JP2006114413A - Water quality management method of fuel cell generator - Google Patents

Water quality management method of fuel cell generator Download PDF

Info

Publication number
JP2006114413A
JP2006114413A JP2004302373A JP2004302373A JP2006114413A JP 2006114413 A JP2006114413 A JP 2006114413A JP 2004302373 A JP2004302373 A JP 2004302373A JP 2004302373 A JP2004302373 A JP 2004302373A JP 2006114413 A JP2006114413 A JP 2006114413A
Authority
JP
Japan
Prior art keywords
water
fuel cell
recovered
recovery tank
recovered water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004302373A
Other languages
Japanese (ja)
Inventor
Michiko Horiguchi
道子 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004302373A priority Critical patent/JP2006114413A/en
Publication of JP2006114413A publication Critical patent/JP2006114413A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a management method in which the quality of recovered water is maintained at a prescribed level even if operated for a long time in a fuel cell generator in which reaction-generated water of a fuel cell stack 1 and combustion-generated water of a reformer 2 are recovered in a recovery tank 3, and in which the water is used as cooling water of the fuel cell stack 1 and steam for reforming of the reformer 2. <P>SOLUTION: An electric conductivity of the recovered water is measured by an electric conductivity measuring sensor 21 installed at the recovery tank 3, its detected signal is sent to a controller 22, and when the measured value exceeds a specified value, a part of the recovered water is discharged by opening a flow rate adjusting valve 23, and simultaneously, pure water of the same amount as that of discharged water is supplied from a pure water supply means 6 to the recovery tank 3 by opening the flow rate adjusting valve 24. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、反応生成水や改質器燃焼生成水を回収して使用する燃料電池発電装置の水質管理方法に関する。   The present invention relates to a water quality management method for a fuel cell power generation apparatus that recovers and uses reaction product water and reformer combustion product water.

固体高分子電解質形燃料電池(Polymer Electrolyte Fuel Cell;PEFC)は、電解質に高分子膜を用いる燃料電池で、出力密度が高い、電池寿命が長い等の優れた特徴を備えている。この方式の燃料電池では、固体高分子電解質膜の両面に触媒層(電極)を配して形成した膜・電極接合体(MEA)の両面に、集電体とガス拡散層の機能を持つ多孔質基材を配置し、ガス流通溝付きのセパレーターで挟持して単セルが構成されており、この単セルを複数枚積層して燃料電池スタックが構成されている。通常、燃料電池スタックには、酸化剤ガスとしての空気と、燃料ガスとしての改質ガスが供給され、これらのガスによる電気化学反応によって発電が行われる。
図2は、この種の燃料電池発電装置の燃料電池スタックのガス系統および水系統のシステム構成図である。図において、1は燃料電池スタック、2は燃料ガスの改質器、3は回収水タンク、4は水処理装置、5は純水タンクであり、11〜16は、それぞれ給気用あるいは給水用のポンプである。燃料電池スタック1の燃料極には改質器2で改質された高濃度の水素を含む改質ガスが、また、空気極にはポンプ13により送られた反応用の空気が供給され、発電が行われる。燃料極より排出される燃料極排出ガスは、改質器2の燃焼器へと送られ、残余の水素が、ポンプ12により取り込まれる燃焼用の空気と混合されて燃焼し、改質器2を改質温度に加熱する役割を果たす。燃焼したガスは回収水タンク3へと送られ、含まれる燃焼生成水が回収される。一方、空気極より排出される空気極排ガスには電気化学反応に伴って生じる反応生成水が含まれており、回収水タンク3へと送られてこの反応生成水が回収される。回収されたこれらの生成水は、水処理装置4で純化されたのち、燃料電池スタック1を一定運転温度に保持する機能を果たす冷却水循環系統を構成する純水タンク5へと送られる。なお、純水タンク5に貯えられた純水の一部は、水蒸気改質を行うための水蒸気として改質器2に導入される原燃料に付加される。
A polymer electrolyte fuel cell (PEFC) is a fuel cell using a polymer membrane as an electrolyte, and has excellent characteristics such as high output density and long battery life. In this type of fuel cell, a porous membrane having functions of a current collector and a gas diffusion layer on both sides of a membrane / electrode assembly (MEA) formed by arranging a catalyst layer (electrode) on both sides of a solid polymer electrolyte membrane A single cell is configured by arranging a porous substrate and sandwiched by a separator with a gas flow groove, and a fuel cell stack is configured by stacking a plurality of such single cells. Normally, air as an oxidant gas and a reformed gas as a fuel gas are supplied to the fuel cell stack, and electric power is generated by an electrochemical reaction using these gases.
FIG. 2 is a system configuration diagram of a gas system and a water system of a fuel cell stack of this type of fuel cell power generator. In the figure, 1 is a fuel cell stack, 2 is a fuel gas reformer, 3 is a recovered water tank, 4 is a water treatment device, 5 is a pure water tank, and 11 to 16 are for air supply or water supply, respectively. It is a pump. The fuel electrode of the fuel cell stack 1 is supplied with reformed gas containing high-concentration hydrogen reformed by the reformer 2, and the air electrode is supplied with the reaction air sent by the pump 13 to generate power. Is done. The fuel electrode exhaust gas discharged from the fuel electrode is sent to the combustor of the reformer 2, and the remaining hydrogen is mixed with the combustion air taken in by the pump 12 and burned. It plays the role of heating to the reforming temperature. The combusted gas is sent to the recovered water tank 3, and the contained combustion product water is recovered. On the other hand, the air electrode exhaust gas discharged from the air electrode contains reaction product water generated along with the electrochemical reaction, and is sent to the recovery water tank 3 to recover the reaction product water. These recovered produced water is purified by the water treatment device 4 and then sent to a pure water tank 5 constituting a cooling water circulation system that functions to maintain the fuel cell stack 1 at a constant operating temperature. A part of the pure water stored in the pure water tank 5 is added to the raw fuel introduced into the reformer 2 as steam for performing steam reforming.

