JPH0922716A - Cooling water refilling device of water-cooled fuel cell - Google Patents

Cooling water refilling device of water-cooled fuel cell

Info

Publication number
JPH0922716A
JPH0922716A JP7168532A JP16853295A JPH0922716A JP H0922716 A JPH0922716 A JP H0922716A JP 7168532 A JP7168532 A JP 7168532A JP 16853295 A JP16853295 A JP 16853295A JP H0922716 A JPH0922716 A JP H0922716A
Authority
JP
Japan
Prior art keywords
water
cooling water
fuel cell
cooling
blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7168532A
Other languages
Japanese (ja)
Inventor
Shinji Kamitamari
慎治 上玉利
Takashi Murakami
隆 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7168532A priority Critical patent/JPH0922716A/en
Publication of JPH0922716A publication Critical patent/JPH0922716A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent liquid junction phenomenon and scale generation by sensing the concentration of impurities in cooling water, and giving a degree-of-opening command to a blow water control valve furnished in a blow water system. SOLUTION: Impurities in a cooling water are condensed gradually in the process that the steam separated by a water-vapor separator 4 is supplied to a fuel reforming device 2, and in the course of operation, the concentration of the impurities in the cooling water rises gradually. The concentration is is sensed by a sensor 21 for measuring electroconductivity and a sensor 22 for silica concentration, and a degree-of-opening command 23S is given to a blow water control valve 28 from a control part 23 when either of the sensing values exceeds the reference value, and thereupon the rate of the flow of blow water 10C is controlled. The pure water 10E obtained by a purifying device 6 is fed back to the separator 4 to dilute the concentration of the impurities contained in the cooling water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、オンサイト用発電装
置などに用いられる水冷式燃料電池に、冷却水の補給お
よび水質の保持を目的として設けられる冷却水補給装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling water replenishing device provided for the purpose of replenishing cooling water and maintaining water quality in a water-cooled fuel cell used in an on-site power generator or the like.

【0002】[0002]

【従来の技術】図2は水冷式りん酸型燃料電池発電装置
を例に示す従来装置の概略系統図であり、単位セルの積
層体からなる燃料電池(スタック)1は複数の単位セル
毎に積層された水冷パイプを有する冷却板3を備え、原
燃料を水蒸気改質する燃料改質装置2からの燃料ガス2
Fと、図示しない供給装置からの反応空気とを受けて電
気化学反応に基づいて発電する。燃料電池1の電極反応
は全体として発熱反応であり、その発電生成熱は冷却板
3の冷却パイプに連結されて冷却水10Aを循環する循
環ポンプ7Aおよび水蒸気分離器4を有する冷却水循環
系10によって冷却され、燃料電池温度を約190°C
の運転温度に保持した状態で運転が行われる。
2. Description of the Related Art FIG. 2 is a schematic system diagram of a conventional apparatus showing a water-cooled phosphoric acid fuel cell power generator as an example. A fuel cell (stack) 1 composed of a unit cell stack has a plurality of unit cells. Fuel gas 2 from a fuel reformer 2 for steam reforming a raw fuel, comprising a cooling plate 3 having stacked water cooling pipes
Upon receiving F and reaction air from a supply device (not shown), electricity is generated based on an electrochemical reaction. The electrode reaction of the fuel cell 1 is an exothermic reaction as a whole, and the heat generated by power generation is connected to the cooling pipe of the cooling plate 3 by the cooling water circulation system 10 having the circulation pump 7A and the water vapor separator 4 for circulating the cooling water 10A. Cooled, fuel cell temperature about 190 ° C
The operation is performed with the operating temperature maintained at.

【0003】また、燃料電池1から発電生成熱を奪って
昇温した冷却水10Aは水蒸気分離器4内で水蒸気を分
離することによって冷却され、水蒸気分離器4内で分離
されたスチ−ム4Sは原燃料と混合されて燃料改質装置
2に供給され、水蒸気改質反応に利用される。さらに、
燃料電極で使い残された燃料ガス2F中の水素は燃料改
質装置のバーナに送られて燃焼し、改質反応熱として利
用される。
The cooling water 10A, which has taken away the heat generated by power generation from the fuel cell 1 and has been heated, is cooled by separating the steam in the steam separator 4, and the steam 4S separated in the steam separator 4 is separated. Is mixed with the raw fuel and supplied to the fuel reformer 2 to be used for the steam reforming reaction. further,
Hydrogen in the fuel gas 2F that has been left unused in the fuel electrode is sent to the burner of the fuel reformer and burned, and is used as the heat of reforming reaction.

