(Redox flow battery)는 전지 셀을 통해서 전해액의 화학 에너지를 전기 에너지로 변환하는 장치이다. A redox flow battery is a device that converts chemical energy of an electrolyte into electrical energy through a battery cell.
전지 셀의 작동 전압은 1.0~1.7V 정도로 비교적 낮은 전압을 가진다. 따라서, 작동 전압을 높이기 위하여 셀을 직렬로 적층하여 스택을 구성한다. 스택은 다수의 전지 셀이 전기적으로 직렬로 연결되며, 전해액을 병렬로 공유하는 구조를 가진다.The operating voltage of the battery cell has a relatively low voltage, such as 1.0 ~ 1.7V. Therefore, the stack is formed by stacking cells in series to increase the operating voltage. The stack has a structure in which a plurality of battery cells are electrically connected in series and share electrolytes in parallel.
수십 장에서 수백 장의 셀을 적층하여 구성하고 있는 구조에서는 션트 전류의 크기가 증가하는 경향을 가지고 있다. 따라서 션트 전류를 줄여주기 위해 적층하는 셀의 개수를 제한하여 분배 플레이트을 구비하게 되며, 복수개의 분배 플레이트로 공급되는 전해액을 균일하게 분배시키는 배관이 복잡해지는 문제점을 가지고 있었다.In a structure composed of several tens to hundreds of cells stacked, the magnitude of the shunt current tends to increase. Therefore, to reduce the shunt current, the number of stacked cells is provided to limit the number of distribution plates, and the piping for uniformly distributing the electrolytes supplied to the plurality of distribution plates has a problem of becoming complicated.
또한, 레독스 흐름 전지를 연속 운전하게 되는 경우에는 순환되는 전해액의 온도가 상승하게 되는데, 전해액의 적정 온도 이상으로 상승하게 되면 바나듐 이온이 석출되는 문제점을 가지고 있었다.In addition, when the redox flow battery is continuously operated, the temperature of the circulating electrolyte increases, but there is a problem in that vanadium ions are precipitated when the redox flow battery rises above the appropriate temperature.
본 발명의 목적은 레독스 흐름 전지의 스택을 소그룹으로 분할하여 적층함으로써 각 셀에 전해액이 보다 균일하게 공급될 수 있도록 하기 위한 것이다.An object of the present invention is to divide and stack a stack of redox flow batteries into small groups so that the electrolyte can be more uniformly supplied to each cell.
본 발명의 다른 목적은 소그룹으로 분할된 스택에 전해액을 균일하게 분배함과 동시에 전해액을 냉각시켜 전해액이 적정온도를 유지할 수 있도록 하는 분배 블럭을 제공하기 위한 것이다.Another object of the present invention is to provide a distribution block for uniformly distributing an electrolyte solution into a stack divided into small groups and simultaneously cooling the electrolyte solution so that the electrolyte solution can maintain a proper temperature.
본 발명은 전해액 탱크와 연결되는 주배관; 상기 주배관에서 분기되며 스택에 연결되는 연결구까지 동일한 길이로 형성되는 복수개의 분기관; 상기 분기관을 수용하는 하우징; 및 상기 분기관을 냉각시키는 냉각수단;을 포함하는 냉각 기능을 구비하는 전해액 분배블럭을 제공한다.The present invention is the main pipe connected to the electrolyte tank; A plurality of branch pipes branched from the main pipe and formed to have the same length up to a connector connected to the stack; A housing accommodating the branch pipe; It provides an electrolyte distribution block having a cooling function comprising; and cooling means for cooling the branch pipe.
상기 분기관은 하우징 외부로 노출되어 스택과 연결되는 연결구를 구비하는 것이 바람직하다.The branch pipe is preferably provided with a connector that is exposed to the outside of the housing and connected to the stack.
상기 냉각수단은 상기 하우징에 구비되는 송풍팬을 사용하거나, 상기 하우징 내부로 냉각유체를 공급하여 순환시키는 냉매회로를 사용할 수 있다.The cooling means may use a blowing fan provided in the housing, or may use a refrigerant circuit for supplying and circulating a cooling fluid into the housing.
상기 복수개의 분기관은 동일평면 상에서 지그재그로 굴곡되게 형성되는 것이 바람직하다.The plurality of branch pipes are preferably formed to be bent in a zigzag on the same plane.
상기 복수개의 분기관의 연결구는 상기 하우징의 일면에 등간격으로 형성되는 것이 바람직하다.The connector of the plurality of branch pipes is preferably formed on one surface of the housing at equal intervals.
그리고, 본 발명은 M개의 셀이 적층된 N개의 단위 스택; 각 단위 스택의 양면에 적층되며 각 단위 스택의 한 쌍의 전해질 유입구와 연결되는 한 쌍의 공급유로와, 한 쌍의 전해질 배출구와 연결되는 한 쌍의 배출유로를 구비하는 2N개의 분배 플레이트; 전해질 탱크와 연결되는 한 쌍의 공급 주배관과, 상기 전해질 공급관에서 N개로 분기되어, 각 분배 플레이트의 공급유로와 연결되는 공급 분기관과, 상기 공급 분기관을 수용하는 하우징을 포함하는 공급분배블럭; 및 전해질 탱크와 연결되는 한 쌍의 배출 주배관과, 상기 전해질 공급관에서 N개로 분기되어, 각 분배 플레이트의 배출유로와 연결되는 배출 분기관과, 상기 배출 분기관을 수용하는 하우징을 포함하는 배출분배블럭;을 포함하는 스택 분할형 레독스 흐름 전지를 제공한다.In addition, the present invention is the N unit stack stacked M cells; 2N distribution plates stacked on both sides of each unit stack and having a pair of supply passages connected to a pair of electrolyte inlets of each unit stack, and a pair of outlet passages connected to a pair of electrolyte outlets; A supply distribution block including a pair of supply main pipes connected to the electrolyte tank, supply branch pipes branched from the electrolyte supply pipes to the supply paths of the distribution plates, and a housing accommodating the supply branch pipes; And a pair of discharge main pipes connected to the electrolyte tank, a discharge branch pipe branched from the electrolyte supply pipe to N, and connected to the discharge flow path of each distribution plate, and a housing accommodating the discharge branch pipes. It provides a stack split redox flow battery comprising a.
상기 공급 분기관과 상기 배출 분기관은 하우징 외부로 노출되어 스택과 연결되는 연결구를 구비하는 것이 바람직하다.The supply branch pipe and the discharge branch pipe is preferably provided with a connector that is exposed to the outside of the housing and connected to the stack.
상기 공급분배블럭 또는 상기 배출분배블럭은 상기 하우징 내부를 냉각하기 위한 냉각수단을 구비할 수 있으며, The supply distribution block or the discharge distribution block may include cooling means for cooling the inside of the housing,
상기 냉각수단은 상기 하우징에 구비되는 송풍팬이거나, 상기 하우징 내부로 냉각유체를 공급하여 순환시키는 냉매회로일 수 있다.The cooling means may be a blowing fan provided in the housing or a refrigerant circuit for supplying and circulating a cooling fluid into the housing.
