JP4994731B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system Download PDF

Info

Publication number
JP4994731B2
JP4994731B2 JP2006196170A JP2006196170A JP4994731B2 JP 4994731 B2 JP4994731 B2 JP 4994731B2 JP 2006196170 A JP2006196170 A JP 2006196170A JP 2006196170 A JP2006196170 A JP 2006196170A JP 4994731 B2 JP4994731 B2 JP 4994731B2
Authority
JP
Japan
Prior art keywords
fuel cell
steam generator
steam
heat
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006196170A
Other languages
Japanese (ja)
Other versions
JP2008004516A (en
Inventor
勝則 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2006196170A priority Critical patent/JP4994731B2/en
Priority to KR1020060086992A priority patent/KR100813245B1/en
Publication of JP2008004516A publication Critical patent/JP2008004516A/en
Application granted granted Critical
Publication of JP4994731B2 publication Critical patent/JP4994731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池発電システムに関し、特に、スタック運転温度が100〔℃〕以上の中温型燃料電池スタックにおけるスタック発熱の有効利用を実現するものである。  The present invention relates to a fuel cell power generation system, and in particular, achieves effective use of stack heat generation in a medium temperature fuel cell stack having a stack operating temperature of 100 [° C.] or higher.

図9に従来の燃料電池スタック1の構造を示す。従来の燃料電池スタック1は、シート状の固体高分子電解質膜2と、二の固体高分子電解質膜2の主両面のそれぞれに接合させた燃料電極3および酸化剤電極4、さらにその外側両面のそれぞれに燃料ガス流路5を有する燃料ガス用セパレータ6および酸化剤ガス流路7を有する酸化剤ガス用セパレータ8からなる燃料電池セル9が複数枚積層され、ある積層枚数毎にあるいは燃料電池セル9と交互に冷却媒体流路10を有する冷却板11が配置されて構成されている。  FIG. 9 shows the structure of a conventional fuel cell stack 1. A conventional fuel cell stack 1 includes a sheet-like solid polymer electrolyte membrane 2, a fuel electrode 3 and an oxidizer electrode 4 joined to each of the main surfaces of the second solid polymer electrolyte membrane 2, and further, both of the outer surfaces of the fuel electrode stack 1. A plurality of fuel battery cells 9 each composed of a fuel gas separator 6 having a fuel gas flow path 5 and an oxidant gas separator 8 having an oxidant gas flow path 7 are laminated, or for each number of laminated fuel cells. 9 and a cooling plate 11 having cooling medium flow paths 10 are arranged alternately.

ここで、冷却板11は、水素を主燃料とする燃料ガスと空気または酸素等の酸化剤ガスが固体高分子電解質膜2を挟んで電気化学的に反応する際に、発熱することからこの反応熱を排熱し、燃料電池セル9の温度を一定に保つために配置されている。また、冷却板11に供給される冷却媒体には、主に水が用いられている。  Here, the cooling plate 11 generates heat when a fuel gas mainly containing hydrogen and an oxidant gas such as air or oxygen react electrochemically with the solid polymer electrolyte membrane 2 interposed therebetween. It arrange | positions in order to exhaust heat and to keep the temperature of the fuel cell 9 constant. Further, water is mainly used as the cooling medium supplied to the cooling plate 11.

この燃料電池スタック1が搭載された従来の定置用燃料電池発電システム20の構成を図10に示す。燃料電池スタック1内の冷却板11に供給される冷却媒体が、循環ポンプ21等の動力により、冷却板11と純水タンク22間を循環するように構成されている。純水タンク22は、外部との熱利用機器、例えば、貯湯槽23との間で熱交換することで、冷却板11から排出され高温となった冷却水は所定の温度に冷却された後、再度冷却板11に供給され循環されるシステム構成となっている。  FIG. 10 shows a configuration of a conventional stationary fuel cell power generation system 20 in which the fuel cell stack 1 is mounted. The cooling medium supplied to the cooling plate 11 in the fuel cell stack 1 is configured to circulate between the cooling plate 11 and the pure water tank 22 by the power of the circulation pump 21 or the like. The pure water tank 22 is heat-exchanged with an external heat utilization device, for example, a hot water storage tank 23, so that the cooling water discharged from the cooling plate 11 and having a high temperature is cooled to a predetermined temperature, The system configuration is such that the cooling plate 11 is supplied again and circulated.

具体的には、外部より原料ガスの供給を受けて、原料ガスを水素リッチな改質ガスに改質する改質器24と、改質ガス中の一酸化炭素を低減して燃料ガスとするシフト反応器25及びCO選択酸化部26と、燃料ガスと空気との供給を受けて電気化学反応により発電する燃料電池スタック1と、燃料電池スタック1の冷却水と貯湯槽23の低温水との熱交換を行なう熱交換器27と、燃料電池スタック1からの直流電力の電圧および電流を調整して所望の直流電力に変換するDC/DCコンバータ28と、変換された直流電力を商用電源(系統)と同位相の交流電力に変換して商用電源(系統)に電力を供給するインバータ29を備える。  Specifically, the raw material gas is supplied from the outside, the reformer 24 reforms the raw material gas into a hydrogen-rich reformed gas, and carbon monoxide in the reformed gas is reduced to become a fuel gas. The shift reactor 25 and the CO selective oxidation unit 26, the fuel cell stack 1 that receives the supply of fuel gas and air and generates power by an electrochemical reaction, the cooling water of the fuel cell stack 1, and the low-temperature water of the hot water storage tank 23 A heat exchanger 27 that performs heat exchange, a DC / DC converter 28 that adjusts the voltage and current of the DC power from the fuel cell stack 1 to convert it to desired DC power, and the converted DC power to a commercial power source (system) ) And an inverter 29 for supplying power to a commercial power supply (system).

また、純水タンク22に貯められた純水が、純水供給ポンプ30を介して、蒸気発生器31に供給され、蒸気調節弁32を介して改質器24の入口に供給されるように、直列に配置されている。改質器24及びシフト反応器25では、原料ガスラインから昇圧ポンプ33と硫黄分を除く脱硫器34と調節弁35とを介して供給される原料ガスと、純水タンク22から蒸気発生器31を介して調節弁32によりその流量が調整される水蒸気とによる次式(1)および式(2)の水蒸気改質反応およびシフト反応により水素リッチな改質ガスを生成する。
CH+HO→CO+3H ……(1)
CO+HO→CO+H ……(2)
The pure water stored in the pure water tank 22 is supplied to the steam generator 31 via the pure water supply pump 30 and supplied to the inlet of the reformer 24 via the steam control valve 32. Are arranged in series. In the reformer 24 and the shift reactor 25, the raw material gas supplied from the raw material gas line via the booster pump 33, the desulfurizer 34 that removes sulfur and the control valve 35, and the pure water tank 22 to the steam generator 31. Then, the hydrogen-rich reformed gas is generated by the steam reforming reaction and the shift reaction of the following formulas (1) and (2) with the steam whose flow rate is adjusted by the control valve 32.
CH 4 + H 2 O → CO + 3H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)

改質器24には、こうした反応に必要な熱と、加えて蒸気生成器31で蒸気を生成するために必要な熱とを供給する燃焼部36が設けられており、その燃焼部36には、燃料電池スタック1のアノード側の排出ガスが供給され、アノードオフガス中の未反応の水素を燃料として用いることができるようになされている。  The reformer 24 is provided with a combustion section 36 that supplies heat necessary for such a reaction and, in addition, heat necessary for generating steam in the steam generator 31. The exhaust gas on the anode side of the fuel cell stack 1 is supplied so that unreacted hydrogen in the anode off-gas can be used as fuel.

従って、従来の低温型固体高分子型燃料電池(運転温度が100〔℃〕以下)を用いた発電システム20においては、燃料電池スタック1で必要とする水素量と、上記燃焼部36を700〔℃〕程度の所定の温度に維持するために必要な水素量との総和に相当する原料ガスを、発電システムに供給する必要があった。  Therefore, in the power generation system 20 using a conventional low-temperature solid polymer fuel cell (operating temperature is 100 [° C.] or less), the amount of hydrogen required in the fuel cell stack 1 and the combustion part 36 are set to 700 [ It was necessary to supply a raw material gas corresponding to the sum of the amount of hydrogen necessary to maintain a predetermined temperature of about [° C.] to the power generation system.

ここで、次式(3)に、定置用燃料電池発電システムの発電効率を示す。

Figure 0004994731
給したメタンのうち、改質された割合)、Ufは燃料利用率(発電に必要な理論水素量と実際に燃料電池スタック50に供給する水素量との比)、Vは定格負荷運転時の電圧、Vは理論電圧、ηinvはインバーター効率を表す。Here, the following formula (3) shows the power generation efficiency of the stationary fuel cell power generation system.
Figure 0004994731
Of the supplied methane, the reformed ratio), Uf is the fuel utilization rate (ratio between the theoretical hydrogen amount necessary for power generation and the hydrogen amount actually supplied to the fuel cell stack 50), and V is the rated load operation Voltage, V 0 is the theoretical voltage, and ηinv represents the inverter efficiency.

現在、日本国内でリース販売されている低温型固体高分子型燃料電池発電システムの発電効率は、約32〔%〕(HHV)であり、系統電力の平均発電効率約37〔%〕に比べ低い値となっているが、給湯に用いる熱回収効率が40〔%〕を超えるので、総合効率70〔%〕(HHV)を上回るシステムになっている。  The power generation efficiency of the low-temperature polymer electrolyte fuel cell power generation system currently being leased and sold in Japan is about 32 [%] (HHV), which is lower than the average power generation efficiency of system power about 37 [%]. Although it is a value, since the heat recovery efficiency used for hot water supply exceeds 40%, the overall efficiency exceeds 70% (HHV).