【0004】冷却水循環系10は水蒸気分離器4で分離
したスチーム4Sを燃料改質装置2に供給することによ
って冷却水10Aが減少する。そこで、この冷却水の不
足分を補給するために冷却水補給装置11が設けられ
る。冷却水補給装置11は水蒸気の回収塔5,純水装置
6およびポンプ7C,7Dと、ブロー弁8を備えたブロ
ー水系9とで構成される。水蒸気の回収塔5は回収した
混合水10Bを冷却媒体とする熱交換器を含み、燃料電
池1の空気極側の空気オフガス中に水蒸気として含まれ
る発電生成水を凝縮して回収し、これに必要に応じて水
道水を加えた混合水10Bを、ポンプ7Bを介して純水
装置6に供給する。純水装置6はフィルター,イオン交
換樹脂式浄水器,などを含み、混合水中に含まれる塩素
イオンなどの負イオンやカルシウムイオン,マグネシウ
ムイオンなどの陽イオン(金属イオン)、さらにはシリ
カや微生物などの固形不純物を除去したイオン交換水
(純水)10Eとして冷却水循環系10の例えば水蒸気
分離器4に補給する。
The cooling water circulation system 10 supplies the steam 4S separated by the steam separator 4 to the fuel reformer 2 to reduce the cooling water 10A. Therefore, a cooling water replenishing device 11 is provided to replenish the shortage of the cooling water. The cooling water supply device 11 is composed of a water vapor recovery tower 5, a deionized water device 6, pumps 7C and 7D, and a blow water system 9 having a blow valve 8. The water vapor recovery tower 5 includes a heat exchanger that uses the recovered mixed water 10B as a cooling medium, and condenses and recovers the power generation water contained in the air off-gas on the air electrode side of the fuel cell 1 as water vapor. The mixed water 10B to which tap water is added as needed is supplied to the pure water device 6 via the pump 7B. The pure water device 6 includes a filter, an ion-exchange resin type water purifier, and the like, and negative ions such as chlorine ions contained in the mixed water, cations (metal ions) such as calcium ions and magnesium ions, and silica and microorganisms. The ion-exchanged water (pure water) 10E from which the solid impurities have been removed is supplied to, for example, the steam separator 4 of the cooling water circulation system 10.

【0005】ところで、純水装置6は混合水10B中の
不純物イオンが負荷となってイオン交換樹脂のイオン吸
着性能が徐々に低下する。そこで、従来の装置では純水
装置6の出口側に電導度計12を設け、その検出値が予
め定まる一定値,例えば0.1μS/cmを越えたと
き、純水装置6のイオン交換樹脂を新しいものと交換す
ることにより、冷却水循環系10内の純水の電導度およ
び不純物イオン濃度を一定レベルに保つ対策がとられて
いる。
By the way, in the deionized water device 6, the impurity ions in the mixed water 10B become a load, and the ion adsorption performance of the ion exchange resin gradually decreases. Therefore, in the conventional device, the conductivity meter 12 is provided on the outlet side of the pure water device 6, and when the detected value exceeds a predetermined value, for example, 0.1 μS / cm, the ion exchange resin of the pure water device 6 is removed. By replacing the pure water in the cooling water circulation system 10 with a new one, the electric conductivity and the impurity ion concentration are kept at a certain level.

【0006】また、冷却水循環系10に補給された純水
10Eには微量ながら不純物が残っており、これがスチ
ーム4Sを燃料改質装置2に供給する過程で徐々に濃縮
されるため、運転時間が経過するとともに冷却水10A
中の不純物濃度が上昇する。そこで、従来例では水蒸気
分離器4と回収塔5との間にブロー水系9を設け、ブロ
ー弁8を常時僅かに開くか,あるいは定期的にオンオフ
制御してブロー水を回収塔5に送り、その分純水装置6
から純水10Eを補給して冷却水10A中の不純物濃度
の上昇を抑制する対策がとられている。
The pure water 10E supplied to the cooling water circulation system 10 contains a small amount of impurities, which are gradually concentrated in the process of supplying the steam 4S to the fuel reforming device 2. Cooling water 10A as time passes
The impurity concentration in the inside increases. Therefore, in the conventional example, a blow water system 9 is provided between the water vapor separator 4 and the recovery tower 5, and the blow valve 8 is always slightly opened, or the blow water is sent to the recovery tower 5 by performing on / off control periodically. Pure water device 6
Measures are taken to suppress the increase of the impurity concentration in the cooling water 10A by replenishing pure water 10E from the above.

【0007】[0007]

【発明が解決しようとする課題】従来例においては、冷
却水循環系内の純水に含まれる不純物濃度の管理を手作
業によるブロー水の流量制御に頼っているため、例えば
燃料電池発電装置がオンサイト用電源装置として異なる
場所で複数台使用される場合、ブロー水の流量制御の仕
方によって水質管理がまちまちになり易く、これが原因
で冷却水10A中の不純物イオン濃度の上昇に伴って冷
却水の導電度が上昇すると、これに伴って単位セル間で
冷却水を介して発電電流の一部が漏れる液絡現象が発生
し、燃料電池発電装置の発電効率に差が生ずるという不
都合を生じ易くなる。また、カルシウム,マグネシウム
や固形不純物としてのシリカ濃度の上昇は冷却パイプや
冷却水循環系の内壁面でのスケールの発生を招き、熱交
換面での熱抵抗の増加によって燃料電池温度が上昇する
という悪影響が発生するとともに、剥離したスケールの
堆積により配管の流体抵抗が増加したり,あるいはバル
ブの閉塞を招くなどの不都合を生ずる燃料電池発電装置
も発生する。
In the prior art, the control of the concentration of impurities contained in pure water in the cooling water circulation system relies on manual control of the flow rate of blow water, so that, for example, a fuel cell power generator is turned on. When a plurality of site power supply devices are used in different places, the water quality control tends to be mixed depending on the flow control method of the blow water, which causes the cooling water to increase as the impurity ion concentration in the cooling water 10A increases. When the conductivity increases, a liquid junction phenomenon occurs in which a part of the generated current leaks between the unit cells via the cooling water, which easily causes a disadvantage that a difference occurs in the power generation efficiency of the fuel cell power generator. . In addition, an increase in the concentration of calcium, magnesium, or silica as a solid impurity causes the generation of scale on the inner wall surface of the cooling pipe or the cooling water circulation system, which has an adverse effect that the fuel cell temperature rises due to an increase in heat resistance on the heat exchange surface. In addition to the above-mentioned problems, a fuel cell power generation device that causes inconveniences such as an increase in fluid resistance of pipes due to the accumulation of peeled scale and a blockage of valves is also generated.

