JP5646221B2 - Fuel cell system and operation method thereof - Google Patents

Fuel cell system and operation method thereof Download PDF

Info

Publication number
JP5646221B2
JP5646221B2 JP2010136004A JP2010136004A JP5646221B2 JP 5646221 B2 JP5646221 B2 JP 5646221B2 JP 2010136004 A JP2010136004 A JP 2010136004A JP 2010136004 A JP2010136004 A JP 2010136004A JP 5646221 B2 JP5646221 B2 JP 5646221B2
Authority
JP
Japan
Prior art keywords
fuel cell
cooling water
cell stack
flow rate
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010136004A
Other languages
Japanese (ja)
Other versions
JP2012003884A (en
Inventor
将一 干鯛
将一 干鯛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2010136004A priority Critical patent/JP5646221B2/en
Publication of JP2012003884A publication Critical patent/JP2012003884A/en
Application granted granted Critical
Publication of JP5646221B2 publication Critical patent/JP5646221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

定格運転状態と低負荷運転状態とを実現する燃料電池システム、および、かかる燃料電池システムの運転方法に関する。   The present invention relates to a fuel cell system that realizes a rated operation state and a low-load operation state, and a method for operating the fuel cell system.

燃料電池は燃料ガス中の水素と、空気中の酸素の電気化学反応によって、電気と熱を発生する装置である。自動車用、携帯用の用途の他に、家庭などで使う定置用として燃料電池システムの開発が進められている。家庭用の燃料電池システムは、電気と温水をユーザーに供給するコージェネレーションシステムである。すなわち、発電で得られる電気を供給すると同時に、発生する熱を熱交換によって回収して、2次冷却水を温め、温水として提供する。   A fuel cell is a device that generates electricity and heat by an electrochemical reaction between hydrogen in fuel gas and oxygen in air. In addition to automobile and portable applications, development of fuel cell systems for stationary use at home and the like is underway. A household fuel cell system is a cogeneration system that supplies electricity and hot water to users. That is, at the same time as supplying electricity obtained by power generation, the generated heat is recovered by heat exchange to warm the secondary cooling water and provide it as hot water.

図5は、一般的な家庭の電力需要一日の変動と家庭用燃料電池システムの一般的な運転方法を表すグラフである。家庭の電力需要は生活時間帯に合わせて変動する。一般に、図5の実線Aに示すように、朝と夕方には電力需要が高く、昼間と夜間には電気使用量は低下する。燃料電池システムは、電力需要に合わせて運転負荷を変動させるのが一般的である。運転負荷の変動は、図5の破線Bに示すように、連続的ではなく、定格出力と、定格出力の1/4〜1/2程度の一定の低出力での運転を切り替えて行なう。すなわち、電力需要が定格出力以上の時は定格出力運転を行ない、電力需要が定格出力未満の時には、定格出力の1/4〜1/2程度の一定の低出力での低負荷運転を行なう。   FIG. 5 is a graph showing a general fluctuation in daily household electric power demand and a general operation method of a household fuel cell system. Household power demand fluctuates with the time of day. In general, as shown by a solid line A in FIG. 5, the demand for power is high in the morning and evening, and the amount of electricity used is reduced in the daytime and at night. In the fuel cell system, the operation load is generally changed according to the power demand. As shown by the broken line B in FIG. 5, the fluctuation of the operating load is not continuous, but is performed by switching between the rated output and the operation at a constant low output of about 1/4 to 1/2 of the rated output. That is, when the power demand is equal to or higher than the rated output, the rated output operation is performed, and when the power demand is less than the rated output, the low load operation is performed at a constant low output of about 1/4 to 1/2 of the rated output.

燃料電池スタックに導入される冷却水は、燃料電池反応による発熱によって加熱される。燃料電池スタックから排出される高温の冷却水は熱交換器を通して、2次冷却水を加熱する。加熱された2次冷却水は貯湯タンクに蓄えられ、温水として家庭に供給される。   The cooling water introduced into the fuel cell stack is heated by heat generated by the fuel cell reaction. The high-temperature cooling water discharged from the fuel cell stack heats the secondary cooling water through the heat exchanger. The heated secondary cooling water is stored in a hot water storage tank and supplied to the home as hot water.