従って、熱主電従のコジェネ運転において、その優位性を発揮できるが、例えば、夏場においては、給湯の需要は低減するので、総合効率での優位性が確立できなくなり、前記低温型固体高分子型燃料電池発電システムの稼働時間が低減することから、年間のランニングコスト低減のメリットが縮小する課題がある。これより、固体高分子型燃料電池発電システムの商用化普及には、その発電効率を、系統電力と同等以上に高めることが望まれている。  Therefore, the advantage can be exhibited in the cogeneration operation of the heat mains, but, for example, in summer, the demand for hot water supply is reduced, so the advantage in overall efficiency cannot be established, and the low temperature solid polymer Since the operating time of the fuel cell power generation system is reduced, there is a problem that the merit of reducing the annual running cost is reduced. For this reason, for the commercialization of the polymer electrolyte fuel cell power generation system, it is desired to increase the power generation efficiency to be equal to or higher than the system power.

この様な要望を受けて、近年、システムにおける熱の有効利用を図るため、運転温度が100〔℃〕以上の中温型(本文では、運転温度100〔℃〕以下の燃料電池を低温型、運転温度100〜250〔℃〕を中温型と定義する)固体高分子型燃料電池の研究開発が進められている。この中温型固体高分子型燃料電池では、燃料電池スタックの冷却媒体である水の温度も100〔℃〕以上になるため、飽和蒸気圧上昇に伴い冷媒配管系は耐圧仕様が必須となる。  In response to these demands, in recent years, in order to effectively use heat in the system, a medium temperature type operating temperature of 100 ° C. or higher (in this case, a low temperature type operating fuel cell having an operating temperature of 100 ° C. or lower). Research and development of a polymer electrolyte fuel cell (which defines a temperature of 100 to 250 [° C.] as a medium temperature type) is underway. In this intermediate temperature type polymer electrolyte fuel cell, the temperature of water that is a cooling medium of the fuel cell stack also becomes 100 [° C.] or higher, so that with the increase of the saturated vapor pressure, the pressure resistance specification is essential for the refrigerant piping system.

特に、冷却水循環ポンプ21(図10)の耐圧仕様化は、現状、容量の大きい産業用ポンプからの選定となるため、必然的に消費動力及びサイズの増大につながり、家庭用等をターゲットとした小容量(例えば、5kW以下)燃料電池発電システム設計において、システム効率面及びシステムサイズ面で、システム設計が成立せず、商品化が困難に成る問題があった。  In particular, the pressure-resistant specification of the cooling water circulation pump 21 (FIG. 10) is currently selected from industrial pumps with a large capacity, which inevitably leads to an increase in power consumption and size, and is targeted at household use. In designing a small-capacity (for example, 5 kW or less) fuel cell power generation system, there is a problem that the system design cannot be established in terms of system efficiency and system size, and commercialization becomes difficult.

この場合、冷却系の耐圧仕様を回避するため、高沸点冷媒、例えばシリコンオイル等を用いる対案も考えられるが、これら高沸点冷媒は、水より熱伝導性がかなり低いため、冷却媒体流量増大に伴う循環ポンプの動力増大をもたらすだけでなく、コジェネを目的とした定置用燃料電池発電システムの熱回収の面からも熱効率の低下を招き、前記と同様に、競争力のある商品化が成立しない問題が残った。  In this case, in order to avoid the pressure resistance specification of the cooling system, a counter plan using a high-boiling point refrigerant, such as silicon oil, can be considered, but these high-boiling point refrigerants have a considerably lower thermal conductivity than water, which increases the flow rate of the cooling medium. Not only does this increase the power of the circulating pump, but also reduces the heat efficiency from the standpoint of heat recovery of stationary fuel cell power generation systems for cogeneration purposes. The problem remained.

上記冷却系耐圧仕様の問題解決策として、特許文献1は、冷却板に前記燃料電池セルの積層端面の面積より広く、積層端面より突出した構造のプレート型ヒートパイプを用いることにより、プレート型ヒートパイプを利用した放熱構造を実現することで、燃料電池スタックの空冷を可能にし、燃料電池セルを冷却するための循環ポンプ、冷却循環水配管等の設備が不要で、また冷却媒体を循環させるためのポンプ動力、さらに冷却媒体である水の管理等を必要とせず、装置の小型化と低コスト化を達成し、発電中の効率を向上させ、保守管理の容易な燃料電池を提供する方法を開示している。
特開平11−214017号公報
As a solution to the above-mentioned cooling system pressure resistance specification, Patent Document 1 discloses that a plate-type heat pipe is used by using a plate-type heat pipe having a structure that is larger than the area of the stack end face of the fuel cell and protrudes from the stack end face. Realizing a heat dissipation structure using pipes enables air cooling of the fuel cell stack, eliminates the need for equipment such as a circulation pump and cooling circulation water piping for cooling the fuel cells, and circulates the cooling medium. A method of providing a fuel cell that does not require management of the pump power of water and water as a cooling medium, achieves downsizing and cost reduction of the device, improves efficiency during power generation, and facilitates maintenance management. Disclosure.
Japanese Patent Laid-Open No. 11-214017

しかしながら、特許文献1記載の方法では、燃料電池スタックの冷却に特化した内容であり、携帯用燃料電池等の用途では有効な手段ではあるが、燃料電池スタックの発熱を有効利用するコジェネを目的とした定置用燃料電池発電システムにおいては、そのシステム効率向上に向けた内容の施策には至っていない。  However, the method described in Patent Document 1 is specialized in cooling of the fuel cell stack, and is an effective means for applications such as portable fuel cells, but aims at cogeneration that effectively uses the heat generated by the fuel cell stack. However, in the stationary fuel cell power generation system, no measures have been taken to improve the system efficiency.

本発明は以上の点を考慮してなされたもので、システムの電気効率を向上すると同時に装置全体としての構成の簡略化及び低補機動力化を図ることができる燃料電池システムを提案しようとするものである。  The present invention has been made in consideration of the above points, and intends to propose a fuel cell system capable of improving the electrical efficiency of the system and at the same time simplifying the configuration of the entire apparatus and reducing the power of auxiliary equipment. Is.

かかる課題を解決するため本発明では、電解質と当該電解質を挟むアノード及びカソードから成る一対の電極から構成されたセルと、電極のアノードに水素を含む燃料ガスを供給・排出し、カソードに酸素を含有する酸化剤ガスを供給・排出するガス流路を有する一対のセパレータを交互に複数積層された燃料電池スタックと、原料ガスから燃料電池本体に供給する燃料ガスを生成する燃料改質処理系と、燃料改質処理系にて改質反応を起こすために必要な水蒸気を供給する第1の蒸気生成器に純水を供給すると同時に排熱の有効利用を行うための純水系を有する燃料電池発電システムにおいて、燃料電池スタックに積層された複数セルの全部又は一部と熱伝導性を有して係合された熱移動媒体と、熱移動媒体と熱導通接続するように燃料電池スタックに隣接して配置され、当該熱移動媒体を介して供給される熱に基づき水蒸気を発生する第2の蒸気生成器とを備えることを特徴とする。  In order to solve such a problem, in the present invention, a cell composed of an electrolyte and a pair of electrodes composed of an anode and a cathode sandwiching the electrolyte, a fuel gas containing hydrogen is supplied to and discharged from the anode of the electrode, and oxygen is supplied to the cathode. A fuel cell stack in which a plurality of pairs of separators having gas flow paths for supplying and discharging the contained oxidant gas are alternately stacked; a fuel reforming processing system for generating a fuel gas to be supplied from the raw material gas to the fuel cell body; A fuel cell power generation having a pure water system for supplying pure water to a first steam generator for supplying water vapor necessary for causing a reforming reaction in the fuel reforming treatment system and at the same time making effective use of exhaust heat In the system, the heat transfer medium is engaged with all or a part of the plurality of cells stacked in the fuel cell stack with heat conductivity, and the fuel cell is connected to the heat transfer medium in a heat conductive connection. Disposed adjacent to the stack, characterized in that it comprises a second steam generator for generating steam based on the heat supplied through the heat transfer medium.

また本発明においては、第1の蒸気生成器と第2の蒸気生成器とを、第1の遮断弁を介して連結することで直列配置すると共に、第2の蒸気生成器が、蒸気調整弁を介して燃料改質処理系の入口に連結するラインと、第2の遮断弁を介して純水系に戻すラインとを有し、システム起動中に、第1の遮断弁を開状態にして、第1の蒸気生成器で生成した蒸気を第2の蒸気生成器へ供給することで、第2の蒸気生成器内に滞留した蒸気の熱を、各熱移動媒体を介して、燃料電池スタックに与えて昇温を行い、更に、燃料電池スタックの昇温完了後、システム負荷投入時に、蒸気調整弁を開状態にして、第1の蒸気生成器で生成した蒸気を第2の蒸気生成器を介して、燃料改質処理系に供給することで、システム負荷運転に移行し、更に、負荷運転整定後に、第1の蒸気生成器と第2の蒸気生成器との間に配置した第1の遮断弁を閉状態にするとともに、第2の遮断弁を開状態にして、第2の蒸気生成器の単独運転に切り替えることを特徴とする。  In the present invention, the first steam generator and the second steam generator are connected in series by being connected via the first shut-off valve, and the second steam generator is connected to the steam control valve. A line connected to the inlet of the fuel reforming treatment system via a line and a line returning to the pure water system via the second shut-off valve, and during the system startup, the first shut-off valve is opened, By supplying the steam generated by the first steam generator to the second steam generator, the heat of the steam staying in the second steam generator is transferred to the fuel cell stack via each heat transfer medium. Then, after the temperature rise of the fuel cell stack is completed, when the system load is turned on, the steam control valve is opened, and the steam generated by the first steam generator is passed through the second steam generator. To the fuel reforming system, the system shifts to system load operation. After the setting, the first shut-off valve disposed between the first steam generator and the second steam generator is closed, and the second shut-off valve is opened so that the second steam generation It is characterized by switching to single operation of the vessel.