또한, 상기 공급분배블럭의 공급 분기관과, 상기 배출분배블럭의 배출 분기관은 동일길이를 가지는 것이 바람직하고,In addition, it is preferable that the supply branch pipe of the supply distribution block and the discharge branch pipe of the discharge distribution block have the same length,
상기 복수개의 분기관은 동일평면 상에서 지그재그로 굴곡되게 형성되며, 서로 다른 주배관에서 분기된 분기관이 서로 다른 높이에 형성되면 더욱 바람직하다.The plurality of branch pipes are formed to be bent in a zigzag on the same plane, it is more preferable if the branch pipes branched from different main pipes are formed at different heights.
본 발명에 따른 분배 블럭은 전해액 탱크에서 공급되는 전해액이 동일한 흐름을 저항을 가지며 분배되어 스택으로 공급될 수 있도록 함으로써, 각 셀에 전해액이 균일하게 공급될 수 있는 효과를 가진다.The distribution block according to the present invention has the effect that the electrolyte can be uniformly supplied to each cell by allowing the electrolyte supplied from the electrolyte tank to have the same flow and be distributed and supplied to the stack.
또한, 본 발명에 따른 분배 블럭은 냉각 수단을 구비하여 분기관을 흐르는 전해액이 냉각될 수 있도록 함으로써, 장시간 운전시에도 전해액이 적정 온도를 유지할 수 있는 효과를 가져온다.In addition, the distribution block according to the present invention is provided with a cooling means to cool the electrolyte flowing through the branch pipe, thereby bringing the effect that the electrolyte can maintain a proper temperature even during long time operation.
그리고, 본 발명에 따른 레독스 흐름 전지는 셀을 단위 스택으로 분할하고, 분할된 상기 분배블럭을 통해 단위 스택에 전해액을 공급함으로써, 전체 셀에 균일한 전해액 공급이 가능하고, 전해액이 적정 온도를 유지할 수 있어 레독스 흐름 전지의 성능을 향상시키는 효과를 가져온다.In addition, the redox flow battery according to the present invention divides a cell into a unit stack and supplies an electrolyte solution to a unit stack through the divided block so that a uniform electrolyte can be supplied to all the cells, and the electrolyte solution has a proper temperature. It can maintain the effect of improving the performance of the redox flow battery.
도 1은 본 발명의 실시예에 따른 냉각 기능을 구비하는 전해액 분배블럭을 나타낸 사시도,1 is a perspective view showing an electrolyte distribution block having a cooling function according to an embodiment of the present invention;
도 2는 본 발명의 실시예에 따른 냉각 기능을 구비하는 전해액 분배블럭의 분기관을 나타낸 평면도,Figure 2 is a plan view showing a branch pipe of the electrolyte distribution block having a cooling function according to an embodiment of the present invention,
도 3은 본 발명의 다른 실시예에 따른 냉각 기능을 구비하는 전해액 분배블럭을 나타낸 사시도, 도 4는 본 발명의 다른 실시예에 따른 냉각 기능을 구비하는 전해액 분배블럭을 나타낸 사시도,Figure 3 is a perspective view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention, Figure 4 is a perspective view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention,
도 5는 본 발명의 다른 실시예에 따른 냉각 기능을 구비하는 전해액 분배블럭을 나타낸 단면도,5 is a cross-sectional view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention;
도 6은 본 발명의 실시예에 따른 냉각기능을 구비하는 분배블럭이 적용된 스택 분할형 레독스 흐름 전지를 나타낸 측면도,6 is a side view showing a stack split type redox flow battery to which a distribution block having a cooling function according to an embodiment of the present invention is applied;
도 7은 본 발명의 실시예에 따른 단위 스택 내부의 전해액 경로와 단위 스택 양측의 분배 플레이트를 개략적으로 나타낸 도면임.7 is a schematic view showing an electrolyte path inside a unit stack and a distribution plate on both sides of a unit stack according to an exemplary embodiment of the present invention.
* 도면의 주요 부분에 관한 부호의 설명 *Explanation of symbols on main parts of the drawings
100 : 분배블럭 120 : 주배관100: distribution block 120: main piping
140 : 분기관 145 : 연결구140: branch pipe 145: connector
160 : 하우징 162 : 소통홀160: housing 162: communication hole
180 : 냉각수단 200 : 분배블럭180: cooling means 200: distribution block
210,230 : 주배관 220,240 : 분기관210,230: Main pipe 220,240: Branch pipe
225,245 : 연결구 260 : 하우징225,245 connector 260 housing
262 : 소통홀 280 : 냉각수단262: communication hole 280: cooling means
400 : 단위스택 402 : 제1전해액 유입구400: unit stack 402: first electrolyte inlet
404 : 제1전해액 배출구 406 : 제2전해액 유입구404: first electrolyte outlet 406: second electrolyte inlet
408 : 제2전해액 배출구 420,440 : 분배플레이트408: second electrolyte outlet 420, 440: distribution plate
422,442 : 공급유로 424,444 : 배출유로422,442: Supply passage 424,444: Exhaust passage
500 : 공급분배블럭 510,530 : 공급 주배관500: Supply distribution block 510,530: Supply main piping
520,540 : 공급 분기관 525,545 : 연결구520,540: supply branch pipe 525,545: connector
560 : 하우징 600 : 배출분배블럭560 housing 600 discharge distribution block
610,630 : 배출 주배관 620,640 : 배출 분기관610,630: discharge main pipe 620,640: discharge branch pipe
625,645 : 연결구 660 : 하우징625,645 connector 660 housing
본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다. 또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. Based on the principle that it can, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. In addition, the embodiments described in the specification and the drawings shown in the drawings are only one of the most preferred embodiments of the present invention, and do not represent all of the technical spirit of the present invention, it is possible to replace them at the time of the present application It should be understood that there may be various equivalents and variations in the range.
도 1은 본 발명의 실시예에 따른 냉각 기능을 구비하는 전해액 분배블럭을 나타낸 사시도이고, 도 2는 본 발명의 실시예에 따른 냉각 기능을 구비하는 전해액 분배블럭의 분기관을 나타낸 평면도이다.1 is a perspective view showing an electrolyte distribution block having a cooling function according to an embodiment of the present invention, Figure 2 is a plan view showing a branch pipe of the electrolyte distribution block having a cooling function according to an embodiment of the present invention.
본 발명에 따른 전해액 분배블럭은 레독스 흐름 전지의 전해액 저장탱크와 연결되어, 전해액을 스택으로 분배하는 역할을 수행하며, 동시에 전해액이 분배블럭 내부에서 냉각될 수 있도록 하기 위한 것이다.The electrolyte distribution block according to the present invention is connected to the electrolyte storage tank of the redox flow battery, serves to distribute the electrolyte into the stack, and at the same time to allow the electrolyte to be cooled inside the distribution block.