上記のように、燃料電池発電装置においては、反応生成水や改質器2の燃焼精製水を回収し、燃料電池スタック1の冷却や原燃料の水蒸気改質に用いて、効率的に運転できるように構成している。本構成の燃料電池発電装置において安定した運転を確保するには、回収水タンク3および純水タンク5の水位が一定に保持される必要がある。したがって、水位が下がったときのみ、外部の純水供給手段6より回収水タンク3へと純水を供給することによって、これらの水位を一定に保持する方式を採っている。しかしながら、このような運転方法を採る場合においても、連続運転の期間が長期にわたると、濃縮されて水質が徐々に低下して純水タンク5の前段に配した水処理装置4の性能が劣化したり、回収水タンク3に溜まった異物がポンプ16に詰まる等の不具合が生じるという難点があった。
このような回収水の水質低下に伴う不具合を解消する方法として、特許文献1には、回収水の純化を行う電気脱イオン装置に並列にイオン交換式純化装置を設置し、回収水タンクの回収水の電気伝導度を測定し、測定値に応じて電気脱イオン装置とイオン交換式純化装置との運転を切換えるものが開示されている。
特開2001−176535号公報
As described above, in the fuel cell power generation apparatus, the reaction product water and the combustion purified water of the reformer 2 can be recovered and used for cooling the fuel cell stack 1 and steam reforming of the raw fuel, and thus can be operated efficiently. It is configured as follows. In order to ensure stable operation in the fuel cell power generation device of this configuration, the water levels of the recovered water tank 3 and the pure water tank 5 need to be kept constant. Therefore, only when the water level falls, a system is adopted in which pure water is supplied from the external pure water supply means 6 to the recovered water tank 3 to keep these water levels constant. However, even when such an operation method is adopted, if the continuous operation period is long, the water quality is gradually reduced due to concentration, and the performance of the water treatment device 4 disposed in the front stage of the pure water tank 5 deteriorates. Or the foreign matter accumulated in the recovered water tank 3 has a problem that the pump 16 is clogged.
As a method for solving such a problem associated with the deterioration of the quality of recovered water, Patent Document 1 discloses that an ion-exchange type purifier is installed in parallel with an electrodeionization apparatus for purifying recovered water, and the recovered water tank is recovered. An apparatus is disclosed that measures the electrical conductivity of water and switches between the operation of an electrodeionization apparatus and an ion exchange type purifier according to the measured value.
JP 2001-176535 A

本発明は、上記のごとく、燃料電池スタックで生じる反応生成水や改質器で生じる燃焼生成水を回収して燃料電池スタックの冷却水や改質用水蒸気として用いる方式の燃料電池発電装置において、長時間運転を継続しても回収水の水質の低下が抑えられ、所定のレベルの水質に維持されて、安定した運転が確保される水質管理方法を提供することを目的とする。   The present invention, as described above, in a fuel cell power generator of a system that recovers reaction product water generated in a fuel cell stack and combustion product water generated in a reformer and uses it as cooling water for the fuel cell stack or steam for reforming, It is an object of the present invention to provide a water quality management method in which a decrease in the quality of recovered water is suppressed even if the operation is continued for a long time, and is maintained at a predetermined level of water quality, thereby ensuring stable operation.