さらに本発明においては、熱移動媒体は、燃料電池スタックに積層された複数セルについて、所定数の積層枚数毎に又は各セルと交互にそれぞれ挿入されていることを特徴する。さらに熱移動媒体は、プレート中に蛇行細管が配置または形成され、細管中に熱輸送媒体である作動液が封入された蛇行細管型ヒートパイプ構造であることを特徴とする。  Furthermore, in the present invention, the heat transfer medium is characterized in that a plurality of cells stacked in the fuel cell stack are inserted every predetermined number of stacked sheets or alternately with each cell. Furthermore, the heat transfer medium is characterized in that it has a meandering capillary heat pipe structure in which meandering narrow tubes are arranged or formed in a plate, and a working fluid as a heat transport medium is enclosed in the narrow tubes.

さらに熱移動媒体は、複数セルの積層端面の少なくとも1面以上の面に、電気絶縁性の介在物を配して接触配置されていることを特徴とする。  Further, the heat transfer medium is characterized in that an electrical insulating inclusion is disposed on at least one of the stacked end faces of the plurality of cells.

以上説明したように、本発明に係る燃料電池発電システムによると、運転温度が100〔℃〕以上の中温型燃料電池スタックの発熱を、隣接する第2の蒸気生成器に移動させ、改質反応に必要な蒸気生成に使用することが出来るので、従来の低温型(運転温度70〜80〔℃〕)固体高分子型燃料電池発電システムで実施していた燃料改質処理系内に設けた第1の蒸気生成器へ、改質蒸気生成必要相当の熱を与える必要が無くなり、燃料電池発電システムに投入する原料ガスを削減できる。結果として、より高燃料利用率の運転が可能となることから、燃料電池発電システムの高電気効率化が達成できる。  As described above, according to the fuel cell power generation system of the present invention, the heat generation of the intermediate temperature fuel cell stack having an operation temperature of 100 [° C.] or more is transferred to the adjacent second steam generator to perform the reforming reaction. Can be used for steam generation necessary for the conventional fuel reforming treatment system provided in the conventional low temperature type (operating temperature 70 to 80 [° C.]) polymer electrolyte fuel cell power generation system. It is no longer necessary to apply heat equivalent to the generation of reformed steam to one steam generator, and the raw material gas to be input to the fuel cell power generation system can be reduced. As a result, since operation with a higher fuel utilization rate is possible, higher electric efficiency of the fuel cell power generation system can be achieved.

また、燃料電池スタックの発熱を前記第2の蒸気生成器に移動させる熱移動媒体は、熱伝導性に優れたプレート型ヒートパイプなので、従来熱移動媒体として水を用いていた場合に必要とされた耐圧仕様の循環ポンプ、冷却循環水配管等の設備を削除することが出来るので、装置の小型化、低コスト化、更には、補機動力低減化が達成できる。  Further, since the heat transfer medium that moves the heat generated by the fuel cell stack to the second steam generator is a plate heat pipe having excellent heat conductivity, it is required when water is conventionally used as the heat transfer medium. The equipment such as the pressure-resistant circulation pump and the cooling circulation water piping can be eliminated, so that the apparatus can be reduced in size and cost, and the auxiliary power can be reduced.

更には、本発明に係る燃料電池発電システムの起動方法によると、システム起動中は、改質器の燃焼部で発生する燃焼熱の一部を得て、第1の蒸気生成器にて生成した蒸気を利用して、第2の蒸気生成器に配置した熱移動媒体を介して熱伝達することで、燃料電池スタックの昇温操作を行い、更に、負荷投入及び定格負荷移行の過渡状態中は、未だ、燃料電池スタックから第2の蒸気生成器への熱移動量が不十分なため、第2の蒸気生成器単独での改質蒸気供給は実現できない状態により、前記第1の蒸気生成器から継続して生成される蒸気を、改質器に改質蒸気として供給できるように制御するので、運転温度が100〔℃〕以上の中温型燃料電池スタックでも、従来熱移動媒体として水を用いていた場合に必要とされた耐圧仕様の循環ポンプ、冷却循環水配管等の設備を必要とナることなく、迅速に効率よく、燃料電池スタックの昇温操作を完了し、スムーズに定格運転までの過渡状態も完了できる。  Furthermore, according to the method for starting the fuel cell power generation system according to the present invention, during the system startup, a part of the combustion heat generated in the combustion part of the reformer is obtained and generated by the first steam generator. Using steam, heat is transferred through a heat transfer medium arranged in the second steam generator to increase the temperature of the fuel cell stack. Further, during the transient state of load application and rated load transition However, since the amount of heat transfer from the fuel cell stack to the second steam generator is still insufficient, the supply of reformed steam by the second steam generator alone cannot be realized, so that the first steam generator Is controlled so that the steam continuously generated from the fuel can be supplied to the reformer as reformed steam, so that water is conventionally used as a heat transfer medium even in an intermediate temperature fuel cell stack with an operating temperature of 100 ° C or higher. In case that the Flop, circulating cooling water pipe without requiring a sounding equipment, such as, quickly and efficiently, to complete the heating operation of the fuel cell stack, it may also complete a transient state until rated operation smoothly.

以上の事項より、中温型燃料電池スタックの発熱を利用し、改質蒸気を生成することで、燃料電池発電システムの電気効率を向上すると同時に、従来の燃料電池スタック冷却水循環ラインを削除したので、装置の低コスト化、低補機動力化を図る燃料電池発電システムを提供することができる。  From the above, we have improved the electrical efficiency of the fuel cell power generation system by using the heat generated by the intermediate temperature fuel cell stack and generating reformed steam, and at the same time, deleted the conventional fuel cell stack cooling water circulation line. It is possible to provide a fuel cell power generation system that can reduce the cost of the apparatus and reduce the power of auxiliary equipment.

本発明は、特に中温型燃料電池発電システムにおいて、燃料電池スタックの冷却または加熱用の熱移動媒体を介して、燃料電池スタックと第1の蒸気発生器を隣接配置することで、発電運転中は、燃料電池スタックの発熱を直接、改質器用の蒸気発生の熱源に利用し、一方、システム起動中は、第1の蒸気発生器で得た熱を燃料電池スタックの加熱に利用することを特徴とする。  In the present invention, particularly in an intermediate temperature fuel cell power generation system, a fuel cell stack and a first steam generator are disposed adjacent to each other via a heat transfer medium for cooling or heating the fuel cell stack. The heat generated by the fuel cell stack is directly used as a heat source for generating steam for the reformer, while the heat obtained by the first steam generator is used for heating the fuel cell stack during system startup. And

以下図面を参照して本発明の実施例を詳細に説明する。
(1)第1の実施の形態
(1−1)燃料電池スタックの構成
図1は本発明の一実施例を示す燃料電池スタック50の構造を示し、当該燃料電池スタック50を第2の蒸気発生器51に隣接配置した構造を図2に示す。以下、図1及び図2を用いて本発明の一実施例について説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.
(1) First Embodiment (1-1) Configuration of Fuel Cell Stack FIG. 1 shows the structure of a fuel cell stack 50 showing an embodiment of the present invention. A structure arranged adjacent to the vessel 51 is shown in FIG. Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本発明の燃料電池スタック50は、シート状の固体高分子電解質膜52と、この固体高分子電解質膜52の主両面のそれぞれに接合させた燃料電極53および酸化剤電極54、さらにその外側両面のそれぞれに燃料ガス流路55を有する燃料ガス用セパレータ56および酸化剤ガス流路57を有する酸化剤ガス用セパレータ58からなる燃料電池セル59が複数枚積層され、ある積層枚数毎に燃料電池セル59の積層端面の少なくとも一辺から、積層端面より突出した構造の熱移動媒体60が介在された構成からなる。これら熱移動媒体60には、それぞれ突出部に絶縁シート61が被覆されており、第2の蒸気生成器51と接続した際に短絡を未然に防ぐようになされている。  The fuel cell stack 50 of the present invention includes a sheet-like solid polymer electrolyte membrane 52, a fuel electrode 53 and an oxidizer electrode 54 joined to each of the main surfaces of the solid polymer electrolyte membrane 52, and both outer surfaces of the fuel electrode stack 50. A plurality of fuel battery cells 59 each composed of a fuel gas separator 56 having a fuel gas flow channel 55 and an oxidant gas separator 58 having an oxidant gas flow channel 57 are stacked. The heat transfer medium 60 having a structure protruding from at least one side of the laminated end face is interposed. Each of these heat transfer media 60 is covered with an insulating sheet 61 on the projecting portion so as to prevent a short circuit when connected to the second steam generator 51.

熱移動媒体60と絶縁シート61を介した第2の蒸気生成器51との間の接続は、熱の移動を容易にするため、第2の蒸気生成器51内に、熱移動媒体60がフィン構造を得るように配置される。尚、熱移動媒体60と第2の蒸気生成器51間の接続は、フィン構造に限定されるものではなく、両者間の熱交換が有効に実施される構成が望ましい。また、燃料電池スタック50と熱移動媒体60、更には第2の蒸気生成器51の周囲には、放熱を防止するための断熱材62が全体を覆うように取り付けられている。  The connection between the heat transfer medium 60 and the second steam generator 51 via the insulating sheet 61 facilitates heat transfer, so that the heat transfer medium 60 is finned in the second steam generator 51. Arranged to obtain structure. The connection between the heat transfer medium 60 and the second steam generator 51 is not limited to the fin structure, and a configuration in which heat exchange between the two is effectively performed is desirable. Further, a heat insulating material 62 for preventing heat dissipation is attached around the fuel cell stack 50, the heat transfer medium 60, and the second steam generator 51 so as to cover the whole.