레독스 흐름 전지는 전해액의 온도가 전해액 안정성에 영향을 미치는데, 바나듐 이온의 석출을 방지하여 전해액의 안정성을 확보하기 위해서는 일정한 온도 범위 내로 유지되어야 한다.In the redox flow battery, the temperature of the electrolyte affects the stability of the electrolyte. In order to prevent precipitation of vanadium ions and to ensure the stability of the electrolyte, the redox flow battery must be maintained within a certain temperature range.
그런데, 스택 연속운전 시 배터리 효율에 따른 발열로 발생한 열이 전해액에 축적되어 온도가 상승하게 되는 문제점이 있었다.However, there has been a problem in that heat generated by heat generation due to battery efficiency accumulates in the electrolyte during stack continuous operation, thereby increasing the temperature.
본 발명은 전해액의 분배기능을 가지는 분배블럭이 전해액 냉각기능을 수행할 수 있도록 함으로써, 레독스 흐름 전지가 최적의 성능을 발휘할 수 있도록 하는 냉각기능을 구비하는 전해액 분배블럭에 관한 것이다.The present invention relates to an electrolyte distribution block having a cooling function that allows the distribution block having a distribution function of the electrolyte to perform the electrolyte cooling function, thereby enabling the redox flow battery to exhibit optimal performance.
도시한 바와 같이, 본 발명의 실시예에 따른 전해액 분배블럭(100)은 전해액 탱크와 연결되는 주배관(120)과, 상기 주배관에서 분기되며 스택에 연결되는 연결구까지 동일한 길이로 형성되는 복수개의 분기관(140)과, 상기 분기관(140)을 수용하는 하우징(160)과, 상기 분기관(140)을 냉각시키는 냉각수단(180)을 포함한다.As shown, the electrolyte distribution block 100 according to an embodiment of the present invention is a plurality of branch pipes formed in the same length to the main pipe 120 and the branch connected to the electrolyte tank and connected to the stack connected to the electrolyte tank. 140, a housing 160 accommodating the branch pipe 140, and cooling means 180 for cooling the branch pipe 140.
분배블럭(100)은 전해액 탱크와 스택을 연결하여, 각 스택으로 균일하게 전해액을 분배하여 공급하기 위한 것으로, 전해액 탱크에서 각 스택으로 공급되는 전해액이 동일한 흐름 저항을 가지도록 해야 한다.The distribution block 100 is to connect the electrolyte tank and the stack to uniformly distribute the electrolyte solution to each stack and to supply the electrolyte solution supplied from the electrolyte tank to each stack to have the same flow resistance.
만일 흐름 저항이 동일하지 않으면, 흐름 저항이 적은 스택 측으로 설계유량 보다 많은 유량의 전해액이 공급되고, 흐름 저항이 큰 스택 측으로는 설계유량 보다 적은 유량의 전해액이 공급되어, 일부 영역에는 전해액이 과다하게 공급되고 일부 영역에는 전해액이 부족하게 공급되므로 전체적인 시스템의 성능 저하를 가져오게 된다.If the flow resistance is not the same, the electrolyte flows more than the design flow rate to the stack side with less flow resistance, the electrolyte flows less than the design flow rate to the stack side with a high flow resistance, and the electrolyte is excessive in some areas. In some areas, the electrolyte is insufficient and the overall system is degraded.
본 발명에 따른 분배블럭(100)은 전해액 탱크에서 각 스택으로 공급되는 전해액이 동일한 흐름 저항을 가지도록 하기 위하여, 분기관(140)들이 동일한 단면적을 가지며 동일한 길이를 가지도록 하는 것을 특징으로 한다.The distribution block 100 according to the present invention is characterized in that the branch pipes 140 have the same cross-sectional area and have the same length so that the electrolyte supplied to each stack in the electrolyte tank has the same flow resistance.
분기관(140)의 단면적은 주배관(120)의 단면적 보다 적으며, 분기관(140)의 단면적의 합이 주배관(120)의 단면적 보다 작게 형성되는 것이 바람직하다.The cross-sectional area of the branch pipe 140 is smaller than the cross-sectional area of the main pipe 120, and it is preferable that the sum of the cross-sectional areas of the branch pipe 140 is smaller than the cross-sectional area of the main pipe 120.
분기관(140)의 단면적의 합이 주배관(120)의 단면적보다 크게 형성되면 분기되는 부분에서 압력손실이 발생하게 된다. When the sum of the cross-sectional areas of the branch pipes 140 is greater than the cross-sectional area of the main pipe 120, pressure loss occurs at the branched portion.
분기관(140)은 한정된 공간안에서 최대한 길게 설치하여 분기관(140) 간의 유체의 이동경로를 길게하여 션트 전류를 줄이는 것을 특징으로 한다. Branch pipe 140 is installed in the limited space as long as possible characterized by reducing the shunt current by lengthening the movement path of the fluid between the branch pipe (140).
흐름 저항은 단면적과 길이에 따라 변화하게 되므로, 복수의 분기관의 길이와 단면적을 동일하게 함으로써 복수의 분기관이 동일한 흐름 저항을 가지게 한 것이다.Since the flow resistance changes with the cross-sectional area and the length, the plurality of branch pipes have the same flow resistance by making the length and cross-sectional area of the plurality of branch pipes the same.
또한, 본 발명은 분기관(140)을 하우징(160) 내부에서 동일평면 상에서 지그재그로 굴곡되게 형성한 것을 특징으로 한다. 분기관의 경로를 지그재그로 배열함으로써 하우징 내부에서 분기관(140)의 표면적을 확대할 수 있으며, 한정된 공간안에서 배관의 길이를 최대한 길게 가져갈 수 있다. 이는 후술하는 냉각수단이 분기관(140)의 외부를 냉각함으로써 전해액을 냉각하는 효과를 가져오게 되는 것으로, 분기관의 냉각효과를 확대하기 위하여 분기관의 표면적을 증가시키면 냉각 효율이 향상되기 때문이다.In addition, the present invention is characterized in that the branch pipe 140 is formed to be bent in a zigzag on the same plane in the housing 160. By arranging the paths of the branch pipes in a zigzag, the surface area of the branch pipes 140 can be enlarged in the housing, and the length of the pipe can be taken as long as possible in a limited space. This is because the cooling means to be described later has the effect of cooling the electrolyte by cooling the outside of the branch pipe 140, because the cooling efficiency is improved by increasing the surface area of the branch pipe to enlarge the cooling effect of the branch pipe. .