上記の目的を達成するために、本発明においては、
原燃料を水素リッチな改質ガスへと水蒸気改質する改質器と、酸化剤ガスと改質器で得られた改質ガスとを導入して電気化学反応により電気エネルギーを得る燃料電池本体と、この電気化学反応により燃料電池本体で生じた水蒸気および改質器の運転に伴って生じた燃焼排ガス中に含まれる水蒸気を凝縮して生成した回収水を貯える回収タンクとを備え、この回収タンクに貯えられた回収水を純化して得られた純水を、燃料電池本体を一定温度に保持するための冷却水および前記改質器での改質用水蒸気として用いる燃料電池発電装置において、
(1)上記の回収タンクに貯えられた回収水の水質を回収タンクに備えられた水質計測手段、例えば電気伝導度測定センサーによって計測し、回収タンクに備えられた回収水排出手段によって回収水の一部を外部に排出し、純水補給手段によって外部から回収タンクに純水を補給し、回収タンクに貯えられた回収水の水質が所定の範囲、例えば、電気伝導度が、2.0(mS/m)以下となるよう制御することとする。
In order to achieve the above object, in the present invention,
A fuel cell body that obtains electric energy through an electrochemical reaction by introducing a reformer that steam-reforms the raw fuel into a hydrogen-rich reformed gas, and an oxidant gas and the reformed gas obtained by the reformer And a recovery tank for storing recovered water generated by condensing water vapor generated in the fuel cell main body due to this electrochemical reaction and water vapor contained in the combustion exhaust gas generated by the operation of the reformer. In the fuel cell power generator using pure water obtained by purifying the recovered water stored in the tank as cooling water for maintaining the fuel cell main body at a constant temperature and steam for reforming in the reformer,
(1) The quality of the recovered water stored in the recovery tank is measured by a water quality measuring means provided in the recovery tank, for example, an electrical conductivity measuring sensor, and the recovered water is recovered by the recovered water discharging means provided in the recovery tank. A part is discharged to the outside, pure water is replenished to the recovery tank from the outside by pure water replenishing means, and the quality of the recovered water stored in the recovery tank is within a predetermined range, for example, electric conductivity is 2.0 (mS / m) Control shall be made so that

(2)また、上記の(1)において、回収水排出手段によって回収タンクから排出される回収水の水量と純水補給手段によって回収タンクに補給される純水の水量を略同量に調整することとする。
(3)また、上記の(1)あるいは(2)において、回収水排出手段によって排出される回収水の水量、および純水補給手段によって補給される純水の水量を調整弁により調整することとする。
(2) In (1) above, the amount of recovered water discharged from the recovery tank by the recovered water discharging means and the amount of pure water supplied to the recovery tank by the pure water replenishing means are adjusted to substantially the same amount. I will do it.
(3) In the above (1) or (2), the amount of recovered water discharged by the recovered water discharging means and the amount of pure water supplied by the pure water supplying means are adjusted by the adjusting valve. To do.