ここで、燃料電池スタック50が定格負荷運転時の発熱量と、その定格運転時の改質反応を行うために要する改質蒸気を生成するのに必要な熱量の収支に関する概略計算を以下に示す。
・仮定条件
▲1▼システム容量 :家庭用1kW級発電システム (グロス出力1.3〔kW〕)
▲2▼燃料電池定格性能 :0.3〔A/cm〕負荷電流時、セル電圧0.75〔V/cell〕、セル有効面積100〔cm〕、セル数45〔cell〕
▲3▼改質器性能 :改質器転換効率90〔%〕、燃料利用率Uf=80〔%〕、スチーム/カーボン比=3
▲4▼放熱 = 0(理想条件)
Here, a rough calculation regarding the heat generation amount of the fuel cell stack 50 during the rated load operation and the heat balance necessary for generating the reformed steam required for performing the reforming reaction during the rated operation is shown below. .
・ Assumption conditions (1) System capacity: 1kW class power generation system for home use (Gloss output 1.3 [kW])
( 2 ) Rated performance of fuel cell: 0.3 [A / cm 2 ] load current, cell voltage 0.75 [V / cell], cell effective area 100 [cm 2 ], number of cells 45 [cell]
(3) Reformer performance: reformer conversion efficiency 90 [%], fuel utilization rate Uf = 80 [%], steam / carbon ratio = 3
(4) Heat dissipation = 0 (ideal condition)

以上▲1▼〜▲4▼の仮定条件で、計算した場合の熱収支は以下の表1に示す通りである。

Figure 0004994731
The heat balance when calculated under the above assumptions (1) to (4) is as shown in Table 1 below.
Figure 0004994731

以上、表1の結果より、放熱や過渡応答を考慮しても、スタックの発熱量で、十分改質蒸気生成の熱量をまかなうことができる。  As described above, from the results shown in Table 1, even when heat dissipation and transient response are taken into account, the amount of heat generated by the reformed steam can be sufficiently covered by the amount of heat generated by the stack.

以上、説明した実施例の燃料電池発電システムの定格運転によれば、運転温度が100〔℃〕以上の中温型の燃料電池スタック50の発熱を、隣接する第2の蒸気生成器51に移動させ、改質反応に必要な蒸気生成に使用することが出来るので、従来の低温型(運転温度70〜80〔℃〕)固体高分子型燃料電池発電システムで実施していた燃料改質処理系内に設けた第1の蒸気生成器31(図10)へ、改質蒸気生成必要相当の熱を与える必要が無くなり、燃料電池発電システムに投入する原料ガスを削減できる。結果として、より高燃料利用率の運転が可能となることから、燃料電池発電システムの高電気効率化が達成できる。  As described above, according to the rated operation of the fuel cell power generation system of the embodiment described above, the heat generated by the intermediate temperature type fuel cell stack 50 having an operation temperature of 100 ° C. or more is moved to the adjacent second steam generator 51. Since it can be used for steam generation necessary for reforming reaction, it is used in the fuel reforming treatment system that has been carried out in the conventional low temperature type (operating temperature 70-80 [° C]) polymer electrolyte fuel cell power generation system. The first steam generator 31 (FIG. 10) provided in FIG. 10 does not need to be supplied with heat equivalent to the generation of reformed steam, and the raw material gas input to the fuel cell power generation system can be reduced. As a result, since operation with a higher fuel utilization rate is possible, higher electric efficiency of the fuel cell power generation system can be achieved.

(1−2)熱移動媒体の詳細構成
次に、本発明で用いている熱移動媒体60について、図3(A)及び(B)を用いて説明する。熱移動媒体60は、プレート型ヒートパイプ構造を有しており、導電性を有する金属プレート中にループ型蛇行細管65が配置または形成され、当該細管中に熱輸送媒体である作動液が封入されている。導電性を有するプレートには、アルミニウム、ステンレス、銅等の導電性、加工性に優れた金属またはカーボン材質のものが用いられる。特に、本発明の熱移動媒体60に導電性が必要とされる理由は、前記熱移動媒体60を挟んだ燃料電池セル59間を電気的に直列に接続させるためである。
(1-2) Detailed Configuration of Heat Transfer Medium Next, the heat transfer medium 60 used in the present invention will be described with reference to FIGS. 3 (A) and 3 (B). The heat transfer medium 60 has a plate-type heat pipe structure, and a loop-type meandering capillary 65 is disposed or formed in a conductive metal plate, and a working fluid as a heat transport medium is enclosed in the capillary. ing. As the conductive plate, a metal or carbon material having excellent conductivity and workability such as aluminum, stainless steel, and copper is used. In particular, the reason why the heat transfer medium 60 of the present invention requires conductivity is to electrically connect the fuel cells 59 sandwiching the heat transfer medium 60 in series.

作動液は、本発明の燃料電池スタック50の運転温度は範囲に適応したHFC134a(代替フロン)またはブタン(Bu)系作動液等が用いられ、前記ループ型蛇行細管65中に封入されている。プレート型ヒートパイプ構造を有する熱移動媒体60の特徴は、適用姿勢による大幅な熱輸送能力の変化が無いため、熱移動媒体60の両端において、受熱部と放熱部の交換が可能になる。従って、燃料電池スタンク50と第2の蒸気生成器51間で、両方向に熱の出し入れが実現できる。また、市販されているプレート型ヒートパイプ構造を有する熱移動媒体60の性能の一例を以下に示す。  As the hydraulic fluid, HFC134a (alternative chlorofluorocarbon) or butane (Bu) -based hydraulic fluid suitable for the operating temperature range of the fuel cell stack 50 of the present invention is used, and is enclosed in the loop-type meandering capillary 65. The feature of the heat transfer medium 60 having a plate heat pipe structure is that there is no significant change in heat transport capability depending on the application posture, so that the heat receiving part and the heat radiating part can be exchanged at both ends of the heat transfer medium 60. Accordingly, heat can be input and output in both directions between the fuel cell tank 50 and the second steam generator 51. Moreover, an example of the performance of the heat transfer medium 60 having a commercially available plate-type heat pipe structure is shown below.

Figure 0004994731
Figure 0004994731

表1に示した1kW級燃料電池スタックの発熱量0.89〔kW〕に対して、表2に示す熱移動媒体60の一例の熱輸送量性能にて燃料電池スタック50構成(例えば、熱移動媒体挿入時の接触面積100〔cm〕にて計算)を検討すると、燃料電池スタック50内の温度分布低減化を考慮しても、例えば9枚(単位セル5枚に1枚毎の挿入)の熱移動媒体60を挿入すれば、運用上問題なく燃料電池発電システム内における所定の熱収支を実現できる。The fuel cell stack 50 configuration (for example, heat transfer) with the heat transfer capacity performance of an example of the heat transfer medium 60 shown in Table 2 with respect to the calorific value 0.89 [kW] of the 1 kW class fuel cell stack shown in Table 1 When calculating the contact area at the time of medium insertion of 100 [cm 2 ], for example, 9 sheets (insertion for every 5 unit cells) even if the temperature distribution in the fuel cell stack 50 is reduced. If the heat transfer medium 60 is inserted, a predetermined heat balance in the fuel cell power generation system can be realized without any operational problems.

以上、説明した実施例の熱移動媒体60を用いれば、熱移動媒体60はプレート型ヒートパイプ構造を有するので、燃料電池スタック50の発熱は、前記熱移動媒体60内部の作動液に熱伝達され、その作動液は高温高圧の蒸気泡となり、低温の第2の蒸気生成器51側への作動液の循環現象、または振動現象により、第2の蒸気生成器51へ速やかに熱伝達することが出来る。  As described above, when the heat transfer medium 60 of the embodiment described above is used, the heat transfer medium 60 has a plate-type heat pipe structure, so that the heat generated in the fuel cell stack 50 is transferred to the working fluid inside the heat transfer medium 60. The hydraulic fluid becomes high-temperature and high-pressure steam bubbles, and heat can be quickly transferred to the second steam generator 51 by the circulation or vibration phenomenon of the hydraulic fluid toward the low-temperature second steam generator 51. I can do it.

これより、運転温度が100〔℃〕以上の中温型燃料電池発電システムでも、従来熱移動媒体として水を用いていた場合に必要とされた耐圧仕様の循環ポンプ、冷却循環水配管等の設備を必要とすることなく、燃料電池スタック50の発熱を、迅速に効率よく、第2の蒸気生成器51に移動させ、蒸気の生成が可能となる。  As a result, even in medium-temperature fuel cell power generation systems with an operating temperature of 100 [° C] or more, facilities such as a pressure-resistant circulation pump and cooling circulation water piping that were required when water was conventionally used as the heat transfer medium Without the necessity, heat generation of the fuel cell stack 50 can be quickly and efficiently moved to the second steam generator 51 to generate steam.

