JPH04345766A - Heat supplying power generating system for fuel cell power generating plant - Google Patents

Heat supplying power generating system for fuel cell power generating plant

Info

Publication number
JPH04345766A
JPH04345766A JP3118589A JP11858991A JPH04345766A JP H04345766 A JPH04345766 A JP H04345766A JP 3118589 A JP3118589 A JP 3118589A JP 11858991 A JP11858991 A JP 11858991A JP H04345766 A JPH04345766 A JP H04345766A
Authority
JP
Japan
Prior art keywords
heat
load
power generation
exhaust heat
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3118589A
Other languages
Japanese (ja)
Inventor
Hisashi Kato
加 藤 尚 志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3118589A priority Critical patent/JPH04345766A/en
Publication of JPH04345766A publication Critical patent/JPH04345766A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide an optimum system in view of a demand by combining a thermoelectric ratio judging device capable of detecting a change in thermoelectric ratio over a wide range, a fuel generating plant and a exhaust heat recovery system. CONSTITUTION:In a battery cooling system, a heat exchanger 4b for recovering exhaust heat is interposed between another heat exchanger 4a for discharging exhaust heat and a circulating pump 3, and is connected onto a demand side 7, thus constituting an exhaust heat recovery system 8. A heat ratio judging device calculates a ratio of a heat load requiring value on the demand side to a power transmission load requiring value thereon to set a target generating load and a target load in addition to an exhaust heat discharging command, and sends them to the heat exhaust recovery system 8. Flow rates, temperatures and the like of the heat exchanger 4a connected to a cooling tower 5 and the heat exchanger 4b of the recovery system 8 are controlled on the basis of the command. Consequently, only the load required for the demand is supplied from the exhaust heat of a fuel cell generating plant. Moreover, extra exhaust heat is discharged to outside air so that a stable heat supplying generating system can be obtained and a heat load and an electric load which are widely changed can be supplied.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は燃料電池発電プラントの
熱併給発電システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined heat and power generation system for a fuel cell power generation plant.

【0002】0002

【従来の技術】図3に従来の燃料電池発電プラントの概
略系統図を、また、図4に燃料電池発電プラントの電池
冷却水系統の系統図を示す。
2. Description of the Related Art FIG. 3 shows a schematic system diagram of a conventional fuel cell power generation plant, and FIG. 4 shows a system diagram of a cell cooling water system of the fuel cell power generation plant.

【0003】図3に示すように、タンクまたはパイプラ
イン10から供給される天然ガスは、コンプレツサ11
によつて昇圧され水添脱硫器12において脱硫された後
、気水分離器2から送られてきた蒸気と混合して改質器
13に導入される。
As shown in FIG. 3, natural gas supplied from a tank or pipeline 10 is passed through a compressor 11.
After being pressurized and desulfurized in the hydrodesulfurizer 12, it is mixed with steam sent from the steam separator 2 and introduced into the reformer 13.

【0004】改質器13においては、蒸気と混合した天
然ガスは吸熱反応によつて水素、一酸化炭素および二酸
化炭素に改質された後、さらに一酸化炭素高温段/低温
段変成器14、15および改質ガス用コンタクトクーラ
16において一酸化炭素は二酸化炭素に変成され水素と
ともに燃料電池本体1の燃料極(アノード)17に送ら
れる。
In the reformer 13, the natural gas mixed with steam is reformed into hydrogen, carbon monoxide and carbon dioxide by an endothermic reaction, and then further converted into a carbon monoxide high-stage/low-stage shift converter 14; 15 and a contact cooler 16 for reformed gas, carbon monoxide is converted into carbon dioxide and sent to the fuel electrode (anode) 17 of the fuel cell main body 1 together with hydrogen.

【0005】電池本体1においては、発電に必要な水素
が消費され、また、その際の余剰の水素は改質器13の
燃焼源として再度使用された後、燃焼排ガスとなりター
ボコンプレツサ20の駆動源として再使用され、排気筒
21から外気中に放出される。
In the battery body 1, the hydrogen necessary for power generation is consumed, and the surplus hydrogen at that time is used again as a combustion source in the reformer 13, and then becomes combustion exhaust gas to drive the turbo compressor 20. It is reused as a source and released into the outside air from the exhaust stack 21.