燃料電池本体で生じた反応生成水および改質器の運転に伴って生じた燃焼生成水を回収して回収タンクに貯え、これを純化して得られた純水を、燃料電池本体の冷却水および改質器での改質用水蒸気として用いる燃料電池発電装置において、回収タンクに純水補給手段を設けて回収タンク中へ外部から純水を補給すれば、回収タンク中の回収水の水質は補給された純水の水量に応じて向上する。また、回収タンクに回収水排出手段を設けて回収水の一部を排出すれば、排出された水量に応じて回収タンク中の回収水の水量が減少する。したがって、上記の(1)のごとく、回収タンクに回収水排出手段と純水補給手段とを備え、純水補給手段によって外部から回収タンクに純水を補給し、回収水排出手段によって回収水の一部を外部に排出すれば、回収水の水質の向上が図れるとともに、回収タンク中の水位が調整できる。また、例えば電気伝導度測定センサーのごとき水質計測手段を備えて、回収水の水質を計測し、水質が所定の範囲、例えば、電気伝導度が、2.0(mS/m)以下となるよう回収水排出手段と純水補給手段とを制御して回収水排出量と純水補給量を調整すれば、回収タンク中の回収水の水質と水位が所定の範囲に維持され、燃料電池発電装置が安定して運転できることとなる。   The reaction product water generated in the fuel cell body and the combustion product water generated by the operation of the reformer are recovered and stored in a recovery tank, and the purified water obtained by purifying the recovered water is used as cooling water for the fuel cell body. In addition, in the fuel cell power generator used as reforming steam in the reformer, if the recovery tank is provided with pure water replenishing means and pure water is replenished into the recovery tank from the outside, the quality of the recovered water in the recovery tank is It improves according to the amount of pure water supplied. Moreover, if a collection water discharge means is provided in the collection tank and a part of the collected water is discharged, the amount of the collected water in the collection tank decreases according to the amount of the discharged water. Therefore, as described in (1) above, the recovery tank is provided with the recovery water discharge means and the pure water supply means, the pure water supply means supplies the recovery tank from the outside, and the recovery water discharge means supplies the recovered water. If a part is discharged to the outside, the quality of the recovered water can be improved and the water level in the recovery tank can be adjusted. Also, for example, a water quality measuring means such as an electrical conductivity measuring sensor is provided to measure the water quality of the recovered water, and the recovered water is adjusted so that the water quality falls within a predetermined range, for example, the electric conductivity is 2.0 (mS / m) or less. By controlling the discharge means and pure water replenishment means to adjust the recovered water discharge amount and pure water replenishment amount, the quality and level of the recovered water in the recovery tank can be maintained within the specified range, and the fuel cell power generator can be stabilized Driving.

また、さらに、上記の(2)のごとく、回収水排出手段によって回収タンクから排出される回収水の水量と純水補給手段によって回収タンクに補給される純水の水量を略同量に調整することとすれば、純水の補給量の多少にかかわらず回収タンク中の回収水の水位は一定に保持されるので、燃料電池発電装置がより一層安定して運転できることとなる。   Further, as described in (2) above, the amount of recovered water discharged from the recovery tank by the recovered water discharging means and the amount of pure water supplied to the recovery tank by the pure water replenishing means are adjusted to substantially the same amount. In this case, the level of the recovered water in the recovery tank is kept constant regardless of the amount of pure water replenished, so that the fuel cell power generator can be operated more stably.

本発明の燃料電池発電装置の最良の実施形態は、原燃料を水素リッチな改質ガスへと水蒸気改質する改質器と、酸化剤ガスと改質器で得られた改質ガスとを導入して電気化学反応により電気エネルギーを得る燃料電池本体と、この電気化学反応により燃料電池本体で生じた水蒸気および改質器の運転に伴って生じた燃焼排ガス中に含まれる水蒸気を凝縮して生成した回収水を貯える回収タンクとを備え、この回収タンクに貯えられた回収水を純化して得られた純水を、燃料電池本体を一定温度に保持するための冷却水および前記改質器での改質用水蒸気として用いる燃料電池発電装置において、回収タンクに貯えられた回収水の水質を電気伝導度測定センサー等の水質計測手段によって計測するとともに、回収タンクに備えられた回収水排出手段によって回収水の一部を外部に排出し、純水補給手段によって外部から回収タンクに純水を補給することによって、回収タンクに貯えられた回収水の水質が所定の範囲となるよう制御することにある。   The best mode of the fuel cell power generator of the present invention includes a reformer that steam-reforms raw fuel into a hydrogen-rich reformed gas, an oxidant gas, and a reformed gas obtained by the reformer. The fuel cell main body that obtains electric energy by introducing an electrochemical reaction, the water vapor generated in the fuel cell main body by this electrochemical reaction and the water vapor contained in the combustion exhaust gas generated by the operation of the reformer are condensed. A recovery tank for storing the generated recovered water, and purified water obtained by purifying the recovered water stored in the recovery tank, cooling water for maintaining the fuel cell main body at a constant temperature, and the reformer In the fuel cell power generator used as steam for reforming in Japan, the quality of the recovered water stored in the recovery tank is measured by water quality measuring means such as an electric conductivity measuring sensor and the recovered water discharged in the recovery tank is discharged. A part of the recovered water is discharged to the outside by the stage, and pure water is replenished to the recovery tank from the outside by the pure water replenishing means, so that the quality of the recovered water stored in the recovery tank is controlled within a predetermined range. There is.

