JP6171169B2 - Fuel cell cogeneration system - Google Patents

Fuel cell cogeneration system Download PDF

Info

Publication number
JP6171169B2
JP6171169B2 JP2013146121A JP2013146121A JP6171169B2 JP 6171169 B2 JP6171169 B2 JP 6171169B2 JP 2013146121 A JP2013146121 A JP 2013146121A JP 2013146121 A JP2013146121 A JP 2013146121A JP 6171169 B2 JP6171169 B2 JP 6171169B2
Authority
JP
Japan
Prior art keywords
heat storage
power generation
fuel cell
heat
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013146121A
Other languages
Japanese (ja)
Other versions
JP2015018729A (en
Inventor
田中 良和
良和 田中
中村 彰成
彰成 中村
吉村 晃久
晃久 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013146121A priority Critical patent/JP6171169B2/en
Publication of JP2015018729A publication Critical patent/JP2015018729A/en
Application granted granted Critical
Publication of JP6171169B2 publication Critical patent/JP6171169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体高分子形やリン酸形、固体電解質形などの燃料電池を備え、電気および熱の供給を行なう燃料電池システムおよびその運転方法に関するものである。   The present invention relates to a fuel cell system including a solid polymer type, a phosphoric acid type, a solid electrolyte type, etc., and supplying electricity and heat, and an operation method thereof.

固体高分子形やリン酸形などの燃料電池を用いた燃料電池システムは、主にコージェネレーションシステムなどで使用されており、発電と同時に発生する熱をお湯として回収することでエネルギを有効に活用でき、高効率の分散型電源として注目されている。一般的に電力負荷は常時発生し熱負荷は断続的に発生するという特性を持ち、さらにコージェネレーションシステムの発電により瞬間的に回収できる熱量は断続的に発生する熱負荷の需要量に比べて少ない。このため、前述のコージェネレーションシステムでは、発電に伴って回収した熱を直接供給するのではなく、一度蓄熱槽に貯えた後、必要な量を負荷に供給している。
このような従来の燃料電池システムは、図9に示すように、発電を実施する燃料電池ユニット100と、熱を蓄える貯湯ユニット200で構成される。燃料電池ユニット100は、還元剤ガスと酸化剤ガスを用いて発電を行う燃料電池1と、都市ガスやプロパン、灯油などの炭化水素系原料に水蒸気を添加して改質し、水素を多く含んだ還元剤ガスを生成する水素生成装置2と、酸化剤ガスとしての空気を燃料電池1に供給する空気供給装置3と、燃料電池1で発電と同時に発生した熱を冷却する冷却媒体を流通する冷却経路4および冷却水ポンプ5と、経路に接続され冷却媒体から蓄熱媒体に熱を回収する熱交換器6と、蓄熱媒体を流通する蓄熱経路7および蓄熱水ポンプ8と、燃料電池1で発電された直流電力を交流電力に変換し、家庭の電化製品などの電力負荷に供給する電力変換装置9とで構成され、貯湯ユニット200は、蓄熱経路7に接続され熱交換器6により熱を回収した蓄熱媒体を蓄える蓄熱槽10と、蓄熱槽に蓄えられる蓄熱媒体の温度を計測する蓄熱温度センサ11と、燃料電池システム内のこれら各機器を制御する制御器12とで構成される。
Fuel cell systems using solid polymer and phosphoric acid fuel cells are mainly used in cogeneration systems, etc., and effectively utilize energy by recovering heat generated simultaneously with power generation as hot water. It is attracting attention as a highly efficient distributed power source. In general, power load is always generated and heat load is generated intermittently. Furthermore, the amount of heat that can be instantaneously recovered by the power generation of the cogeneration system is less than the amount of heat load that is generated intermittently. . For this reason, the above-mentioned cogeneration system does not directly supply the heat recovered as a result of power generation, but once it is stored in the heat storage tank, it supplies the required amount to the load.
As shown in FIG. 9, such a conventional fuel cell system includes a fuel cell unit 100 that generates power and a hot water storage unit 200 that stores heat. The fuel cell unit 100 includes a fuel cell 1 that generates power using a reducing agent gas and an oxidant gas, and reforms by adding steam to a hydrocarbon-based raw material such as city gas, propane, or kerosene, and contains a large amount of hydrogen. The hydrogen generator 2 that generates the reducing agent gas, the air supply device 3 that supplies air as the oxidant gas to the fuel cell 1, and the cooling medium that cools the heat generated simultaneously with the power generation in the fuel cell 1 are circulated. Power generation by the cooling path 4 and the cooling water pump 5, the heat exchanger 6 connected to the path for recovering heat from the cooling medium to the heat storage medium, the heat storage path 7 and the heat storage water pump 8 through which the heat storage medium flows, and the fuel cell 1 The power storage device 200 is connected to the heat storage path 7 and recovers heat by the heat exchanger 6. The power conversion device 9 converts the generated DC power into AC power and supplies it to a power load such as household appliances. Heat storage Composed of a heat storage tank 10 for storing the body, and the heat storage temperature sensor 11 for measuring the temperature of the thermal storage medium to be stored in the thermal storage tank, and a controller 12 for controlling the respective devices in the fuel cell system.

燃料電池1は、水素生成装置2により生成された水素を多く含んだ還元剤ガスと、空気供給装置3が供給する空気を電気化学反応させて電力を発生させる。水素生成装置2は、都市ガスなどの炭化水素系原料に水蒸気を添加し、改質反応させて水素を多く含んだ還元剤ガスを生成する。燃料電池1には、発電で発生する熱を除去するため、冷却経路4を通じて冷却媒体としての冷却水を冷却水ポンプ5にて通流する。冷却水は、燃料電池1で加熱された後、熱交換器6にて蓄熱媒体としての蓄熱水に熱を伝達して冷却され、再び燃料電池1へと供給される。蓄熱槽10には、燃料電池ユニットより発生した熱を回収するための蓄熱水が蓄えられる。蓄熱水は、発電時には蓄熱水ポンプ8により蓄熱槽10の底部付近から取水され、熱交換器6を経由して熱回収した後、蓄熱槽10の上部近くに回帰する。燃料電池ユニット100と貯湯ユニット200をつなぐ蓄熱経路7は外気にさらされることが多く、冬期などの外気温が低い場合には蓄熱経路7における放熱ロスが大きくなり、蓄熱槽入口温度(蓄熱温度センサ11における温度)が低下するという課題があった。   The fuel cell 1 generates electric power by causing an electrochemical reaction between the reducing agent gas containing a large amount of hydrogen generated by the hydrogen generator 2 and the air supplied by the air supply device 3. The hydrogen generator 2 adds a water vapor to a hydrocarbon-based raw material such as city gas and causes a reforming reaction to generate a reducing agent gas containing a large amount of hydrogen. In the fuel cell 1, cooling water as a cooling medium is passed through a cooling path 4 through a cooling path 4 in order to remove heat generated by power generation. After the cooling water is heated by the fuel cell 1, it is cooled by transferring heat to the heat storage water as a heat storage medium in the heat exchanger 6, and is supplied to the fuel cell 1 again. The heat storage tank 10 stores heat storage water for recovering heat generated from the fuel cell unit. The heat storage water is taken from the vicinity of the bottom of the heat storage tank 10 by the heat storage water pump 8 at the time of power generation, recovers heat through the heat exchanger 6, and then returns near the top of the heat storage tank 10. The heat storage path 7 connecting the fuel cell unit 100 and the hot water storage unit 200 is often exposed to the outside air. When the outside air temperature is low, such as in winter, the heat dissipation loss in the heat storage path 7 increases, and the heat storage tank inlet temperature (heat storage temperature sensor) 11 (temperature at 11) is reduced.

このような燃料電池システムにおいて、制御器12は、水温、外気温や燃料電池ユニットが設置された家庭の熱負荷需要、電力負荷需要、蓄熱槽入口温度、放熱率などの過去の実績と予測対象日の運転条件に基づいて、予測対象日の蓄熱槽入口温度を設定し、蓄熱槽入口温度が設定値になるように、蓄熱水ポンプ8を制御する技術が提案されている(例えば、特許文献1)。   In such a fuel cell system, the controller 12 includes past results and prediction targets such as water temperature, outside air temperature, heat load demand at home where the fuel cell unit is installed, power load demand, heat storage tank inlet temperature, heat dissipation rate, etc. A technology has been proposed in which the heat storage tank inlet temperature is set based on the operating conditions of the day, and the heat storage water pump 8 is controlled so that the heat storage tank inlet temperature becomes a set value (for example, Patent Documents). 1).

特開2008−241145号公報JP 2008-241145 A

前記従来の燃料電池システムが、燃料電池1の発電運転時の温度維持を、冷却水および熱交換器6を通じて蓄熱水で調整するだけの構成では、貯湯タンクに回収される温水温度で循環流量を制御することができず、蓄熱槽入口温度を所定の範囲に維持できないという課題があった。   In the conventional fuel cell system, in the configuration in which the temperature maintenance during the power generation operation of the fuel cell 1 is merely adjusted with the heat storage water through the cooling water and the heat exchanger 6, the circulation flow rate is set at the temperature of the hot water collected in the hot water storage tank. There was a problem that it could not be controlled and the heat storage tank inlet temperature could not be maintained within a predetermined range.