低負荷運転時においては、燃料電池スタックからの発熱が少ないために、燃料電池スタックから出てくる冷却水の温度は定格運転時に比べて低くなる。そのために、前述の熱交換器における熱交換効率が定格運転時に比べて低くなる。たとえば特許文献1では、熱交換効率が低い場合においては、燃料電池冷却水側にバイパスを設けて熱供給量を抑制し、熱利用率を向上している。また、特許文献2においては、低負荷運転時において燃料電池スタックに供給するガス流量を低減し、燃料電池内の水量を増加させ、燃料電池スタックの保護と特性回復を行なっている。   During low-load operation, heat generated from the fuel cell stack is small, so the temperature of the cooling water coming out of the fuel cell stack is lower than that during rated operation. Therefore, the heat exchange efficiency in the above-mentioned heat exchanger is lower than that during rated operation. For example, in Patent Document 1, when the heat exchange efficiency is low, a bypass is provided on the fuel cell cooling water side to suppress the heat supply amount and to improve the heat utilization rate. In Patent Document 2, the flow rate of gas supplied to the fuel cell stack during low-load operation is reduced, the amount of water in the fuel cell is increased, and the fuel cell stack is protected and its characteristics are restored.

特開2007−123032号公報JP 2007-123032 A 特開2008−218050号公報JP 2008-2108050 A

上述した燃料電池システムにおいて低負荷運転時には、前述の熱交換器における熱交換効率が下がり、温水の供給能力が低下する。上述の特許文献1または2に開示された技術では、熱交換効率を上げる施策にはならないことが課題であった
本発明は上述した課題を解決するためになされたものであり、燃料電池システムの低負荷運転時における熱交換効率を向上することを目的とする。
During low-load operation in the above-described fuel cell system, the heat exchange efficiency in the heat exchanger described above decreases, and the hot water supply capability decreases. In the technique disclosed in the above-mentioned Patent Document 1 or 2, the problem is that it does not become a measure for increasing the heat exchange efficiency. The present invention was made to solve the above-described problem, and It aims at improving the heat exchange efficiency at the time of low load operation.

上記目的を達成するために、本発明に係る燃料電池システムの一つの態様は、燃料電池スタックと、前記燃料電池スタックに空気を供給する空気供給装置と、前記空気の供給流量を制御する空気流量制御部とを備えた燃料電池システムにおいて、前記空気の供給流量に対する燃料電池スタックの発電で消費される空気消費量の比を空気利用率と定義するとき、前記空気流量制御部は、前記燃料電池スタックが正常な状態で運転している場合において、前記燃料電池スタックが定格出力よりも低い所定の出力で運転する低負荷運転状態における空気利用率が、定格運転状態における空気利用率よりも高くなるように、定格運転状態と低負荷運転状態との切り替えに応じて空気の供給流量を変更するように制御するものであること、を特徴とする。 In order to achieve the above object, one aspect of a fuel cell system according to the present invention includes a fuel cell stack, an air supply device that supplies air to the fuel cell stack, and an air flow rate that controls the air supply flow rate. In the fuel cell system comprising a control unit, when the ratio of the air consumption consumed by power generation of the fuel cell stack to the air supply flow rate is defined as an air utilization rate, the air flow control unit When the stack is operating in a normal state, the air utilization rate in the low load operation state where the fuel cell stack is operated at a predetermined output lower than the rated output is higher than the air utilization rate in the rated operation state. as such, it is intended to control so as to change the flow rate of air in accordance with the switching of the rated operating condition and the low load operating state, characterized by

本発明に係る燃料電池システムの他の一つの態様は、燃料電池スタックと、前記燃料電池スタックに冷却水を供給する冷却水供給装置と、前記冷却水の流量を制御する冷却水流量制御部とを備えた燃料電池システムにおいて、前記冷却水供給装置は、前記燃料電池スタックに流れる冷却水を循環させる冷却水ラインと、この冷却水ラインに設けられて前記燃料電池スタックに流れる冷却水の熱を放出する熱交換器と、この熱交換から放出された熱を回収する廃熱回収ラインと、を備え、前記冷却水流量制御部は、前記燃料電池スタックが定格出力よりも低い所定の出力で運転する低負荷運転状態における前記冷却水の流量が、定格運転状態の前記冷却水の流量よりも少なくなるように、定格運転状態と低負荷運転状態との切り替えに応じて前記冷却水の流量を変更するように制御するものであること、を特徴とする。 Another aspect of the fuel cell system according to the present invention includes a fuel cell stack, a cooling water supply device that supplies cooling water to the fuel cell stack, and a cooling water flow rate control unit that controls the flow rate of the cooling water. The cooling water supply device includes a cooling water line that circulates the cooling water flowing through the fuel cell stack, and heat of the cooling water that is provided in the cooling water line and flows through the fuel cell stack. a heat exchanger which releases the waste heat recovery line for recovering the heat released from the heat exchanger, wherein the cooling water flow rate control unit, in the fuel cell stack is a predetermined lower than the rated output output flow rate of the cooling water in the low load operation state to drive the, so that less than the flow rate of the cooling water of the rated operating conditions, according to the switching of the rated operating condition and the low load operation state It serial and controls to change the flow rate of the cooling water, characterized by.

本発明に係る燃料電池システムの運転方法の一つの態様は、燃料電池スタックと、前記燃料電池スタックに空気を供給する空気供給装置とを備えた燃料電池システムの運転方法であって、前記空気の供給流量に対する燃料電池スタックの発電で消費される空気消費量の比を空気利用率と定義するとき、前記燃料電池スタックが正常な状態で運転している場合において、定格出力よりも低い所定の出力で運転する低負荷運転時における空気利用率が、定格運転時における空気利用率よりも高くなるように、定格運転状態と低負荷運転状態との切り替えに応じて空気の供給流量を変更するように制御すること、を特徴とする。 One aspect of the operation method of the fuel cell system according to the present invention is an operation method of a fuel cell system including a fuel cell stack and an air supply device that supplies air to the fuel cell stack, When the ratio of the air consumption consumed by the power generation of the fuel cell stack to the supply flow rate is defined as the air utilization rate, a predetermined output lower than the rated output when the fuel cell stack is operating in a normal state The air supply flow rate is changed according to the switching between the rated operation state and the low load operation state so that the air utilization rate during low load operation is higher than the air utilization rate during rated operation. It is characterized by controlling.

本発明に係る燃料電池システムの運転方法の他の一つの態様は、燃料電池スタックと、前記燃料電池スタックに冷却水を供給する冷却水供給装置とを備えた燃料電池システムの運転方法であって、前記冷却水供給装置は、前記燃料電池スタックに流れる冷却水を循環させる冷却水ラインと、この冷却水ラインに設けられて前記燃料電池スタックに流れる冷却水の熱を放出する熱交換器と、この熱交換から放出された熱を回収する廃熱回収ラインと、を備え、定格出力よりも低い所定の出力で運転する低負荷運転時における前記冷却水の流量が定格運転時における前記冷却水の流量よりも少なくなるように、定格運転状態と低負荷運転状態との切り替えに応じて前記冷却水の流量を変更するように制御すること、を特徴とする。 Another aspect of the operation method of the fuel cell system according to the present invention is an operation method of a fuel cell system including a fuel cell stack and a cooling water supply device that supplies cooling water to the fuel cell stack. The cooling water supply device includes a cooling water line that circulates the cooling water flowing through the fuel cell stack, a heat exchanger that is provided in the cooling water line and releases heat of the cooling water flowing through the fuel cell stack, A waste heat recovery line that recovers the heat released from the heat exchanger , and the cooling water flow rate during the low load operation that operates at a predetermined output lower than the rated output is the cooling water during the rated operation. Control is performed so as to change the flow rate of the cooling water in accordance with switching between the rated operation state and the low-load operation state so as to be less than the flow rate.

本発明によれば、燃料電池システムの低負荷運転時における熱交換効率を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat exchange efficiency at the time of low load operation | movement of a fuel cell system can be improved.

本発明に係る燃料電池システムの第1の実施形態を示す系統構成図である。1 is a system configuration diagram showing a first embodiment of a fuel cell system according to the present invention. 本発明の第1の実施形態および従来技術による供給空気流量と発電電流との関係を示すグラフである。It is a graph which shows the relationship between the supply air flow rate by the 1st Embodiment of this invention and a prior art, and a generated electric current. 本発明の第1の実施形態の効果を表すグラフであって、冷却水出口温度およびカソード出口温度と空気利用率との関係を示すグラフである。It is a graph showing the effect of the 1st Embodiment of this invention, Comprising: It is a graph which shows the relationship between cooling water exit temperature and cathode exit temperature, and an air utilization factor. 本発明に係る燃料電池システムの第2の実施形態を示す系統構成図である。It is a system configuration | structure figure which shows 2nd Embodiment of the fuel cell system which concerns on this invention. 一般的な家庭の電力需要一日の変動と家庭用燃料電池システムの一般的な運転方法を表すグラフである。It is a graph showing the fluctuation | variation of the general household electric power demand one day, and the general operating method of a household fuel cell system.

以下、本発明に係る燃料電池システムの運転方法の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of a method for operating a fuel cell system according to the present invention will be described with reference to the drawings.

[第1の実施形態]
まず、図1を用いて第1の実施形態を説明する。図1は、本発明に係る燃料電池システムの第1の実施形態を示す系統構成図である。
[First Embodiment]
First, the first embodiment will be described with reference to FIG. FIG. 1 is a system configuration diagram showing a first embodiment of a fuel cell system according to the present invention.

第1の実施形態の燃料電池システムは、燃料電池スタック11、燃料電池スタック11に空気を供給する空気供給装置60、および空気流量制御部51を備えている。空気供給装置60は、空気供給ライン41と空気ブロア42から成る。空気ブロア42からの供給空気流量は、空気流量制御部51からの信号によって調整される。   The fuel cell system according to the first embodiment includes a fuel cell stack 11, an air supply device 60 that supplies air to the fuel cell stack 11, and an air flow rate control unit 51. The air supply device 60 includes an air supply line 41 and an air blower 42. The supply air flow rate from the air blower 42 is adjusted by a signal from the air flow rate control unit 51.

燃料電池スタック11には、冷却水を循環する冷却水ライン21が接続されている。冷却水ライン21には熱交換器23および冷却水ポンプ22が配置されている。   A cooling water line 21 that circulates cooling water is connected to the fuel cell stack 11. A heat exchanger 23 and a cooling water pump 22 are arranged in the cooling water line 21.

冷却水ライン21によって燃料電池スタック11に導入された冷却水は、燃料電池スタック11での燃料電池反応による発熱を吸収し、高温となって、燃料電池スタック11から排出され、熱交換器23に導入される。高温の冷却水は熱交換器23で2次冷却水に熱を伝達した後に、冷却水ポンプ22によって昇圧され、再び燃料電池スタック11に送られる。   The cooling water introduced into the fuel cell stack 11 by the cooling water line 21 absorbs heat generated by the fuel cell reaction in the fuel cell stack 11, becomes a high temperature, is discharged from the fuel cell stack 11, and enters the heat exchanger 23. be introduced. The high-temperature cooling water is heated by the heat exchanger 23 to the secondary cooling water, and then the pressure is raised by the cooling water pump 22 and sent to the fuel cell stack 11 again.

熱交換器23には、2次冷却水を循環する廃熱回収ライン31が接続されている。廃熱回収ライン31には、貯湯タンク33および廃熱回収ラインポンプ32が接続されている。2次冷却水は、熱交換器23で、燃料電池スタック11からの高温の冷却水によって加熱され、貯湯タンク33に溜められ、廃熱回収ラインポンプ32によって昇圧され、再び熱交換器23に送られる。   A waste heat recovery line 31 that circulates the secondary cooling water is connected to the heat exchanger 23. A hot water storage tank 33 and a waste heat recovery line pump 32 are connected to the waste heat recovery line 31. The secondary cooling water is heated by the high-temperature cooling water from the fuel cell stack 11 in the heat exchanger 23, stored in the hot water storage tank 33, pressurized by the waste heat recovery line pump 32, and sent to the heat exchanger 23 again. It is done.

燃料電池スタック11に供給される空気流量は、発電電流に応じて決められる。発電に必要な空気流量は、次の(1)式で求められる。   The flow rate of air supplied to the fuel cell stack 11 is determined according to the generated current. The air flow rate necessary for power generation is obtained by the following equation (1).

(空気流量)=(電流)×(セル数)/4F×22.4/0.21/(空気利用率)
[NL/sec] ・・・(1)
ただし、Fはファラデー定数、22.4[L/mol]は標準状態の理想気体1molの体積[L]、0.21は空気中の酸素濃度である。空気利用率は、燃料電池スタック11に供給される空気のうち発電で消費される空気の割合である。定格出力運転時と低負荷運転時では電流値が異なるので、運転状態が切り替えられた時には、空気流量制御部51からの信号によって燃料電池スタック11に導入する空気流量を制御する。空気流量を制御する方法としては、空気ブロア42の回転数を変更する方法のほかに、空気供給ライン41に設けたバルブ(図示せず)の開度を変更する方法もある。
(Air flow rate) = (Current) × (Number of cells) /4F×22.4/0.21/ (Air utilization rate)
[NL / sec] (1)
However, F is a Faraday constant, 22.4 [L / mol] is the volume [L] of 1 mol of ideal gases in a standard state, and 0.21 is the oxygen concentration in the air. The air utilization rate is a ratio of air consumed by power generation in the air supplied to the fuel cell stack 11. Since the current value is different between the rated output operation and the low load operation, the flow rate of air introduced into the fuel cell stack 11 is controlled by a signal from the air flow rate control unit 51 when the operation state is switched. As a method of controlling the air flow rate, there is a method of changing the opening degree of a valve (not shown) provided in the air supply line 41 in addition to a method of changing the rotational speed of the air blower 42.

本実施形態においては、(定格運転時の空気利用率)<(低負荷運転時の空気利用率)とする。   In the present embodiment, (the air utilization rate during rated operation) <(air utilization rate during low-load operation).

図2は、この第1の実施形態および従来技術による供給空気流量と発電電流との関係を示すグラフである。従来技術においては、実線Cに示すように、供給空気流量は発電電流に比例している。電気出力は発電電流と電圧の積で与えられる。本実施形態においては、空気利用率を定格運転と異なる値とする。図2の点Dに示すように、供給空気流量が、低負荷運転時において、発電電流に比例する値よりも少ない値とする。すなわち、本実施形態において、低負荷運転時には定格運転時に比べて、余剰な空気が少ない条件で運転される。   FIG. 2 is a graph showing the relationship between the supply air flow rate and the generated current according to the first embodiment and the prior art. In the prior art, as indicated by the solid line C, the supply air flow rate is proportional to the generated current. The electrical output is given by the product of the generated current and the voltage. In the present embodiment, the air utilization rate is set to a value different from the rated operation. As shown at a point D in FIG. 2, the supply air flow rate is set to a value smaller than a value proportional to the generated current during the low load operation. That is, in the present embodiment, the operation is performed under the condition that there is less excess air than during the rated operation during the low load operation.

定格運転時の空気利用率は一般に30〜60%である。燃料電池スタック11の運転時には、発電反応によってカソードに水が生成される。この生成水が反応ガスの拡散を阻害して電圧が低下する現象をフラディングと呼ぶ。一般に、空気利用率が低い値で運転するのは、余剰の空気が増加することによって、酸素の供給量を増やす、あるいは生成水の持ち出し量を増やすという作用が得られ、フラディングを防止することができるためである。生成水量は燃料電池スタック11を流れる電流に比例する。そのため、低負荷運転時には電流が低く、生成水量が低減し、フラディングは生じにくい。したがって、低負荷運転時には定格運転時よりも高い空気利用率で安定に運転することが可能である。   The air utilization rate during rated operation is generally 30 to 60%. During operation of the fuel cell stack 11, water is generated at the cathode by a power generation reaction. The phenomenon in which the generated water hinders the diffusion of the reaction gas and the voltage decreases is called flooding. In general, operating at a low air utilization rate is to prevent flooding by increasing the amount of excess air and increasing the amount of oxygen supplied or increasing the amount of water produced. It is because it can do. The amount of generated water is proportional to the current flowing through the fuel cell stack 11. Therefore, during low load operation, the current is low, the amount of generated water is reduced, and flooding is unlikely to occur. Therefore, it is possible to stably operate at a high air utilization rate during low load operation and higher than during rated operation.

このように構成された本実施形態において、空気によって燃料電池スタック11から持ち出される熱量を低減することができる。したがって、低負荷運転時においても、燃料電池スタック11の運転温度を高温に保つことが可能となる。これにより、燃料電池スタック11から出てくる冷却水温度を高く保ち、熱交換器23における熱回収効率を高くすることができる。   In the present embodiment configured as above, the amount of heat taken out from the fuel cell stack 11 by air can be reduced. Therefore, the operating temperature of the fuel cell stack 11 can be kept high even during low load operation. Thereby, the temperature of the cooling water coming out of the fuel cell stack 11 can be kept high, and the heat recovery efficiency in the heat exchanger 23 can be increased.

特に、低負荷運転時の空気利用率を80〜90%とすることによって、熱回収効率を高くする効果を上げることができる。前述の通り、定格運転時の空気利用率は一般に30〜60%であるが、低負荷運転時には空気利用率を上げることが可能である。空気利用率が高いほど、余剰の空気による熱の持ち出しを低減し、燃料電池スタック11の温度を高く保つ効果が得られる。一方、空気利用率が90%を超えると、低負荷運転時であってもフラディングによる電圧低下の恐れがある。したがって、空気利用率を80〜90%とすることが望ましい。   In particular, by setting the air utilization rate during low-load operation to 80 to 90%, it is possible to increase the effect of increasing the heat recovery efficiency. As described above, the air utilization rate during rated operation is generally 30 to 60%, but it is possible to increase the air utilization rate during low-load operation. As the air utilization rate is higher, the effect of keeping the temperature of the fuel cell stack 11 high by reducing the heat brought out by excess air can be obtained. On the other hand, if the air utilization rate exceeds 90%, there is a risk of voltage drop due to flooding even during low load operation. Therefore, it is desirable that the air utilization rate is 80 to 90%.

図3に本実施形態の効果を示す。図3は、燃料電池スタック11からの冷却水出口温度(実線Eで示す)およびカソード出口での空気排ガス温度(点線Fで示す)と、空気利用率との関係を示すグラフである。空気利用率を上げるにしたがって、いずれの温度も上昇していることがわかる。したがって、上述のように燃料電池システムの熱交換効率を上げる効果が得られる。   FIG. 3 shows the effect of this embodiment. FIG. 3 is a graph showing the relationship between the cooling water outlet temperature from the fuel cell stack 11 (shown by the solid line E), the air exhaust gas temperature at the cathode outlet (shown by the dotted line F), and the air utilization rate. It can be seen that as the air utilization rate increases, both temperatures increase. Therefore, the effect of increasing the heat exchange efficiency of the fuel cell system as described above can be obtained.

[第2の実施形態]
次に、本発明に係る燃料電池システムの運転方法の第2の実施形態を、図4を用いて説明する。図4は、本発明に係る燃料電池システムの第2の実施形態を示す系統構成図である。なお第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
[Second Embodiment]
Next, a second embodiment of the operation method of the fuel cell system according to the present invention will be described with reference to FIG. FIG. 4 is a system configuration diagram showing a second embodiment of the fuel cell system according to the present invention. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.

本実施形態においては、低負荷運転時において、燃料電池スタック11に導入する冷却水の流量を低減する。定格運転から低負荷運転に移行する時に、冷却水流量制御部61から冷却水ポンプ22に信号が送られ、冷却水ポンプ22の送液量を低減する。   In the present embodiment, the flow rate of the cooling water introduced into the fuel cell stack 11 is reduced during low load operation. When shifting from the rated operation to the low-load operation, a signal is sent from the cooling water flow rate control unit 61 to the cooling water pump 22 to reduce the liquid feeding amount of the cooling water pump 22.

冷却水流量が低減されれば、燃料電池スタック11からの熱持ち出し量を低減し、燃料電池スタック11を高温に保つことが可能になる。そのとき、燃料電池スタック11から出てくる冷却水の温度を高く保ち、熱交換器23における熱交換効率を高く保つ効果が得られる。   If the coolant flow rate is reduced, the amount of heat taken out from the fuel cell stack 11 can be reduced, and the fuel cell stack 11 can be kept at a high temperature. At that time, the effect of keeping the temperature of the cooling water coming out of the fuel cell stack 11 high and keeping the heat exchange efficiency in the heat exchanger 23 high can be obtained.

[他の実施形態]
以上説明した各実施形態は単なる例示であって、本発明はこれらに限定されるものではない。たとえば、第1の実施形態の供給空気流量制御と第2の実施形態の冷却水流量制御を組み合わせてもよい。またその場合に、第1の実施形態の空気流量制御部51と第2の実施形態の冷却水流量制御部61は、別個の装置でもよいが、一つの制御装置に両方の制御機能を持たせてもよい。
[Other Embodiments]
Each embodiment described above is merely an example, and the present invention is not limited thereto. For example, the supply air flow rate control of the first embodiment and the cooling water flow rate control of the second embodiment may be combined. In this case, the air flow rate control unit 51 of the first embodiment and the cooling water flow rate control unit 61 of the second embodiment may be separate devices, but one control device has both control functions. May be.

11 … 燃料電池スタック
21 … 冷却水ライン
22 … 冷却水ポンプ
23 … 熱交換器
31 … 廃熱回収ライン
32 … 廃熱回収ラインポンプ
33 … 貯湯タンク
41 … 空気供給ライン
42 … 空気ブロア
51 … 空気流量制御部
60 … 空気供給装置
61 … 冷却水流量制御部
DESCRIPTION OF SYMBOLS 11 ... Fuel cell stack 21 ... Cooling water line 22 ... Cooling water pump 23 ... Heat exchanger 31 ... Waste heat recovery line 32 ... Waste heat recovery line pump 33 ... Hot water storage tank 41 ... Air supply line 42 ... Air blower 51 ... Air flow rate Control unit 60 ... air supply device 61 ... cooling water flow rate control unit

Claims (5)

燃料電池スタックと、前記燃料電池スタックに空気を供給する空気供給装置と、前記空気の供給流量を制御する空気流量制御部とを備えた燃料電池システムにおいて、
前記空気の供給流量に対する燃料電池スタックの発電で消費される空気消費量の比を空気利用率と定義するとき、前記空気流量制御部は、前記燃料電池スタックが正常な状態で運転している場合において、前記燃料電池スタックが定格出力よりも低い所定の出力で運転する低負荷運転状態における空気利用率が、定格運転状態における空気利用率よりも高くなるように、定格運転状態と低負荷運転状態との切り替えに応じて空気の供給流量を変更するように制御するものであること、を特徴とする燃料電池システム。
In a fuel cell system comprising a fuel cell stack, an air supply device that supplies air to the fuel cell stack, and an air flow rate control unit that controls the supply flow rate of the air,
When the ratio of the air consumption consumed by the power generation of the fuel cell stack to the air supply flow rate is defined as an air utilization rate, the air flow control unit is operated when the fuel cell stack is operating in a normal state. In the rated operation state and the low load operation state, the air utilization rate in the low load operation state in which the fuel cell stack is operated at a predetermined output lower than the rated output is higher than the air utilization rate in the rated operation state. The fuel cell system is characterized in that control is performed so as to change the air supply flow rate in accordance with the switching .
前記空気流量制御部は、前記低負荷運転状態における前記空気利用率を80〜90%とするように空気の供給流量を制御するものであることを特徴とする請求項1に記載の燃料電池システム。   2. The fuel cell system according to claim 1, wherein the air flow rate control unit controls an air supply flow rate so that the air utilization rate in the low-load operation state is 80 to 90%. . 燃料電池スタックと、前記燃料電池スタックに冷却水を供給する冷却水供給装置と、前記冷却水の流量を制御する冷却水流量制御部とを備えた燃料電池システムにおいて、
前記冷却水供給装置は、前記燃料電池スタックに流れる冷却水を循環させる冷却水ラインと、この冷却水ラインに設けられて前記燃料電池スタックに流れる冷却水の熱を放出する熱交換器と、この熱交換から放出された熱を回収する廃熱回収ラインと、を備え、
前記冷却水流量制御部は、前記燃料電池スタックが定格出力よりも低い所定の出力で運転する低負荷運転状態における前記冷却水の流量が、定格運転状態の前記冷却水の流量よりも少なくなるように、定格運転状態と低負荷運転状態との切り替えに応じて前記冷却水の流量を変更するように制御するものであること、を特徴とする燃料電池システム。
In a fuel cell system comprising a fuel cell stack, a cooling water supply device that supplies cooling water to the fuel cell stack, and a cooling water flow rate control unit that controls the flow rate of the cooling water,
The cooling water supply device includes a cooling water line that circulates the cooling water flowing through the fuel cell stack, a heat exchanger that is provided in the cooling water line and that releases heat of the cooling water flowing through the fuel cell stack, and a waste heat recovery line for recovering the heat released from the heat exchanger,
The cooling water flow rate control unit is configured such that the flow rate of the cooling water in a low load operation state where the fuel cell stack is operated at a predetermined output lower than a rated output is smaller than the flow rate of the cooling water in the rated operation state. In addition, the fuel cell system is characterized in that control is performed to change the flow rate of the cooling water in accordance with switching between the rated operation state and the low load operation state .
燃料電池スタックと、前記燃料電池スタックに空気を供給する空気供給装置とを備えた燃料電池システムの運転方法であって、
前記空気の供給流量に対する燃料電池スタックの発電で消費される空気消費量の比を空気利用率と定義するとき、前記燃料電池スタックが正常な状態で運転している場合において、定格出力よりも低い所定の出力で運転する低負荷運転時における空気利用率が、定格運転時における空気利用率よりも高くなるように、定格運転状態と低負荷運転状態との切り替えに応じて空気の供給流量を変更するように制御すること、を特徴とする燃料電池システムの運転方法。
A method for operating a fuel cell system comprising a fuel cell stack and an air supply device for supplying air to the fuel cell stack,
When the ratio of air consumption consumed by power generation of the fuel cell stack to the air supply flow rate is defined as an air utilization rate, the fuel cell stack is lower than the rated output when operating in a normal state. Change the air supply flow rate according to the switching between the rated operation state and the low-load operation state so that the air utilization rate during low-load operation that operates at a specified output is higher than the air utilization rate during rated operation. And a control method for the fuel cell system.
燃料電池スタックと、前記燃料電池スタックに冷却水を供給する冷却水供給装置とを備えた燃料電池システムの運転方法であって、
前記冷却水供給装置は、前記燃料電池スタックに流れる冷却水を循環させる冷却水ラインと、この冷却水ラインに設けられて前記燃料電池スタックに流れる冷却水の熱を放出する熱交換器と、この熱交換から放出された熱を回収する廃熱回収ラインと、を備え、
定格出力よりも低い所定の出力で運転する低負荷運転時における前記冷却水の流量が定格運転時における前記冷却水の流量よりも少なくなるように、定格運転状態と低負荷運転状態との切り替えに応じて前記冷却水の流量を変更するように制御すること、を特徴とする燃料電池システムの運転方法。
An operation method of a fuel cell system comprising a fuel cell stack and a cooling water supply device for supplying cooling water to the fuel cell stack,
The cooling water supply device includes a cooling water line that circulates the cooling water flowing through the fuel cell stack, a heat exchanger that is provided in the cooling water line and that releases heat of the cooling water flowing through the fuel cell stack, and a waste heat recovery line for recovering the heat released from the heat exchanger,
For switching between the rated operation state and the low load operation state so that the flow rate of the cooling water during low load operation that operates at a predetermined output lower than the rated output is smaller than the flow rate of cooling water during the rated operation. A control method for changing the flow rate of the cooling water according to the control is provided.
JP2010136004A 2010-06-15 2010-06-15 Fuel cell system and operation method thereof Active JP5646221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136004A JP5646221B2 (en) 2010-06-15 2010-06-15 Fuel cell system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136004A JP5646221B2 (en) 2010-06-15 2010-06-15 Fuel cell system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2012003884A JP2012003884A (en) 2012-01-05
JP5646221B2 true JP5646221B2 (en) 2014-12-24

Family

ID=45535677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136004A Active JP5646221B2 (en) 2010-06-15 2010-06-15 Fuel cell system and operation method thereof

Country Status (1)

Country Link
JP (1) JP5646221B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3933988A4 (en) * 2019-02-28 2023-08-09 Kyocera Corporation Fuel cell device
WO2020175284A1 (en) * 2019-02-28 2020-09-03 京セラ株式会社 Fuel cell apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945351A (en) * 1995-07-27 1997-02-14 Toshiba Corp Fuel cell power generation device and its stopping method
US6015634A (en) * 1998-05-19 2000-01-18 International Fuel Cells System and method of water management in the operation of a fuel cell
JP4561058B2 (en) * 2003-07-22 2010-10-13 日産自動車株式会社 Fuel cell system
JP2005228592A (en) * 2004-02-13 2005-08-25 Mitsubishi Electric Corp Operation method of solid polymer type fuel cell, shutdown method of solid polymer type fuel cell, and starting method of solid polymer type fuel cell
JP2005259664A (en) * 2004-03-15 2005-09-22 Ebara Ballard Corp Operation method of fuel cell stack and fuel cell system
JP4556619B2 (en) * 2004-11-01 2010-10-06 日産自動車株式会社 Fuel cell system
JP4601406B2 (en) * 2004-11-30 2010-12-22 三洋電機株式会社 Fuel cell system
JP2006196284A (en) * 2005-01-13 2006-07-27 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006244821A (en) * 2005-03-02 2006-09-14 Nissan Motor Co Ltd Fuel cell system and control method of fuel cell system
JP2010044905A (en) * 2008-08-11 2010-02-25 Toyota Motor Corp Fuel cell system, and fuel cell control method

Also Published As

Publication number Publication date
JP2012003884A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5183211B2 (en) Fuel cell system
US7041405B2 (en) Fuel cell voltage control
EP2215679B1 (en) Fuel cell system
EP2157381B1 (en) Cogeneration system
JP6575867B2 (en) Fuel cell system
JP2005100873A (en) Fuel cell system
CN102473947B (en) Fuel cell device
JP6826436B2 (en) Fuel cell system and its operation method
JP5646221B2 (en) Fuel cell system and operation method thereof
JP2016515190A (en) Heating equipment and method of operating heating equipment
CN106887616B (en) Fuel cell cold start system and method based on liquid organic hydrogen storage
JP5855955B2 (en) Energy management equipment
JP5749100B2 (en) Fuel cell system
JP2002025590A (en) Fuel cell power generating device and its control method
JP6171169B2 (en) Fuel cell cogeneration system
JP5266782B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP6264414B1 (en) Fuel cell system and operation method thereof
WO2010007759A1 (en) Fuel cell system
JP5586178B2 (en) Fuel cell cogeneration system
JP5501750B2 (en) Fuel cell system
JP4704733B2 (en) Fuel cell system
JP5203668B2 (en) Fuel cell power generation system and control method thereof
JP2005011621A (en) Fuel cell system
JP2012094337A (en) Fuel cell system
JP2020043759A (en) Distributed power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130411

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5646221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350