도면에서는 분기관의 외부면이 매끈하게 도시되어 있으나, 분기관(140)을 통한 냉각 효과를 향상시키기 위하여 분기관(140)의 외주면에 방열핀을 구비하거나 요철을 형성할 수도 있다. 이는 공기 또는 냉매와의 접촉 면적을 증가시켜 분기관(140) 내부를 흐르는 전해액을 보다 효과적으로 냉각시키기 위한 것이다.Although the outer surface of the branch pipe is smoothly illustrated in the drawing, in order to improve the cooling effect through the branch pipe 140, a heat dissipation fin may be provided on the outer circumferential surface of the branch pipe 140 or irregularities may be formed. This is to increase the contact area with air or the refrigerant to more effectively cool the electrolyte flowing through the branch pipe 140.
분기관(140)의 일측단부는 주배관(120)에 연결되어 분기되고 타측 단부는 스택으로 연결되는 연결구(145)가 된다. 연결구(145)는 도시한 바와 같이 하우징(160)의 일면으로 노출되어 형성되며, 등간격으로 형성되는 것이 바람직하다.One end of the branch pipe 140 is connected to the main pipe 120 is branched and the other end is a connector 145 is connected to the stack. The connector 145 is formed to be exposed to one surface of the housing 160 as shown, it is preferably formed at equal intervals.
연결구(145)는 후술하는 분배 플레이트와 연결되는 데, 분배 플레이트는 단위 스택의 양면에 적층되는 것으로, 균일한 간격을 가지게 된다. 따라서, 연결구(145)는 분배 플레이트와 균일하게 등간격을 가지는 것이 바람직하다.The connector 145 is connected to the distribution plate, which will be described later, the distribution plate is stacked on both sides of the unit stack, it will have a uniform interval. Therefore, it is preferable that the connector 145 is evenly spaced apart from the distribution plate.
연결구(145)의 간격과, 분배 플레이트의 간격이 다르게 되면, 연결구(145)와 각 분배 플레이트의 연결이 용이하지 않으며, 또한 이들을 연결할 때에도 동일한 길이의 배관을 사용해야 하므로 바람직하지 못하다.If the distance between the connector 145 and the distribution plate is different, the connection between the connector 145 and each distribution plate is not easy, and it is not preferable because the same length of pipes must be used to connect them.
하우징(160)은 분기관(140)을 수용하고, 분기관(140)을 냉각하는 공간을 제공한다. 이는 하우징(160) 내부에서 분기관이 열교환 매체(공기 또는 냉매)와 열교환이 이루어질 수 있도록 하기 위한 것이다.The housing 160 accommodates the branch pipe 140 and provides a space for cooling the branch pipe 140. This is to allow the branch pipe to exchange heat with the heat exchange medium (air or refrigerant) in the housing 160.
냉각수단(180)으로는 도시한 바와 같이 송풍팬을 사용할 수 있다.As the cooling means 180, a blowing fan may be used as shown.
송풍팬을 이용하여 외부 공기를 지속적으로 하우징(160) 내부로 공급함으로써, 공기와 분기관(140) 사이의 열교환을 이용하여 분기관(140)을 통해 공급되는 전해액을 냉각시키기 위한 것이다.By continuously supplying outside air into the housing 160 by using a blower fan, it is to cool the electrolyte solution supplied through the branch pipe 140 by using heat exchange between the air and the branch pipe 140.
이 경우 하우징(160)에는 공기의 흡기와 배기를 위한 소통홀(162)이 구비되는 것이 바람직하다. 밀폐된 공간에서 송풍팬을 작동할 경우 가열된 공기가 하우징 내부에서 순환만하게 되므로, 공기의 온도가 점차 상승하게 되어 냉각효과가 점차 감소하게 되는 문제가 발생한다.In this case, the housing 160 is preferably provided with a communication hole 162 for intake and exhaust of air. When operating the blower fan in the enclosed space, since the heated air circulates only inside the housing, the temperature of the air gradually rises, thereby decreasing the cooling effect.
외부의 공기가 하우징(160) 내부로 유입되고, 유출될 수 있도록 하는 소통홀(162)을 구비함으로써, 지속적으로 외기가 유입되어 열교환 후 배출될 수 있도록 하는 것이 바람직하다.By providing a communication hole 162 to allow the outside air to flow into the housing 160 and to flow out, it is preferable to allow the outside air to be continuously introduced and discharged after heat exchange.
송풍팬은 하우징 내부의 공기를 외부로 배출하도록 작동할 수 있으며, 이 경우 소통홀(162)은 외부의 공기를 유입시키는 유입홀의 역할을 수행하게 된다. 반대로 송풍팬이 하우징 내부로 공기를 유입하도록 작동할 수 있으며, 이 경우 소통홀(162)은 하우징 내부의 공기가 외부로 배출될 수 있도록 하는 배출홀의 역할을 수행하게 된다.The blowing fan may operate to discharge the air inside the housing to the outside, and in this case, the communication hole 162 may serve as an inflow hole for introducing outside air. On the contrary, the blowing fan may operate to introduce air into the housing, and in this case, the communication hole 162 serves as a discharge hole to allow air inside the housing to be discharged to the outside.
도시한 실시예는 공냉식 구성으로 냉각수단으로 송풍팬을 구비한 형태이나, 냉각수단을 수냉식으로 구성할 수도 있다.The illustrated embodiment has an air-cooled configuration in which a blowing fan is provided as the cooling means, but the cooling means may be configured to be water-cooled.
도 3은 본 발명의 다른 실시예에 따른 냉각 기능을 구비하는 전해액 분배블럭을 나타낸 사시도이다. 본 실시예는 냉각수단을 수냉식으로 구성한 것이다.Figure 3 is a perspective view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention. In this embodiment, the cooling means is configured by water cooling.
주배관(120)과 분기관(140) 그리고 연결구(145)의 구성은 앞선 실시예와 동일하나, 하우징(160)의 구조와, 하우징(160)이 별도의 냉매순환회로에 연결되는 점에서 차이를 가진다.The configuration of the main pipe 120, the branch pipe 140 and the connector 145 is the same as the previous embodiment, the difference in the structure of the housing 160, the housing 160 is connected to a separate refrigerant circulation circuit Have
수냉식으로 구성하는 경우 , 하우징(160)은 수밀구조로 분기관(140)을 수납하여야 하고, 하우징(160)으로 냉매를 공급하기 위한 냉매공급관(172)과 하우징(160)에서 열교환된 냉매를 배출하기 위한 냉매배출관(174)을 구비한다. 냉매배출관(174)을 통해서 배출되는 열교환된 냉매는 냉각탑 또는 열교환기 등을 거쳐 냉각된후 다시 냉매공급관(172)으로 순환될 수 있다. 이 때 냉매로는 냉각수를 사용하거나, 다른 냉매를 사용할 수도 있다.In the case of the water-cooling configuration, the housing 160 should accommodate the branch pipe 140 in a watertight structure, and discharge the refrigerant heat-exchanged from the housing 160 and the refrigerant supply pipe 172 for supplying the refrigerant to the housing 160. It is provided with a refrigerant discharge pipe (174). The heat-exchanged refrigerant discharged through the refrigerant discharge pipe 174 may be cooled through a cooling tower or a heat exchanger, and then circulated back to the refrigerant supply pipe 172. In this case, a coolant may be used as the refrigerant or another refrigerant may be used.