【0006】また、空気は外気から改質器13の排ガス
によつて駆動されるターボコンプレツサ20内に導入さ
れ、昇圧された後、電池本体1の空気極(カソード)1
8に送られ消費される。その際の余剰空気はカソード排
気用コンタクトクーラ19を経て改質器13へ送られ、
改質器13の燃焼用の酸化剤として使用された後、燃焼
排ガスとなり、ターボコンプレツサ20の駆動源として
再利用され、ついで大気中に放出される。
[0006] Also, air is introduced from outside air into the turbo compressor 20 driven by the exhaust gas from the reformer 13, and after being pressurized, air is transferred to the air electrode (cathode) 1 of the battery body 1.
8 and is consumed. The surplus air at that time is sent to the reformer 13 via the cathode exhaust contact cooler 19,
After being used as an oxidizing agent for combustion in the reformer 13, it becomes combustion exhaust gas, is reused as a driving source for the turbo compressor 20, and is then released into the atmosphere.

【0007】電池本体1は供給される水素と空気(酸素
)の電気化学反応によつて直流電力を発電する。電池本
体1で発電された直流電気は直交変換装置22および変
圧器23を通つて需要側に配電される。その際、発生す
る熱を除去するため電池本体1をめぐつて図4に示すよ
うに、冷却水が循環しており、電池本体1内で熱交換さ
れた冷却水は、温水または温水と蒸気との二相流となつ
て気水分離器2に送られ、ここで蒸気と温水とに分離さ
れる。蒸気は改質器13の蒸気源として使用され、一方
、温水は気水分離器2から循環ポンプ3により循環され
、電池本体1の入口側の排熱用熱交換器4において冷却
され、再度、電池本体1の冷却水として使用される。 温められた熱交換器4の冷媒は冷却塔5を通じ外気に排
熱される。さらに冷却水は水処理装置9(図3)におい
て処理される。
The battery body 1 generates DC power through an electrochemical reaction between supplied hydrogen and air (oxygen). The DC electricity generated by the battery body 1 is distributed to the demand side through an orthogonal converter 22 and a transformer 23. At this time, in order to remove the heat generated, cooling water is circulated around the battery body 1 as shown in FIG. It becomes a two-phase flow and is sent to the steam/water separator 2, where it is separated into steam and hot water. The steam is used as a steam source for the reformer 13, while hot water is circulated from the steam-water separator 2 by the circulation pump 3, cooled in the exhaust heat exchanger 4 on the inlet side of the battery body 1, and then It is used as cooling water for the battery body 1. The heated refrigerant in the heat exchanger 4 passes through the cooling tower 5 and is exhausted to the outside air. Furthermore, the cooling water is treated in a water treatment device 9 (FIG. 3).

【0008】また、電池本体1は発電を開始して初めて
熱を発生するため、燃料電池発電プラントの起動時には
発電プラントに他のエネルギを供給することが必要であ
る。図3においては他のエネルギ源として気水分離器2
内に電気ヒータ6を設け、起動時の電池本体1の昇温や
改質器3への蒸気の供給をおこなうようになつている。
Furthermore, since the battery main body 1 generates heat only after starting power generation, it is necessary to supply other energy to the power generation plant when starting up the fuel cell power generation plant. In Figure 3, a steam separator 2 is used as another energy source.
An electric heater 6 is provided inside to raise the temperature of the battery body 1 at startup and to supply steam to the reformer 3.

【0009】上述した説明では排熱回収として電池冷却
水を例として挙げた。しかし、実際に排熱回収を実施す
る場合は気水分離器2から直接蒸気を回収するとか、コ
ンタクトクーラ16やターボコンプレツサ20の排熱の
回収等ポイントは多数あり、また燃料電池発電プラント
の系統構成によりその態様は多種多様に変わる。
[0009] In the above explanation, battery cooling water was taken as an example of exhaust heat recovery. However, when actually implementing exhaust heat recovery, there are many points to consider, such as recovering steam directly from the steam separator 2 and recovering exhaust heat from the contact cooler 16 and turbo compressor 20. Its appearance varies widely depending on the system configuration.