(1−3)燃料電池発電システムの構成
次に、本発明の燃料電池発電システムの構成について説明する。図10との対応部分に同一符号を付した図4は、本発明の一実施例である定置用燃料電池発電システムの構成の概略を示す構成図である。実施例の燃料電池発電システム70は、図示するように、外部より原料ガスの供給を受けて、原料ガスを水素リッチな改質ガスに改質する改質器24と、改質ガス中の一酸化炭素を低減して燃料ガスとするシフト反応器25と、燃料ガスと空気との供給を受けて電気化学反応により発電する燃料電池スタック50と、燃料電池スタック50の冷却水と貯湯槽23の低温水との熱交換を行なう熱交換器71と、燃料電池スタック50からの直流電力の電圧および電流を調整して所望の直流電力に変換するDC/DCコンバータ28と、変換された直流電力を商用電源(系統)と同位相の交流電力に変換して商用電源(系統)に電力を供給するインバータ29を備える。
(1-3) Configuration of Fuel Cell Power Generation System Next, the configuration of the fuel cell power generation system of the present invention will be described. FIG. 4, in which the same reference numerals are assigned to the parts corresponding to those in FIG. As shown in the figure, the fuel cell power generation system 70 of the embodiment receives a raw material gas supplied from the outside and reforms the raw material gas into a hydrogen-rich reformed gas, and a reformer gas in the reformed gas. A shift reactor 25 that reduces carbon oxides into fuel gas, a fuel cell stack 50 that receives supply of the fuel gas and air and generates electric power through an electrochemical reaction, a cooling water and a hot water storage tank 23 of the fuel cell stack 50 A heat exchanger 71 that performs heat exchange with low-temperature water, a DC / DC converter 28 that adjusts the voltage and current of DC power from the fuel cell stack 50 to convert it to desired DC power, and the converted DC power An inverter 29 is provided that converts AC power in phase with the commercial power source (system) and supplies power to the commercial power source (system).

また、純水タンク22に貯められた純水が、純水供給ポンプ30を介して、第1の蒸気生成器31に供給され、更には、遮断弁72を介して第2の蒸気生成器51に供給され、最終的に、蒸気調節弁32を介して改質器24の入口に供給されるように、直列に配置されている。また、純水供給ポンプ30の下流で、配管が分岐され、バイパス弁73を配置した後、遮断弁72の下流につながる第1の蒸気生成器31のバイパスライン74が設けられている。また、第2の蒸気生成器51には、当該第2の蒸気生成器51内の液位、及び圧力を測定する液位計75と圧力計76が配置されており、それらの信号を受けて、所定の液位及び圧力に制御されるように、遮断弁77を配備した純水タンク22への戻りライン78が設けられている。  The pure water stored in the pure water tank 22 is supplied to the first steam generator 31 via the pure water supply pump 30, and further to the second steam generator 51 via the shut-off valve 72. Are arranged in series so as to be finally supplied to the inlet of the reformer 24 via the steam control valve 32. A bypass line 74 of the first steam generator 31 connected to the downstream of the shutoff valve 72 is provided after the piping is branched and the bypass valve 73 is arranged downstream of the pure water supply pump 30. The second steam generator 51 is provided with a liquid level meter 75 and a pressure gauge 76 for measuring the liquid level and pressure in the second steam generator 51, and receives these signals. A return line 78 to the pure water tank 22 provided with the shutoff valve 77 is provided so as to be controlled to a predetermined liquid level and pressure.

改質器24及びシフト反応器25では、原料ガスラインから昇圧ポンプ33と硫黄分を除く脱硫器34と調節弁35とを介して供給される原料ガスと、純水タンク22から第1の蒸気生成器31及び第2の蒸気発生器51介して調節弁32によりその流量が調整される水蒸気とによる前記式(1)および式(2)の水蒸気改質反応およびシフト反応により水素リッチな改質ガスを生成するように構成されている。改質器24には、こうした反応に必要な熱を供給する燃焼部36が設けられており、その燃焼部36には、燃料電池スタック50のアノード側の排出ガスが供給され、アノードオフガス中の未反応の水素を燃料として用いることができるようになっている。  In the reformer 24 and the shift reactor 25, the raw material gas supplied from the raw material gas line via the booster pump 33, the desulfurizer 34 that removes sulfur, and the control valve 35, and the first steam from the pure water tank 22. Hydrogen-rich reforming by the steam reforming reaction and shift reaction of the above formulas (1) and (2) with the steam whose flow rate is adjusted by the control valve 32 via the generator 31 and the second steam generator 51 It is configured to generate gas. The reformer 24 is provided with a combustion section 36 that supplies heat necessary for such a reaction. The combustion section 36 is supplied with the exhaust gas on the anode side of the fuel cell stack 50, and is included in the anode off-gas. Unreacted hydrogen can be used as a fuel.

燃料電池スタック50は、シフト反応器25からの燃料ガス中の水素と空気ブロア79からの空気中の酸素とによる電気化学反応によって発電する。上述のように燃料電池スタック50と第2の蒸気生成器51との間には、熱移動媒体60を配置することで、両者間の熱移動を効率良く行える構成になっている。  The fuel cell stack 50 generates power by an electrochemical reaction between hydrogen in the fuel gas from the shift reactor 25 and oxygen in the air from the air blower 79. As described above, the heat transfer medium 60 is disposed between the fuel cell stack 50 and the second steam generator 51, so that heat transfer between the two can be efficiently performed.

ここで、例えば、1kW級定置用燃料電池発電システムの熱収支を示す表1によると、
(定格運転時の1kW級スタックの発熱量)>(定格運転時に改質蒸気生成に必要な熱量) ……(4)
の関係が成立するので、前記(4)式の差分の熱量を、純水タンク22に戻すように、純水供給ポンプ30の吐出流量と、第2の蒸気生成器51内の圧力を検知して動作する戻りライン78に配置された遮断弁77を制御することで、純水タンク22に燃料電池スタック50の発熱の一部を移動できるように構成されている。更に、この純水タンク22には、熱交換器71が設けられており、燃料電池スタック50の発熱の一部を受け取り昇温した純水との熱交換により、貯湯槽23からポンプ80により供給される低温水が加温されて貯湯槽23に貯湯されるように構成されている。
Here, for example, according to Table 1 showing the heat balance of a 1 kW class stationary fuel cell power generation system,
(The amount of heat generated by the 1 kW class stack during rated operation)> (The amount of heat necessary for generating reformed steam during rated operation) (4)
Therefore, the discharge flow rate of the deionized water supply pump 30 and the pressure in the second steam generator 51 are detected so that the difference in the amount of heat in the equation (4) is returned to the deionized water tank 22. By controlling the shut-off valve 77 disposed in the return line 78 that operates, a part of the heat generated by the fuel cell stack 50 can be moved to the pure water tank 22. Further, the pure water tank 22 is provided with a heat exchanger 71, which receives a part of the heat generated by the fuel cell stack 50 and supplies the pump 80 from the hot water storage tank 23 by heat exchange with the heated pure water. The low-temperature water to be heated is heated and stored in the hot water tank 23.

以上説明した本実施例の固体高分子型燃料電池発電システム70によれば、100〔℃〕以上で運転される燃料電池スタック50の発熱量を、熱移動媒体60を介して、第2の蒸気生成器51に効率良く伝えることが可能となるので、第2の蒸気生成器51において、定格発電運転時に必要な改質蒸気の約2倍の蒸気(系外への放熱分は、“0”と仮定)を生成できる。  According to the polymer electrolyte fuel cell power generation system 70 of the present embodiment described above, the calorific value of the fuel cell stack 50 operated at 100 [° C.] or higher is transferred via the heat transfer medium 60 to the second steam. Since it can be efficiently transmitted to the generator 51, the second steam generator 51 has approximately twice as much steam as the reformed steam necessary for the rated power generation operation (the heat release to the outside of the system is “0”). Can be generated).

本実施例の燃料電池発電システム70が定格運転時は、遮断弁72が閉じ、遮断弁73が開くので、純水ポンプ30から供給される純水は、第1の蒸気生成器31をバイパスして、直接、第2の蒸気生成器51に供給される。これより、定格運転中は、燃料電池スタック50の発熱だけを利用した第2の蒸気生成器51の単独運転になるので、従来の低温型固体高分子型燃料電池発電システム20(図10)で実施されていた様なアノードオフガス中の未反応水素の燃焼熱を利用した第1の蒸気生成器31による改質蒸気の生成を休止することができる。この結果、第1の蒸気生成器31にて蒸気生成に使われる熱量分の原料ガス投入量を削減できるので、発電効率を高めることが出来る。(前記式(3)における燃料利用率Ufを高めることで、発電効率の上昇になる)  During the rated operation of the fuel cell power generation system 70 of this embodiment, the shutoff valve 72 is closed and the shutoff valve 73 is opened, so that pure water supplied from the pure water pump 30 bypasses the first steam generator 31. Directly supplied to the second steam generator 51. As a result, during the rated operation, the second steam generator 51 that uses only the heat generated by the fuel cell stack 50 is operated independently, so that the conventional low-temperature solid polymer fuel cell power generation system 20 (FIG. 10) is used. The generation of reformed steam by the first steam generator 31 using the combustion heat of unreacted hydrogen in the anode off-gas as has been performed can be stopped. As a result, since the input amount of the raw material gas corresponding to the amount of heat used for steam generation in the first steam generator 31 can be reduced, the power generation efficiency can be increased. (By increasing the fuel utilization rate Uf in the equation (3), the power generation efficiency is increased.)

(1−3)燃料電池発電システムの起動操作
次に、本発明の燃料電池発電システム70の起動する際の操作について説明する。図5及び図6は本発明で実行される起動操作の一例を示すフローチャートである。
(1-3) Start-up operation of the fuel cell power generation system Next, the operation when the fuel cell power generation system 70 of the present invention is started will be described. 5 and 6 are flowcharts showing an example of the start operation executed in the present invention.