本発明は、前記従来の課題を解決するものであり、発電ユニットを所定の性能に保つための冷却装置として熱回収を実施している場合において、冬期に、低出力を長時間継続する場合や、蓄熱経路の距離が長い場合などでも、蓄熱槽入口温度を所定の値に維持することが可能な燃料電池システムを供給することを目的とする。   The present invention solves the above-described conventional problems, and in the case where heat recovery is performed as a cooling device for maintaining the power generation unit at a predetermined performance, in the winter, when low output is continued for a long time, An object of the present invention is to provide a fuel cell system capable of maintaining the heat storage tank inlet temperature at a predetermined value even when the distance of the heat storage path is long.

上記従来の課題を解決するために、本発明の燃料電池システムは、水素を含む還元剤ガスと、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、制御器とを備え、前記制御器は、前記蓄熱槽入口温度計測手段により計測された蓄熱槽入口温度が第一の閾値よりも低い場合、前記燃料電池に許容される最低発電量を増加させ、前記最低発電量を増加させた後、発電運転を停止した場合、前記最低発電量を初期値に戻すとしたものである。
あるいは、本発明の燃料電池システムは、水素を含む還元剤ガスと、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、気温を計測する外気温計測手段と、制御器とを備え、前記制御器は、前記蓄熱槽入口温度計測手段により計測された蓄熱槽入口温度が第一の閾値よりも低い場合、前記燃料電池に許容される最低発電量を増加させ、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温度が第三の閾値よりも高い状態を所定時間継続した場合、前記最低発電量を低下させるとしたものである。
あるいは、本発明の燃料電池システムは、水素を含む還元剤ガスと、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、気温を計測する外気温計測手段と、制御器とを備え、前記制御器は、前記蓄熱槽入口温度計測手段により計測された蓄熱槽入口温度が第一の閾値よりも低い場合、前記燃料電池に許容される最低発電量を増加させ、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温が、最低発電量を増加させた際に計測した外気温よりも、第四の閾値以上高い状態を所定時間継続した場合、前記燃料電池に許容される最低発電量を低下させるとしたものである。
In order to solve the above-described conventional problems, a fuel cell system of the present invention includes a fuel cell that generates electricity by electrochemically reacting a reducing agent gas containing hydrogen and an oxidant gas such as air, and power generation of the fuel cell. Heat exchange between the cooling medium and the heat storage medium, a cooling path through which the cooling medium that recovers the heat generated through the cooling medium flows, a heat storage path through which the heat storage medium collects heat from the cooling medium and stores the heat. A heat exchanger that stores the heat storage medium, a heat storage tank that stores the heat storage medium, a heat storage tank inlet temperature measurement unit that measures the temperature of the heat storage medium that returns to the heat storage tank after heat recovery in the heat exchanger, and a controller. And the controller increases the minimum power generation allowed for the fuel cell when the heat storage tank inlet temperature measured by the heat storage tank inlet temperature measuring means is lower than a first threshold , and the minimum power generation Power generation operation after increasing the amount If stopped, in which the minimum amount of power generation was returned to the initial value.
Alternatively, the fuel cell system of the present invention recovers heat generated by power generation by a fuel cell that generates electricity by electrochemically reacting a reducing agent gas containing hydrogen and an oxidant gas such as air. A cooling path through which the cooling medium flows, a heat storage path through which the heat storage medium collects and stores heat from the cooling medium, a heat exchanger that exchanges heat between the cooling medium and the heat storage medium, and A heat storage tank for storing the heat storage medium, a heat storage tank inlet temperature measuring means for measuring the temperature of the heat storage medium returning to the heat storage tank after recovering heat in the heat exchanger, an outside air temperature measuring means for measuring the temperature, and a controller And when the heat storage tank inlet temperature measured by the heat storage tank inlet temperature measuring means is lower than a first threshold, the controller increases the minimum power generation allowed for the fuel cell, and After increasing power generation If the outside air temperature measured by the outside temperature measuring means is a state higher than the third threshold value continues for a predetermined time period, is obtained by the lowering the minimum amount of power generation.
Alternatively, the fuel cell system of the present invention recovers heat generated by power generation by a fuel cell that generates electricity by electrochemically reacting a reducing agent gas containing hydrogen and an oxidant gas such as air. A cooling path through which the cooling medium flows, a heat storage path through which the heat storage medium collects and stores heat from the cooling medium, a heat exchanger that exchanges heat between the cooling medium and the heat storage medium, and A heat storage tank for storing the heat storage medium, a heat storage tank inlet temperature measuring means for measuring the temperature of the heat storage medium returning to the heat storage tank after recovering heat in the heat exchanger, an outside air temperature measuring means for measuring the temperature, and a controller And when the heat storage tank inlet temperature measured by the heat storage tank inlet temperature measuring means is lower than a first threshold, the controller increases the minimum power generation allowed for the fuel cell, and After increasing power generation When the outside air temperature measured by the outside air temperature measuring means is higher than the outside air temperature measured when the minimum power generation amount is increased for a predetermined time or longer, the fuel cell is allowed. The minimum power generation is reduced.

これによって、最低発電量における熱回収量(最低熱回収量)と比較して蓄熱経路の放熱が大きく、蓄熱槽に蓄えられる蓄熱媒体の温度が低下する場合、最低発電量を増加させるので、最低熱回収量が増加して放熱の影響が小さくなり、蓄熱槽入口温度の低下が防止される。   As a result, when the heat dissipation in the heat storage path is large compared to the heat recovery amount (minimum heat recovery amount) at the minimum power generation amount and the temperature of the heat storage medium stored in the heat storage tank decreases, the minimum power generation amount is increased. The amount of heat recovery is increased, the effect of heat dissipation is reduced, and a decrease in the heat storage tank inlet temperature is prevented.

本発明の燃料電池システムおよびその運転方法において、とくに冬期に、低出力を長時間継続する場合や、蓄熱経路の距離が長い場合などでも、蓄熱槽入口温度を所定の値に維持することが可能な燃料電池システムを実現できる。   In the fuel cell system and the operation method thereof according to the present invention, it is possible to maintain the heat storage tank inlet temperature at a predetermined value even when the low output is continued for a long time in the winter or when the distance of the heat storage path is long. A simple fuel cell system can be realized.

本発明の実施の形態1における燃料電池システムのブロック図1 is a block diagram of a fuel cell system according to Embodiment 1 of the present invention. 本発明の実施の形態1における燃料電池システムの動作フローチャートFlowchart of operation of fuel cell system in Embodiment 1 of the present invention 本発明の実施の形態1における燃料電池システムの動作フローチャートFlowchart of operation of fuel cell system in Embodiment 1 of the present invention 本発明の実施の形態2における燃料電池システムのブロック図Block diagram of a fuel cell system according to Embodiment 2 of the present invention 本発明の実施の形態2における燃料電池システムの動作フローチャートFlowchart of operation of fuel cell system in Embodiment 2 of the present invention 本発明の実施の形態2における燃料電池システムの動作フローチャートFlowchart of operation of fuel cell system in Embodiment 2 of the present invention 本発明の実施の形態2における燃料電池システムの動作フローチャートFlowchart of operation of fuel cell system in Embodiment 2 of the present invention 本発明の実施の形態2における燃料電池システムの動作フローチャートFlowchart of operation of fuel cell system in Embodiment 2 of the present invention 従来の燃料電池システムのブロック図Block diagram of a conventional fuel cell system