【0008】この発明の目的は、サイト間で冷却水の水
質管理に差がなく、かつ液絡現象やスケールの発生を未
然に防止できる水冷式燃料電池の冷却水補給装置を提供
することにある。
An object of the present invention is to provide a cooling water replenishing device for a water cooling type fuel cell which has no difference in water quality control between the sites and can prevent a liquid junction phenomenon and scale from occurring. .

【0009】[0009]

【課題を解決するための手段】前述の目的を達成するた
めに、請求項1に記載の発明は、複数の単位セルと冷却
板の積層体からなる燃料電池と、この燃料電池の冷却板
に冷却水を循環する循環ポンプおよび水蒸気分離器を有
する冷却水循環系とを有する水冷式燃料電池における、
前記燃料電池の排ガス中水分の回収塔と、この回収塔に
前記水蒸気分離器からのブロー水を供給するブロー水系
と、この回収塔の回収水,ブロー水,および水道水の混
合水を浄化した純水に変換して前記冷却水循環系に供給
する純水装置とを備えた冷却水補給装置であって、前記
冷却水循環系の冷却水に含まれる不純物の濃度を検出す
るセンサーと、このセンサーの検出レベルが予め定まる
基準値を越えたとき前記ブロー水系のブロー水制御弁に
向けて開度指令を発する制御部とからなる冷却水の水質
制御システムを備える。
In order to achieve the above-mentioned object, the invention according to claim 1 provides a fuel cell comprising a laminate of a plurality of unit cells and a cooling plate, and a cooling plate of the fuel cell. In a water-cooled fuel cell having a circulation pump for circulating cooling water and a cooling water circulation system having a steam separator,
A tower for collecting water in exhaust gas of the fuel cell, a blow water system for supplying blow water from the water vapor separator to the tower, and a mixed water of the recovery tower, blow water, and tap water are purified. A cooling water replenishing device comprising a pure water device for converting into pure water and supplying it to the cooling water circulation system, wherein a sensor for detecting the concentration of impurities contained in the cooling water of the cooling water circulation system, and The cooling water water quality control system includes a control unit that issues an opening degree command to the blow water control valve of the blow water system when the detection level exceeds a predetermined reference value.

【0010】ここで、請求項2に記載の発明は、センサ
ーが導電度測定用センサーおよびシリカ濃度測定用セン
サーからなり、制御部が前記センサーのいずれかの検出
レベルが予め定まる基準値を越えたときブロー水制御弁
に向けて開度指令を発するよう構成すると良い。また、
請求項3に記載の発明は、制御部が予め定まる基準値を
大幅に越える異常な検出信号を検知したとき、異常報知
機に向けて報知指令を発する異常報知部を備えるよう構
成すると良い。
According to the second aspect of the present invention, the sensor comprises a sensor for measuring conductivity and a sensor for measuring silica concentration, and the control unit detects the detection level of any one of the sensors exceeds a predetermined reference value. At this time, the opening command may be issued to the blow water control valve. Also,
The invention according to claim 3 may be configured to include an abnormality notifying unit that issues a notification command to the abnormality notifying device when the control unit detects an abnormal detection signal that greatly exceeds a predetermined reference value.

【0011】[0011]

【作用】請求項1に記載の発明では、水質制御システム
が冷却水循環系内の冷却水に含まれる不純物の濃度をセ
ンサーで検出し、このセンサーの検出レベルが予め定ま
る基準値を越えたときブロー水制御弁に向けて開度指令
を発するようにしたので、従来設けられているブロー水
系,発電生成水の回収塔,および純水装置と連系して冷
却水循環系内の不純物の濃縮を自動的に防止する水質制
御機能が得られる。また、オンサイト電源用の複数の燃
料電池発電装置の冷却水補給装置がそれぞれ混合水の水
質やイオン交換樹脂の吸着能力に差を有する場合にも、
ブロー水量の制御によって各燃料電池発電装置の冷却水
循環系内の水質が一定レベルに自動的に保持される。
According to the first aspect of the invention, the water quality control system detects the concentration of impurities contained in the cooling water in the cooling water circulation system by the sensor, and blows when the detection level of the sensor exceeds a predetermined reference value. Since the opening command is issued to the water control valve, the blow water system, the power generation water recovery tower, and the deionized water device that are conventionally provided are linked to automatically concentrate impurities in the cooling water circulation system. A water quality control function to prevent it is obtained. Also, when the cooling water replenishing devices of the plurality of fuel cell power generators for the on-site power supply have different water qualities of the mixed water and the adsorption capacity of the ion exchange resin,
By controlling the amount of blow water, the water quality in the cooling water circulation system of each fuel cell power generator is automatically maintained at a constant level.