도 4는 본 발명의 다른 실시예에 따른 냉각 기능을 구비하는 전해액 분배블럭을 나타낸 사시도이고, 도 5는 본 발명의 다른 실시예에 따른 냉각 기능을 구비하는 전해액 분배블럭을 나타낸 단면도이다.Figure 4 is a perspective view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention, Figure 5 is a cross-sectional view showing an electrolyte distribution block having a cooling function according to another embodiment of the present invention.
본 실시예는 한 쌍의 주배관(210,230)과, 각 주배관(210,230)에서 분기되는 복수개의 분기관(220,240)과, 상기 분기관(220,240)을 수용하는 하우징(260)과, 상기 분기관(220,240)을 냉각시키는 냉각수단(280)을 포함한다.The present embodiment includes a pair of main pipes 210 and 230, a plurality of branch pipes 220 and 240 branched from the main pipes 210 and 230, a housing 260 to accommodate the branch pipes 220 and 240, and the branch pipes 220 and 240. Cooling means 280 for cooling).
본 실시예는 2개의 주배관(210,230)을 구비하며, 각각의 주배관(210,230)에 복수개의 분기관(220,240)이 분기되어 형성된 것을 특징으로 한다.This embodiment has two main pipes (210, 230), each of the plurality of branch pipes (220, 240) formed in the main pipe (210,230) is characterized in that formed.
레독스 흐름 전지는 2종류의 전해액 사이의 이온 교환을 통해 전력을 생산하는 것으로, 2 종류의 전해액이 공급되는 구조이다.The redox flow battery produces electric power through ion exchange between two kinds of electrolytes, and is a structure in which two kinds of electrolytes are supplied.
따라서, 2종류의 전해액이 하나의 전해액 분배블럭을 통해 공급될 수 있도록, 서로 다른 전해액 탱크에 연결되는 한 쌍의 주배관(210,230)을 구비하고, 각각의 주배관(210,230)에서 분기관(220,240)이 분기되도록 한 것이다. 즉 하나의 주배관(210)으로는 제1전해액이 공급되도록 하고, 다른 하나의 주배관(230)으로는 제2전해액이 공급될 수 있도록 하기 위한 것이다.Accordingly, a pair of main pipes 210 and 230 are connected to different electrolyte tanks so that two kinds of electrolytes may be supplied through one electrolyte distribution block, and branch pipes 220 and 240 may be connected to each of the main pipes 210 and 230. It was forked. That is, the first electrolyte is supplied to one main pipe 210, and the second electrolyte is supplied to the other main pipe 230.
한 쌍의 주배관(210,230)은 서로 다른 높이에 형성되며, 각 주배관(210,230)에서 분기되는 분기관(220,240)은 동일평면 상에서 지그재그로 배열되도록 함으로써, 분기관(220,240)의 2층의 구조로 형성되도록 하는 것이 바람직하다.The pair of main pipes 210 and 230 are formed at different heights, and the branch pipes 220 and 240 branched from the main pipes 210 and 230 are arranged in a zigzag on the same plane, thereby forming a two-layer structure of the branch pipes 220 and 240. It is desirable to.
이러한 구조는 분기관(220,240) 사이의 공간을 확보하여 열교환을 용이하게 하고, 분배블럭 전체의 크기를 감소시키는 데 효과적이다.This structure ensures a space between the branch pipes (220, 240) to facilitate heat exchange, and is effective in reducing the size of the entire distribution block.
도 6은 본 발명의 실시예에 따른 냉각기능을 구비하는 분배블럭이 적용된 스택 분할형 레독스 흐름 전지를 나타낸 측면도이다.6 is a side view illustrating a stack split type redox flow battery to which a distribution block having a cooling function according to an exemplary embodiment of the present invention is applied.
먼저 스택 분할형 레독스 흐름 전지에 관해서 살펴본다.First, a stack split type redox flow battery is described.
레독스 흐름 전지는 전지 셀을 통해서 전해액의 화학 에너지를 전기 에너지로 변환하는 장치로, 셀의 작동 전압이 1V 수준으로 낮아서, 복수의 셀을 직렬로 적층하여 스택을 구성한다. 예를 들어 하나의 셀의 작동 전압이 1.0V 인 경우 200개의 셀을 적층하여 스택으로 구성하여 200V의 전압을 얻는 것이다.Redox flow battery is a device for converting the chemical energy of the electrolyte into electrical energy through the battery cell, the operating voltage of the cell is low to 1V level, stacking a plurality of cells in series to form a stack. For example, if the operating voltage of one cell is 1.0V, 200 cells are stacked and stacked to obtain a voltage of 200V.
적층된 스택은 전해액을 병렬로 공유하는 구조를 가지는데, 너무 많은 수량의 셀이 적층되어 있는 경우에는 션트전류가 과도하게 발생되어 효율이 저하된다.The stacked stack has a structure in which the electrolytes are shared in parallel. When too many cells are stacked, the shunt current is excessively generated, resulting in a decrease in efficiency.
이러한 점을 보완하기 위하여 필요한 수량의 스택을 하나로 적층하는 것이 아니라, 복수개의 단위 스택으로 분할하여 적층하고, 단위 스택 별로 전해액을 공급하도록 함으로써 션트전류를 줄이고 효율을 향상시키는 것이 스택 분할형 레독스 흐름 전지이다.In order to compensate for this, instead of stacking the required number of stacks into one, instead of stacking them into a plurality of unit stacks and supplying electrolyte solution for each unit stack, it is possible to reduce the shunt current and improve the efficiency of the stack split type redox flow. It is a battery.
도시한 바와 같이, 스택 분할형 레독스 흐름 전지는 단위 스택(400)의 양면에 분배 플레이트(420,440)를 배치하여, 각 단위 스택(400)에 개별적으로 전해액이 공급되고 배출될 수 있도록 하는 구조를 제공한다.As shown, the stack split type redox flow battery has a structure in which distribution plates 420 and 440 are disposed on both sides of the unit stack 400 so that electrolyte can be individually supplied to and discharged from each unit stack 400. to provide.
예를 들어, 120개의 셀이 적층되어야 하는 경우라면, 120개를 한꺼 번에 적층하는 것이 아니라, 40개의 단위 스택으로 분할하고, 각 단위 스택의 양면에 분배 플레이트를 적층하고, 양면에 분배 플레이트가 적층된 상태에서 단위 스택 3개를 적층하는 방식으로 전체 스택을 구성하는 것이다.For example, if 120 cells are to be stacked, instead of stacking 120 cells at once, divide them into 40 unit stacks, stack distribution plates on both sides of each unit stack, and The whole stack is configured by stacking three unit stacks in a stacked state.