第1の発明は、水素を含む還元剤ガスと、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、制御器とを備える。
前記制御器は、前記蓄熱槽入口温度計測手段により計測された蓄熱槽入口温度が第一の閾値よりも低い場合、前記燃料電池に許容される最低発電量を増加させることにより、蓄熱槽入口温度計測手段で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させるので、最低発電量における熱回収量が増加して放熱の影響が小さくなり、蓄熱槽入口温度の低下を防止することができる。
また、前記制御器は、前記最低発電量を増加させた後、発電運転を停止した場合、前記最低発電量を初期値に戻すので、冬期の運転などで最低発電量を増加させた後、簡易的な手段で最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より簡潔な構成で燃料電池システムの省エネ性能を向上することができる。
第2の発明は、水素を含む還元剤ガスと、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、気温を計測する外気温計測手段と、制御器とを備える。
前記制御器は、前記蓄熱槽入口温度計測手段により計測された蓄熱槽入口温度が第一の
閾値よりも低い場合、前記燃料電池に許容される最低発電量を増加させることにより、蓄熱槽入口温度計測手段で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させるので、最低発電量における熱回収量が増加して放熱の影響が小さくなり、蓄熱槽入口温度の低下を防止することができる。
また、前記制御器は、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温度が第三の閾値よりも高い状態を所定時間継続した場合、前記最低発電量を低下させることにより、冬期の運転などで最低発電量を増加させた後、外気温度が上昇し放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能を向上することができる。
第3の発明は、水素を含む還元剤ガスと、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、気温を計測する外気温計測手段と、制御器とを備える。
また、前記制御器は、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温が、最低発電量を増加させた際に計測した外気温よりも、第四の閾値以上高い状態を所定時間継続した場合、前記燃料電池に許容される最低発電量を低下させることにより、 最低発電量を初期化させるので、冬期の運転などで最低発電量を増加させた後、外気温度が上昇し放熱の影響が小さくなった時間帯の運転において、個別の燃料電池システムの設置状態や環境に応じて最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能をより向上することができる。
According to a first aspect of the present invention, there is provided a fuel cell that generates electricity by electrochemically reacting a reducing agent gas containing hydrogen and an oxidant gas such as air, and a cooling medium that recovers heat generated by the power generation of the fuel cell. A cooling path that flows through, a heat storage path that flows through a heat storage medium that collects and stores heat from the cooling medium, a heat exchanger that exchanges heat between the cooling medium and the heat storage medium, and stores the heat storage medium A heat storage tank, a heat storage tank inlet temperature measuring means for measuring the temperature of the heat storage medium returning to the heat storage tank after heat recovery in the heat exchanger, and a controller are provided.
The controller, when the heat storage tank inlet temperature measured by the heat storage tank inlet temperature measuring means is lower than a first threshold, by increasing the minimum power generation allowed by the fuel cell, the heat storage tank inlet temperature When the storage tank inlet temperature measured by the measuring means falls below the first threshold value, the minimum power generation amount is increased, so the heat recovery amount at the minimum power generation amount increases and the effect of heat dissipation decreases, and the heat storage tank inlet A decrease in temperature can be prevented.
In addition, when the power generation operation is stopped after increasing the minimum power generation amount, the controller returns the minimum power generation amount to the initial value. Therefore, after the minimum power generation amount is increased during the winter operation, the controller Since the minimum power generation amount is reduced by a simple means, it is possible to prevent a decrease in the temperature of the heat storage tank inlet and to improve the energy saving performance of the fuel cell system with a simpler configuration.
According to a second aspect of the present invention, there is provided a fuel cell that generates electricity by electrochemically reacting a reducing agent gas containing hydrogen and an oxidant gas such as air, and a cooling medium that recovers heat generated by the power generation of the fuel cell. A cooling path that flows through, a heat storage path that flows through a heat storage medium that collects and stores heat from the cooling medium, a heat exchanger that exchanges heat between the cooling medium and the heat storage medium, and stores the heat storage medium A heat storage tank, a heat storage tank inlet temperature measurement means for measuring the temperature of the heat storage medium that returns to the heat storage tank after heat recovery in the heat exchanger, an outside air temperature measurement means for measuring the temperature, and a controller.
The controller has a first heat storage tank inlet temperature measured by the heat storage tank inlet temperature measuring means.
When the temperature is lower than the threshold value, the minimum power generation amount is increased when the heat storage tank inlet temperature measured by the heat storage tank inlet temperature measuring means is decreased below the first threshold value by increasing the minimum power generation amount allowed for the fuel cell. Therefore, the amount of heat recovered at the minimum power generation amount is increased and the influence of heat radiation is reduced, so that the heat storage tank inlet temperature can be prevented from decreasing.
In addition, after increasing the minimum power generation amount, the controller decreases the minimum power generation amount when the outside air temperature measured by the outside air temperature measurement unit continues to be higher than a third threshold for a predetermined time. In order to reduce the minimum power generation amount in the operation during the time period when the outside air temperature rises and the effect of heat dissipation is reduced after increasing the minimum power generation amount during winter operation, etc., the heat storage tank inlet temperature decreases In addition, it is possible to operate with a lower power generation amount and improve the energy saving performance of the fuel cell system.
According to a third aspect of the present invention, there is provided a fuel cell that generates electricity by electrochemically reacting a reducing agent gas containing hydrogen and an oxidant gas such as air, and a cooling medium that recovers heat generated by the power generation of the fuel cell. A cooling path that flows through, a heat storage path that flows through a heat storage medium that collects and stores heat from the cooling medium, a heat exchanger that exchanges heat between the cooling medium and the heat storage medium, and stores the heat storage medium A heat storage tank, a heat storage tank inlet temperature measurement means for measuring the temperature of the heat storage medium that returns to the heat storage tank after heat recovery in the heat exchanger, an outside air temperature measurement means for measuring the temperature, and a controller.
Further, the controller, after increasing the minimum power generation amount, the outside temperature measured by the outside air temperature measuring means is a fourth threshold value than the outside temperature measured when the minimum power generation amount is increased. If the above high state is continued for a predetermined time, the minimum power generation allowed by the fuel cell is reduced to initialize the minimum power generation. In the operation in the time zone when the temperature rises and the influence of heat dissipation is reduced, the minimum power generation amount is reduced according to the installation state and environment of the individual fuel cell system, so it is possible to prevent the heat storage tank inlet temperature from decreasing, and more Operation with low power generation becomes possible, and the energy saving performance of the fuel cell system can be further improved.

の発明は、前記制御器は、前記最低発電量を増加させた後、蓄熱槽入口温度が、前記第一の閾値より高く設定された第二の閾値よりも高い状態を所定時間継続した場合、前記最低発電量を低下させることにより、最低発電量を増加させた後、時間が経過して放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止することができるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能を向上することができる。 In a fourth aspect of the present invention, after the controller increases the minimum power generation amount, the state where the heat storage tank inlet temperature is higher than the second threshold set higher than the first threshold is continued for a predetermined time. In this case, after increasing the minimum power generation amount by reducing the minimum power generation amount, in order to decrease the minimum power generation amount in the operation in the time period when the influence of heat radiation has decreased after a lapse of time, It is possible to prevent the temperature from decreasing and to operate with a lower power generation amount, and to improve the energy saving performance of the fuel cell system.

の発明は、気温を計測する外気温計測手段をさらに備え、前記制御器は、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温度が第三の閾値よりも高い状態を所定時間継続した場合、前記最低発電量を低下させることにより、冬期の運転などで最低発電量を増加させた後、外気温度が上昇し放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能を向上することができる。 5th invention is further equipped with the external temperature measurement means which measures air temperature, The said controller increases the minimum electric power generation amount, Then, the external temperature measured by the said external temperature measurement means is more than a 3rd threshold value. If the maximum power generation is continued for a predetermined period of time, the minimum power generation amount is decreased to increase the minimum power generation amount during winter operation, etc. In this case, since the minimum power generation amount is reduced, it is possible to prevent the heat storage tank inlet temperature from decreasing, and it is possible to operate with a lower power generation amount, thereby improving the energy saving performance of the fuel cell system.

の発明は、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温が、最低発電量を増加させた際に計測した外気温よりも、第四の閾値以上高い状態を所定時間継続した場合、前記燃料電池に許容される最低発電量を低下させることにより、 最低発電量を初期化させるので、冬期の運転などで最低発電量を増加させた後、外気温度が上昇し放熱の影響が小さくなった時間帯の運転において、個別の燃料電池システムの設置状態や環境に応じて最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能をより向上することができる。 In a sixth aspect of the present invention, after the minimum power generation amount is increased, the outside air temperature measured by the outside air temperature measuring means is equal to or more than the fourth threshold value than the outside air temperature measured when the minimum power generation amount is increased. When the high state is continued for a predetermined time, the minimum power generation amount is initialized by decreasing the minimum power generation amount allowed for the fuel cell. In the operation in the time period when the effect of heat dissipation is reduced, the minimum power generation amount is reduced according to the installation state and environment of the individual fuel cell system, so that the heat storage tank inlet temperature can be prevented from lowering and lower Operation with the amount of power generation becomes possible, and the energy saving performance of the fuel cell system can be further improved.

の発明は、前記最低発電量を増加させた後、所定の時間が経過した場合、前記最低発電量を低下させることにより、冬期の運転などで最低発電量を増加させた後、時間が経過し放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、外気温計測手段を有することなくより低い発電量での運転が可能となり、簡潔な構成で燃料電池システムの省エネ性能を向上することができる。 According to a seventh aspect of the present invention, when a predetermined time has elapsed after increasing the minimum power generation amount, the minimum power generation amount is decreased to increase the minimum power generation amount during a winter operation or the like. In the operation in the time period when the influence of heat dissipation has decreased, the minimum power generation amount is reduced, so that it is possible to prevent a decrease in the temperature of the heat storage tank inlet and to operate at a lower power generation amount without having an outside air temperature measuring means. Thus, the energy saving performance of the fuel cell system can be improved with a simple configuration.

の発明は、前記最低発電量を増加させた後、発電運転を停止した場合、前記最低発電量を初期値に戻すことにより、冬期の運転などで最低発電量を増加させた後、簡易的な手段で最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より簡潔な構成で燃料電池システムの省エネ性能を向上することができる。 According to an eighth aspect of the present invention, when the power generation operation is stopped after increasing the minimum power generation amount, the minimum power generation amount is returned to the initial value by increasing the minimum power generation amount during the winter operation or the like. Since the minimum power generation amount is reduced by a simple means, it is possible to prevent a decrease in the temperature of the heat storage tank inlet and to improve the energy saving performance of the fuel cell system with a simpler configuration.

の発明は、前記燃料電池と前記熱交換器と前記制御と前記冷却経路とを発電ユニットとして構成し、前記蓄熱槽と前記蓄熱槽入口温度計測手段とを貯湯ユニットとして構成して、前記蓄熱経路は、前記発電ユニットと前記貯湯ユニットとの間を通流するよう構成することにより、燃料電池システムの設置自由度が向上することができ、蓄熱槽入口温度の低下も防止できる。 9th invention comprises the said fuel cell, the said heat exchanger, the said controller , and the said cooling path as an electric power generation unit, comprises the said thermal storage tank and the said thermal storage tank inlet temperature measurement means as a hot water storage unit, By configuring the heat storage path to flow between the power generation unit and the hot water storage unit, the degree of freedom of installation of the fuel cell system can be improved, and a decrease in the temperature of the heat storage tank inlet can also be prevented.

