JPH0757752A - Fuel cell power generator - Google Patents

Fuel cell power generator

Info

Publication number
JPH0757752A
JPH0757752A JP5201533A JP20153393A JPH0757752A JP H0757752 A JPH0757752 A JP H0757752A JP 5201533 A JP5201533 A JP 5201533A JP 20153393 A JP20153393 A JP 20153393A JP H0757752 A JPH0757752 A JP H0757752A
Authority
JP
Japan
Prior art keywords
cooling
cell stack
fuel cell
power generator
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5201533A
Other languages
Japanese (ja)
Inventor
Eiichi Iino
栄一 飯野
Maki Ishizawa
真樹 石沢
Toshio Kameyama
壽雄 亀山
Shigemi Iida
茂実 飯田
Shuichi Kitada
秀一 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5201533A priority Critical patent/JPH0757752A/en
Publication of JPH0757752A publication Critical patent/JPH0757752A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell power generator provided with a cell stack cooling system which does not need an ion exchange resin to be used to lower the conductivity of cooling water circulated in the cooling plate of the cell stack. CONSTITUTION:A heat exchanger 17 is inserted in the middle of the cooling system piping between a cell stack 1 and a steam separator 2, to separate the cooling channels between the channel of a heating medium for cooling circulating the heat exchanger and, the cell stack 1, and the heat exchanger 17 and the steam separator 2, are separated from one another, and an ion exchange resin 16 is removed. A fuel cell power generator of good maintenance can thus be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】燃料電池発電装置に関し、特にセ
ルスタック(燃料電池スタック)の冷却系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generator, and more particularly to a cooling system for a cell stack (fuel cell stack).

【0002】[0002]

【従来の技術】図2は従来の燃料電池発電装置の構成例
を示すブロック図、図3は図2の燃料電池発電装置にお
けるセルスタックの構成を示すブロック図である。
2. Description of the Related Art FIG. 2 is a block diagram showing a configuration example of a conventional fuel cell power generation device, and FIG. 3 is a block diagram showing a configuration of a cell stack in the fuel cell power generation device of FIG.

【0003】図3に示すように、セルスタック1は単位
セル10および冷却板11が複数個積層された構造にな
っている。これらの単位セル10は燃料極、空気極、電
解質を含む単位燃料電池であり、冷却板11を介して電
気的に直列に接続され、各単位セル10で発生した起電
力によって流れる電流の回路は各冷却板11を導体とす
ることにより接触抵抗の低減を図っている。また各冷却
板11には絶縁物12,13を介して冷却用配管14,
15が接続され、各冷却板11の内部を冷却用水が流れ
るので各冷却板11間に生じる漏れ電流を抑制するた
め、この冷却用水の導電率は十分小さくする必要があ
る。
As shown in FIG. 3, the cell stack 1 has a structure in which a plurality of unit cells 10 and cooling plates 11 are laminated. These unit cells 10 are unit fuel cells including a fuel electrode, an air electrode, and an electrolyte, are electrically connected in series via a cooling plate 11, and a circuit of a current flowing by an electromotive force generated in each unit cell 10 is The contact resistance is reduced by using each cooling plate 11 as a conductor. In addition, cooling pipes 14 are provided on each cooling plate 11 via insulators 12 and 13,
Since the cooling water flows inside the cooling plates 11 connected to each other, the conductivity of the cooling water needs to be sufficiently small in order to suppress the leakage current generated between the cooling plates 11.