図1は、本発明の水質管理方法の実施例が適用される燃料電池発電装置の燃料電池スタックのガス系統および水系統のシステム構成図である。図2に示した従来の水質管理方法におけるシステム構成図との相違点は、回収水タンク3に回収水の水質計測手段として電気伝導度測定センサー21が備えられていること、同じく回収水タンク3に、貯えた回収水を流量を制御して排水する回収水排出手段として流量調整弁23付きの排出配管が、また、純水供給手段6から回収水タンク3に至る供給配管に流量調整弁24が備えられ、これらの二つの流量調整弁23、24が電気伝導度測定センサー21の検知出力を受けて作動するコントローラー22により制御されるよう構成されている点にある。
本実施例の水質管理方法では、燃料電池発電装置の運転に際して、図1に示したごとく回収水のシステムを構成し、電気伝導度測定センサー21の計測信号をコントローラー22に送り、計測された回収水タンク3中の回収水の電気伝導度の高低、すなわち水質の高低に対応して流量調整弁23、24を開閉し、回収水の水質の調整、維持を行った。すなわち、回収水の水質が良好で、電気伝導度が規定値の 2.0(mS/m)以下の場合には、流量調整弁23、24を共に閉止状態に保持し、排出配管からの回収水の排出も、純水供給手段6からの純水の供給も行わないが、電気伝導度が 2.0(mS/m)を上回ると、流量調整弁23を開いて 50 ml/min以上の流量の回収水を排出し、同時に純水供給手段6からの供給配管に備えられた流量調整弁24を開放、調整して上記の排出量とほぼ同量の純水を回収水タンク3中へと供給する。このように水質の低下した回収水を排出し、純水を供給することによって回収水タンク3中の回収水の水質は向上し、ほぼ規定値以下の良好なレベルに維持されることとなる。なお、本水質管理方法では、流量調整弁23を介しての排出水量と流量調整弁24を介しての供給水量がほぼ同量に調整されているので、回収水タンク3の回収水の水位に大きな変動を生じることがなく、燃料電池スタックは安定して運転することができる。本発明者の実験結果によれば、本水質管理方法を用いて水質を調整することによって、水処理装置の交換を行うことなく、3000時間を越える長時間の連続運転を行うことができた。
FIG. 1 is a system configuration diagram of a gas system and a water system of a fuel cell stack of a fuel cell power generator to which an embodiment of a water quality management method of the present invention is applied. The difference from the system configuration diagram in the conventional water quality management method shown in FIG. 2 is that the recovered water tank 3 is provided with an electrical conductivity measuring sensor 21 as the water quality measuring means of the recovered water. In addition, a discharge pipe with a flow rate adjusting valve 23 is used as a recovered water discharging means for draining the stored recovered water by controlling the flow rate, and a flow adjusting valve 24 is connected to a supply pipe from the pure water supplying means 6 to the recovered water tank 3. The two flow rate adjusting valves 23 and 24 are configured to be controlled by the controller 22 that operates in response to the detection output of the electric conductivity measuring sensor 21.
In the water quality management method of the present embodiment, when the fuel cell power generator is operated, a recovered water system is configured as shown in FIG. 1, and the measurement signal of the electrical conductivity measuring sensor 21 is sent to the controller 22 to measure the recovered amount. The flow rate adjusting valves 23 and 24 were opened and closed in accordance with the level of electrical conductivity of the recovered water in the water tank 3, that is, the level of water quality, and the quality of the recovered water was adjusted and maintained. That is, when the quality of the recovered water is good and the electric conductivity is less than the specified value of 2.0 (mS / m), the flow rate adjusting valves 23 and 24 are both kept closed, and the recovered water from the discharge pipe is maintained. Neither discharge nor supply of pure water from the pure water supply means 6 is performed, but when the electric conductivity exceeds 2.0 (mS / m), the flow rate adjusting valve 23 is opened and the recovered water having a flow rate of 50 ml / min or more is opened. At the same time, the flow rate adjustment valve 24 provided in the supply pipe from the pure water supply means 6 is opened and adjusted to supply substantially the same amount of pure water into the recovered water tank 3 as the above discharge amount. Thus, by recovering the recovered water whose water quality has been lowered and supplying pure water, the quality of the recovered water in the recovered water tank 3 is improved and maintained at a good level substantially below the specified value. In this water quality management method, the amount of discharged water through the flow rate adjusting valve 23 and the amount of supplied water through the flow rate adjusting valve 24 are adjusted to be approximately the same, so that the level of recovered water in the recovered water tank 3 is adjusted. The fuel cell stack can be stably operated without causing large fluctuations. According to the experiment results of the present inventor, by adjusting the water quality using the present water quality management method, it was possible to perform a continuous operation for a long time exceeding 3000 hours without exchanging the water treatment apparatus.