以下、本発明の実施形態について具体的に説明する。なお、同一または相当部分には同一符号を付し、重複する説明は省略する。また、全ての図面において、本発明を説明するために必要となる構成要素のみを抜粋して図示しており、その他の構成要素については図示を省略している。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be specifically described. In addition, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted. Further, in all the drawings, only components necessary for explaining the present invention are extracted and illustrated, and other components are not illustrated. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における燃料電池システムの構成を模式的に示すブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram schematically showing the configuration of the fuel cell system according to Embodiment 1 of the present invention.

図1に示すように、本発明の実施の形態1の燃料電池システムは、燃料電池ユニット100と、貯湯ユニット200で構成される。燃料電池ユニット100の主な要素として、燃料電池1、水素生成装置2、空気供給装置3、冷却経路4、冷却水ポンプ5、熱交換器6、蓄熱経路7、蓄熱水ポンプ8、電力変換装置9、制御器12、冷却温度センサ13、及び余剰電力消費ヒータ14を備えている。また、貯湯ユニット200の主な要素として、蓄熱経路7、蓄熱槽10及び蓄熱温度センサ11を備えている。   As shown in FIG. 1, the fuel cell system according to Embodiment 1 of the present invention includes a fuel cell unit 100 and a hot water storage unit 200. The main elements of the fuel cell unit 100 include a fuel cell 1, a hydrogen generator 2, an air supply device 3, a cooling path 4, a cooling water pump 5, a heat exchanger 6, a heat storage path 7, a heat storage water pump 8, and a power conversion device. 9, the controller 12, the cooling temperature sensor 13, and the surplus power consumption heater 14 are provided. Further, as the main elements of the hot water storage unit 200, a heat storage path 7, a heat storage tank 10, and a heat storage temperature sensor 11 are provided.

燃料電池1は、水素を含有する還元剤ガスと、空気などの酸素を含有する酸化剤ガスとを、電気化学的に反応させることにより、電力と熱とを同時に発生させる。燃料電池1は、水素イオンを選択的に輸送する高分子電解質膜、および高分子電解質膜の両面に形成された一対の電極、すなわち燃料極(アノード)と空気極(カソード)を複数積層し構成される。アノード及びカソードは、例えば、白金系の金属触媒を担持したカーボン粉末を主成分とし、高分子電解質膜の両面に形成される触媒層、および前記触媒層の外面に形成される、通気性と電子導電性とを併せ持つガス拡散層から構成される。燃料電池1としては、例えば、固体高分子形やリン酸形、固体酸化物形などが用いられる。   The fuel cell 1 generates electric power and heat simultaneously by electrochemically reacting a reducing agent gas containing hydrogen and an oxidant gas containing oxygen such as air. The fuel cell 1 includes a polymer electrolyte membrane that selectively transports hydrogen ions, and a plurality of pairs of electrodes formed on both sides of the polymer electrolyte membrane, that is, a fuel electrode (anode) and an air electrode (cathode). Is done. The anode and the cathode, for example, are mainly composed of carbon powder supporting a platinum-based metal catalyst, a catalyst layer formed on both surfaces of the polymer electrolyte membrane, and an air permeability and an electron formed on the outer surface of the catalyst layer. It is composed of a gas diffusion layer having both conductivity. As the fuel cell 1, for example, a solid polymer form, a phosphoric acid form, a solid oxide form, or the like is used.

燃料電池1のアノードには、還元剤ガス供給経路16の下流端が接続されている。還元剤ガス供給経路16の上流端は、水素生成装置2に接続されている。これにより、水素生成装置2で生成された水素を多く含む還元剤ガスがアノードに供給される。   A downstream end of the reducing agent gas supply path 16 is connected to the anode of the fuel cell 1. The upstream end of the reducing agent gas supply path 16 is connected to the hydrogen generator 2. Thereby, the reducing agent gas containing much hydrogen produced | generated with the hydrogen production | generation apparatus 2 is supplied to an anode.

燃料電池1のカソードには、酸化剤ガス供給経路15の下流端が接続されている。酸化剤ガス供給経路15の上流端は、空気供給装置3に接続されている。これにより、空気供給装置3からカソードに酸化剤ガスが供給される。酸化剤ガスとしては、主に空気が用いられる。空気供給装置3としては、例えば、遠心ポンプや往復ポンプ、スクロールポンプなどが用いられる。   The cathode of the fuel cell 1 is connected to the downstream end of the oxidant gas supply path 15. The upstream end of the oxidant gas supply path 15 is connected to the air supply device 3. As a result, the oxidant gas is supplied from the air supply device 3 to the cathode. Air is mainly used as the oxidant gas. For example, a centrifugal pump, a reciprocating pump, a scroll pump, or the like is used as the air supply device 3.

水素生成装置2は、燃料電池の発電に必要な水素を多く含む還元剤ガスを、都市ガスなどの炭化水素系原料に水蒸気を添加し、改質反応させて生成する。水素生成装置2は、メタンを主成分とする天然ガスや都市ガス、ブタン、プロパンなどを主成分とするLPG、灯油、アルコール(メタノール)、ジメチルエーテルといった原料を改質することにより水素を生成してもよい。   The hydrogen generator 2 generates a reducing agent gas containing a large amount of hydrogen necessary for power generation of a fuel cell by adding steam to a hydrocarbon-based raw material such as city gas and performing a reforming reaction. The hydrogen generator 2 generates hydrogen by reforming raw materials such as LPG, kerosene, alcohol (methanol), and dimethyl ether, which are mainly composed of natural gas, city gas, butane, propane and the like mainly composed of methane. Also good.

冷却経路4は、冷却水ポンプ5、冷却温度センサ13、燃料電池1、余剰電力消費ヒータ14、熱交換器6と接続され再び冷却水ポンプ5に接続されている。これにより、冷却媒体が燃料電池1に供給され、発電とともに発生する熱を除去する。冷却経路4の接続は前述の順番に限るものではなく、燃料電池1からの熱を蓄熱経路7に伝達できる位置であればよい。冷却水ポンプ5には、主に遠心ポンプや斜流ポンプ、往復ポンプなどが用いられ、熱交換器6には、主にプレート式熱交換器や二重管式熱交換器、フィンチューブ式熱交換器などが用いられる。余剰電力消費ヒータ14は、発電により余った電力を熱にして消費するものであり、配管内に挿入され直接的に冷却媒体を加熱してもよく、配管外に設
置され間接的に冷却媒体を加熱してもよい。さらに、冷却経路4に設置されてもよく、蓄熱経路7に設置されてもよい。
The cooling path 4 is connected to the cooling water pump 5, the cooling temperature sensor 13, the fuel cell 1, the surplus power consumption heater 14, and the heat exchanger 6, and is connected to the cooling water pump 5 again. Thereby, the cooling medium is supplied to the fuel cell 1 to remove the heat generated along with the power generation. The connection of the cooling path 4 is not limited to the order described above, and may be a position where heat from the fuel cell 1 can be transmitted to the heat storage path 7. The cooling water pump 5 is mainly a centrifugal pump, a mixed flow pump, a reciprocating pump, or the like. The heat exchanger 6 is mainly a plate heat exchanger, a double pipe heat exchanger, a finned tube heat exchanger. An exchanger or the like is used. The surplus power consumption heater 14 is used to heat up and consume surplus power by power generation. The surplus power consumption heater 14 may be inserted into the pipe to directly heat the cooling medium, or may be installed outside the pipe to indirectly supply the cooling medium. You may heat. Furthermore, it may be installed in the cooling path 4 or may be installed in the heat storage path 7.

蓄熱経路7は、蓄熱槽10の底部付近、蓄熱水ポンプ8、熱交換器6、蓄熱槽入口温度計測手段としての蓄熱温度センサ11と接続され再び蓄熱槽10の上部付近に接続されている。これにより、蓄熱槽10の底部の冷たい蓄熱媒体が熱交換器6に供給され、燃料電池1の熱を回収した高温の蓄熱媒体が蓄熱槽10の上部に回収される積層沸き上げ方式としている。蓄熱水ポンプ8には、主に遠心ポンプや斜流ポンプ、往復ポンプなどが用いられる。蓄熱経路7の接続は前述の順番に限るものではなく、燃料電池1からの熱を蓄熱槽10に回収できる位置であればよく、蓄熱水ポンプ8は、貯湯ユニット200に設置されてもよい。   The heat storage path 7 is connected to the vicinity of the bottom of the heat storage tank 10, the heat storage water pump 8, the heat exchanger 6, and the heat storage temperature sensor 11 as the heat storage tank inlet temperature measuring means, and is connected again to the vicinity of the upper part of the heat storage tank 10. Thereby, the cold heat storage medium at the bottom of the heat storage tank 10 is supplied to the heat exchanger 6, and a high temperature heat storage medium that recovers the heat of the fuel cell 1 is recovered at the top of the heat storage tank 10. As the heat storage water pump 8, a centrifugal pump, a mixed flow pump, a reciprocating pump or the like is mainly used. The connection of the heat storage path 7 is not limited to the order described above, and any connection can be used as long as the heat from the fuel cell 1 can be recovered in the heat storage tank 10, and the heat storage water pump 8 may be installed in the hot water storage unit 200.