【0012】ここで、請求項2に記載の発明では、冷却
水中の不純物濃度を検出するセンサーを導電度測定用セ
ンサーおよびシリカ濃度測定用センサーとし、制御部が
いずれか一方のセンサーの検出レベルが予め定まる基準
値を越えたときブロー水制御弁に向けて開度指令を発す
るようにしたので、塩素イオン,カルシウムイオン,マ
グネシウムイオンなどの濃縮は導電度測定用センサーに
よってイオン導電度の低下として検出され、また導電度
の低下として検出できない固形不純物としてのシリカは
シリカ濃度測定用センサーによって検出される。したが
って、液絡現象の発生原因となる冷却水の導電度の低下
を防止する機能と、スケールの堆積の原因となるカルシ
ウムイオン,マグネシウムイオン,およびシリカの堆積
を防止する機能とを併せ持った精度の高い水質管理機能
が得られる。
According to the second aspect of the present invention, the sensors for detecting the impurity concentration in the cooling water are the conductivity measuring sensor and the silica concentration measuring sensor, and the control unit detects the detection level of either one of the sensors. Since the opening command is issued to the blow water control valve when it exceeds a predetermined reference value, concentration of chlorine ions, calcium ions, magnesium ions, etc. is detected as a decrease in ionic conductivity by the conductivity measuring sensor. The silica as a solid impurity that cannot be detected as a decrease in conductivity is detected by the sensor for measuring silica concentration. Therefore, the accuracy of the combination of the function of preventing the decrease in the conductivity of the cooling water that causes the liquid junction phenomenon and the function of preventing the accumulation of calcium ions, magnesium ions, and silica that cause the scale accumulation A high water quality management function can be obtained.

【0013】また、請求項3に記載の発明では、制御部
が予め定まる基準値を大幅に越える異常な検出信号を検
知したとき、異常報知機に向けて報知指令を発する異常
報知部を備えるようにしたので、異常報知機のアラーム
を純水装置の能力低下を報知する信号と判断して、例え
ばフィルターのろ過材の交換やイオン交換樹脂の交換を
行うことにより、純水装置を常時清浄な状態に保持して
精度の高い水質管理を行うことができる。
According to the third aspect of the invention, when the control unit detects an abnormal detection signal that greatly exceeds a predetermined reference value, the abnormality notification unit is provided for issuing a notification command to the abnormality notification device. Therefore, it is determined that the alarm of the abnormality alarm is a signal to notify the deterioration of the performance of the deionizer, and the filter unit of the filter is replaced or the ion exchange resin is replaced to keep the deionizer clean. The water quality can be controlled with high accuracy by maintaining the condition.

【0014】[0014]

【実施例】以下この発明を実施例に基づいて説明する。
なお、従来例と同じ参照符号を付けた部材は従来例のそ
れと同じ機能をもつので、その説明を省略する。図1は
この発明の一実施例を水冷式りん酸型燃料電池発電装置
の冷却水補給装置を例に示す概略系統図である。図にお
いて、水質制御システム20は、水蒸気分離器4内の冷
却水10Aのイオン導電度を検出する導電度測定用セン
サー21、およびシリカ濃度測定用センサー22と、い
ずれか一方のセンサーの検出レベルが予め定まる基準値
を越えたときブロー水制御弁28に向けて開度指令23
Sを発する制御部23とで構成される。また、この水質
制御システム20が、従来設けられているブロー水系
9,発電生成水の回収塔5,および純水装置6と連系動
作することにより、冷却水循環系10内の冷却水10A
に含まれる不純物の濃縮を自動的に防止する機能を備え
た冷却水補給装置が構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
Since the members having the same reference numerals as those of the conventional example have the same functions as those of the conventional example, the description thereof will be omitted. FIG. 1 is a schematic system diagram showing an embodiment of the present invention as an example of a cooling water supply device for a water-cooled phosphoric acid fuel cell power generator. In the figure, the water quality control system 20 has a conductivity measuring sensor 21 for detecting the ionic conductivity of the cooling water 10A in the water vapor separator 4 and a silica concentration measuring sensor 22, and the detection level of either sensor is When the predetermined reference value is exceeded, the opening command 23 is directed toward the blow water control valve 28.
And a control unit 23 that emits S. Further, the water quality control system 20 is connected to the blow water system 9, the power generation water recovery tower 5, and the deionized water device 6 which are conventionally provided, so that the cooling water 10A in the cooling water circulation system 10 is operated.
A cooling water replenishing device having a function of automatically preventing the concentration of impurities contained in is formed.