なお、本実施例では、電気伝導度が規定値の 2.0(mS/m)を上回ると所定の流量の回収水を排出し、同時にほぼ同量の純水を回収水タンク3中へ供給することとしているが、電気伝導度の規定値を高い値に設定すると、水質の維持は容易であるが水質の相対的に劣る水がシステムに流れるため装置の特性低下が早まることとなり、電気伝導度の規定値を低い値に設定すると、水質が高いレベルに維持されるが回収水タンクの水の交換が頻繁に行われ、多量の純水が供給されることとなるので運転コストが高くなる。したがって、本実施例の水質管理方法を行う場合の電気伝導度の規定値は、試行錯誤の結果から、おおよそ 2.0(mS/m)に選定するのが望ましい。
また、本実施例では、電気伝導度が規定値を上回ると50 ml/min以上の流量の回収水を排出し、同時にほぼ同量の純水を回収水タンク3中へ供給することとしているが、回収水の排出量や純水の供給量はこの流量に限定されるものではなく、システムの規模、とくに回収水タンクの規模にあわせて選定すればよい。また、一定流量でなく、検出された回収水の電気伝導度と規定値との差異に比例する流量等、検出値と規定値との差異の関数としてもよい。
In this embodiment, when the electrical conductivity exceeds the specified value of 2.0 (mS / m), a predetermined amount of recovered water is discharged and at the same time, approximately the same amount of pure water is supplied into the recovered water tank 3. However, if the specified value of electrical conductivity is set to a high value, it is easy to maintain the water quality, but water with relatively poor water quality flows into the system, leading to a rapid deterioration in the characteristics of the device. When the specified value is set to a low value, the water quality is maintained at a high level, but the water in the recovered water tank is frequently exchanged, and a large amount of pure water is supplied, so that the operation cost increases. Therefore, it is desirable that the specified value of electrical conductivity in the case of performing the water quality management method of the present embodiment is selected to be approximately 2.0 (mS / m) from the results of trial and error.
In this embodiment, when the electrical conductivity exceeds the specified value, the recovered water having a flow rate of 50 ml / min or more is discharged, and at the same time, substantially the same amount of pure water is supplied into the recovered water tank 3. The discharge amount of recovered water and the supply amount of pure water are not limited to this flow rate, and may be selected according to the scale of the system, particularly the scale of the recovered water tank. Further, the flow rate may be a function of the difference between the detected value and the specified value, such as a flow rate that is proportional to the difference between the detected electrical conductivity of the recovered water and the specified value.

以上述べたように、本発明の水質管理方法を用いて燃料電池スタックの回収水の水質管理を行うこととすれば、長時間運転を継続しても回収水の水質の低下が抑えられ、所定のレベルの水質に維持されるので、燃料電池発電装置は安定して運転できることとなる。したがって、本水質管理方法は、この種の燃料電池発電装置に広く使用されることが期待できる。   As described above, if the water quality management of the recovered fuel cell stack is performed using the water quality management method of the present invention, it is possible to suppress a decrease in the quality of the recovered water even if the operation is continued for a long time. Therefore, the fuel cell power generator can be stably operated. Therefore, this water quality management method can be expected to be widely used in this type of fuel cell power generation device.