각 단위 스택(400)에는 제1전해액 유입구과, 제1전해액 배출구와, 제2전해액 유입구와, 제2전해액 배출구가 구비되는데, 이들이 단위 스택의 양면에 적층되는 분배 플레이트(420,440)에 연결되고, 분배 플레이트(420,420)가 분배블럭(500,600)을 통해 전해액 탱크와 연결된다.Each unit stack 400 includes a first electrolyte inlet, a first electrolyte outlet, a second electrolyte inlet, and a second electrolyte outlet, which are connected to distribution plates 420 and 440 stacked on both sides of the unit stack, and distributed. Plates 420 and 420 are connected to the electrolyte tank through distribution blocks 500 and 600.
도시한 실시예는 전해액이 상향식 흐름을 가지는 것으로, 하부의 공급분배블럭(500)을 통해 제1전해액과 제2전해액이 단위 스택(400)으로 공급된 후, 상부의 배출분배블럭(600)을 통해 제1전해액과 제2전해액이 회수되어 전해액 탱크로 순환되는 구조이다.In the illustrated embodiment, the electrolyte has a bottom-up flow. After the first electrolyte and the second electrolyte are supplied to the unit stack 400 through the lower supply distribution block 500, the upper distribution distribution block 600 is provided. Through this, the first electrolyte and the second electrolyte are recovered and circulated to the electrolyte tank.
공급분배블럭(500)과 배출분배블럭(600)은 상술한 전해액 분배블럭으로 구성된다.The supply distribution block 500 and the discharge distribution block 600 are composed of the above-described electrolyte distribution block.
공급분배블럭(500)은 전해액 탱크에서 공급되는 전해액을 각 분배 플레이트(420,440)로 균일하게 분배하는 역할과, 전해액을 냉각시키는 역할을 수행한다.The supply distribution block 500 serves to uniformly distribute the electrolyte supplied from the electrolyte tank to each distribution plate 420 and 440 and to cool the electrolyte.
공급분배블럭(500)은 각각의 전해액 탱크와 연결되는 한 쌍의 공급 주배관(510,530)과, 상기 공급 주배관(510,530)에서 복수개로 분기되어 각 분배 플레이트의 공급유로와 연결되는 공급 분기관(520,540)과, 상기 공급 분기관(520,540)을 수용하는 하우징(560)과, 상기 하우징(560) 내부를 냉각하는 냉각수단(미도시)을 구비한다.The supply distribution block 500 is provided with a pair of supply main pipes 510 and 530 connected to the respective electrolyte tanks, and a plurality of supply branch pipes 520 and 540 branched from the supply main pipes 510 and 530 to be connected to the supply flow paths of the distribution plates. And a housing 560 accommodating the supply branch pipes 520 and 540, and cooling means (not shown) for cooling the inside of the housing 560.
배출분배블럭(600)은 각 단위스택(400)에서 배출되는 전해액을 전해액 탱크로 되돌려 보내는 역할과, 전해액을 냉각시키는 역할을 수행한다.The discharge distribution block 600 serves to return the electrolyte discharged from each unit stack 400 to the electrolyte tank and to cool the electrolyte.
배출분배블럭(600)은 각각의 전해액 탱크와 연결되는 한 쌍의 배출 주배관(610,630)과, 상기 배출 주배관(610,630)에서 복수개로 분기되어 각 분배 플레이트의 배출유로와 연결되는 배출 분기관(620,640)과, 상기 배출 분기관(620,640)을 수용하는 하우징(660)과, 상기 하우징(660) 내부를 냉각하는 냉각수단(미도시)을 구비한다. 전해액은 단위스택(400)에서 배출되어 분배 플레이트(420,440)를 통해 상기 배출 분기관(520,540)을 거친후 배출 주배관(510,530)으로 모아진 후 전해액 탱크로 돌려보내진다.The discharge distribution block 600 includes a pair of discharge main pipes 610 and 630 connected to the respective electrolyte tanks, and a plurality of discharge branch pipes 620 and 640 branched from the discharge main pipes 610 and 630 to be connected to the discharge flow path of each distribution plate. And a housing 660 accommodating the discharge branch pipes 620 and 640, and cooling means (not shown) for cooling the inside of the housing 660. The electrolyte solution is discharged from the unit stack 400 and passes through the discharge branch pipes 520 and 540 through the distribution plates 420 and 440, and then is collected into the discharge main pipes 510 and 530, and then returned to the electrolyte tank.
기능적인 측면에서 공급분배블럭(500)과 배출분배블럭(600)으로 명칭을 달리 한 것이나, 구조적으로는 주배관에 복수개의 분기관으로 연결되며, 분기관이 하우징 내부에 수납되어 냉각수단에 의하여 냉각되는 동일한 구조를 가진다.In terms of function, the supply distribution block 500 and the discharge distribution block 600 have different names, but are structurally connected to the main pipe by a plurality of branch pipes, and the branch pipes are housed inside the housing and cooled by cooling means. Have the same structure.
도 7은 본 발명의 실시예에 따른 단위 스택 내부의 전해액 경로와 단위 스택 양측의 분배 플레이트를 개략적으로 나타낸 도면이다.7 is a schematic view showing an electrolyte path inside a unit stack and a distribution plate on both sides of a unit stack according to an exemplary embodiment of the present invention.
도시된 바와 같이, 단위 스택(400)에는 제1전해액 유입구(402)와, 제1전해액 배출구(404)와, 제2전해액 유입구(406)와, 제2전해액 배출구(408)가 구비된다.As shown, the unit stack 400 includes a first electrolyte inlet 402, a first electrolyte outlet 404, a second electrolyte inlet 406, and a second electrolyte outlet 408.
제1전해액은 제1전해액 유입구(402)로 유입되어 각 셀로 분배된 후 제1전해액 배출구(404)로 배출되며, The first electrolyte is introduced into the first electrolyte inlet 402 and distributed to each cell and then discharged into the first electrolyte outlet 404.
제2전해액은 제2전해액 유입구(406)로 유입되어 각 셀로 분배된 후 제2전해액 배출구(408)로 배출된다.The second electrolyte is introduced into the second electrolyte inlet 406 and distributed to each cell and then discharged into the second electrolyte outlet 408.
단위 스택(400)의 우측의 분배플레이트(440)는 제1전해액 유입구(402)와 연결되는 공급유로(442)와, 제2전해액 배출구(408)와 연결되는 배출유로(444)가 구비되며, 단위 스택(400)의 좌측의 분배플레이트(420)는 제2전해액 유입구(406)와 연결되는 공급유로(422)와, 제1전해액 배출구(404)와 연결되는 배출유로(424)가 구비된다.The distribution plate 440 on the right side of the unit stack 400 includes a supply passage 442 connected to the first electrolyte inlet 402 and a discharge passage 444 connected to the second electrolyte outlet 408. The distribution plate 420 on the left side of the unit stack 400 includes a supply passage 422 connected to the second electrolyte inlet 406, and a discharge passage 424 connected to the first electrolyte outlet 404.