【0015】即ち、実施例において、純水装置6で得ら
れるイオン交換水10Eの導電度を0.1μS/cm,
シリカ濃度を0.02ppmとした場合、制御部23に
上記値の数倍程度の値を基準値として予め設定してお
く。この状態で発電運転が行われると、水蒸気分離器4
が分離したスチーム4Sを燃料改質装置2に供給する過
程で冷却水10A中の不純物イオンやシリカなどの固形
不純物が徐々に濃縮され、運転時間が経過するとともに
冷却水10A中の不純物濃度が徐々に上昇する。この実
施例の特徴は、液絡現象の発生原因となる塩素イオン,
カルシウムイオン,マグネシウムイオンなどの濃縮は導
電度測定用センサーによってイオン導電度の低下として
導電度測定用センサー21で検出し、導電度測定用セン
サー21で検出できないシリカなどの固形不純物はシリ
カ濃度測定用センサー22で検出するようにした点にあ
る。したがって、いずれか一方の検出値がそれぞれの基
準値を越えると制御部23からブロー水制御弁28に向
けて開度指令23Sが出力され、これに基づいてブロー
水10Cの流量が制御され、その分,純水装置6で処理
された純水10Eが水蒸気分離器4に還流されて冷却水
10A中の不純物濃度が希釈され、液絡現象による発電
性能の低下やスケールの堆積による冷却性能の低下を未
然に防止することができる。
That is, in the embodiment, the conductivity of the ion-exchanged water 10E obtained by the pure water device 6 is 0.1 μS / cm,
When the silica concentration is 0.02 ppm, the control unit 23 is preset with a value about several times the above value as a reference value. When the power generation operation is performed in this state, the steam separator 4
In the process of supplying the separated steam 4S to the fuel reformer 2, solid ions such as impurity ions and silica in the cooling water 10A are gradually concentrated, and the impurity concentration in the cooling water 10A gradually increases as the operation time elapses. Rise to. The feature of this embodiment is that chlorine ions, which cause the liquid junction phenomenon,
Concentration of calcium ions, magnesium ions, etc. is detected by the conductivity measuring sensor 21 as a decrease in ionic conductivity by the conductivity measuring sensor, and solid impurities such as silica that cannot be detected by the conductivity measuring sensor 21 are for silica concentration measuring. The point is that it is detected by the sensor 22. Therefore, when one of the detected values exceeds the respective reference value, the control unit 23 outputs the opening degree command 23S toward the blow water control valve 28, and the flow rate of the blow water 10C is controlled based on this, and the flow rate of the blow water 10C is controlled. The pure water 10E processed by the pure water device 6 is returned to the water vapor separator 4 to dilute the impurity concentration in the cooling water 10A, which lowers the power generation performance due to the liquid junction phenomenon and the cooling performance due to scale accumulation. Can be prevented in advance.

【0016】また、オンサイト電源用の複数の燃料電池
発電装置の冷却水補給装置がそれぞれ混合水の水質やイ
オン交換樹脂の吸着能力に差を有する場合にも、ブロー
水の通流量の自動制御によって冷却水循環系10内の水
質を一定レベルに保持できるので、複数台の燃料電池発
電装置の冷却水循環系の水質を労力を殆ど必要とせずに
一定レベルに管理できる利点が得られる。
Further, even when the cooling water replenishing devices of a plurality of fuel cell power generators for on-site power supplies have different water qualities of mixed water and adsorption capacities of ion-exchange resins, automatic control of the flow rate of blow water is performed. Since the water quality in the cooling water circulation system 10 can be maintained at a constant level, there is an advantage that the water quality of the cooling water circulation system of the plurality of fuel cell power generators can be controlled to a constant level with almost no labor required.

【0017】なお、導電度測定用センサー21,シリカ
濃度測定用センサー22のいずれが動作するかは混合水
10Bの水質および純水装置6の不純物除去性能に関係
して決まる。したがって、この点に留意してセンサーの
組み合わせを決めることにより、導電度の低下に起因す
る液絡現象の発生,およびスケールの堆積を自動的に防
止できる高度な水質管理機能が得られる。また、逆に不
純物イオンの濃縮が起こり易い装置では導電度測定用セ
ンサーのみを設け,固形不純物が堆積し易い装置ではシ
リカ濃度測定用センサーのみを設け、水質制御システム
の構成を簡素化するようにしてもよい。
Which of the conductivity measuring sensor 21 and the silica concentration measuring sensor 22 operates depends on the water quality of the mixed water 10B and the impurity removing performance of the pure water device 6. Therefore, by deciding the combination of sensors with this point in mind, it is possible to obtain a sophisticated water quality control function capable of automatically preventing the occurrence of a liquid junction phenomenon due to the decrease in conductivity and the accumulation of scale. On the contrary, in the case of a device in which the concentration of impurity ions is likely to occur, only the conductivity measuring sensor is provided, and in the device in which solid impurities are likely to accumulate, only the silica concentration measuring sensor is provided to simplify the configuration of the water quality control system. May be.

【0018】一方、図1において、制御部23が導電度
測定用センサー21または金属イオン濃度測定用センサ
ー22から予め定まる基準値を大幅に越える異常な検出
信号を受けたとき、図示しない異常報知機に向けて報知
指令23Aを出力するよう構成すれば、この異常報知機
のアラームを受けた運転員が純水装置に能力低下が発生
したものと判断して、例えばフィルターのろ過材の交換
やイオン交換樹脂の交換を行うことにより、水質制御シ
ステム20を利用して純水装置6の保守タイミングをも
均等に管理することが可能になり、したがって、オンサ
イト電源用の複数の燃料電池発電装置の冷却水循環系の
水質管理をより一層均等化できる利点が得られる。
On the other hand, in FIG. 1, when the control unit 23 receives an abnormal detection signal from the conductivity measuring sensor 21 or the metal ion concentration measuring sensor 22 that greatly exceeds a predetermined reference value, an abnormality alarm (not shown) is shown. If it is configured to output the alarm command 23A to the operator, the operator who receives the alarm of the abnormality alarm determines that the deionized water device has deteriorated in capacity and, for example, replaces the filtering material of the filter or ion. By exchanging the exchange resin, the water quality control system 20 can be utilized to evenly manage the maintenance timing of the deionized water device 6, and therefore, a plurality of fuel cell power generators for on-site power supplies can be used. The advantage is that the water quality control of the cooling water circulation system can be made more uniform.