本発明の水質管理方法の実施例が適用される燃料電池発電装置の燃料電池スタックのガス系統および水系統のシステム構成図FIG. 1 is a system configuration diagram of a gas system and a water system of a fuel cell stack of a fuel cell power generator to which an embodiment of a water quality management method of the present invention is applied. 従来のこの種の燃料電池発電装置のガス系統および水系統のシステム構成図System configuration diagram of gas system and water system of this type of conventional fuel cell power generator

符号の説明Explanation of symbols

1 燃料電池スタック
2 改質器
3 回収水タンク
4 水処理装置
5 純水タンク
6 純水供給手段
11〜16 ポンプ
21 電気伝導度測定センサー
22 コントローラー
23 流量調整弁(排水)
24 流量調整弁(純水)
1 Fuel cell stack
2 Reformer
3 recovered water tank
4 Water treatment equipment
5 Pure water tank
6 Pure water supply means 11-16 Pump 21 Electrical conductivity measurement sensor 22 Controller 23 Flow control valve (drainage)
24 Flow control valve (pure water)

Claims (5)

原燃料を水素リッチな改質ガスへと水蒸気改質する改質器と、該改質器で得られた改質ガスと酸化剤ガスとを導入して電気化学反応により電気エネルギーを得る燃料電池本体と、該電気化学反応により燃料電池本体で生じた水蒸気および前記改質器の運転に伴って生じた燃焼排ガス中に含まれる水蒸気を凝縮して生成した回収水を貯える回収タンクとを備え、該回収タンクに貯えられた回収水を純化して得られた純水を燃料電池本体を一定温度に保持するための冷却水および前記改質器での改質用水蒸気として用いる燃料電池発電装置において、
前記回収タンクに貯えられた回収水の水質を前記回収タンクに備えられた水質計測手段によって計測し、前記回収タンクに備えられた回収水排出手段によって回収水の一部を外部に排出し、純水補給手段によって外部から前記回収タンクに純水を補給し、前記回収タンクに貯えられた回収水の水質が所定の範囲に収まるよう制御することを特徴とする燃料電池発電装置の水質管理方法。
A reformer that steam-reforms the raw fuel into a hydrogen-rich reformed gas, and a fuel cell that obtains electric energy through an electrochemical reaction by introducing the reformed gas and oxidant gas obtained by the reformer A main body, and a recovery tank for storing recovered water generated by condensing water vapor generated in the fuel cell main body due to the electrochemical reaction and water vapor contained in the combustion exhaust gas generated by the operation of the reformer, In a fuel cell power generator using pure water obtained by purifying recovered water stored in the recovery tank as cooling water for maintaining the fuel cell body at a constant temperature and steam for reforming in the reformer ,
The quality of the recovered water stored in the recovery tank is measured by the water quality measuring means provided in the recovery tank, and a part of the recovered water is discharged to the outside by the recovered water discharge means provided in the recovery tank. A method for managing the water quality of a fuel cell power generator, wherein pure water is supplied to the recovery tank from the outside by water supply means, and control is performed so that the quality of the recovered water stored in the recovery tank falls within a predetermined range.
前記回収水排出手段によって前記回収タンクから排出される回収水の水量と前記純水補給手段によって前記回収タンクに補給される純水が、略同量に調整されていることを特徴とする請求項1に記載の燃料電池発電装置の水質管理方法。 The amount of recovered water discharged from the recovery tank by the recovered water discharging means and the pure water supplied to the recovery tank by the pure water replenishing means are adjusted to be substantially the same amount. 2. A water quality management method for a fuel cell power generator according to 1. 前記回収水排出手段によって排出される回収水の水量、および前記純水補給手段によって補給される純水の水量が、調整弁により調整されていることを特徴とする請求項1または2に記載の燃料電池発電装置の水質管理方法。 The amount of recovered water discharged by the recovered water discharging means and the amount of pure water supplied by the pure water replenishing means are adjusted by an adjustment valve. Water quality management method for fuel cell power generator. 前記回収タンクに備えられた水質計測手段が、電気伝導度測定センサーであることを特徴とする請求項1ないし3のいずれかに記載の燃料電池発電装置の水質管理方法。 4. The water quality management method for a fuel cell power generator according to claim 1, wherein the water quality measuring means provided in the recovery tank is an electrical conductivity measurement sensor. 電気伝導度測定センサーにより測定される電気伝導度が、2.0(mS/m)以下となるように、前記回収タンクに貯えられた回収水の水質が制御されていることを特徴とする請求項4に記載の燃料電池発電装置の水質管理方法。 5. The quality of recovered water stored in the recovery tank is controlled so that the electrical conductivity measured by the electrical conductivity measuring sensor is 2.0 (mS / m) or less. The water quality management method of the fuel cell power generator described in 2.
JP2004302373A 2004-10-18 2004-10-18 Water quality management method of fuel cell generator Pending JP2006114413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302373A JP2006114413A (en) 2004-10-18 2004-10-18 Water quality management method of fuel cell generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302373A JP2006114413A (en) 2004-10-18 2004-10-18 Water quality management method of fuel cell generator