制御器12は、燃料電池システム内の各機器と信号線により接続されており、各機器からの情報に応じて、水素生成装置2や各種センサ(図示せず)などを含む燃料電池システム全体の動作を制御する。制御器12は、単独の制御器で集中制御を行うよう構成されてもよく、複数の制御器で分散制御を行うよう構成されてもよい。制御器12は、制御機能を有すればよく、例えば、マイクロコンピュータ、プロセッサ、論理回路等で構成される。また、制御器12は、貯湯ユニット200に設置されても良い。   The controller 12 is connected to each device in the fuel cell system by a signal line, and according to information from each device, the entire fuel cell system including the hydrogen generator 2 and various sensors (not shown). Control the behavior. The controller 12 may be configured to perform centralized control with a single controller, or may be configured to perform distributed control with a plurality of controllers. The controller 12 only needs to have a control function, and includes, for example, a microcomputer, a processor, a logic circuit, and the like. The controller 12 may be installed in the hot water storage unit 200.

更に燃料電池1には、直流電力経路17の一端が接続されている。直流電力経路17の他端は電力変換装置9に接続される。   Furthermore, one end of a DC power path 17 is connected to the fuel cell 1. The other end of the DC power path 17 is connected to the power converter 9.

更に電力変換装置9には、交流電力経路18の一端が接続されている。交流電力経路18の他端は家庭の電化製品などの電力負荷(図示せず)や商用電源に接続される。電力変換装置9では、燃料電池1で発電された直流電力を交流電力に変換して電力負荷に供給する。   Furthermore, one end of an AC power path 18 is connected to the power converter 9. The other end of the AC power path 18 is connected to a power load (not shown) such as a household appliance or a commercial power source. In the power converter 9, the DC power generated by the fuel cell 1 is converted into AC power and supplied to the power load.

以上のように構成された燃料電池システムの発電時の動作(燃料電池システムの運転方法)を、図1から図3を参照しながら説明する。この運転制御は、通常の発電運転時に、制御器12によって遂行される。   The operation at the time of power generation of the fuel cell system configured as described above (operation method of the fuel cell system) will be described with reference to FIGS. This operation control is performed by the controller 12 during normal power generation operation.

図2および図3は図1の燃料電池システムの運転制御の一例を示すフローチャートである。   2 and 3 are flowcharts showing an example of operation control of the fuel cell system of FIG.

制御器12は負荷追従運転を実施し、電力負荷の需要量を計測する電力負荷計測器(図示せず)で計測された電力負荷需要量が、燃料電池システムの定格出力以上の場合、燃料電池システムを定格出力にて発電運転し、電力負荷に電力を供給する。電力負荷需要量の残りの不足分は、交流電力経路18に接続された商用電源により賄う。一方、電力負荷需要量が燃料電池システムの定格出力未満の場合、燃料電池システムを電力負荷需要量相当で発電運転し、電力負荷へ電力を供給する。さらに、電力負荷需要量が燃料電池システムの最低発電量未満の場合、燃料電池システムを最低発電量で発電運転し、電力負荷へ電力を供給するとともに、余剰電力消費ヒータ14により残りの電力(余剰電力)を熱として変換・回収し、熱負荷へ供給する。場合によっては、商用電源に逆潮流することで売電してもよい。   The controller 12 performs a load following operation, and when the power load demand measured by a power load meter (not shown) that measures the demand of the power load is equal to or higher than the rated output of the fuel cell system, the fuel cell The system is operated by generating power at the rated output, and power is supplied to the power load. The remaining shortage of the power load demand is covered by a commercial power source connected to the AC power path 18. On the other hand, when the power load demand is less than the rated output of the fuel cell system, the fuel cell system is operated for power generation corresponding to the power load demand and power is supplied to the power load. Furthermore, when the power load demand is less than the minimum power generation amount of the fuel cell system, the fuel cell system is operated to generate power with the minimum power generation amount, and the power is supplied to the power load. Power) is converted and recovered as heat and supplied to the heat load. Depending on the case, power may be sold by flowing back into commercial power.

この際、制御器12は冷却温度センサ13により計測される冷却媒体温度が、燃料電池1の制御温度である所定の値になるように、蓄熱水ポンプ8を動作させ、蓄熱経路7の蓄熱媒体流量を制御する。   At this time, the controller 12 operates the heat storage water pump 8 so that the coolant temperature measured by the coolant temperature sensor 13 becomes a predetermined value that is the control temperature of the fuel cell 1, and the heat storage medium in the heat storage path 7. Control the flow rate.

次に冬期、低出力を長時間継続する場合や、蓄熱経路の距離が長い場合など、ある特定
の状況で蓄熱経路の放熱が大きく蓄熱槽入口温度の低下が発生する場合の動作について説明する。この運転制御は、発電運転時に上記の事象が発生した場合に、制御器12によって遂行される。
Next, the operation in the winter when low output is continued for a long time or when the distance of the heat storage path is long, the heat dissipation of the heat storage path is large and the temperature of the heat storage tank inlet is lowered in a specific situation will be described. This operation control is performed by the controller 12 when the above-described event occurs during the power generation operation.

前述した通常の発電運転時において制御器12は、蓄熱温度センサ11により計測した蓄熱槽入口の蓄熱媒体の温度(つまり、蓄熱槽に蓄えられる蓄熱媒体の温度)が第一の閾値(例えば、50℃)以下に低下したかどうか判断する(図2ステップS11)。蓄熱槽入口温度が第一の閾値以下に低下した場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図2ステップS12)。燃料電池システムにおいて、発電量の変化および発電量の変化による蓄熱槽入口温度の変化は瞬時には起こらないため、以後、所定の時間間隔(例えば30分)で同様の動作を実施する(図2ステップS13)。   During the above-described normal power generation operation, the controller 12 determines that the temperature of the heat storage medium at the heat storage tank inlet measured by the heat storage temperature sensor 11 (that is, the temperature of the heat storage medium stored in the heat storage tank) is the first threshold (for example, 50 It is judged whether it fell below (degreeC) (step S11 of FIG. 2). When the heat storage tank inlet temperature falls below the first threshold, the minimum power generation amount of the fuel cell system is increased by a predetermined amount (for example, 50 W), and the load following operation is continued (step S12 in FIG. 2). In the fuel cell system, a change in the power generation amount and a change in the heat storage tank inlet temperature due to the change in the power generation amount do not occur instantaneously, and thereafter the same operation is performed at predetermined time intervals (for example, 30 minutes) (FIG. 2). Step S13).

本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させるので、例えば蓄熱経路の距離が長い設置形態における冬期の運転において、最低発電量における熱回収量(最低熱回収量)と比較して蓄熱経路の放熱が大きく、蓄熱槽に蓄えられる蓄熱媒体の温度が低下する場合、最低熱回収量が増加して放熱の影響が小さくなり、蓄熱槽入口温度の低下が防止できる。   With the configuration and operation of the fuel cell system of the present embodiment, the controller 12 increases the minimum power generation amount when the heat storage tank inlet temperature measured by the heat storage temperature sensor 11 falls below the first threshold. In winter operation with long heat storage path distance, heat dissipation in the heat storage path is larger than the heat recovery amount (minimum heat recovery amount) at the minimum power generation amount, and the temperature of the heat storage medium stored in the heat storage tank decreases. In this case, the minimum heat recovery amount is increased, and the influence of heat radiation is reduced, so that the heat storage tank inlet temperature can be prevented from decreasing.

さらに、燃料電池システムを最低発電量で発電運転した際に、電力負荷へ供給した残りの電力を余剰電力消費ヒータ14で熱として変換・回収する構成の場合、最低発電量を増加させることにより、余剰電力も増加し、発電量の増加分以上に最低熱回収量が増加する効果がある。このため、より少ない最低発電量の増加で蓄熱槽入口温度の低下を防止することができる。   Furthermore, when the fuel cell system is configured to generate and operate with the minimum power generation amount, the remaining power supplied to the power load is converted and recovered as heat by the surplus power consumption heater 14, by increasing the minimum power generation amount, Surplus power also increases, and the amount of minimum heat recovery is greater than the increase in power generation. For this reason, a decrease in the heat storage tank inlet temperature can be prevented with a smaller increase in the minimum power generation amount.