분배 플레이트(420,440)에 형성된 공급유로(422,442)는 스택의 하부에 연결되는 공급분배블럭(500)의 공급 분기관(520,540)에 연결되, 분배플레이트(420,440)에 형성된 배출유로(424,444)는 스택의 하부에 연결되는 배출분배블럭(600)의 배출 분기관(620,640)에 연결된다. Supply passages 422 and 442 formed in the distribution plates 420 and 440 are connected to supply branch pipes 520 and 540 of the supply distribution block 500 connected to the bottom of the stack, and discharge passages 424 and 444 formed in the distribution plates 420 and 440 are stacked. It is connected to the discharge branch pipes (620, 640) of the discharge distribution block 600 is connected to the lower portion of the.
이들의 연결은 끼움결합에 의하여 직접 이루어질 수도 있고, 별도의 연결배관을 이용하여 이루어질 수도 있다. 별도의 연결배관을 이용하는 경우 각 연결배관의 길이를 동일하게 하여 각 단위스택을 흐르는 전해액이 동일한 흐름 저항을 받도록 하는 것이 바람직하다.Their connection may be made directly by fitting, or may be made using a separate connection pipe. In the case of using separate connection pipes, it is preferable to make the length of each connection pipe the same so that the electrolyte flowing through each unit stack receives the same flow resistance.
이상 살펴본 바와 같이, 본 발명에 따른 냉각기능을 구비하는 분배블럭과 이를 포함하는 스택 분할형 레독스 흐름 전지는 분기관의 길이를 동일하게 하여 각 단위스택으로 공급되는 전해액이 동일한 흐름 저항을 받게 되어 균일하게 분배될 수 있으며, 분배블럭을 거치며 냉각될 수 있도록 함으로써, 레독스 흐름 전지의 성능을 향상시키는 효과를 가져온다.As described above, in the distribution block having the cooling function and the stack split type redox flow battery including the same, the electrolyte supplied to each unit stack receives the same flow resistance by making the length of the branch pipe the same. It can be uniformly distributed and can be cooled through the distribution block, thereby improving the performance of the redox flow battery.
전술된 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 전술된 상세한 설명보다는 후술될 특허청구범위에 의해 나타내어질 것이다. 그리고 후술될 특허청구범위의 의미 및 범위는 물론, 그 등가개념으로부터 도출되는 모든 변경 및 변형 가능한 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It is to be understood that the foregoing embodiments are illustrative in all respects and not restrictive, the scope of the invention being indicated by the claims that follow, rather than the foregoing detailed description. And the meaning and scope of the claims to be described later, as well as all changes and modifications derived from the equivalent concept should be construed as being included in the scope of the invention.

Claims (11)

  1. 전해액 탱크와 연결되는 주배관;A main pipe connected to the electrolyte tank;
    상기 주배관에서 분기되며 스택에 연결되는 연결구까지 동일한 길이로 형성되는 복수개의 분기관;A plurality of branch pipes branched from the main pipe and formed to have the same length up to a connector connected to the stack;
    상기 분기관을 수용하는 하우징; 및A housing accommodating the branch pipe; And
    상기 분기관을 냉각시키는 냉각수단;을 포함하는 냉각 기능을 구비하는 전해액 분배블럭.Electrolytic solution distribution block having a cooling function comprising; cooling means for cooling the branch pipe.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 분기관은The branch pipe is
    상기 하우징 외부로 노출되어 스택에 연결되는 연결구를 구비하는 것을 특징으로 하는 전해액 분배블럭.And a connector connected to the stack by being exposed to the outside of the housing.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 하우징에 구비되는 송풍팬이거나,Blowing fan provided in the housing,
    상기 하우징 내부로 냉각유체를 공급하여 순환시키는 냉매회로인 것을 특징으로 하는 전해액 분배블럭.And a refrigerant circuit for supplying and circulating a cooling fluid into the housing.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 복수개의 분기관은 동일평면 상에서 지그재그로 굴곡되게 형성되는 것을 특징으로 하는 전해액 분배블럭.The plurality of branch pipes are electrolyte distribution block, characterized in that formed in a zigzag curve on the same plane.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 복수개의 분기관의 연결구는 상기 하우징의 일면에 등간격으로 형성되는 것을 특징으로 하는 전해액 분배블럭.The connector of the plurality of branch pipes are electrolyte distribution blocks, characterized in that formed on one surface of the housing at equal intervals.
  6. M개의 셀이 적층된 N개의 단위 스택;N unit stacks in which M cells are stacked;
    각 단위 스택의 양면에 적층되며 각 단위 스택의 한 쌍의 전해질 유입구와 연결되는 한 쌍의 공급유로와, 한 쌍의 전해질 배출구와 연결되는 한 쌍의 배출유로를 구비하는 2N개의 분배 플레이트;2N distribution plates stacked on both sides of each unit stack and having a pair of supply passages connected to a pair of electrolyte inlets of each unit stack, and a pair of outlet passages connected to a pair of electrolyte outlets;
    전해질 탱크와 연결되는 한 쌍의 공급 주배관과, 상기 전해질 공급관에서 N개로 분기되어, 각 분배 플레이트의 공급유로와 연결되는 공급 분기관과, 상기 공급 분기관을 수용하는 하우징을 포함하는 공급분배블럭; 및A supply distribution block including a pair of supply main pipes connected to the electrolyte tank, supply branch pipes branched from the electrolyte supply pipes to the supply paths of the distribution plates, and a housing accommodating the supply branch pipes; And
    전해질 탱크와 연결되는 한 쌍의 배출 주배관과, 상기 전해질 공급관에서 N개로 분기되어, 각 분배 플레이트의 배출유로와 연결되는 배출 분기관과, 상기 배출 분기관을 수용하는 하우징을 포함하는 배출분배블럭;을 포함하는 스택 분할형 레독스 흐름 전지.A discharge distribution block including a pair of discharge main pipes connected to the electrolyte tank, a discharge branch pipe branched from the electrolyte supply pipe to N, and connected to the discharge flow path of each distribution plate, and a housing accommodating the discharge branch pipes; Stacked split redox flow cell comprising a.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 공급 분기관과 상기 배출 분기관은The supply branch pipe and the discharge branch pipe
    상기 하우징 외부로 노출되어 스택에 연결되는 연결구를 구비하는 것을 특징으로 하는 레독스 흐름 전지.Redox flow battery characterized in that it has a connector connected to the stack exposed to the outside of the housing.