Publications (1)

Publication Number Publication Date
JP2006114413A true JP2006114413A (en) 2006-04-27

Family

ID=36382747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302373A Pending JP2006114413A (en) 2004-10-18 2004-10-18 Water quality management method of fuel cell generator

Country Status (1)

Country Link
JP (1) JP2006114413A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096565A (en) * 2009-10-30 2011-05-12 Jx Nippon Oil & Energy Corp Fuel cell system and method for exchanging pure water therein
JP2013016511A (en) * 2012-09-19 2013-01-24 Kyocera Corp Fuel cell device
JP2015122251A (en) * 2013-12-25 2015-07-02 アイシン精機株式会社 Fuel battery system
DE102016203466A1 (en) 2016-03-03 2017-09-07 Volkswagen Aktiengesellschaft Cooling system for a fuel cell stack with sensing a coolant level in a surge tank by means of an electrical conductivity value
CN107431218A (en) * 2015-03-27 2017-12-01 株式会社斗山 It is provided with the fuel cell system of electric deionizer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096565A (en) * 2009-10-30 2011-05-12 Jx Nippon Oil & Energy Corp Fuel cell system and method for exchanging pure water therein
JP2013016511A (en) * 2012-09-19 2013-01-24 Kyocera Corp Fuel cell device
JP2015122251A (en) * 2013-12-25 2015-07-02 アイシン精機株式会社 Fuel battery system
CN107431218A (en) * 2015-03-27 2017-12-01 株式会社斗山 It is provided with the fuel cell system of electric deionizer
EP3276726A4 (en) * 2015-03-27 2018-08-29 Doosan Corporation Fuel cell system provided with electric deionization device
CN107431218B (en) * 2015-03-27 2020-09-11 株式会社斗山 Fuel cell system provided with electrodeionization device
DE102016203466A1 (en) 2016-03-03 2017-09-07 Volkswagen Aktiengesellschaft Cooling system for a fuel cell stack with sensing a coolant level in a surge tank by means of an electrical conductivity value
DE102016203466B4 (en) 2016-03-03 2023-06-15 Audi Ag Cooling system for a fuel cell stack with sensing of a coolant level in an expansion tank by means of an electrical conductivity value

Similar Documents

Publication Publication Date Title
JP5394568B2 (en) Open fuel cell system
JP4295847B2 (en) Polymer electrolyte fuel cell system
WO2008016216A1 (en) Fuel cell system and cooling control method thereof
EP2454775B1 (en) Fuel cell system with water condensation and ion exchanger
US9660282B2 (en) Fuel cell system and method of controlling the fuel cell system
JP6100065B2 (en) Ion exchanger for fuel cell system
WO2009113304A1 (en) Fuel cell system
JP2010238485A (en) Fuel cell generator, and operation method of fuel cell generator
JP2006244952A (en) Fuel cell system
JP2000113896A (en) Solid polymer fuel cell and its system
JP3943406B2 (en) Fuel cell power generation system and operation method thereof
JP2006114413A (en) Water quality management method of fuel cell generator
JP5109284B2 (en) Fuel cell system
JP2010153195A (en) Fuel cell power generation system of fuel cell and its operation method
JP5282472B2 (en) Operation method of fuel cell power generation system
JP2012038608A (en) Fuel cell system and control method of reforming water supply amount in fuel cell system
JP2014075277A (en) Fuel cell system and operation method thereof
KR20210085524A (en) Fuel cell system
JP4158468B2 (en) Fuel cell power generation system
JP2003317784A (en) Fuel cell power generating system
JP2020017338A (en) Fuel cell system and power generation method
JP2004207133A (en) Fuel cell system and operation method of fuel cell
JP2007018859A (en) Fuel cell power generation system
JP2005032600A (en) Gas liquid separation system and gas liquid separation method
JP2010272253A (en) Fuel cell system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704