【0019】[0019]

【発明の効果】この発明の水冷式燃料電池の冷却水補給
装置は前述のように、水冷式燃料電池の冷却水循環系に
イオン濃度測定用センサーおよびその制御部からなる水
質制御システムを設け、冷却水中のイオン濃度が規定値
を越えたときブロー水通流量を増すよう構成した。その
結果、冷却水補給装置がブロー水通流量に対応して自動
的に純水を補給し、冷却水中のイオン濃度を希釈するの
で、従来技術で問題になった冷却水中のイオン濃度の濃
縮が回避され、液絡現象やスケールの発生がなく安定し
た冷却性能が得られる冷却水補給装置を備えた水冷式燃
料電池発電装置を提供することができる。ことに、オン
サイト電源用の複数の燃料電池発電装置の冷却水補給装
置がそれぞれ混合水の水質やイオン交換樹脂の吸着能力
に差を有する場合にも、ブロー水の通流量の自動制御に
よって冷却水循環系内の水質を一定レベルに保持できる
ので、複数台の燃料電池発電装置の冷却水循環系の水質
を労力を殆ど必要とせずに一定レベルに管理できる利点
が得られる。
As described above, the cooling water replenishing device for a water-cooling type fuel cell of the present invention is provided with a water quality control system including an ion concentration measuring sensor and its controller in the cooling water circulating system of the water-cooling type fuel cell. The flow rate of blow water is increased when the ion concentration in water exceeds a specified value. As a result, the cooling water supply device automatically supplies pure water according to the flow rate of blow water to dilute the ion concentration in the cooling water. It is possible to provide a water-cooled fuel cell power generator equipped with a cooling water replenishing device that can be avoided and can obtain stable cooling performance without occurrence of a liquid junction phenomenon or scale. In particular, even when the cooling water replenishing devices of multiple fuel cell power generators for on-site power supply have different water quality of mixed water and adsorption capacity of ion exchange resin, cooling is performed by automatic control of the flow rate of blow water. Since the water quality in the water circulation system can be maintained at a constant level, there is an advantage that the water quality of the cooling water circulation system of the plurality of fuel cell power generators can be controlled to a constant level with almost no labor required.

【0020】さらに、導電度測定用センサーおよび金属
イオン濃度測定用センサーを設けることにより、両者の
相補作用を利用してより精度の高い水質管理を行える利
点が得られる。一方、水質制御システムにアラーム機能
を付加することにより、純水装置の保守タイミングをも
均等に管理することが可能になり、したがって、オンサ
イト電源用の複数の燃料電池発電装置の冷却水循環系の
水質管理をより一層均等化できる利点が得られる。
Further, by providing the conductivity measuring sensor and the metal ion concentration measuring sensor, there is an advantage that the water quality can be controlled with higher accuracy by utilizing the complementary action of the both. On the other hand, by adding an alarm function to the water quality control system, it is possible to manage the maintenance timing of the deionized water device evenly. Therefore, the cooling water circulation system of multiple fuel cell power generators for on-site power supplies can be controlled. The advantage is that water quality management can be made more even.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を水冷式りん酸型燃料電池
発電装置の冷却水補給装置を例に示す概略系統図
FIG. 1 is a schematic system diagram showing an embodiment of the present invention as an example of a cooling water supply device for a water-cooled phosphoric acid fuel cell power generator.

【図2】水冷式りん酸型燃料電池発電装置を例に示す従
来装置の概略系統図
FIG. 2 is a schematic system diagram of a conventional device showing a water-cooled phosphoric acid fuel cell power generator as an example.

【符号の説明】[Explanation of symbols]