燃料電池発電システム70の起動指令が実行されると、空気ブロア79が稼動し、燃焼部36へ空気を供給する。その後、原料ガスラインの昇圧ポンプ33が稼動し、脱硫器34を通過した原料ガスが、図示しない配管を介して燃焼部36に供給される。次に、燃焼部36に配置されたバーナー36Aを点火させることで、供給された空気と原料ガスは燃焼部36内を加熱し、改質器24及び隣接するシフト反応器25と第1の蒸気生成器31の昇温を行う。  When the start command for the fuel cell power generation system 70 is executed, the air blower 79 is operated to supply air to the combustion unit 36. Thereafter, the booster pump 33 of the raw material gas line is operated, and the raw material gas that has passed through the desulfurizer 34 is supplied to the combustion unit 36 via a pipe (not shown). Next, the burner 36A disposed in the combustion unit 36 is ignited, so that the supplied air and the raw material gas heat the inside of the combustion unit 36, and the reformer 24 and the adjacent shift reactor 25 and the first steam are heated. The generator 31 is heated.

燃焼部36が、第1の蒸気生成器31にて十分に蒸気生成が可能な所定の温度まで昇温が到達したところで、純水供給ポンプ30を稼動させ、純水タンク22から、第1の蒸気生成器31まで、純水を供給する。この時、遮断弁72は開状態なので、第1の蒸気生成器31で生成された蒸気は、直列に接続された第2の蒸気生成器51に供給される。  When the temperature of the combustion unit 36 reaches a predetermined temperature at which the first steam generator 31 can sufficiently generate steam, the pure water supply pump 30 is operated, and from the pure water tank 22, Pure water is supplied to the steam generator 31. At this time, since the shutoff valve 72 is in an open state, the steam generated by the first steam generator 31 is supplied to the second steam generator 51 connected in series.

第2の蒸気発生器51に供給された蒸気は、熱移動媒体60を介して燃料電池スタック50に熱を与えることで、燃料電池スタック50の昇温操作が実施される。第2の蒸気生成器51内では、供給された蒸気は、燃料電池スタック50に熱を与えた後、凝縮し、その凝縮液位が上昇するが、液位計75が検出し、所定の液位を超えた場合、遮断弁77が開き、凝縮水を戻りライン78を通して、純水タンク22に戻るように操作することで、第2の蒸気生成器51の液位を制御する。  The steam supplied to the second steam generator 51 gives heat to the fuel cell stack 50 via the heat transfer medium 60, whereby the temperature raising operation of the fuel cell stack 50 is performed. In the second steam generator 51, the supplied steam condenses after giving heat to the fuel cell stack 50, and the condensed liquid level rises, but the liquid level meter 75 detects the predetermined liquid level. When the pressure exceeds the level, the shut-off valve 77 is opened, and the liquid level of the second steam generator 51 is controlled by operating the condensed water to return to the pure water tank 22 through the return line 78.

また、燃料電池スタック50が所定の運転温度、例えば150〔℃〕に到達した場合には、その温度に相当する蒸気圧を圧力計76が検出し、遮断弁77が開き、蒸気を戻りライン78を通して、純水タンク22に放出するように操作することで、第2の蒸気生成器51及び燃料電池スタック50の温度を所定値に制御する。以上の改質器24及び燃料電池スタック50の昇温操作を実施し、両者が所定の温度に到達した場合、燃料ガス導入モードへ移行する。  When the fuel cell stack 50 reaches a predetermined operating temperature, for example, 150 [° C.], the pressure gauge 76 detects the vapor pressure corresponding to the temperature, the shut-off valve 77 is opened, and the vapor is returned to the return line 78. The temperature of the second steam generator 51 and the fuel cell stack 50 is controlled to a predetermined value by operating to discharge to the pure water tank 22. When the temperature raising operation of the reformer 24 and the fuel cell stack 50 is performed and both of them reach a predetermined temperature, the fuel gas introduction mode is entered.

第2の蒸気生成器51内に滞留する蒸気は、蒸気調節弁32を開けることで、改質器24に供給される。その後、脱硫器34の下流に配置した調節弁35を開くことで、原料ガスを改質器24に供給する。この結果、改質器24、シフト反応器25では、それぞれ、式(1)に示した水蒸気改質反応、式(2)に示したシフト反応が起きることで、燃料電池スタック50のアノードには、水素リッチな燃料ガスがされる。その後、調節弁81を開いて、空気を燃料電池スタック50のカソード供給することで、燃料電池スタック50は発電運転スタンバイ状態に移行し、系統への負荷投入が実行される。  The steam staying in the second steam generator 51 is supplied to the reformer 24 by opening the steam control valve 32. Thereafter, the control gas 35 disposed downstream of the desulfurizer 34 is opened to supply the raw material gas to the reformer 24. As a result, in the reformer 24 and the shift reactor 25, the steam reforming reaction shown in the formula (1) and the shift reaction shown in the formula (2) respectively occur, so that the anode of the fuel cell stack 50 The fuel gas is rich in hydrogen. Thereafter, the control valve 81 is opened, and air is supplied to the cathode of the fuel cell stack 50, whereby the fuel cell stack 50 shifts to a power generation operation standby state, and a load is applied to the system.

次に、定格運転相当の水素リッチな燃料ガス及び空気が供給された段階で、負荷増大が実施され、定格負荷運転に移行する。定格負荷運転到達後、第1の蒸気生成器31の下流に配置した遮断弁72を閉じると同時に、第1の蒸気生成器31をバイパスするバイパスライン74に配置した遮断弁73を開けることで、純水タンク22の純水が直接、第2の蒸気生成器51に供給される。この結果、純水タンク22から供給された純水は、熱移動媒体60を介して移動してきた燃料電池スタック50の発熱分により、第2の蒸気生成器51内で蒸気に変換され、改質器24に供給される改質蒸気として使われる。従って、定格負荷モードでは、第2の蒸気生成器51の単独運転により、改質器24への改質蒸気供給が継続される。  Next, when the hydrogen-rich fuel gas and air equivalent to the rated operation are supplied, the load is increased and the operation shifts to the rated load operation. After reaching the rated load operation, simultaneously closing the shutoff valve 72 disposed downstream of the first steam generator 31 and simultaneously opening the shutoff valve 73 disposed in the bypass line 74 that bypasses the first steam generator 31, Pure water in the pure water tank 22 is directly supplied to the second steam generator 51. As a result, the pure water supplied from the pure water tank 22 is converted into steam in the second steam generator 51 by the heat generated by the fuel cell stack 50 that has moved through the heat transfer medium 60, and reformed. Used as reformed steam supplied to the vessel 24. Therefore, in the rated load mode, the reformed steam supply to the reformer 24 is continued by the single operation of the second steam generator 51.

以上説明した本実施例の固体高分子型燃料電池発電システム70の起動操作方法によれば、システム起動中は、改質器24の燃焼部36で発生する燃焼熱の一部を得て、第1の蒸気生成器31にて生成した蒸気を利用して、第2の蒸気生成器51に配置した熱移動媒体60を介して熱伝達することで、燃料電池スタック50の昇温操作を行い、更に、負荷投入及び定格負荷移行の過渡状態中は、未だ、燃料電池スタック50から第2の蒸気生成器51への熱移動量が不十分なため、第2の蒸気生成器51単独での改質蒸気供給は実現できない状態により、前記第1の蒸気生成器31から継続して生成される蒸気を、改質器24に改質蒸気として供給できるように制御される。  According to the start-up operation method of the polymer electrolyte fuel cell power generation system 70 of the present embodiment described above, during the system start-up, a part of the combustion heat generated in the combustion unit 36 of the reformer 24 is obtained. Using the steam generated by the first steam generator 31, heat is transferred through the heat transfer medium 60 disposed in the second steam generator 51, thereby performing the temperature raising operation of the fuel cell stack 50, Furthermore, during the transient state of load application and transition to the rated load, the amount of heat transfer from the fuel cell stack 50 to the second steam generator 51 is still insufficient, so that the modification of the second steam generator 51 alone is not possible. Control is performed so that the steam continuously generated from the first steam generator 31 can be supplied to the reformer 24 as reformed steam in a state where the quality steam supply cannot be realized.

この結果、運転温度が100〔℃〕以上の中温型燃料電池スタック50でも、従来熱移動媒体として水を用いていた場合に必要とされた耐圧仕様の循環ポンプ、冷却循環水配管等の設備を必要とすることなく、迅速に効率よく、燃料電池スタック50の昇温操作を完了することができる。  As a result, the intermediate temperature fuel cell stack 50 having an operating temperature of 100 [° C.] or higher can be provided with facilities such as a pressure-resistant circulation pump and cooling circulation water piping that were required when water was conventionally used as the heat transfer medium. The temperature raising operation of the fuel cell stack 50 can be completed quickly and efficiently without the need.

(2)第2の実施の形態
(2−1)燃料電池スタックの構成
図7及び図8に、本発明の第2の実施の形態である燃料電池スタック90の構成を示す。
図7に示すように、本発明においては、扁平形状の固体高分子電解質膜と、この固体高分子電解質膜の主両面のそれぞれに接合させた燃料電極および酸化剤電極、さらにその外側両面のそれぞれに燃料ガス流路を有する燃料ガス用セパレータおよび酸化剤ガス流路を有する酸化剤ガス用セパレータからなる燃料電池セルが複数枚積層され、積層端面が扁平状の燃料電池スタック90が構成される。
(2) Second Embodiment (2-1) Configuration of Fuel Cell Stack FIGS. 7 and 8 show the configuration of a fuel cell stack 90 according to the second embodiment of the present invention.
As shown in FIG. 7, in the present invention, a flat solid polymer electrolyte membrane, a fuel electrode and an oxidizer electrode joined to each of the main surfaces of the solid polymer electrolyte membrane, and each of both outer surfaces thereof A plurality of fuel cell cells each including a fuel gas separator having a fuel gas flow channel and an oxidant gas separator having an oxidant gas flow channel are stacked, and a fuel cell stack 90 having a flat stacked end surface is formed.