[変形例1]
本実施の形態1の変形例1において、制御器12は、最低発電量における発電が第二の所定時間継続したか(例えば、60分)、さらには、その間の蓄熱温度センサ11により計測した蓄熱槽入口の蓄熱媒体の温度が第一の閾値よりも高い第二の閾値(例えば、60℃)以上を継続したかどうか判断する(図3ステップS21)。条件を満足した場合、現在の燃料電池システムの最低発電量が初期設定値(例えば200W)であるかどうかを判断する(図3ステップS22)。初期設定値でない場合、最低発電量を所定量(例えば、50W)低下させ負荷追従運転を継続する(図3ステップS23)。一方、ステップS21において条件を満足しない場合、蓄熱槽入口の蓄熱媒体の温度が第一の閾値(例えば、50℃)以上を第一の所定時間(例えば30分)継続したかどうか判断する(図3ステップS24)。条件を満足する場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図3ステップS25)。
[Modification 1]
In the first modification of the first embodiment, the controller 12 determines whether the power generation at the minimum power generation amount has continued for the second predetermined time (for example, 60 minutes), or further, the heat storage measured by the heat storage temperature sensor 11 during that time. It is determined whether or not the temperature of the heat storage medium at the tank inlet has continued to be higher than a second threshold (for example, 60 ° C.) higher than the first threshold (step S21 in FIG. 3). If the condition is satisfied, it is determined whether or not the current minimum power generation amount of the fuel cell system is an initial set value (for example, 200 W) (step S22 in FIG. 3). If it is not the initial set value, the minimum power generation amount is decreased by a predetermined amount (for example, 50 W) and the load following operation is continued (step S23 in FIG. 3). On the other hand, if the condition is not satisfied in step S21, it is determined whether or not the temperature of the heat storage medium at the heat storage tank inlet has continued for a first predetermined time (for example, 30 minutes) above the first threshold (for example, 50 ° C.) (FIG. 3 step S24). When the condition is satisfied, the minimum power generation amount of the fuel cell system is increased by a predetermined amount (for example, 50 W) and the load following operation is continued (step S25 in FIG. 3).

本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させ、第二の閾値以上を継続した場合、最低発電量を低下させるので、冬期の運転で最低発電量を増加させた後、時間が経過し放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能を向上することができる。   With the configuration and operation of the fuel cell system of the present embodiment, the controller 12 increases the minimum power generation amount when the heat storage tank inlet temperature measured by the heat storage temperature sensor 11 falls below the first threshold, If the value exceeds the threshold, the minimum power generation will be reduced, so after the minimum power generation is increased during winter operation, the minimum power generation will be reduced in the operation during the time when the influence of heat dissipation has decreased after a while. Therefore, it is possible to prevent a decrease in the temperature of the heat storage tank inlet and to operate with a lower power generation amount, thereby improving the energy saving performance of the fuel cell system.

(実施の形態2)
図4は本発明の実施の形態2に係る燃料電池システムの構成を模式的に示すブロック図である。
(Embodiment 2)
FIG. 4 is a block diagram schematically showing the configuration of the fuel cell system according to Embodiment 2 of the present invention.

図4に示すように、本実施の形態2の燃料電池システムは、外気温計測手段としての外気温度センサ19を備える点が実施の形態1の燃料電池システムと相違し、その他の点は実施の形態1の燃料電池システムと同じである。   As shown in FIG. 4, the fuel cell system according to the second embodiment is different from the fuel cell system according to the first embodiment in that the fuel cell system according to the second embodiment includes an outside air temperature sensor 19 as an outside air temperature measuring unit. This is the same as the fuel cell system of aspect 1.

以上のように構成された燃料電池システムの発電時の動作(燃料電池システムの運転方法)を、図4から図8を参照しながら説明する。この運転制御は、通常の発電運転時に、制御器12によって遂行される。   The operation of the fuel cell system configured as described above during power generation (method of operating the fuel cell system) will be described with reference to FIGS. This operation control is performed by the controller 12 during normal power generation operation.

図5から図8は図4の燃料電池システムの運転制御の一例を示すフローチャートである。   5 to 8 are flowcharts showing an example of operation control of the fuel cell system of FIG.

前述した通常の発電運転時において制御器12は、外気温度センサ19により計測した外気温が第三の閾値(例えば、10℃)以上を第三の所定時間継続したか(例えば、60分)どうかを判断する(図5ステップS31)。条件を満足した場合、燃料電池システムの最低発電量を初期設定値に変更し負荷追従運転を継続する(図5ステップS32)。一方、ステップS31において条件を満足しない場合、蓄熱槽入口の蓄熱媒体の温度が第一の閾値(例えば、50℃)以上を第一の所定時間(例えば30分)継続したかどうか判断する(図5ステップS33)。条件を満足する場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図5ステップS34)。   During the normal power generation operation described above, the controller 12 determines whether or not the outside air temperature measured by the outside air temperature sensor 19 has continued for a third predetermined time (for example, 60 minutes) above a third threshold (for example, 10 ° C.). Is determined (step S31 in FIG. 5). If the condition is satisfied, the minimum power generation amount of the fuel cell system is changed to the initial setting value and the load following operation is continued (step S32 in FIG. 5). On the other hand, if the condition is not satisfied in step S31, it is determined whether or not the temperature of the heat storage medium at the heat storage tank inlet has continued above the first threshold (for example, 50 ° C.) for a first predetermined time (for example, 30 minutes) (FIG. 5 step S33). If the condition is satisfied, the load generation operation is continued by increasing the minimum power generation amount of the fuel cell system by a predetermined amount (for example, 50 W) (step S34 in FIG. 5).

本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させ、外気温度センサ19で計測された外気温度が第三の閾値以上を継続した場合、最低発電量を初期化させるので、冬期の運転で最低発電量を増加させた後、外気温度が上昇し放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能を向上することができる。   Due to the configuration and operation of the fuel cell system of the present embodiment, the controller 12 increases the minimum power generation amount when the temperature of the heat storage tank inlet measured by the heat storage temperature sensor 11 falls below the first threshold, and the outside air temperature. If the outside air temperature measured by the sensor 19 continues above the third threshold value, the minimum power generation amount is initialized. Therefore, after the minimum power generation amount is increased in the winter operation, the outside air temperature rises and the influence of heat dissipation is affected. Since the minimum power generation amount is reduced during operation during the reduced time period, it is possible to prevent the heat storage tank inlet temperature from decreasing and to operate at a lower power generation amount, thereby improving the energy saving performance of the fuel cell system. it can.

[変形例1]
本実施の形態2の変形例1において、最低発電量を増加させた時点で外気温度センサ19により計測された外気温度を記憶する記憶装置(図示せず)を制御器12に備え、最低発電量を増加させた時点から外気温度が所定値以上上昇した場合、最低発電量の設定を初期化するものである。
[Modification 1]
In the first modification of the second embodiment, the controller 12 is provided with a storage device (not shown) that stores the outside air temperature measured by the outside air temperature sensor 19 when the minimum electricity generation amount is increased, and the minimum electricity generation amount. When the outside air temperature rises by a predetermined value or more from the time when the value is increased, the setting of the minimum power generation amount is initialized.

具体的には、制御器12は、蓄熱槽入口の蓄熱媒体の温度が第一の閾値(例えば、50℃)以上を第一の所定時間(例えば30分)継続したかどうか判断する(図6ステップS43)。条件を満足する場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図6ステップS44)。次に、その時点で外気温度センサ19により計測した外気温T1を記憶装置に記憶する(図6ステップS45)。外気温度センサ19により計測した外気温T4と、記憶した外気温T1との温度差(=T4-T1)が第四の閾値(例えば、10℃)以上を第三の所定時間継続したか(例えば、60分)どうかを判断する(図6ステップS41)。条件を満足した場合、燃料電池システムの最低発電量を初期設定値に変更し負荷追従運転を継続する(図6ステップS42)。一方、ステップS41において条件を満足しない場合、ステップS43へと続く。   Specifically, the controller 12 determines whether or not the temperature of the heat storage medium at the heat storage tank inlet has continued above a first threshold (for example, 50 ° C.) for a first predetermined time (for example, 30 minutes) (FIG. 6). Step S43). When the condition is satisfied, the minimum power generation amount of the fuel cell system is increased by a predetermined amount (for example, 50 W) and the load following operation is continued (step S44 in FIG. 6). Next, the outside air temperature T1 measured by the outside air temperature sensor 19 at that time is stored in the storage device (step S45 in FIG. 6). Whether the temperature difference (= T4−T1) between the outside air temperature T4 measured by the outside air temperature sensor 19 and the stored outside air temperature T1 has continued beyond a fourth threshold (for example, 10 ° C.) for a third predetermined time (for example, 60 minutes) (step S41 in FIG. 6). If the condition is satisfied, the minimum power generation amount of the fuel cell system is changed to the initial set value, and the load following operation is continued (step S42 in FIG. 6). On the other hand, if the condition is not satisfied in step S41, the process continues to step S43.

本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させ、外気温度センサ19で計測された外気温度が、記憶装置に記憶された最低発電量を低下させた時点での外気温より第四の閾値以上状態が継続した場合、最低発電量を初期化させるので、冬期の運転で最低発電量を増加させた後、外気温度が上昇し放熱の影響が小
さくなった時間帯の運転において、個別の燃料電池システムの設置状態や環境に応じて最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能をより向上することができる。
Due to the configuration and operation of the fuel cell system of the present embodiment, the controller 12 increases the minimum power generation amount when the temperature of the heat storage tank inlet measured by the heat storage temperature sensor 11 falls below the first threshold, and the outside air temperature. When the outside air temperature measured by the sensor 19 continues for a fourth threshold value or more from the outside air temperature at the time when the minimum power generation amount stored in the storage device is reduced, the minimum power generation amount is initialized. In order to reduce the minimum power generation according to the installation state and environment of the individual fuel cell system during the operation in the time zone when the outside air temperature rises and the influence of heat dissipation is reduced after increasing the minimum power generation in In addition, it is possible to prevent a decrease in the temperature of the heat storage tank inlet, and it is possible to operate with a lower power generation amount, thereby further improving the energy saving performance of the fuel cell system.

[変形例2]
本実施の形態2の変形例2において、最低発電量を増加させた時刻を記憶する記憶装置(図示せず)を制御器12に備え、最低発電量を増加させた時点から所定時間経過した場合、最低発電量の設定を増加させるものである。
[Modification 2]
In the second modification of the second embodiment, when the controller 12 is provided with a storage device (not shown) for storing the time when the minimum power generation amount is increased, and a predetermined time has elapsed since the time when the minimum power generation amount was increased. In order to increase the minimum power generation setting.

具体的には、制御器12は、蓄熱槽入口の蓄熱媒体の温度が第一の閾値(例えば、50℃)以上を第一の所定時間(例えば30分)継続したかどうか判断する(図7ステップS54)。条件を満足する場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図7ステップS55)。次に、その時刻t1を記憶装置に記憶する(図7ステップS56)。最低発電量を増加させてからの発電運転(現在時刻をtとするとt−t1)が第五の所定時間(例えば、180分)継続したかどうか判断する(図7ステップS51)。条件を満足した場合、現在の燃料電池システムの最低発電量が初期設定値(例えば200W)であるかどうかを判断する(図7ステップS52)。初期設定値でない場合、最低発電量を所定量(例えば、50W)低下させ負荷追従運転を継続する(図7ステップS53)。一方、ステップS51において条件を満足しない場合、ステップS54へと続く。   Specifically, the controller 12 determines whether or not the temperature of the heat storage medium at the heat storage tank inlet has continued above a first threshold (for example, 50 ° C.) for a first predetermined time (for example, 30 minutes) (FIG. 7). Step S54). If the condition is satisfied, the minimum power generation amount of the fuel cell system is increased by a predetermined amount (for example, 50 W) and the load following operation is continued (step S55 in FIG. 7). Next, the time t1 is stored in the storage device (step S56 in FIG. 7). It is determined whether the power generation operation after increasing the minimum power generation amount (t-t1 when the current time is t) has continued for a fifth predetermined time (for example, 180 minutes) (step S51 in FIG. 7). If the condition is satisfied, it is determined whether or not the current minimum power generation amount of the fuel cell system is an initial set value (for example, 200 W) (step S52 in FIG. 7). If it is not the initial set value, the minimum power generation amount is decreased by a predetermined amount (for example, 50 W), and the load following operation is continued (step S53 in FIG. 7). On the other hand, if the condition is not satisfied in step S51, the process continues to step S54.

本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させ、最低発電量を増加させる運転が第五の所定時間を継続した場合、最低発電量を低下させるので、冬期の運転で最低発電量を増加させた後、時間が経過し放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、外気温度センサ19を有することなくより低い発電量での運転が可能となり、簡潔な構成で燃料電池システムの省エネ性能を向上することができる。   With the configuration and operation of the fuel cell system according to the present embodiment, the controller 12 increases the minimum power generation amount when the heat storage tank inlet temperature measured by the heat storage temperature sensor 11 falls below the first threshold value, and reduces the minimum power generation. When the operation to increase the amount continues for the fifth predetermined time, the minimum power generation amount is reduced, so the time period when the effect of heat dissipation has decreased after a lapse of time after increasing the minimum power generation amount in the winter operation In this operation, since the minimum power generation amount is reduced, it is possible to prevent a decrease in the temperature of the heat storage tank inlet, and it is possible to operate at a lower power generation amount without having the outside temperature sensor 19, and the fuel cell system has a simple configuration. Energy saving performance can be improved.

[変形例3]
本実施の形態2の変形例3において、制御器12は、燃料電池システムが発電運転か否かを判断する(図8ステップS61)。ステップS61において、発電運転の場合、蓄熱温度センサ11により計測した蓄熱槽入口の蓄熱媒体の温度が第一の閾値(例えば、50℃)以下に低下したかどうか判断する(図8ステップS62)。蓄熱槽入口温度が第一の閾値以下に低下した場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図8ステップS63)。以後、所定の時間間隔(例えば30分)で同様の動作を実施する(図8ステップS64)。一方、ステップS61において発電運転でない場合、制御器12は、燃料電池システムの最低発電量を初期設定地に変更し、次回発電運転時に再びステップS61から動作を実施する(図8ステップS65)。
[Modification 3]
In the third modification of the second embodiment, the controller 12 determines whether or not the fuel cell system is in a power generation operation (step S61 in FIG. 8). In step S61, in the case of power generation operation, it is determined whether or not the temperature of the heat storage medium at the heat storage tank inlet measured by the heat storage temperature sensor 11 has dropped below a first threshold (for example, 50 ° C.) (step S62 in FIG. 8). When the heat storage tank inlet temperature falls below the first threshold, the minimum power generation amount of the fuel cell system is increased by a predetermined amount (for example, 50 W), and the load following operation is continued (step S63 in FIG. 8). Thereafter, the same operation is performed at a predetermined time interval (for example, 30 minutes) (step S64 in FIG. 8). On the other hand, when the power generation operation is not performed in step S61, the controller 12 changes the minimum power generation amount of the fuel cell system to the initial setting place, and performs the operation from step S61 again during the next power generation operation (step S65 in FIG. 8).

本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させた後、次回発電運転時において最低発電量を初期化するので、冬期の運転で最低発電量を増加させた後、簡易的な手段で最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より簡潔な構成で燃料電池システムの省エネ性能を向上することができる。   By the configuration and operation of the fuel cell system of the present embodiment, the controller 12 increases the minimum power generation amount when the heat storage tank inlet temperature measured by the heat storage temperature sensor 11 falls below the first threshold value. Since the minimum power generation amount is initialized at the next power generation operation, the minimum power generation amount is increased by a simple means after the minimum power generation amount is increased in the winter operation, so that the heat storage tank inlet temperature can be prevented from being lowered. The energy saving performance of the fuel cell system can be improved with a simpler configuration.

本発明の燃料電池システムおよびその動作によれば、蓄熱経路の距離が長い設置形態に
おける冬期の運転などにおいて、蓄熱槽入口温度の低下が防止でき、例えば家庭用の燃料電池コージェネレーションシステム等として有用である。
According to the fuel cell system and its operation of the present invention, it is possible to prevent a decrease in the temperature of the heat storage tank inlet during a winter operation or the like in an installation configuration in which the distance of the heat storage path is long, which is useful as a fuel cell cogeneration system for home use, for example. It is.

1 燃料電池
2 水素生成装置
3 空気供給装置
4 冷却経路
5 冷却水ポンプ
6 熱交換器
7 蓄熱経路
8 蓄熱水ポンプ
9 電力変換装置
10 蓄熱槽
11 蓄熱温度センサ
12 制御器
13 冷却温度センサ
14 余剰電力消費ヒータ
15 酸化剤ガス供給経路
16 還元剤ガス供給経路
17 直流電力経路
18 交流電力経路
19 外気温度センサ
100 燃料電池ユニット
200 貯湯ユニット
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Hydrogen production | generation apparatus 3 Air supply apparatus 4 Cooling path 5 Cooling water pump 6 Heat exchanger 7 Thermal storage path 8 Thermal storage water pump 9 Power converter 10 Thermal storage tank 11 Thermal storage temperature sensor 12 Controller 13 Cooling temperature sensor 14 Surplus power Consumption heater 15 Oxidant gas supply path 16 Reductant gas supply path 17 DC power path 18 AC power path 19 Outside air temperature sensor 100 Fuel cell unit 200 Hot water storage unit

Claims (9)