1 燃料電池 2 燃料改質装置 3 冷却板 4 水蒸気分離器 5 発電生成水の回収塔 6 純水装置 8 ブロー弁 9 ブロー水系 10 冷却水循環系 10A 冷却水 10B 混合水 10E 純水(イオン交換水) 11 冷却水補給装置 12 導電度計 20 水質制御システム 21 導電度測定用センサー 22 金属イオン濃度測定用センサー 23 制御部 23S 報知指令 28 ブロー水制御弁 1 Fuel Cell 2 Fuel Reforming Device 3 Cooling Plate 4 Water Vapor Separator 5 Recovery Tower of Generated Water 6 Pure Water Device 8 Blow Valve 9 Blow Water System 10 Cooling Water Circulation System 10A Cooling Water 10B Mixed Water 10E Pure Water (Ion Exchange Water) 11 Cooling Water Supply Device 12 Conductivity Meter 20 Water Quality Control System 21 Conductivity Measurement Sensor 22 Metal Ion Concentration Measurement Sensor 23 Control Unit 23S Notification Command 28 Blow Water Control Valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の単位セルと冷却板の積層体からなる
燃料電池と、この燃料電池の冷却板に冷却水を循環する
循環ポンプおよび水蒸気分離器を有する冷却水循環系と
を有する水冷式燃料電池における、前記燃料電池の排ガ
ス中水分の回収塔と、この回収塔に前記水蒸気分離器か
らのブロー水を供給するブロー水系と、この回収塔の回
収水,ブロー水,および水道水の混合水を浄化した純水
に変換して前記冷却水循環系に供給する純水装置とを備
えた冷却水補給装置であって、前記冷却水循環系の冷却
水に含まれる不純物の濃度を検出するセンサーと、この
センサーの検出レベルが予め定まる基準値を越えたとき
前記ブロー水系のブロー水制御弁に向けて開度指令を発
する制御部とからなる冷却水の水質制御システムを備え
たことを特徴とする水冷式燃料電池の冷却水補給装置。
1. A water-cooled fuel having a fuel cell comprising a stack of a plurality of unit cells and a cooling plate, and a cooling water circulation system having a circulation pump for circulating cooling water and a steam separator on the cooling plate of the fuel cell. In the battery, a recovery tower for water in exhaust gas of the fuel cell, a blow water system for supplying blow water from the steam separator to the recovery tower, mixed water of the recovery tower, blow water, and mixed water of tap water A cooling water replenishing device including a pure water device that converts the purified water into purified water and supplies the purified water to the cooling water circulation system, and a sensor that detects the concentration of impurities contained in the cooling water of the cooling water circulation system, A cooling water quality control system comprising a control unit for issuing an opening degree command to the blow water control valve of the blow water system when the detection level of the sensor exceeds a predetermined reference value. Water-cooled fuel cell cooling water supply device.
【請求項2】請求項1に記載の水冷式燃料電池の冷却水
補給装置において、センサーが導電度測定用センサーお
よびシリカ濃度測定用センサーからなり、制御部が前記
センサーのいずれかの検出レベルが予め定まる基準値を
越えたときブロー弁に向けて開度指令を発することを特
徴とする水冷式燃料電池の冷却水補給装置。
2. The cooling water replenishing device for a water-cooled fuel cell according to claim 1, wherein the sensor comprises a sensor for measuring conductivity and a sensor for measuring silica concentration, and the control unit controls the detection level of any one of the sensors. A cooling water replenishing device for a water-cooled fuel cell, which issues an opening command toward a blow valve when a predetermined reference value is exceeded.
【請求項3】請求項1に記載の水冷式燃料電池の冷却水
補給装置において、制御部が、予め定まる基準値を大幅
に越える異常な検出信号を検知したとき、異常報知機に
向けて報知指令を発する異常報知部を備えたことを特徴
とする水冷式燃料電池の冷却水補給装置。
3. The cooling water replenishing device for a water-cooled fuel cell according to claim 1, wherein when the control unit detects an abnormal detection signal that greatly exceeds a predetermined reference value, an alarm is sent to an alarm. A cooling water supply device for a water-cooled fuel cell, which is provided with an abnormality notification unit for issuing a command.
JP7168532A 1995-07-04 1995-07-04 Cooling water refilling device of water-cooled fuel cell Pending JPH0922716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7168532A JPH0922716A (en) 1995-07-04 1995-07-04 Cooling water refilling device of water-cooled fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7168532A JPH0922716A (en) 1995-07-04 1995-07-04 Cooling water refilling device of water-cooled fuel cell

Publications (1)

Publication Number Publication Date
JPH0922716A true JPH0922716A (en) 1997-01-21

Family

ID=15869774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7168532A Pending JPH0922716A (en) 1995-07-04 1995-07-04 Cooling water refilling device of water-cooled fuel cell

Country Status (1)

Country Link
JP (1) JPH0922716A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141095A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system and its operating method
EP1223631A2 (en) * 2001-01-08 2002-07-17 General Motors Corporation Arrangement and method for determining the electroconductivity of a coolant in a fuel cell stack by differential voltage measurements
JP2002313377A (en) * 2001-04-12 2002-10-25 Nissan Motor Co Ltd Conductivity controlling device of fuel cell system
JP2002313404A (en) * 2001-04-13 2002-10-25 Mitsubishi Heavy Ind Ltd Solid high polymer type fuel cell system
JP2004127548A (en) * 2002-09-30 2004-04-22 Toyota Central Res & Dev Lab Inc Operation method and operation system of solid polymer type fuel cell
JP2004526280A (en) * 2001-02-02 2004-08-26 ビーエーエスエフ アクチェンゲゼルシャフト Method and apparatus for deionizing fuel cell coolant
US6893756B2 (en) 2002-04-30 2005-05-17 General Motors Corporation Lambda sensing with a fuel cell stack
JP2005285782A (en) * 2005-05-20 2005-10-13 Matsushita Electric Ind Co Ltd Solid polymer type fuel cell system and its operation method
JP2005310615A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006147264A (en) * 2004-11-18 2006-06-08 Matsushita Electric Ind Co Ltd Fuel cell system and its operation method
JP2007141857A (en) * 2006-12-28 2007-06-07 Aisin Seiki Co Ltd Fuel cell system
US7303831B2 (en) 1998-09-22 2007-12-04 Ballard Powers Systems Inc. Antifreeze cooling subsystem
JP2008034204A (en) * 2006-07-27 2008-02-14 Kyocera Corp Fuel cell device
JP2009009807A (en) * 2007-06-27 2009-01-15 Kyocera Corp Fuel cell device
JP2011233540A (en) * 2011-07-22 2011-11-17 Panasonic Corp Solid polymer type fuel cell system and method of operating the same
WO2018124785A3 (en) * 2016-12-30 2018-08-23 주식회사 두산 Fuel cell device and control method therefor
CN118394016A (en) * 2024-06-25 2024-07-26 深圳市兄弟制冰系统有限公司 Intelligent monitoring system and method for cabin-mounted refrigeration replenishing device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303831B2 (en) 1998-09-22 2007-12-04 Ballard Powers Systems Inc. Antifreeze cooling subsystem
JP2002141095A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system and its operating method
EP1223631A2 (en) * 2001-01-08 2002-07-17 General Motors Corporation Arrangement and method for determining the electroconductivity of a coolant in a fuel cell stack by differential voltage measurements
EP1223631A3 (en) * 2001-01-08 2002-07-24 General Motors Corporation Arrangement and method for determining the electroconductivity of a coolant in a fuel cell stack by differential voltage measurements
US6582840B2 (en) 2001-01-08 2003-06-24 General Motors Corporation Fuel cell stack coolant conductivity sensor using differential voltage measurements
JP2004526280A (en) * 2001-02-02 2004-08-26 ビーエーエスエフ アクチェンゲゼルシャフト Method and apparatus for deionizing fuel cell coolant
US6709779B2 (en) * 2001-04-12 2004-03-23 Nissan Motor Co., Ltd Cooling device for fuel cell system and control method thereof
JP2002313377A (en) * 2001-04-12 2002-10-25 Nissan Motor Co Ltd Conductivity controlling device of fuel cell system
JP2002313404A (en) * 2001-04-13 2002-10-25 Mitsubishi Heavy Ind Ltd Solid high polymer type fuel cell system
US6893756B2 (en) 2002-04-30 2005-05-17 General Motors Corporation Lambda sensing with a fuel cell stack
JP2004127548A (en) * 2002-09-30 2004-04-22 Toyota Central Res & Dev Lab Inc Operation method and operation system of solid polymer type fuel cell
JP2005310615A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006147264A (en) * 2004-11-18 2006-06-08 Matsushita Electric Ind Co Ltd Fuel cell system and its operation method
JP2005285782A (en) * 2005-05-20 2005-10-13 Matsushita Electric Ind Co Ltd Solid polymer type fuel cell system and its operation method
JP2008034204A (en) * 2006-07-27 2008-02-14 Kyocera Corp Fuel cell device
JP2007141857A (en) * 2006-12-28 2007-06-07 Aisin Seiki Co Ltd Fuel cell system
JP4598751B2 (en) * 2006-12-28 2010-12-15 アイシン精機株式会社 Fuel cell system
JP2009009807A (en) * 2007-06-27 2009-01-15 Kyocera Corp Fuel cell device
JP2011233540A (en) * 2011-07-22 2011-11-17 Panasonic Corp Solid polymer type fuel cell system and method of operating the same
WO2018124785A3 (en) * 2016-12-30 2018-08-23 주식회사 두산 Fuel cell device and control method therefor
CN110140249A (en) * 2016-12-30 2019-08-16 株式会社斗山 Fuel-cell device and its control method
CN110140249B (en) * 2016-12-30 2022-07-22 株式会社斗山 Fuel cell device and control method thereof
CN118394016A (en) * 2024-06-25 2024-07-26 深圳市兄弟制冰系统有限公司 Intelligent monitoring system and method for cabin-mounted refrigeration replenishing device

Similar Documents

Publication Publication Date Title
JPH0922716A (en) Cooling water refilling device of water-cooled fuel cell
US7353085B2 (en) Electrolyzer cell stack system
EP1333518B1 (en) Fuel cell system and method of operating the system
JP6100066B2 (en) Fuel cell system and control method thereof
EP2454775B1 (en) Fuel cell system with water condensation and ion exchanger
WO2008016216A1 (en) Fuel cell system and cooling control method thereof
JP3707599B2 (en) Water treatment device for fuel cell power generator and operation method thereof
JP3921935B2 (en) Fuel cell cogeneration system
JP2010238485A (en) Fuel cell generator, and operation method of fuel cell generator
KR100381531B1 (en) Automatic performance test and evaluation apparatus for polymer electrolyte fuel cell power generation systems
JP5383111B2 (en) Fuel cell
JP5178042B2 (en) Fuel cell device
JP4095782B2 (en) Gas generator
JP5353034B2 (en) Fuel cell power generator
JP2005122959A (en) Fuel cell power generating system
JP3434022B2 (en) Fuel cell device
EP3276726B1 (en) Fuel cell system provided with electric deionization device
JPH103935A (en) Fuel cell power generation device
JP2860213B2 (en) Fuel cell condensate recovery system
JP2008243593A (en) Liquid supply device and fuel cell device
JP4158468B2 (en) Fuel cell power generation system
JP2006114413A (en) Water quality management method of fuel cell generator
JP2011029116A (en) Fuel cell device
JP2004277870A (en) Method for operating water electrolyzer
JPH06140066A (en) Fuel cell power generating system