【0010】以上のように燃料電池発電プラントの排熱
を回収するとその総合熱効率は一般に約80%で、熱/
電比率は1(排熱回収効率40%/発電効率40%)と
いう大きな特徴をもつことになり、その実用化が大いに
期待されている。
As described above, when exhaust heat is recovered from a fuel cell power generation plant, the overall thermal efficiency is generally about 80%, and the heat /
The power ratio is 1 (exhaust heat recovery efficiency: 40%/power generation efficiency: 40%), which is a major feature, and its practical application is highly anticipated.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、熱併給
発電システムの需要家側から燃料電池発電プラントを考
えてみると、季節や天候または時刻により日々/刻々必
要とされる熱負荷要求値と送電負荷要求値とが互いに無
関係に変動することが多い。結果的に燃料電池の基本的
な特徴である負荷全体に亘つて熱/電比率がほヾ1とい
うと特性が実際にはかえつて発電プラントの実用上弊害
となることがあつた。
[Problems to be Solved by the Invention] However, when considering a fuel cell power generation plant from the consumer side of a combined heat and power generation system, the heat load requirement and power transmission load that are required on a daily/moment basis depending on the season, weather, or time of day. The required values often vary independently of each other. As a result, when the heat/electricity ratio is approximately 1 over the entire load, which is a basic characteristic of fuel cells, this characteristic may actually be detrimental to the practical use of power generation plants.

【0012】とくに、燃料電池発電プラントにおいては
、前述したように熱/電比率がほヾ1という特性のため
、すなわち熱電比1(一定)でしか運転できなかつたた
め、実際の熱併給発電システムの適用においては、下記
のような課題を解決することが必要であつた。
[0012] In particular, in a fuel cell power generation plant, as mentioned above, due to the characteristic that the heat/electricity ratio is approximately 1, that is, it can only be operated at a heat/electricity ratio of 1 (constant). In application, it was necessary to solve the following problems.

【0013】(1) 需要側から熱併給発電システムに
対して要求される熱負荷要求値/送電負荷要求値に従い
それぞれ単独に要求値を満足されうる熱併給発電システ
ムを提供すること(熱/電比率1以下の範囲)、(2)
 夏場の冷房需要等を考慮して熱/電比率が1以上の熱
併給発電システムを提供すること。
(1) To provide a combined heat and power generation system that can satisfy the required values independently according to the heat load request value/power transmission load request value requested from the demand side to the combined heat and power generation system. Ratio 1 or less range), (2)
To provide a combined heat and power generation system with a heat/electricity ratio of 1 or more, taking into consideration the demand for air conditioning in the summer.

【0014】したがつて、本発明の目的は、(1) 熱
負荷要求値が零であるときには、燃料電池発電プラント
の排熱のすべてを大気に放出しうる機能を有し、(2)
 需要側の熱負荷要求値と送電負荷要求値との比率を演
算する機能とその比率に従つて燃料電池発電プラントの
排熱を回収分と排気分とに分配する機能を有し、かつ(
3) 熱/電比率を1以上にするため、燃料電池発電プ
ラントの送電負荷を減少させるか、または排熱を増加さ
せるか、あるいはその両方の変化を同時に実施するシス
テムを有する、燃料電池発電プラントの熱併給発電シス
テムを提供することにある。
Therefore, the objects of the present invention are (1) to have the function of releasing all of the exhaust heat of the fuel cell power plant to the atmosphere when the required heat load value is zero;
It has a function of calculating the ratio between the demand-side heat load request value and the power transmission load request value, and a function of distributing the exhaust heat of the fuel cell power generation plant into a recovered portion and an exhaust portion according to the ratio, and (
3) A fuel cell power generation plant that has a system that reduces the power transmission load of the fuel cell power generation plant, increases exhaust heat, or both at the same time in order to increase the heat/electricity ratio to 1 or more. The aim is to provide a combined heat and power generation system.

【0015】[0015]

【課題を解決するための手段】本発明の燃料電池発電プ
ラントの熱併給発電システムは、燃料電池発電プラント
の電池冷却水系に排熱排出用熱変換器と排熱回収用熱変
換器とを直列に配設し、該排熱回収用熱変換器を熱負荷
需要側と接続して排熱回収システムを構成し、かつ熱電
比率判断装置を備えて需要側の送電負荷要求値が需要側
の熱負荷要求値に比して大または等しい場合には、その
送電負荷要求値に対応して燃料電池発電プラントの目標
発電負荷を設定し、逆に該熱負荷要求値が送電負荷要求
値に比して大の場合には、その熱負荷要求値に対応して
燃料電池発電プラントの目標発電負荷を設定するととも
に、該目標発電負荷と送電負荷要求値との差分を燃料電
池発電プラントの所内負荷として消費することを特徴と
するものである。
[Means for Solving the Problems] The combined heat and power generation system for a fuel cell power generation plant of the present invention includes a heat converter for exhaust heat discharge and a heat converter for exhaust heat recovery connected in series in the cell cooling water system of the fuel cell power generation plant. The heat converter for waste heat recovery is connected to the heat load demand side to form an exhaust heat recovery system, and a thermoelectric ratio judgment device is installed so that the power transmission load request value on the demand side is adjusted to the heat load demand side. If the required load value is greater than or equal to the required power transmission load value, the target power generation load of the fuel cell power generation plant is set corresponding to the required power transmission load value, and conversely, the required thermal load value is set as the required power transmission load value. If the heat load is large, set the target power generation load of the fuel cell power generation plant in accordance with the required heat load value, and set the difference between the target power generation load and the power transmission load request value as the internal load of the fuel cell power generation plant. It is characterized by consumption.

【0016】[0016]

【作用】本発明によれば、熱電比率判断装置は入力され
た需要側からの熱負荷要求値と送電負荷要求値との比率
(熱電比)を演算し、熱電比が1以下すなわち送電負荷
要求値が大の場合には送電負荷要求値をそのまま燃料電
池発電プラントの目標発電負荷とする。また、目標所内
負荷を零、排熱排気指令を1から熱電比を引いた差分に
それぞれ設定して燃料電池発電プラントに伝送するとと
もに排熱回収システムには需要側からの熱負荷要求値を
排熱回収指令としてそのまま設定して伝送する。
[Operation] According to the present invention, the thermoelectric ratio determination device calculates the ratio (thermoelectric ratio) between the input heat load request value from the demand side and the power transmission load request value, and calculates the ratio (thermoelectric ratio) between the input heat load request value from the demand side and the power transmission load request value. If the value is large, the requested power transmission load value is directly used as the target power generation load of the fuel cell power generation plant. In addition, the target internal load is set to zero and the exhaust heat exhaust command is set to the difference between 1 and the thermoelectric ratio and transmitted to the fuel cell power plant. Set it as is and transmit it as a heat recovery command.

【0017】一方、熱電比が1以上すなわち熱負荷要求
値が送電負荷要求値より大の場合には熱負荷要求値を関
数として熱負荷要求値を満足しうる排熱を出力できる目
標発電負荷を求め、さらに、その目標発電負荷と送電負
荷要求値との差分を目標所内負荷として設定する。さら
に、排熱排気指令を零として燃料電池発電プラントに伝
送するとともに排熱回収システムには排熱回収指令とし
て需要側の熱負荷要求値を設定して伝送する。
On the other hand, when the thermoelectric ratio is 1 or more, that is, the required heat load value is larger than the required power transmission load value, the target power generation load that can output exhaust heat that can satisfy the required heat load value is determined as a function of the required heat load value. Then, the difference between the target power generation load and the requested power transmission load is set as the target in-station load. Further, the exhaust heat exhaust command is set to zero and transmitted to the fuel cell power generation plant, and the heat load request value on the demand side is set and transmitted to the exhaust heat recovery system as the exhaust heat recovery command.

【0018】[0018]

【実施例】本発明の燃料電池発電プラントの熱併給発電
システムの実施例を図1と図2について説明する。
[Embodiment] An embodiment of a cogeneration system for a fuel cell power generation plant according to the present invention will be described with reference to FIGS. 1 and 2.

【0019】図1は本発明の燃料電池発電プラントの熱
併給発電システムの実施例の全体的構成図を示す。ここ
では従来の技術に説明に用いた図4に示した電池冷却水
系に、排熱回収用熱交換器4bを新たに追設して需要側
への熱負荷供給を行う。すなわち、排熱排出用熱交換器
4aと循環ポンプ3の間に排熱回収用熱交換器4bを配
設し、熱負荷需要側7と接続して排熱回収システム8を
構成する。。
FIG. 1 shows an overall configuration diagram of an embodiment of a cogeneration power generation system for a fuel cell power generation plant according to the present invention. Here, an exhaust heat recovery heat exchanger 4b is newly added to the battery cooling water system shown in FIG. 4 used in the description of the conventional technology to supply heat load to the demand side. That is, an exhaust heat recovery heat exchanger 4b is disposed between the exhaust heat exhaust heat exchanger 4a and the circulation pump 3, and is connected to the heat load demand side 7 to configure the exhaust heat recovery system 8. .

【0020】すなわち、図示するように、電池本体1は
供給された水素と空気(酸素)の電気化学反応によつて
直流電力を発電する。発電された直流電気は図3に示し
た直交変換装置22および変圧器23を通つて需要側に
配電される。その際、発生する熱を除去するため冷却水
が電池本体1をめぐつて循環しており、電池本体1内で
熱交換された冷却水は、温水または温水と蒸気との二相
流となつて気水分離器2に送られ、蒸気と温水とに分離
された後、分離された蒸気は改質器13の蒸気源として
使用される。一方、分離された温水は気水分離器2から
循環ポンプ3により循環され、電池本体1の入口側に配
設した排熱回収用熱交換器4bおよび排熱排出用熱交換
器4aにおいて冷却された後、再度、電池本体1の冷却
水として使用される。また、温められた排熱回収用熱交
換器4bの冷媒は熱負荷需要側7に熱源として供給され
る。排熱排出用熱交換器4aの冷媒は冷却塔5を通じ外
気に排熱される。
That is, as shown in the figure, the battery main body 1 generates DC power through an electrochemical reaction between supplied hydrogen and air (oxygen). The generated DC electricity is distributed to the demand side through the orthogonal converter 22 and transformer 23 shown in FIG. At that time, cooling water circulates around the battery body 1 to remove the generated heat, and the cooling water that has undergone heat exchange within the battery body 1 becomes hot water or a two-phase flow of hot water and steam. After being sent to the steam separator 2 and separated into steam and hot water, the separated steam is used as a steam source for the reformer 13. On the other hand, the separated hot water is circulated by the circulation pump 3 from the steam separator 2, and is cooled in the exhaust heat recovery heat exchanger 4b and the exhaust heat discharge heat exchanger 4a arranged on the inlet side of the battery body 1. After that, it is used again as cooling water for the battery body 1. Further, the warmed refrigerant of the exhaust heat recovery heat exchanger 4b is supplied to the heat load demand side 7 as a heat source. The refrigerant in the exhaust heat exhaust heat exchanger 4a passes through the cooling tower 5 and is exhausted to the outside air.

【0021】なお、電池本体1は発電して初めて熱を発
生するため、燃料電池発電プラントの起動時には他のエ
ネルギを供給することが必要である。そこで、気水分離
器2内に電気ヒータ6を設け、起動時の電池本体1の昇
温や改質器13蒸気への供給をおこなう。
[0021] Since the battery main body 1 generates heat only after power generation, it is necessary to supply other energy when starting up the fuel cell power generation plant. Therefore, an electric heater 6 is provided in the steam separator 2 to raise the temperature of the battery body 1 at startup and to supply steam to the reformer 13.

【0022】図2は本発明の熱併給発電システムの熱電
比率判断装置を用いた制御系の系統図である。このシス
テムでは、熱負荷需要側7の熱負荷要求値V1と送電負
荷要求値V2とを入力する手段を備えた熱電比率判断装
置30は、それらの要求値V1およびV2の比率を演算
し、その結果に基づき燃料電池発電プラントに目標発電
負荷L1と目標所内負荷L2および排熱排気指令D1を
設定し燃料電池発電プラント40に伝送する手段と、排
熱回収システム8に排熱回収指令D2を設定し伝送する
手段とを有する。さらに、燃料電池発電プラント40は
伝送されたそれぞれの目標L1とL2と指定D2にした
がい発電プラントを運転する手段と、排熱回収システム
8は伝送された排熱回収指令D2にしたがい排熱を回収
する手段とを有する。
FIG. 2 is a system diagram of a control system using the thermoelectric ratio determination device of the combined heat and power generation system of the present invention. In this system, a thermoelectric ratio determination device 30 equipped with means for inputting a heat load request value V1 and a power transmission load request value V2 of the heat load demand side 7 calculates the ratio of these request values V1 and V2, and calculates the ratio of the request values V1 and V2. Based on the results, a means for setting a target power generation load L1, a target internal load L2, and an exhaust heat exhaust command D1 in the fuel cell power generation plant and transmitting them to the fuel cell power generation plant 40, and setting an exhaust heat recovery command D2 in the exhaust heat recovery system 8. and means for transmitting the information. Further, the fuel cell power generation plant 40 has a means for operating the power generation plant according to the transmitted targets L1 and L2 and the specification D2, and the exhaust heat recovery system 8 recovers exhaust heat according to the transmitted exhaust heat recovery command D2. and means to do so.

【0023】この排熱回収システム8の付加によつて、
熱電比率判断装置30において演算設定した熱電比によ
り決定される排熱排気指令D2 に基づき、一方、燃料
電池発電プラントでは既設の冷却塔5につながる排熱排
出熱交換器4aの、他方、排熱回収システム8では排熱
回収指令D2 に基づき、排熱回収用熱交換器4bの流
量や温度等を制御する。この制御により、燃料電池発電
プラントの排熱から需要側にとつて必要な熱負荷のみ提
供するとともに余剰の排熱を外気に排出することでより
安定した燃料電池発電プラントの熱併給発電システムが
得られる。
By adding this exhaust heat recovery system 8,
Based on the exhaust heat exhaust command D2 determined by the thermoelectric ratio calculated and set in the thermoelectric ratio determination device 30, on the one hand, in the fuel cell power generation plant, the exhaust heat of the exhaust heat exhaust heat exchanger 4a connected to the existing cooling tower 5 is The recovery system 8 controls the flow rate, temperature, etc. of the exhaust heat recovery heat exchanger 4b based on the exhaust heat recovery command D2. This control provides only the necessary heat load for the demand side from the exhaust heat of the fuel cell power generation plant, and discharges excess exhaust heat to the outside air, resulting in a more stable cogeneration system for the fuel cell power generation plant. It will be done.

【0024】なお熱電比が1以上の場合には、前述した
ように燃料電池発電プラントの排熱量を増加するよう図
1の気水分離器内2の電気ヒータ6をオン(目標所内負
荷相当分)させるだけで、熱電比1以上の熱負荷を提供
することができる。
When the thermoelectric ratio is 1 or more, the electric heater 6 in the steam/water separator 2 shown in FIG. ) can provide a heat load with a thermoelectric ratio of 1 or more.

【0025】以上述べた排熱回収システム8は電池冷却
水系に関するものであるが、実際の発電プラントでは前
述したように多種多様に具体化することができる。しか
しながら、燃料電池発電プラントの排熱回収と排気方法
を電池冷却水系とまつたく同じシステム構成にすること
により容易に他システムも回収可能となる。このためそ
れらの説明を省略する。
Although the exhaust heat recovery system 8 described above relates to a battery cooling water system, it can be implemented in a wide variety of ways in an actual power plant as described above. However, by making the exhaust heat recovery and exhaust method of the fuel cell power generation plant exactly the same system configuration as the battery cooling water system, it becomes possible to easily recover waste heat from other systems as well. Therefore, their explanation will be omitted.

【0026】また、排熱量を増加するための手段として
一番分り易い気水分離器2内の電気ヒータ6を本発明の
実施例として説明したが、その他のシステムに電気ヒー
タが設けられていればその電気ヒーターを使つてシステ
ムを組むことは当然ながら可能である。また電気ヒータ
に代わるエネルギ源がある場合、例えば補助ボイラ、に
も同様に本発明を適用できる。
Furthermore, although the electric heater 6 in the steam/water separator 2, which is the most obvious means for increasing the amount of exhaust heat, has been described as an embodiment of the present invention, other systems may be provided with an electric heater. Of course, it is possible to set up a system using an electric heater. Furthermore, if there is an energy source that replaces the electric heater, the present invention can be similarly applied to, for example, an auxiliary boiler.

【0027】[0027]

【発明の効果】本発明によれば、上述した機能をもつ熱
電比率判断装置と燃料電池発電プラントおよび排熱回収
システムを組合せて燃料電池発電プラントの熱併給発電
システムを構成することにより、需要側からみて最適な
燃料電池発電プラントの熱併給発電システムを得ること
ができる。さらに、本発明による従来の燃料電池発電プ
ラントの熱併給発電システムにおいて弊害があつた熱電
比1の一定運転を需要側の要求に基づいて、広汎に変化
する熱負荷および電気負荷を提供することができる燃料
電池発電プラントの熱併給発電システムが得られる。
Effects of the Invention According to the present invention, by configuring a co-generation power generation system for a fuel cell power generation plant by combining a heat and power ratio determination device having the above-mentioned functions, a fuel cell power generation plant, and an exhaust heat recovery system, From this point of view, it is possible to obtain an optimal combined heat and power generation system for a fuel cell power generation plant. Furthermore, the present invention can replace the constant operation with a thermoelectric ratio of 1, which has been disadvantageous in the conventional combined heat and power generation system of a fuel cell power generation plant, by providing a heat load and an electric load that vary widely based on the demands of the demand side. A combined heat and power generation system for a fuel cell power generation plant can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の燃料電池発電プラントの熱併給発電シ
ステムの実施例の全体的構成図。
FIG. 1 is an overall configuration diagram of an embodiment of a combined heat and power generation system for a fuel cell power generation plant according to the present invention.

【図2】本発明の燃料電池発電プラントの熱併給発電シ
ステムの熱電比率判断装置を用いた制御系の系統図。
FIG. 2 is a system diagram of a control system using a thermoelectric ratio determination device for a combined heat and power generation system of a fuel cell power generation plant according to the present invention.

【図3】従来の燃料電池発電プラントの概略系統図。FIG. 3 is a schematic diagram of a conventional fuel cell power generation plant.

【図4】図3に示す従来の燃料電池発電プラントの電池
冷却水系の系統図。
FIG. 4 is a system diagram of a battery cooling water system of the conventional fuel cell power generation plant shown in FIG. 3;

【符号の説明】[Explanation of symbols]

1  燃料電池本体 2  気水分離器 3  循環ポンプ 4a  排熱排出用熱交換器 4b  排熱回収用熱交換器 6  電気ヒータ 7  需要側熱負荷 8  排熱回収システム 30  熱電比率判断装置 40  燃料電池発電プラント 1 Fuel cell main body 2 Steam water separator 3 Circulation pump 4a Heat exchanger for exhaust heat discharge 4b Heat exchanger for exhaust heat recovery 6 Electric heater 7 Demand side heat load 8 Exhaust heat recovery system 30 Thermoelectric ratio judgment device 40 Fuel cell power generation plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料電池発電プラントの電池冷却水系に排
熱排出用熱変換器と排熱回収用熱変換器とを直列に配設
し、該排熱回収用熱変換器を熱負荷需要側と接続して排
熱回収システムを構成し、かつ、発電比率判断装置を備
え需要側の送電負荷要求値が需要側の熱負荷要求値に比
して大または等しい場合には該送電負荷要求値に対応し
て燃料電池発電プラントの目標発電負荷を設定し、逆に
需要側の熱負荷要求値が送電負荷要求値に比して大の場
合には該熱負荷要求値に対応して燃料電池発電プラント
の目標発電負荷を設定するとともに、前記目標発電負荷
と前記送電負荷要求値との差分を燃料電池発電プラント
の所内負荷として消費するように構成したことを特徴と
する燃料電池発電プラントの熱併給発電システム。
Claim 1: A heat converter for exhaust heat discharge and a heat converter for exhaust heat recovery are arranged in series in a battery cooling water system of a fuel cell power generation plant, and the heat converter for exhaust heat recovery is connected to the heat load demand side. is connected to constitute an exhaust heat recovery system, and is equipped with a power generation ratio determination device, and when the demand-side power transmission load request value is greater than or equal to the demand-side heat load request value, the power transmission load request value is The target power generation load of the fuel cell power generation plant is set in response to A heat generation plant for a fuel cell power generation plant, characterized in that a target power generation load of the power generation plant is set, and the difference between the target power generation load and the power transmission load request value is consumed as an internal load of the fuel cell power generation plant. Combined power generation system.
JP3118589A 1991-05-23 1991-05-23 Heat supplying power generating system for fuel cell power generating plant Pending JPH04345766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3118589A JPH04345766A (en) 1991-05-23 1991-05-23 Heat supplying power generating system for fuel cell power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3118589A JPH04345766A (en) 1991-05-23 1991-05-23 Heat supplying power generating system for fuel cell power generating plant