  8. 제 6 항에 있어서,The method of claim 6,
    상기 공급분배블럭 또는 상기 배출분배블럭은 상기 하우징 내부를 냉각하기 위한 냉각수단을 구비하는 것을 특징으로 하는 스택 분할형 레독스 흐름 전지.The supply distribution block or the discharge distribution block is a split partition type redox flow battery, characterized in that it comprises a cooling means for cooling the inside of the housing.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 냉각수단은 The cooling means
    상기 하우징에 구비되는 송풍팬이거나,Blowing fan provided in the housing,
    상기 하우징 내부로 냉각유체를 공급하여 순환시키는 냉매회로인 것을 특징으로 하는 스택 분할형 레독스 흐름 전지Stacked redox flow battery, characterized in that the refrigerant circuit for supplying and circulating the cooling fluid into the housing
  10. 제 6 항에 있어서,The method of claim 6,
    상기 공급분배블럭의 공급 분기관과, 상기 배출분배블럭의 배출 분기관은 동일길이를 가지는 것을 특징으로 하는 스택 분할형 레독스 흐름 전지.A stack split type redox flow battery, wherein the supply branch pipe of the supply distribution block and the discharge branch pipe of the discharge distribution block have the same length.
  11. 제 6 항에 있어서,The method of claim 6,
    상기 복수개의 분기관은 동일평면 상에서 지그재그로 굴곡되게 형성되며,The plurality of branch pipes are formed to be bent in a zigzag on the same plane,
    서로 다른 주배관에서 분기된 분기관이 서로 다른 높이에 형성되는 것을 특징으로 하는 스택 분할형 레독스 흐름 전지.Stacked split redox flow battery, characterized in that the branch pipe branched from different main pipe is formed at different heights.
PCT/KR2015/013947 2014-12-24 2015-12-18 Electrolyte distribution block having cooling function, and split stack type redox flow battery comprising same WO2016105034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0187901 2014-12-24
KR1020140187901A KR101761461B1 (en) 2014-12-24 2014-12-24 Flow distributor having cooling function and cascade type redox flow battery having the same

Publications (1)

Publication Number Publication Date
WO2016105034A1 true WO2016105034A1 (en) 2016-06-30

Family

ID=56150988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013947 WO2016105034A1 (en) 2014-12-24 2015-12-18 Electrolyte distribution block having cooling function, and split stack type redox flow battery comprising same

Country Status (2)

Country Link
KR (1) KR101761461B1 (en)
WO (1) WO2016105034A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019126381A1 (en) * 2017-12-19 2019-06-27 Winter Richard O Flow battery system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3555945A4 (en) * 2016-12-19 2020-10-07 VionX Energy Corporation Modular and scalable flow battery system
KR101855290B1 (en) 2017-03-02 2018-05-04 스탠다드에너지(주) Redox flow battery
KR20180110792A (en) * 2017-03-30 2018-10-11 롯데케미칼 주식회사 Redox flow battery
WO2021091025A1 (en) * 2019-11-05 2021-05-14 주식회사 코리드에너지 Electrolyte heat-exchange structure and redox flow system using same
KR102586856B1 (en) * 2021-06-09 2023-10-06 연세대학교 산학협력단 Bipolar Plate for Redox Flow Battery, stack and Redox Flow Battery using The Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132934A (en) * 2001-10-22 2003-05-09 Honda Motor Co Ltd Fuel cell stack
KR20100119497A (en) * 2009-04-30 2010-11-09 주식회사 엘지화학 Cooling system for a battery system and a method for cooling the battery system
KR20120053270A (en) * 2010-11-17 2012-05-25 현대자동차주식회사 Stack manifold insert having guide for distributing the flow of fluid and fuel cell stack comprising the same
KR101291753B1 (en) * 2012-08-28 2013-07-31 한국에너지기술연구원 Manifold for reducing shunt current and redox flow battery including the same
KR101459927B1 (en) * 2013-07-12 2014-11-07 오씨아이 주식회사 Cell frmae for improved flow distributing and redox flow battery having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110174A (en) 2012-12-03 2014-06-12 Mitsubishi Heavy Ind Ltd Fuel cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132934A (en) * 2001-10-22 2003-05-09 Honda Motor Co Ltd Fuel cell stack
KR20100119497A (en) * 2009-04-30 2010-11-09 주식회사 엘지화학 Cooling system for a battery system and a method for cooling the battery system
KR20120053270A (en) * 2010-11-17 2012-05-25 현대자동차주식회사 Stack manifold insert having guide for distributing the flow of fluid and fuel cell stack comprising the same
KR101291753B1 (en) * 2012-08-28 2013-07-31 한국에너지기술연구원 Manifold for reducing shunt current and redox flow battery including the same
KR101459927B1 (en) * 2013-07-12 2014-11-07 오씨아이 주식회사 Cell frmae for improved flow distributing and redox flow battery having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019126381A1 (en) * 2017-12-19 2019-06-27 Winter Richard O Flow battery system
US11276870B2 (en) 2017-12-19 2022-03-15 Unienergy Technologies, Llc Flow battery system

Also Published As

Publication number Publication date
KR101761461B1 (en) 2017-07-26
KR20160078566A (en) 2016-07-05

Similar Documents

Publication Publication Date Title
WO2016105034A1 (en) Electrolyte distribution block having cooling function, and split stack type redox flow battery comprising same
WO2012148160A2 (en) Battery pack storage apparatus and cooling apparatus for power storage battery pack using same
WO2018182376A1 (en) Redox flow battery having electrolyte flow path independently provided therein
WO2011149234A2 (en) Battery pack and assembly for an electric vehicle, and a temperature control system using the same
WO2012044065A2 (en) Battery pack and a battery pack assembly equipped therewith
WO2012091459A2 (en) Battery module storage device, battery module temperature adjustment device, and electric power storage system having same
WO2016068551A1 (en) Unit battery pack
WO2018169216A1 (en) Battery module, battery pack comprising battery module, and vehicle comprising battery pack
WO2016043441A1 (en) Battery module comprising cooling structure having minimized bending of refrigerant channel
WO2015130057A1 (en) Battery module
WO2017131432A1 (en) Battery module and energy storing device having same
WO2018110948A1 (en) Battery pack
WO2017179795A1 (en) Redox flow battery
WO2015156544A1 (en) Battery cell interconnection and voltage sensing assembly, and battery module
WO2017142290A1 (en) Battery system
CN110190232B (en) Air-cooled soft package power battery box for locomotive
WO2019074247A1 (en) Battery pack having bidirectional cooling structure
WO2013137612A1 (en) Battery cooling system using thermoelectric element
WO2024111977A1 (en) Power vertically oriented monopolar water electrolysis stack
WO2015060517A1 (en) Metal separation plate for fuel cell stack and fuel cell stack having same
WO2018012721A1 (en) Battery module
WO2018062888A1 (en) Redox flow cell
WO2017023068A1 (en) Redox flow battery heat exchanger and redox flow battery including same
US20220376309A1 (en) Device and method for an oil-cooled battery management system of a high voltage battery
WO2019132237A1 (en) Dc circuit breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873561

Country of ref document: EP

Kind code of ref document: A1