【0004】図2において、セルスタック1の冷却板は
冷却用配管14,15によりポンプ4を介して気水分離
器2に連結されており、冷却用水はイオン交換樹脂16
を介し、補給水管8により気水分離器2に連結されてい
る。気水分離器2は吸収式冷凍機等の熱回収部3に結ば
れており、また気水分離器2から供給される蒸気と燃料
供給管7から供給される都市ガス等の燃料を混合して改
質器6に送るエゼクタ5に接続されている。エゼクタ5
で混合された蒸気燃料混合成分は改質器6で水素に改質
され、セルスタック1の燃料極入口に供給される。また
気水分離器2には水に混入しているシリカ等の不純物成
分が濃縮され、気水分離器2や配管内に沈澱することを
抑制するためのブローダウン管9が設けられている。
In FIG. 2, the cooling plate of the cell stack 1 is connected to the steam separator 2 via the pumps 4 by the cooling pipes 14 and 15, and the cooling water is the ion exchange resin 16
Is connected to the steam separator 2 by a makeup water pipe 8. The steam separator 2 is connected to a heat recovery section 3 such as an absorption chiller, and mixes steam supplied from the steam separator 2 with fuel such as city gas supplied from the fuel supply pipe 7. It is connected to the ejector 5 which sends it to the reformer 6. Ejector 5
The steam-fuel mixture component mixed in (1) is reformed into hydrogen in the reformer 6 and supplied to the fuel electrode inlet of the cell stack 1. Further, the steam separator 2 is provided with a blow-down pipe 9 for preventing impurities such as silica mixed in water from being concentrated and settling in the steam separator 2 and the pipe.

【0005】先に述べたように、セルスタック1の冷却
板11相互間の絶縁抵抗を下げないように冷却用水の導
電率を低くする必要があるが、図3のシステムにおいて
は、気水分離器2に供給する水をイオン交換樹脂16を
介して供給することにより水の導電率を低くしていた。
イオン交換樹脂16の能力は使用温度が高い程低下し、
最高使用温度は約40℃である。一方発熱反応するセル
スタック1の動作温度はリン酸水溶液型の燃料電池の場
合約190℃であり、冷却用水をセルスタック1に供給
するとともに燃料を水蒸気改質するための蒸気をエゼク
タ5に供給する気水分離器2の温度は約160℃である
ため、約40℃以下の水を気水分離器に補給している時
は気水分離器内の温度が下がり、熱回収部での熱回収量
が減少するなどの問題があった。
As described above, it is necessary to lower the conductivity of the cooling water so as not to lower the insulation resistance between the cooling plates 11 of the cell stack 1, but in the system of FIG. The conductivity of water was lowered by supplying the water supplied to the vessel 2 through the ion exchange resin 16.
The capacity of the ion exchange resin 16 decreases as the operating temperature increases,
The maximum operating temperature is about 40 ° C. On the other hand, the operating temperature of the cell stack 1 that undergoes an exothermic reaction is about 190 ° C. in the case of a phosphoric acid aqueous solution type fuel cell, and cooling water is supplied to the cell stack 1 and steam for steam reforming the fuel is supplied to the ejector 5. Since the temperature of the steam / water separator 2 is about 160 ° C., the temperature inside the steam / water separator decreases when water of about 40 ° C. or less is being replenished to the steam / water separator, and the heat in the heat recovery unit is reduced. There was a problem that the amount of collection decreased.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の燃料電
池発電装置は、セルスタックの冷却板内を循環する冷却
用水の導電率を下げるためイオン交換樹脂を用いている
が、イオン交換樹脂の効果を保つためにはその再生を頻
繁に行う必要があり、また水温を約40℃以下として使
用する必要から水の補給時に熱回収部の効率が低下する
という問題も生じていた。
The above-mentioned conventional fuel cell power generator uses an ion exchange resin to reduce the conductivity of the cooling water circulating in the cooling plate of the cell stack. However, the effect of the ion exchange resin In order to maintain the above temperature, it is necessary to regenerate it frequently, and since it is necessary to use the water at a temperature of about 40 ° C. or less, there is a problem that the efficiency of the heat recovery part is lowered when water is replenished.

【0007】本発明の目的は、上のような使用上の制限
の多いイオン交換樹脂を必要としないセルスタック冷却
系を備えた燃料電池発電装置を実現することである。
An object of the present invention is to realize a fuel cell power generator having a cell stack cooling system which does not require an ion exchange resin, which has many restrictions in use as described above.

【0008】[0008]

【課題を解決するための手段】本発明の燃料電池発電装
置は、セルスタックと気水分離器間の冷却系配管が熱交
換器を介して接続されている。
In the fuel cell power generator of the present invention, the cooling system piping between the cell stack and the steam separator is connected via a heat exchanger.

【0009】[0009]

【作用】セルスタックからの排熱を気水分離器に回収さ
せる冷却管路の中間に熱交換器を設けることにより、セ
ルスタックの冷却板には気水分離器側から供給される冷
却用水とは別個の冷却用媒体を循環させることになる。
By providing a heat exchanger in the middle of the cooling pipe for collecting the exhaust heat from the cell stack to the steam separator, the cooling plate of the cell stack is provided with cooling water supplied from the steam separator side. Would circulate a separate cooling medium.

【0010】[0010]

【実施例】実施例について図1を用いて説明する。EXAMPLE An example will be described with reference to FIG.

【0011】図1は本発明の燃料電池発電装置の一実施
例のブロック図である。
FIG. 1 is a block diagram of an embodiment of the fuel cell power generator of the present invention.

【0012】この燃料電池発電装置は、従来例のセルス
タック1と気水分離器2間の冷却系配管の中間に熱交換
器17が挿入されたものである。セルスタック1の冷却
板に循環される冷却用媒体の流路は熱交換器17からポ
ンプ18を経て冷却用配管15に連結され、各冷却板内
を通って冷却用配管14から熱交換器17に戻ってお
り、気水分離器2と熱交換器17間の冷却用媒体の流路
とは別個の流路を形成している。また、気水分離器に補
給される水はイオン交換樹脂を介することなく補給水管
から供給されている。この場合、冷却板に入る流路を還
流する冷却用媒体の導電率が低い冷却用媒体を使用すれ
ばよいことになる。
In this fuel cell power generator, a heat exchanger 17 is inserted in the middle of the cooling system pipe between the cell stack 1 and the steam separator 2 of the conventional example. The flow path of the cooling medium circulated in the cooling plate of the cell stack 1 is connected from the heat exchanger 17 to the cooling pipe 15 via the pump 18, and passes through each cooling plate to pass from the cooling pipe 14 to the heat exchanger 17. And forms a flow path separate from the flow path of the cooling medium between the steam separator 2 and the heat exchanger 17. The water supplied to the steam separator is supplied from the makeup water pipe without passing through the ion exchange resin. In this case, it suffices to use a cooling medium having a low conductivity as the cooling medium that flows back through the flow path that enters the cooling plate.

【0013】[0013]

【発明の効果】以上説明したように本発明は、セルスタ
ックの冷却板に循環される冷却用媒体の流路と、気水分
離器から入出する冷却用媒体の流路を分離することによ
り、イオン交換樹脂の使用を不要とし、また気水分離器
に補給すべき水の温度を約40℃以下に制限する必要を
解消し、保守性および経済性の極めて高い燃料電池発電
装置を実現できる効果がある。
As described above, according to the present invention, by separating the flow path of the cooling medium circulated in the cooling plate of the cell stack and the flow path of the cooling medium coming in and out of the steam separator, Effect of eliminating the need to use an ion-exchange resin and eliminating the need to limit the temperature of water to be replenished to the steam separator to about 40 ° C or less, and realizing a fuel cell power generator with extremely high maintainability and economy There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池発電装置の一実施例のブロッ
ク図である。
FIG. 1 is a block diagram of an embodiment of a fuel cell power generator of the present invention.

【図2】従来の燃料電池発電装置の構成例を示すブロッ
ク図である。
FIG. 2 is a block diagram showing a configuration example of a conventional fuel cell power generation device.

【図3】セルスタックの構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a cell stack.

【符号の説明】[Explanation of symbols]

1 セルスタック 2 気水分離器 3 熱回収部 4,18 ポンプ 5 エゼクタ 6 改質器 7 燃料供給管 8 補給水管 9 ブローダウン管 10 単位セル 11 冷却板 12,13 絶縁物 14,15 冷却用配管 16 イオン交換樹脂 17 熱交換器 1 Cell Stack 2 Steam / Water Separator 3 Heat Recovery Part 4, 18 Pump 5 Ejector 6 Reformer 7 Fuel Supply Pipe 8 Makeup Water Pipe 9 Blow Down Pipe 10 Unit Cell 11 Cooling Plate 12, 13 Insulators 14, 15 Cooling Pipe 16 Ion exchange resin 17 Heat exchanger

フロントページの続き (72)発明者 飯田 茂実 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 北田 秀一 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内Front page continuation (72) Inventor Shigumi Iida 1-6, Uchisaiwai-cho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Shuichi Kitada 1-1-6 Uchiyuki-cho, Chiyoda-ku, Tokyo Nihon Telegraph Phone Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セルスタックと気水分離器を有する燃料
電池発電装置において、前記セルスタックと前記気水分
離器間の冷却系配管が熱交換器を介して接続されること
を特徴とする燃料電池発電装置。
1. A fuel cell power generator having a cell stack and a steam separator, wherein a cooling system pipe between the cell stack and the steam separator is connected via a heat exchanger. Battery generator.
【請求項2】 前記熱交換器を介して分離されたセルス
タック側の冷却系配管にポンプを含む請求項1に記載の
燃料電池発電装置。
2. The fuel cell power generator according to claim 1, wherein a pump is provided in the cooling system piping on the side of the cell stack that is separated via the heat exchanger.
JP5201533A 1993-08-13 1993-08-13 Fuel cell power generator Pending JPH0757752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5201533A JPH0757752A (en) 1993-08-13 1993-08-13 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5201533A JPH0757752A (en) 1993-08-13 1993-08-13 Fuel cell power generator

Publications (1)

Publication Number Publication Date
JPH0757752A true JPH0757752A (en) 1995-03-03

Family

ID=16442629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5201533A Pending JPH0757752A (en) 1993-08-13 1993-08-13 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JPH0757752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004516A (en) * 2006-06-20 2008-01-10 Samsung Sdi Co Ltd Fuel cell electric power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004516A (en) * 2006-06-20 2008-01-10 Samsung Sdi Co Ltd Fuel cell electric power generation system

Similar Documents

Publication Publication Date Title
US6833207B2 (en) Unitized regenerative fuel cell with bifunctional fuel cell humidifier and water electrolyzer
US6277508B1 (en) Fuel cell power supply with exhaust recycling for improved water management
JP3607718B2 (en) Water and inert gas discharge method and apparatus for fuel cell equipment
JP3823181B2 (en) Fuel cell power generation system and waste heat recirculation cooling system for power generation system
US7399545B2 (en) Supersonic vapor compression and heat rejection cycle
JP4994731B2 (en) Fuel cell power generation system
JP2002319428A (en) Molten carbonate fuel cell power generating device
US6656621B2 (en) Fuel cell stack
US6630261B2 (en) Apparatus and method for utilizing the waste heat of an air-cooled fuel cell battery
US6787255B2 (en) Fuel cell power generating system and operation method
CN114744243A (en) Hydrogen circulation supply method for hydrogen fuel cell
US6815109B2 (en) Fuel cell system
CN214378520U (en) Combined CO2Trapped molten carbonate fuel cell system
JPH0757752A (en) Fuel cell power generator
JP2010061986A (en) Fuel battery stack
KR100778480B1 (en) Heat storaging apparatus of fuel cell system
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP2002100382A (en) Fuel cell power generator
JP2001283883A (en) Fuel cell generating device
JP3099407B2 (en) Water treatment system for phosphoric acid fuel cells
KR101617186B1 (en) Fuel cell system having dissimilar fuel cells
JPH065297A (en) Fuel cell power generating system
KR101581409B1 (en) Fuel cell system having dissimilar fuel cells
JP2003346831A (en) Fuel cell stack
JP2009224290A (en) Fuel cell power generation system