前記燃料電池スタック90の積層端面の長辺にあたる2つの積層側面には、絶縁シート91を介して、プレート状の熱移動媒体92が1枚、若しく複数枚並列配置され、当該熱移動媒体92の一端は、前記燃料電池スタック90の積層側面より突出し、図8に示すように第2の蒸気生成器51を挟み込む形状で配置される。  One or more plate-shaped heat transfer media 92 are arranged in parallel on two stacked side surfaces corresponding to the long sides of the stacked end surfaces of the fuel cell stack 90 via an insulating sheet 91. One end of the fuel cell stack 90 protrudes from the stacking side surface of the fuel cell stack 90, and is arranged in a shape sandwiching the second steam generator 51 as shown in FIG.

前記熱移動媒体92と、絶縁シート91を介した燃料電池スタック90との接続、及び第2の蒸気生成器51との接続は、接触熱抵抗を小さくし熱の移動を容易にするため、所定の接触面圧にて配備させるようになっている。また、燃料電池スタック90と熱移動媒体92、更には第2の蒸気生成器51の周囲には、放熱を防止するための断熱材(図示せず)が配置されている。  The connection between the heat transfer medium 92 and the fuel cell stack 90 via the insulating sheet 91 and the connection with the second steam generator 51 are small in order to reduce contact thermal resistance and facilitate heat transfer. It is designed to be deployed with the contact surface pressure. In addition, a heat insulating material (not shown) for preventing heat dissipation is disposed around the fuel cell stack 90, the heat transfer medium 92, and the second steam generator 51.

本実施例の燃料電池発電スタック90においては、発電運転中に燃料電池セルで発生した熱は、隣接するセパレータを伝熱して、積層側面に接触している熱移動媒体92に移動する。この場合、燃料電池スタック90の発熱は、扁平形状を有するセパレータの長辺側のエッジ部断面を通過することになるので、所定の熱移動量に見合うように、セパレータの厚みと扁平形状(縦横比)を設計すれば、冷却設計が達成できる。  In the fuel cell power generation stack 90 of the present embodiment, the heat generated in the fuel cell during the power generation operation is transferred to the adjacent separator and transferred to the heat transfer medium 92 that is in contact with the stacked side surface. In this case, since the heat generated in the fuel cell stack 90 passes through the cross section of the long side of the separator having a flat shape, the thickness of the separator and the flat shape (vertically and horizontally) are adjusted to meet a predetermined heat transfer amount. Ratio) can be designed to achieve cooling design.

例えば、1kW級燃料電池スタック90のセパレータ厚み3〔mm〕、長辺長さ30〔cm〕、枚数50枚と仮定した場合、前記燃料電池スタック90の長辺側積層側面の2面の合計面積は、900〔cm〕になるので、燃料電池スタック90と熱移動媒体92間の熱抵抗に伴う熱伝導ロスを考慮しても、1kW級燃料電池スタック90の発熱量0.89〔kW〕(表1参照)を、表2に一例として示した性能を有する熱移動媒体92を採用すれば、第2の蒸気生成器51に移動させ、改質反応に必要な蒸気生成に使用することが出来る。For example, assuming that the separator thickness of the 1 kW class fuel cell stack 90 is 3 [mm], the long side length is 30 [cm], and the number is 50 sheets, the total area of the two sides of the long side stack side surface of the fuel cell stack 90 Is 900 [cm 2 ]. Therefore, even when the heat conduction loss due to the thermal resistance between the fuel cell stack 90 and the heat transfer medium 92 is taken into consideration, the calorific value of the 1 kW class fuel cell stack 90 is 0.89 [kW]. If the heat transfer medium 92 having the performance shown in Table 2 as an example is employed (see Table 1), the heat transfer medium 92 can be moved to the second steam generator 51 and used for steam generation necessary for the reforming reaction. I can do it.

以上、説明した実施例の燃料電池スタック構成によれば、熱移動媒体92を燃料電池スタック90の積層端面の外部に配置されているので、積層端面内に配置した場合に必要とされたガスシール構造や、積層された各燃料電池セルに配流するために配置されるマニホールド構造を必要とすることがないので、熱移動媒体92の構造簡素化に伴う低コスト化、及び燃料電池スタック90を製作する場合の手間が省ける利点を得られる。また、熱移動媒体92を燃料電池スタック90の積層端面の外部に配置されているので、熱移動媒体92が導電性を有する材料に制約される必要が無く、もし、非導電性の材料を用いた場合には、絶縁シート91を削除することも出来る。  As described above, according to the fuel cell stack configuration of the embodiment described above, since the heat transfer medium 92 is disposed outside the stacked end surface of the fuel cell stack 90, the gas seal required when disposed in the stacked end surface. The structure and the manifold structure arranged to distribute the fuel cells to the stacked fuel cells are not required, so the cost of the heat transfer medium 92 is simplified and the fuel cell stack 90 is manufactured. It is possible to obtain the advantage of saving time and effort. In addition, since the heat transfer medium 92 is disposed outside the stacked end face of the fuel cell stack 90, the heat transfer medium 92 does not need to be restricted by a conductive material, and a non-conductive material is used. If there is, the insulating sheet 91 can be deleted.

本発明はスタック運転温度が100〔℃〕以上の中温型燃料電池スタックにおけるスタック発熱の有効利用を実現する燃料電池システムに適用できる。  The present invention can be applied to a fuel cell system that realizes effective use of stack heat generation in a medium temperature fuel cell stack having a stack operating temperature of 100 ° C. or higher.

本発明の第1の実施形態に係る燃料電池スタックの構成を示す略線図である。1 is a schematic diagram illustrating a configuration of a fuel cell stack according to a first embodiment of the present invention. 本発明の第1の実施形態に係わる燃料電池スタック及び第2の蒸発発生器の構成を示す略線的平面図である。FIG. 3 is a schematic plan view showing configurations of a fuel cell stack and a second evaporation generator according to the first embodiment of the present invention. 本発明の第1の実施形態に係わる熱移動媒体を示す構造図である。1 is a structural diagram showing a heat transfer medium according to a first embodiment of the present invention. 本発明の実施形態に係る定置用燃料電池発電システムの構成の概略を示すブロック図である。It is a block diagram which shows the outline of a structure of the stationary fuel cell power generation system which concerns on embodiment of this invention. 本発明の実施形態に係る定置用燃料電池発電システムで実行される起動操作を示すフローチャートである。It is a flowchart which shows starting operation performed with the stationary fuel cell power generation system which concerns on embodiment of this invention. 本発明の実施形態に係る定置用燃料電池発電システムで実行される起動操作を示すフローチャートである。It is a flowchart which shows starting operation performed with the stationary fuel cell power generation system which concerns on embodiment of this invention. 本発明の第2の実施形態に係る燃料電池スタックの構成を示す略線図である。従来の燃料電池本体の構成と定置用燃料電池発電システム構成を示す構成図である。It is a basic diagram which shows the structure of the fuel cell stack which concerns on the 2nd Embodiment of this invention. It is a block diagram which shows the structure of the conventional fuel cell main body, and a stationary fuel cell power generation system structure. 本発明の第2の実施形態に係わる燃料電池スタック及び第2の蒸発発生器の構成を示す略線的平面図である。It is a rough-line top view which shows the structure of the fuel cell stack concerning the 2nd Embodiment of this invention, and a 2nd evaporation generator. 従来の燃料電池スタックの構成を示す略線図である。It is a basic diagram which shows the structure of the conventional fuel cell stack. 従来の定置用燃料電池発電システム構成を示すブロック図である。It is a block diagram which shows the conventional stationary fuel cell power generation system structure.

符号の説明Explanation of symbols

1、50、90……燃料電池スタック、2、52……固体高分子電解質膜、3、53……燃料電極、4、54……酸化剤電極、6、56……燃料ガス用セパレータ、8、58……酸化剤ガス用セパレータ、9、59……燃料電池セル、11……冷却板、20、70……燃料電池システム、22……純水タンク、23……貯湯槽、24……改質器、25……シフト反応器、31……(第1の)蒸気発生器、36……燃焼部、51……第2の蒸気発生器、60、92……熱移動媒体、61、91……絶縁シート、72、77……遮断弁、73……パイパス弁、74……バイパスライン。  DESCRIPTION OF SYMBOLS 1, 50, 90 ... Fuel cell stack, 2, 52 ... Solid polymer electrolyte membrane, 3, 53 ... Fuel electrode, 4, 54 ... Oxidant electrode, 6, 56 ... Fuel gas separator, 8 58 ... Oxidant gas separator, 9, 59 ... Fuel cell, 11 ... Cooling plate, 20, 70 ... Fuel cell system, 22 ... Pure water tank, 23 ... Hot water tank, 24 ... Reformer, 25 ... shift reactor, 31 ... (first) steam generator, 36 ... combustion section, 51 ... second steam generator, 60, 92 ... heat transfer medium, 61, 91 ... Insulating sheet, 72, 77 ... Shut-off valve, 73 ... Bypass valve, 74 ... Bypass line.