Publications (1)

Publication Number Publication Date
JPH04345766A true JPH04345766A (en) 1992-12-01

Family

ID=14740329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3118589A Pending JPH04345766A (en) 1991-05-23 1991-05-23 Heat supplying power generating system for fuel cell power generating plant

Country Status (1)

Country Link
JP (1) JPH04345766A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185197A (en) * 1999-12-28 2001-07-06 Daikin Ind Ltd Fuel cell system
JP2001185196A (en) * 1999-12-28 2001-07-06 Daikin Ind Ltd Fuel cell system
JP2002008695A (en) * 2000-06-27 2002-01-11 Idemitsu Kosan Co Ltd Running time setting method of combined heat and power generation equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185197A (en) * 1999-12-28 2001-07-06 Daikin Ind Ltd Fuel cell system
JP2001185196A (en) * 1999-12-28 2001-07-06 Daikin Ind Ltd Fuel cell system
JP2002008695A (en) * 2000-06-27 2002-01-11 Idemitsu Kosan Co Ltd Running time setting method of combined heat and power generation equipment

Similar Documents

Publication Publication Date Title
EP1643575B1 (en) Fuel cell/constant pressure turbine/hybrid system
US4464444A (en) Fuel cell power generation system and method of operating the same
US6692852B2 (en) Generating system for a fuel cell, and heat waste recirculating and cooling system of said generating system
KR20130075492A (en) Fuel cell hybrid system
JP2942999B2 (en) Molten carbonate fuel cell power generator
US4352863A (en) Apparatus and method for producing high pressure steam in a fuel cell system
EP1284515A2 (en) Generating system for a fuel cell, and heat waste recirculating and cooling system of said generating system
JPH084586A (en) Cogeneration system
CN114583222A (en) Combined power generation system based on solid oxide fuel cell and internal combustion engine
JP2002056880A (en) Water electrolysis device and solid polymer type fuel cell generating system
JPH0766829B2 (en) Fuel cell system with exhaust heat energy recovery device
JPH0249359A (en) Fuel cell power generating system
JPS61232569A (en) Fuel cell power generating system
JP2003007319A (en) Fuel cell system
JPH04345766A (en) Heat supplying power generating system for fuel cell power generating plant
JP2002025590A (en) Fuel cell power generating device and its control method
JP2000012047A (en) Gas turbine intake cooling system by fuel cell
JP3205599B2 (en) Fuel cell system
JPH08339815A (en) Fuel cell power generation device
JPH0679711B2 (en) Fuel cell-seawater desalination complex
JP3384005B2 (en) Fuel cell absorption refrigerator connection system
JPH0613093A (en) Heat and electric power combined supply system and building provided with this supplying system
JP3350164B2 (en) Fuel cell cogeneration system and cooling water waste heat recovery method
JPH06215784A (en) Fuel cell generating facilities
JPS5834575A (en) Fuel-cell generation system