水素を含む還元剤ガスと、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、制御器とを備え、前記制御器は、前記蓄熱槽入口温度計測手段により計測された蓄熱槽入口温度が第一の閾値よりも低い場合、前記燃料電池に許容される最低発電量を増加させ、前記最低発電量を増加させた後、発電運転を停止した場合、前記最低発電量を初期値に戻すことを特徴とする燃料電池コージェネレーションシステム。 A fuel cell that generates electricity by electrochemically reacting a reducing agent gas containing hydrogen and an oxidant gas such as air; and a cooling path that flows through a cooling medium that recovers heat generated by the power generation of the fuel cell; A heat storage path through which a heat storage medium that recovers and stores heat from the cooling medium, a heat exchanger that performs heat exchange between the cooling medium and the heat storage medium, a heat storage tank that stores the heat storage medium, and the heat A heat storage tank inlet temperature measuring means for measuring the temperature of the heat storage medium returning to the heat storage tank after heat recovery in the exchanger, and a controller, the controller being measured by the heat storage tank inlet temperature measuring means When the heat storage tank inlet temperature is lower than the first threshold , when the power generation operation is stopped after increasing the minimum power generation amount allowed for the fuel cell and increasing the minimum power generation amount, the minimum power generation amount characterized in that the return to the initial value Fee cell cogeneration system. 水素を含む還元剤ガスと、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、気温を計測する外気温計測手段と、制御器とを備え、前記制御器は、前記蓄熱槽入口温度計測手段により計測された蓄熱槽入口温度が第一の閾値よりも低い場合、前記燃料電池に許容される最低発電量を増加させ、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温度が第三の閾値よりも高い状態を所定時間継続した場合、前記最低発電量を低下させることを特徴とする燃料電池コージェネレーションシステム。A fuel cell that generates electricity by electrochemically reacting a reducing agent gas containing hydrogen and an oxidant gas such as air; and a cooling path that flows through a cooling medium that recovers heat generated by the power generation of the fuel cell; A heat storage path through which a heat storage medium that recovers and stores heat from the cooling medium, a heat exchanger that performs heat exchange between the cooling medium and the heat storage medium, a heat storage tank that stores the heat storage medium, and the heat A heat storage tank inlet temperature measurement means for measuring the temperature of the heat storage medium that returns to the heat storage tank after heat recovery in the exchanger, an outside air temperature measurement means for measuring an air temperature, and a controller, When the heat storage tank inlet temperature measured by the heat storage tank inlet temperature measuring means is lower than the first threshold, the minimum power generation allowed for the fuel cell is increased, and after the minimum power generation is increased, Outside measured by temperature measuring means If the temperature of higher than the third threshold value continues for a predetermined time, the fuel cell cogeneration system and decreases the minimum amount of power generation. 水素を含む還元剤ガスと、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、気温を計測する外気温計測手段と、制御器とを備え、前記制御器は、前記蓄熱A fuel cell that generates electricity by electrochemically reacting a reducing agent gas containing hydrogen and an oxidant gas such as air; and a cooling path that flows through a cooling medium that recovers heat generated by the power generation of the fuel cell; A heat storage path through which a heat storage medium that recovers and stores heat from the cooling medium, a heat exchanger that performs heat exchange between the cooling medium and the heat storage medium, a heat storage tank that stores the heat storage medium, and the heat A heat storage tank inlet temperature measurement means for measuring the temperature of the heat storage medium that returns to the heat storage tank after heat recovery in the exchanger, an outside air temperature measurement means for measuring an air temperature, and a controller, Heat storage
槽入口温度計測手段により計測された蓄熱槽入口温度が第一の閾値よりも低い場合、前記燃料電池に許容される最低発電量を増加させ、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温が、最低発電量を増加させた際に計測した外気温よりも、第四の閾値以上高い状態を所定時間継続した場合、前記燃料電池に許容される最低発電量を低下させることを特徴とする燃料電池コージェネレーションシステム。When the heat storage tank inlet temperature measured by the tank inlet temperature measuring means is lower than the first threshold value, the minimum power generation allowed for the fuel cell is increased, and after the minimum power generation is increased, the outside air temperature is increased. If the outside air temperature measured by the measuring means is higher than the outside air temperature measured when the minimum power generation amount is increased for a predetermined time or more, the minimum power generation amount allowed for the fuel cell Fuel cell cogeneration system, characterized in that
前記制御器は、前記最低発電量を増加させた後、蓄熱槽入口温度が、前記第一の閾値より高く設定された第二の閾値よりも高い状態を所定時間継続した場合、前記最低発電量を低下させることを特徴とする請求項1〜3記載の燃料電池コージェネレーションシステム。 The controller, after increasing the minimum power generation amount, when the state where the heat storage tank inlet temperature is higher than the second threshold set higher than the first threshold for a predetermined time, the minimum power generation amount fuel cell cogeneration system according to claim 1-3 Symbol mounting, characterized in that lowering. 気温を計測する外気温計測手段をさらに備え、前記制御器は、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温度が第三の閾値よりも高い状態を所定時間継続した場合、前記最低発電量を低下させることを特徴とする請求項1に記載の燃料電池コージェネレーションシステム。   The controller further comprises an outside air temperature measuring means for measuring the air temperature, and the controller increases the minimum power generation amount and then sets the outside air temperature measured by the outside air temperature measuring means to be higher than a third threshold for a predetermined time. 2. The fuel cell cogeneration system according to claim 1, wherein when it is continued, the minimum power generation amount is reduced. 気温を計測する外気温計測手段をさらに備え、前記制御器は、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温が、最低発電量を増加させた際に計測した外気温よりも、第四の閾値以上高い状態を所定時間継続した場合、前記燃料電池に許容される最低発電量を低下させることを特徴とする請求項1に記載の燃料電池コージェネレーションシステム。   The controller further comprises an outside air temperature measuring means for measuring an air temperature, and the controller measures when the outside air temperature measured by the outside air temperature measuring means increases the minimum power generation amount after increasing the minimum power generation amount. 2. The fuel cell cogeneration system according to claim 1, wherein a minimum power generation amount allowed for the fuel cell is reduced when a state higher than a fourth threshold value by a fourth threshold is continued for a predetermined time. 前記制御器は、前記最低発電量を増加させた後、発電運転を停止した場合、前記最低発電量を低下させることを特徴とする請求項2または3に記載の燃料電池コージェネレーションシステム。 4. The fuel cell cogeneration system according to claim 2 , wherein, when the power generation operation is stopped after increasing the minimum power generation amount, the controller decreases the minimum power generation amount. 5. 前記制御器は、前記最低発電量を増加させた後、発電運転を停止した場合、前記最低発電量を初期値に戻すことを特徴とする請求項2または3に記載の燃料電池コージェネレーションシステム。 4. The fuel cell cogeneration system according to claim 2 , wherein when the power generation operation is stopped after increasing the minimum power generation amount, the controller returns the minimum power generation amount to an initial value. 5. 前記燃料電池と前記熱交換器と前記制御と前記冷却経路とを発電ユニットとして構成し、前記蓄熱槽と前記蓄熱槽入口温度計測手段とを貯湯ユニットとして構成して、前記蓄熱経路は、前記発電ユニットと前記貯湯ユニットとの間を通流するよう構成されている請求項1〜記載の燃料電池コージェネレーションシステム。 The fuel cell, the heat exchanger, the controller , and the cooling path are configured as a power generation unit, the heat storage tank and the heat storage tank inlet temperature measuring means are configured as a hot water storage unit, and the heat storage path is the claim 1-8 the fuel cell cogeneration system according configured to flowing between the power unit and the hot water storage unit.
JP2013146121A 2013-07-12 2013-07-12 Fuel cell cogeneration system Active JP6171169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013146121A JP6171169B2 (en) 2013-07-12 2013-07-12 Fuel cell cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013146121A JP6171169B2 (en) 2013-07-12 2013-07-12 Fuel cell cogeneration system

Publications (2)

Publication Number Publication Date
JP2015018729A JP2015018729A (en) 2015-01-29
JP6171169B2 true JP6171169B2 (en) 2017-08-02

Family

ID=52439555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013146121A Active JP6171169B2 (en) 2013-07-12 2013-07-12 Fuel cell cogeneration system

Country Status (1)

Country Link
JP (1) JP6171169B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207289A (en) * 2015-04-15 2016-12-08 アイシン精機株式会社 Fuel cell system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100023A (en) * 2004-09-28 2006-04-13 Institute Of National Colleges Of Technology Japan Fuel cell energy network system and operation method of the same
JP4749018B2 (en) * 2005-03-30 2011-08-17 大阪瓦斯株式会社 Cogeneration system
JP2007280790A (en) * 2006-04-07 2007-10-25 Toshiba Corp Fuel cell co-generation system
JP4855921B2 (en) * 2006-12-27 2012-01-18 東芝燃料電池システム株式会社 Cogeneration system
JP5606721B2 (en) * 2009-11-13 2014-10-15 Jx日鉱日石エネルギー株式会社 Catalyst reaction vessel heater control apparatus, catalyst reaction vessel heater control method, and fuel cell system

Also Published As

Publication number Publication date
JP2015018729A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
Xing et al. Modeling and operation of the power-to-gas system for renewables integration: a review
JP4473269B2 (en) Cogeneration system
US8470484B2 (en) Fuel cell system
Zhang et al. Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production
JP6575867B2 (en) Fuel cell system
JP2007323843A (en) Operation method of fuel cell and fuel cell system
JP2005100873A (en) Fuel cell system
JP5976950B1 (en) Power supply system and control method thereof
Zhao et al. Dynamic behaviour and control strategy of high temperature proton exchange membrane electrolyzer cells (HT-PEMECs) for hydrogen production
US20070042249A1 (en) System for preventing freezing of fuel cell
JP2017027936A (en) Power supply system and control method of the same
JP2016515190A (en) Heating equipment and method of operating heating equipment
JP2011208242A (en) Hydrogen production apparatus using waste heat and method for producing hydrogen using waste heat
KR20180000447A (en) Fuel cell system with heat exchager using reformed gas or anode off gas
JP6171169B2 (en) Fuel cell cogeneration system
JP2008066016A (en) Operation method of fuel cell system and fuel cell system
JP2000018718A (en) Hot water equipment with generation function
KR100700548B1 (en) Heating/hot-water control device for fuel cell and method thereof
CN215799943U (en) Electrolytic hydrogen production system
KR101362445B1 (en) Fuel cell system for using waste heat of fuel reformer and operating method of the same
JP2013157189A (en) Energy management device
JP2009277672A (en) Fuel cell system
US20180069250A1 (en) Fuel cell system and its operation method
KR102280340B1 (en) Distributed generation system using cold heat
JP2012003884A (en) Fuel cell system and operational method for the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160421

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R151 Written notification of patent or utility model registration

Ref document number: 6171169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151