Claims (5)

電解質と当該電解質を挟むアノード及びカソードから成る一対の電極から構成されたセルと、前記電極のアノードに水素を含む燃料ガスを供給・排出し、カソードに酸素を含有する酸化剤ガスを供給・排出するガス流路を有する一対のセパレータを交互に複数積層された燃料電池スタックと、原料ガスから燃料電池本体に供給する燃料ガスを生成する燃料改質処理系と、前記燃料改質処理系にて改質反応を起こすために必要な水蒸気を供給する第1の蒸気生成器に純水を供給すると同時に排熱の有効利用を行うための純水系を有する燃料電池発電システムにおいて、
前記燃料電池スタックに積層された複数セルの全部又は一部と熱伝導性を有して係合された熱移動媒体と、
前記熱移動媒体と熱導通接続するように前記燃料電池スタックに隣接して配置され、当該熱移動媒体を介して供給される熱に基づき水蒸気を発生する第2の蒸気生成器とを備え
前記第1の蒸気生成器と前記第2の蒸気生成器とを、第1の遮断弁を介して連結することで直列配置すると共に、前記第2の蒸気生成器が、蒸気調整弁を介して前記燃料改質処理系の入口に連結するラインと、第2の遮断弁を介して前記純水系に戻すラインとを有することを特徴とする燃料電池発電システム。
A cell composed of an electrolyte and a pair of electrodes composed of an anode and a cathode sandwiching the electrolyte, and a fuel gas containing hydrogen to the anode of the electrode is supplied / discharged, and an oxidant gas containing oxygen is supplied / discharged to the cathode A fuel cell stack in which a plurality of pairs of separators having gas flow paths are alternately stacked, a fuel reforming processing system for generating fuel gas to be supplied from a raw material gas to the fuel cell main body, and the fuel reforming processing system In a fuel cell power generation system having a pure water system for supplying exhaust water to a first steam generator for supplying steam necessary for causing a reforming reaction and at the same time effectively using exhaust heat,
A heat transfer medium engaged with all or a part of the plurality of cells stacked in the fuel cell stack with thermal conductivity;
Disposed adjacent to the fuel cell stack so as to connect the heat transfer medium and the heat conduction, and a second steam generator for generating steam based on the heat supplied through the heat transfer medium,
The first steam generator and the second steam generator are connected in series via a first shut-off valve, and the second steam generator is connected via a steam control valve. A fuel cell power generation system comprising: a line connected to an inlet of the fuel reforming treatment system; and a line returning to the pure water system via a second shut-off valve .
ステム起動中に、前記第1の遮断弁を開状態にして、前記第1の蒸気生成器で生成した蒸気を前記第2の蒸気生成器へ供給することで、前記第2の蒸気生成器内に滞留した蒸気の熱を、前記熱移動媒体を介して、前記燃料電池スタックに与えて昇温を行い、
更に、前記燃料電池スタックの昇温完了後、システム負荷投入時に、前記蒸気調整弁を開状態にして、前記第1の蒸気生成器で生成した蒸気を前記第2の蒸気生成器を介して、前記燃料改質処理系に供給することで、システム負荷運転に移行し、
更に、負荷運転整定後に、前記第1の蒸気生成器と前記第2の蒸気生成器との間に配置した前記第1の遮断弁を閉状態にするとともに、前記第2の遮断弁を開状態にして、前記第2の蒸気生成器の単独運転に切り替える
ことを特徴とした請求項1に記載の燃料電池発電システム。
The system during startup, the first shut-off valve in the open state, by supplying the steam generated in said first steam generator to said second steam generator, the second steam generator The heat of the steam staying inside is given to the fuel cell stack through the heat transfer medium to raise the temperature,
Further, after completion of the temperature rise of the fuel cell stack, when the system load is turned on, the steam control valve is opened, and the steam generated by the first steam generator is passed through the second steam generator, By supplying the fuel reforming system, the system shifts to system load operation.
Further, after the load operation is set, the first shut-off valve disposed between the first steam generator and the second steam generator is closed, and the second shut-off valve is opened. Then, the fuel cell power generation system according to claim 1, wherein the second steam generator is switched to a single operation.
前記熱移動媒体は、前記燃料電池スタックに積層された前記複数セルについて、所定数の積層枚数毎に又は各前記セルと交互にそれぞれ挿入されている
ことを特徴する請求項1及び2に記載の燃料電池発電システム。
3. The heat transfer medium according to claim 1, wherein the plurality of cells stacked in the fuel cell stack are inserted for each predetermined number of stacked sheets or alternately with each of the cells. 4. Fuel cell power generation system.
前記熱移動媒体は、プレート中に蛇行細管が配置または形成され、前記細管中に熱輸送媒体である作動液が封入された蛇行細管型ヒートパイプ構造である
ことを特徴とした請求項3に記載の燃料電池発電システム。
The said heat transfer medium is a meandering capillary type heat pipe structure in which meandering tubules are arranged or formed in a plate, and a working fluid as a heat transport medium is enclosed in said tubules. Fuel cell power generation system.
前記熱移動媒体は、前記複数セルの積層端面の少なくとも1面以上の面に、電気絶縁性の介在物を配して接触配置されている
ことを特徴とした請求項1及び2に記載の燃料電池発電システム。
3. The fuel according to claim 1, wherein the heat transfer medium is disposed in contact with at least one of the stacked end faces of the plurality of cells with an electrically insulating inclusion disposed. Battery power generation system.
JP2006196170A 2006-06-20 2006-06-20 Fuel cell power generation system Expired - Fee Related JP4994731B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006196170A JP4994731B2 (en) 2006-06-20 2006-06-20 Fuel cell power generation system
KR1020060086992A KR100813245B1 (en) 2006-06-20 2006-09-08 Electric generating system of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006196170A JP4994731B2 (en) 2006-06-20 2006-06-20 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JP2008004516A JP2008004516A (en) 2008-01-10
JP4994731B2 true JP4994731B2 (en) 2012-08-08

Family

ID=39008720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006196170A Expired - Fee Related JP4994731B2 (en) 2006-06-20 2006-06-20 Fuel cell power generation system

Country Status (2)

Country Link
JP (1) JP4994731B2 (en)
KR (1) KR100813245B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379962B2 (en) * 2007-08-10 2013-12-25 Jx日鉱日石エネルギー株式会社 Fuel cell system and reforming material vaporization method
KR20090079517A (en) * 2008-01-18 2009-07-22 삼성전자주식회사 Fuel Cell and Control Method Thereof
EP2113959B1 (en) * 2008-04-25 2013-05-29 Samsung Electronics Co., Ltd. Fuel cell system and control method thereof
JP5260132B2 (en) * 2008-05-07 2013-08-14 日本特殊陶業株式会社 Solid oxide fuel cell
JP5787143B2 (en) * 2011-06-22 2015-09-30 Toto株式会社 Solid oxide fuel cell device
US9548504B2 (en) 2012-01-24 2017-01-17 University Of Connecticut Utilizing phase change material, heat pipes, and fuel cells for aircraft applications
US20130209901A1 (en) * 2012-02-09 2013-08-15 Joseph Sherman Breit Fuel cell cogeneration system
EP3355395A4 (en) * 2015-09-24 2019-05-01 Kolon Industries, Inc. Membrane-electrode assembly for fuel cell, method for manufacturing same, and fuel cell system comprising same
WO2017052248A1 (en) * 2015-09-24 2017-03-30 코오롱인더스트리 주식회사 Membrane-electrode assembly for fuel cell, method for manufacturing same, and fuel cell system comprising same
JP6754221B2 (en) * 2016-05-26 2020-09-09 本田技研工業株式会社 Fuel cell system
JP6661220B2 (en) * 2016-05-30 2020-03-11 本田技研工業株式会社 Fuel cell system
KR101866955B1 (en) 2017-04-19 2018-06-12 주식회사 한국연료전지 the fuel cell stack cooling system
JP2021048102A (en) * 2019-09-20 2021-03-25 株式会社Subaru Fuel battery system
WO2021236093A1 (en) * 2020-05-22 2021-11-25 Advent Technologies, Inc Method and apparatus for thermal regulation of a high temperature pem fuel cell stack

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2811905B2 (en) * 1990-04-19 1998-10-15 富士電機株式会社 Steam generator for fuel cell power generation system
JPH05159792A (en) * 1991-12-10 1993-06-25 Toshiba Corp Fuel cell generating system
JP3147518B2 (en) * 1992-08-20 2001-03-19 富士電機株式会社 Cell structure of solid polymer electrolyte fuel cell
JPH0757752A (en) * 1993-08-13 1995-03-03 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generator
DE602004028555D1 (en) 2003-07-29 2010-09-23 Panasonic Corp Hydrogen generator and fuel cell power system
KR100589408B1 (en) * 2004-04-29 2006-06-14 삼성에스디아이 주식회사 Fuel cell system
JP4797352B2 (en) * 2004-09-17 2011-10-19 三菱マテリアル株式会社 Solid oxide fuel cell
JP2006210151A (en) 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP2008004516A (en) 2008-01-10
KR100813245B1 (en) 2008-03-13
KR20070120865A (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP4994731B2 (en) Fuel cell power generation system
US20080102327A1 (en) Fuel cell and method for cold-starting such a fuel cell
KR20090089859A (en) Fuel cell heat exchange systems and methods
KR20060066436A (en) Air-conditioner using waste-heat from fuel cell
US20180331385A1 (en) Integrated fuel cell systems
JP5763481B2 (en) Fuel cell system
CN114583222A (en) Combined power generation system based on solid oxide fuel cell and internal combustion engine
JP2016515190A (en) Heating equipment and method of operating heating equipment
JP2006236599A (en) Water recovery method for fuel cell power generator
JP2008277017A (en) Heat exchange system and fuel cell
JP5048870B2 (en) Fuel cell system and operation method thereof
JP4902181B2 (en) Fuel cell system
JP5024717B2 (en) CO removal method and apparatus for polymer electrolyte fuel cell
KR100671682B1 (en) Apparatus and method for heat exchange of liquid fuel type fuel cell system
KR101080311B1 (en) Fuel cell system having separate type auxiliary burner and driving method threrof
JP4148623B2 (en) Cogeneration system
JP5145313B2 (en) Fuel cell system
JP2003331891A (en) Fuel cell system, and starting method of fuel cell system
JP5501750B2 (en) Fuel cell system
KR102548739B1 (en) Fuel cell system having high thermal efficiency
JP5266782B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP6761960B1 (en) Hydrogen system
KR100962383B1 (en) Fuel cell package system
JP2005011621A (en) Fuel cell system
KR20230104484A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees