JP5092186B2 - Fuel cell cogeneration system - Google Patents

Fuel cell cogeneration system Download PDF

Info

Publication number
JP5092186B2
JP5092186B2 JP2001066334A JP2001066334A JP5092186B2 JP 5092186 B2 JP5092186 B2 JP 5092186B2 JP 2001066334 A JP2001066334 A JP 2001066334A JP 2001066334 A JP2001066334 A JP 2001066334A JP 5092186 B2 JP5092186 B2 JP 5092186B2
Authority
JP
Japan
Prior art keywords
water
cooling water
fuel cell
storage tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001066334A
Other languages
Japanese (ja)
Other versions
JP2002270194A (en
Inventor
達雄 中山
哲也 上田
伸二 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001066334A priority Critical patent/JP5092186B2/en
Publication of JP2002270194A publication Critical patent/JP2002270194A/en
Application granted granted Critical
Publication of JP5092186B2 publication Critical patent/JP5092186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/30Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/17Storage tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池コージェネシステムに関するものである。
【0002】
【従来の技術】
燃料電池は水素と酸素の直接反応により電気エネルギーに変換するもので、発電効率が高く、大気汚染物質もほとんど排出しないことから環境にやさしい発電装置である。発電の際には熱を発生するので、これを回収することにより、コージェネシステムを構築することができ、トータルエネルギー効率は70〜80%となり、地球温暖化防止に貢献できる技術として期待されている。
【0003】
燃料電池には燐酸型や固体高分子型などがあるが、これまである程度規模の大きい燃料電池コージェネシステムとしては主に燐酸型が検討されてきた。近年家庭用のコージェネシステムとしての開発が進められるようになってきているが、この用途の燃料電池は、動作温度が60〜90℃と低く、オン・オフを繰り返すことが容易な固体高分子型が用いられている。
【0004】
家庭における熱の利用は、排熱により水を加熱し貯湯槽に貯えるという方法が一般的であるが、貯湯槽には、貯えられている湯の温度が低い場合や湯量が不充分な場合に加熱するための加熱能力の高い追い炊きバーナーを設けることにより、単に給湯するだけでなく、暖房などより広範な用途に熱を利用することができる。
【0005】
燃料電池の燃料となる水素リッチなガスは、一般に都市ガスなどの原料を水と反応させることにより得る。この水素を生成する水素生成部には、効率良く水素を生成ために触媒が用いられるが、この触媒の被毒による性能低下防止や、金属イオンなど不純物の水素生成器内部への付着による性能低下などの不具合を防止するため、水素生成器に供給される水は触媒被毒物質や金属イオンなどの不純物が除去されていなければならない。
【0006】
また、効率よく発電するためには、燃料電池本体を最適温度に保つことが必要であるため、起動時には起動時間短縮のため加熱が必要であり、発電時には冷却が必要となる。この熱媒体としては多くの場合、水が用いられるが、この水は漏電を防ぐために導電率が低くなければならない。
【0007】
このため、水は通常各種フィルター、逆浸透膜装置、イオン交換樹脂、電気透析装置を通して不純物を除去した後、供給することが必要である。
【0008】
水の補給源としては、燃料電池の発電により水が生成されるので、発電後の排ガスを冷却することにより水を凝縮、回収することができるが、回収量は運転条件などに依存するため、不足する場合は水道水など外部から導入する必要がある。必要に応じて随時供給したり、流量を正確に制御しながら供給するため、凝縮回収した水や外部から導入した水は一旦貯水タンクに蓄えることが必要である。
【0009】
しかし凝縮回収した水はほぼ純水であり、菌の繁殖には好都合な状態になっており、外部からの水の導入や、水を回収した後の空気を排気する排気口から菌類が侵入することにより、貯水タンク内に菌類や藻が繁殖する恐れがあり、これが配管の詰りなどの不具合の原因になる可能性がある。
【0010】
これに対応する方法として、抗菌作用のある銅・亜鉛などの金属材料を水経路内に用いるもの(特開平8−22833)、紫外線による殺菌装置を用いるもの(特開平9−63612)、抗菌フィルターを水経路内に設けるもの(特開平8−63611)、水を強酸性にするもの(特開平08−22833)、水の温度を加熱殺菌に必要な所定の温度(例えば70℃)以上にして殺菌するもの(特開平8−138714)などが提案されている。
【0011】
このうち加熱殺菌するものについては、外部からの水道水導入の際に燃料電池からの排ガスから水を冷却回収する水回収装置において、冷却水の流量を通常運転時よりしぼることにより冷却効果を低下させて、回収水タンク内の水の温度を一時的に加熱殺菌に必要な所定の温度(例えば70℃)以上にするというものである。
【0012】
【発明が解決しようとする課題】
従来の燐酸型燃料電池コージェネシステムでは動作温度が百数十℃以上であるため、タンク内の回収水全体の温度を加熱殺菌に必要な所定の温度(例えば70℃)以上にすることは比較的容易であるが、固体高分子型燃料電池コージェネシステムでは動作温度が数十℃であること、また、排ガスから熱回収する場合や水を回収する場合さらに低い温度に冷やす必要があるため、タンク内の回収水全体の温度を加熱殺菌に必要な所定の温度(例えば70℃)以上にすることは困難であった。
【0013】
本発明は、殺菌専用の加熱手段を設けることなく、水温を一時的に加熱殺菌に必要な所定の温度(例えば70℃)以上にすることにより、外部から侵入したバクテリアなどの微生物や藻が繁殖することを抑制し、これらによって水流路内の閉塞を防ぐことを目的とする。
【0014】
【課題を解決するための手段】
上記課題を解決するために、本発明の燃料電池コージェネレーシステムは、固体高分子型燃料電池と、前記固体高分子型燃料電池を冷却する水が流れる冷却水循環流路と、原料から前記燃料電池に供給する燃料を生成する改質器と、前記冷却水循環流路外に設けられ、前記固体高分子型燃料電池から排出された空気からの凝縮水を貯える貯水タンクと、前記貯水タンクの水を前記冷却水循環流路に送り込む冷却水供給流路と、前記冷却水循環流路から前記貯水タンクに水を戻す前記冷却水排水流路とを具備し、前記貯水タンクの水を前記冷却水供給流路を介して前記冷却水循環流路に供給し、前記冷却水循環流路の水の温度を少なくとも一時的に加熱殺菌に必要な所定の温度以上にし、前記冷却水排水流路を介して再び前記貯水タンクにもどすことを特徴とする。
【0016】
また、本発明は冷却水循環流路に設けられ起動時に燃料電池が発電に適した温度まで冷却水を加熱する冷却水加熱手段を具備したものである。
【0017】
また、本発明の燃料電池コージェネレーシステム、発電終了後において、前記貯水タンクの水を前記冷却水供給流路を介して前記冷却水循環流路に供給し、前記冷却水循環流路の水の温度を少なくとも一時的に加熱殺菌に必要な所定の温度以上にし、前記冷却水排水流路を介して再び前記貯水タンクにもどすことを特徴とする
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いて説明する。
【0021】
(実施の形態1)
図1は、本発明の実施の形態1における燃料電池コージェネシステムの構成図であり、1は燃料電池、2は改質器、3は改質器2を加熱するための燃焼部、7は凝縮器、8は貯水タンク、9は冷却水タンク、13a、13bはイオン交換樹脂、15は冷却水循環ポンプ、16は冷却水補給ポンプ、17は改質水供給ポンプ、18は冷却水排水弁、20は冷却水循環流路、21は冷却水供給流路、22は冷却水排水流路、27は放熱器、31はレベルセンサ、32は温度センサである。
【0022】
この構成の燃料電池コージェネシステムでは、貯水タンク8から冷却水供給流路21、冷却水タンク9、冷却水循環流路20、冷却水排水流路22を経て再び貯水タンク8に戻る加熱流路が形成されている。
【0023】
以上のように構成された燃料電池コージェネシステムについて、以下、その動作を説明する。
【0024】
発電の動作は以下の通りである。
【0025】
改質器2で都市ガスと水を反応させて水素を生成し、水素リッチなガスが燃料電池1に供給される。水素生成には触媒が用いられ、改質器2は触媒活性が最適になるように燃焼部3で都市ガスを燃焼させることにより加熱される。燃料電池1内部で水素と空気中の酸素が反応することにより発電し、それに伴って水が生成される。
【0026】
また、冷却水循環流路20に設けられた冷却水タンク9から、冷却水循環ポンプ15によって水が燃料電池内部を流れ、発電の際に生じた熱を回収する。回収した熱は放熱器27で放熱され、冷却水温度を下げる。この時、温度センサ32で冷却水の温度をモニターして燃料電池の温度を一定範囲内に保つ。冷却水タンク9の中の水が減少するとレベルセンサ31により水位の低下を検知し、冷却水補給ポンプ16によって、冷却水が補給される。
【0027】
燃料電池から排出された空気は凝縮器7を通して水を凝縮させて、水は貯水タンク8に入り、空気は装置の外に排出される。水素側の排気は改質器の燃焼部3に入り、都市ガスとともに燃焼させる。
【0028】
水の殺菌の動作は以下の通りである。
【0029】
冷却水循環ポンプ15で燃料電池1に水を循環させて発電し、冷却水補給ポンプ16で貯水タンク8の水を冷却水タンク9に送り、冷却水排水弁18を開いて冷却水排水流路22から冷却水を貯水タンク8に戻す。温度センサ32で水温をモニターし冷却水の温度を加熱殺菌に必要な所定の温度(例えば70℃)以上に保っておけば、殺菌された水を貯水タンク8に貯えた状態にすることができる。
【0030】
なお、本実施例では、発電時に冷却水補給ポンプで水を供給しているが、発電終了後であっても、余熱で加熱殺菌に必要な所定の温度(例えば70℃)以上に保てれば、同様の効果が得られる。
【0031】
また、本実施の形態では、冷却水の排水を冷却水排水弁18を通じて貯水タンク8へ排水しているが、冷却水タンク9からオーバーフローする水を貯水タンク8に戻すことによっても同様の効果が得られる。
【0032】
以上のように本実施例においては、貯水タンクの水を前記冷却水流路に供給し、燃料電池の発電にともなって発生する熱で加熱することにより冷却水流路の水の温度を少なくとも一時的に加熱殺菌に必要な所定の温度(例えば70℃)以上にしながら、再び貯水タンクにもどすことにより、バクテリアなどの微生物や藻が繁殖することを抑制し、これらによって水流路内の閉塞を防ぐことができるものである。
【0033】
(実施の形態2)
図2は、本発明の実施の形態2における燃料電池コージェネシステムの構成図であり、1は燃料電池、2は改質器、3は改質器2を加熱するための燃焼部、7は凝縮器、8は貯水タンク、9は冷却水タンク、10は冷却水加熱手段となるヒータ、13a、13bはイオン交換樹脂、15は冷却水循環ポンプ、16は冷却水補給ポンプ、17は改質水供給ポンプ、18は冷却水排水弁、20は冷却水循環流路、21は冷却水供給流路、22は冷却水排出流路、27は放熱器、31はレベルセンサ、32は温度センサである。
【0034】
発電の動作は実施の形態1と同様であるため、ここでの説明は省略し、以下、水の殺菌の動作について説明する。
【0035】
起動時に燃料電池1内を循環する冷却水を加熱することにより燃料電池1を昇温するためのヒータ10に通電し、冷却水タンク9内の水温が加熱殺菌に必要な所定の温度(例えば70℃)以上に保てるように温度センサ32で冷却水の温度をモニターしながら、冷却水保補給ポンプ16で貯水タンク8の水を冷却水タンク9へ送る。また、冷却水排水弁18を開いて、殺菌された水を貯水タンク8へ戻す。
【0036】
なお、本実施の形態では、冷却水の排水を冷却水排水弁18を通じて貯水タンク8へ排水しているが、冷却水タンク9からオーバーフローする水を貯水タンク8に戻すことによっても同様の効果が得られる。
【0037】
また、実施の形態1で説明したような燃料電池の発電時の熱を利用する方法を併用してもよい。
【0038】
以上のように本実施の形態においては、貯水タンクの水を前記冷却水流路に供給し、起動時に冷却水を加熱する加熱手段で加熱することにより、冷却水流路の水の温度を少なくとも一時的に加熱殺菌に必要な所定の温度(例えば70℃)以上にしながら、再び貯水タンクにもどすことにより、バクテリアなどの微生物や藻が繁殖することを抑制し、これらによって水流路内の閉塞を防ぐことができるものである。
【0039】
参考の形態
図3は、本発明の参考の形態における燃料電池コージェネシステムの構成図であり、1は燃料電池、2は改質器、3は改質器2を加熱するための燃焼部、5は改質器2の廃熱を回収する熱交換器、7は凝縮器、8は貯水タンク、9は冷却水タンク、13a、13bはイオン交換樹脂、15は冷却水循環ポンプ、16は冷却水補給ポンプ、17は改質水供給ポンプ、18は冷却水排水弁、20は冷却水循環流路、21は冷却水供給流路、22は冷却水排出流路、23は加熱流路、24は加熱流路送液ポンプ、26は熱交換器、27は放熱器、32aは温度センサである。
【0040】
発電の動作は実施の形態1と同様であるため、ここでの説明は省略し、以下、水の殺菌の動作について説明する。
【0041】
改質器2を運転しているときに、貯水タンク8内の水を加熱流路送液ポンプ24によって加熱流路23へ流し、改質器2の燃焼部3からの排ガスの熱を熱交換器5で回収し加熱流路23内の水を加熱する。温度センサ32で熱交換器5の出口温度をモニターし、加熱殺菌に必要な所定の温度(例えば70℃)以上になるように加熱流路送液ポンプ24の流量を調節する。一旦加熱殺菌に必要な所定の温度(例えば70℃)以上になり、殺菌された水は加熱流路23を通る間に冷えながら、貯水タンク8に戻る。
【0042】
なお、本実施の形態に、実施の形態1、2のいずれかひとつ、または両方の方法を併用してもよい。
【0043】
以上のように本参考の形態においては、貯水タンク8の水を改質器2の排ガスの熱によって加熱し、水の温度を少なくとも一時的に加熱殺菌に必要な所定の温度(例えば70℃)以上にした後、再び貯水タンク8にもどすことにより、バクテリアなどの微生物や藻が繁殖することを抑制し、これらによって水流路内の閉塞を防ぐことができるものである。
【0044】
参考の形態
図4は、本発明の参考の形態における燃料電池コージェネシステムの構成図であり、1は燃料電池、2は改質器、3は改質器2を加熱するための燃焼部、4は貯湯槽、5aは第1の熱交換器、5bは第2の熱交換器、7は凝縮器、8は貯水タンク、9は冷却水タンク、12aは第1の貯湯水循環流路、12bは第2の貯湯水循環流路、13a、13bはイオン交換樹脂、15は冷却水循環ポンプ、16は冷却水補給ポンプ、17は改質水供給ポンプ、18は冷却水排水弁、19aは第1の貯湯水循環ポンプ、19bは第2の貯湯水循環ポンプ、20は冷却水循環流路、21は冷却水供給流路、22は冷却水排水流路、23は加熱流路、24は加熱流路送液ポンプ、32aは温度センサである。
【0045】
発電の動作は実施の形態1と同様であるが、冷却水循環流路には第1の熱交換器5aが設けられ、ここで冷却水の熱が、第1の貯湯水循環ポンプ19aによって貯湯槽4から第1の貯湯水循環流路12aに送り出された水に熱交換され、貯湯槽4に戻り、湯が貯えられる。
【0046】
固体高分子型燃料電池であっても熱効率が十分高ければ、動作温度が80℃程度で加熱殺菌に必要な所定の温度(例えば70℃)以上の湯を貯湯槽に貯えることは可能である。
【0047】
殺菌の動作は、以下の通りである。
【0048】
貯湯槽4に貯えられた湯を第2の貯湯水循環ポンプ19bによって第2の貯湯水循環流路12bに流す。一方加熱流路送液ポンプ24によって貯水タンク8の水が加熱流路23に流され、第2の熱交換器5bで第2の貯湯水循環流路12bを流れる湯によって加熱される。流量を調節しておけば加熱流路23の水は加熱殺菌に必要な所定の温度(例えば70℃)以上にすることが可能である。
【0049】
加熱された後水は貯水タンク8に戻る。
【0050】
なお、本参考の形態では、2個の熱交換器を用いているが図5のように流路切替弁29a、29bによって流路を切り替えることにより、1個の熱交換器5に冷却水と貯水タンクの水のいずれかを流すシステムでも同様の効果が得られる。
【0051】
また図6のように3つの流路を持つ1個の熱交換器5を用いて構成したシステムでも、同様の効果が得られる。
【0052】
また、本参考の形態に、実施の形態1、2、及び参考の形態1のいずれかひとつ、または複数の方法を併用してもよい。
【0053】
以上のように本参考の形態においては、貯水タンク8の水を貯湯槽4に貯えられた湯と熱交換することにより、少なくと一時的に加熱殺菌に必要な所定の温度(例えば70℃)以上にした後、再び貯水タンク8にもどすことにより、バクテリアなどの微生物や藻が繁殖することを抑制し、これらによって水流路内の閉塞を防ぐことができるものである。
【0054】
参考の形態
図7は、本発明の参考の形態におけるで燃料電池コージェネシステムの構成図であり、1は燃料電池、2は改質器、3は改質器2を加熱するための燃焼部、4は貯湯槽、5aは第1の熱交換器、5bは第2の熱交換器、7は凝縮器、8は貯水タンク、9は冷却水タンク、12a、12bは第1および第2の貯湯水循環流路、13a、13bはイオン交換樹脂、15は冷却水循環ポンプ、16は冷却水補給ポンプ、17は改質水供給ポンプ、18は冷却水排水弁、19a、19bは第1および第2の貯湯水循環ポンプ、20は冷却水循環流路、21は冷却水供給流路、22は冷却水排水流路、23は加熱流路、24は加熱流路送液ポンプ、25は貯湯槽4の貯湯温度を上げる追炊き手段となる追炊きバーナー、28は給湯切替弁である。
【0055】
発電の動作は実施の形態1と、貯湯の動作は参考の形態と同様である。
【0056】
給湯は、貯湯槽4に貯えた湯が供給されるが、湯の温度が低い場合、供給される前に追炊きバーナー25で加熱される。
【0057】
殺菌の動作は、貯湯槽4に貯えられた湯を給湯切替弁28で流路を切り替え、第2の貯湯水循環ポンプ19bで第2の貯湯水循環流路12bに流し、熱交換器5bの出口の水温を温度センサ32aでモニターしながら加熱殺菌に必要な所定の温度(例えば70℃)以上になるように加熱流路送液ポンプ24によって加熱流路23に流された貯水タンク8の水と第2の熱交換器5bで熱交換することにより殺菌した後、貯水タンク8に戻る。貯湯槽の湯の温度が低い場合は追炊きバーナー25で加熱した後熱交換器5bに湯が送られ、加熱流路23内の水を加熱殺菌に必要な所定の温度(例えば70℃)以上にする。殺菌された水は貯水タンク8に戻る。
【0058】
なお、本実施の形態に、実施の形態1、2、及び参考の形態1のいずれかひとつ、または複数の方法を併用してもよい。
【0059】
以上のように本参考の形態においては、貯水タンク8の水を、追炊き手段によって加熱された貯湯槽4に貯えられた湯と熱交換することにより、少なくと一時的に加熱殺菌に必要な所定の温度(例えば70℃)以上にした後、再び貯水タンク8にもどすことにより、バクテリアなどの微生物や藻が繁殖することを抑制し、これらによって水流路内の閉塞を防ぐことができるものである。
【0060】
【発明の効果】
以上の説明から明らかなように、本発明によれば、専用の加熱手段を設けることなく、少なくとも一時的に貯水タンク内の水を加熱殺菌に必要な所定の温度(例えば70℃)以上に上昇させることにより、藻や菌・カビの繁殖を抑制することができるものである。
【0061】
さらに、高温の燃料生成部からの排熱を利用することにより、却水流路内の水をより高温に加熱することができ、確実な殺菌を行うことができるものである。
【0062】
また、貯湯槽に残った湯の熱を利用して効率的に、藻や菌・カビの繁殖を抑制することができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態1における燃料電池コージェネシステムの構成図
【図2】本発明の実施の形態2における燃料電池コージェネシステムの構成図
【図3】本発明の参考の形態における燃料電池コージェネシステムの構成図
【図4】本発明の参考の形態における燃料電池コージェネシステムの構成図
【図5】本発明の参考の形態における他の燃料電池コージェネシステムの構成図
【図6】本発明の参考の形態における他の燃料電池コージェネシステムの構成図
【図7】本発明の参考の形態における燃料電池コージェネシステムの構成図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell cogeneration system.
[0002]
[Prior art]
A fuel cell is an electric power generation device that is converted into electric energy through a direct reaction between hydrogen and oxygen, has high power generation efficiency, and emits almost no air pollutants. Since heat is generated during power generation, a cogeneration system can be constructed by collecting this heat. The total energy efficiency is 70 to 80%, which is expected to contribute to the prevention of global warming. .
[0003]
Fuel cells include phosphoric acid type and solid polymer type, but phosphoric acid type has been mainly studied as a fuel cell cogeneration system having a large scale. In recent years, development as a cogeneration system for home use has been promoted, but the fuel cell for this application has a low operating temperature of 60 to 90 ° C. and is a solid polymer type that can be easily turned on and off repeatedly Is used.
[0004]
Heat is commonly used at home by heating the water by exhaust heat and storing it in a hot water storage tank. However, the hot water storage tank is used when the temperature of the stored hot water is low or the amount of hot water is insufficient. By providing an additional cooking burner having a high heating capacity for heating, it is possible not only to supply hot water but also to use heat for a wider range of applications such as heating.
[0005]
A hydrogen-rich gas used as a fuel for a fuel cell is generally obtained by reacting a raw material such as city gas with water. A catalyst is used to generate hydrogen efficiently in the hydrogen generation section that generates hydrogen. However, performance deterioration due to poisoning of this catalyst and adhesion of impurities such as metal ions inside the hydrogen generator are reduced. In order to prevent such troubles, the water supplied to the hydrogen generator must be free from impurities such as catalyst poisons and metal ions.
[0006]
Further, in order to generate power efficiently, it is necessary to keep the fuel cell body at an optimum temperature. Therefore, heating is necessary to shorten the startup time at startup, and cooling is required at power generation. In many cases, water is used as the heat medium, but this water must have low conductivity in order to prevent leakage.
[0007]
For this reason, it is usually necessary to supply water after removing impurities through various filters, reverse osmosis membrane devices, ion exchange resins, and electrodialyzers.
[0008]
As water supply source, water is generated by power generation of the fuel cell, so water can be condensed and recovered by cooling the exhaust gas after power generation, but the recovery amount depends on operating conditions, etc. In case of shortage, it is necessary to introduce from outside such as tap water. It is necessary to store the condensed and recovered water and the water introduced from the outside in a water storage tank once in order to supply them as needed or while controlling the flow rate accurately.
[0009]
However, the condensed and recovered water is almost pure water, and it is in a favorable state for the growth of bacteria, and fungi enter from the introduction of water from the outside and the exhaust port that exhausts the air after collecting the water. As a result, fungi and algae may grow in the water storage tank, which may cause problems such as clogging of piping.
[0010]
Corresponding methods include using an antibacterial metal material such as copper and zinc in the water path (Japanese Patent Laid-Open No. 8-22833), using a sterilizer using ultraviolet rays (Japanese Patent Laid-Open No. 9-63612), antibacterial filter Provided in the water path (Japanese Patent Laid-Open No. 8-63611), water made strongly acidic (Japanese Patent Laid-Open No. 08-22833), and the water temperature is set to a predetermined temperature (for example, 70 ° C.) or higher necessary for heat sterilization. A pasteurizer (JP-A-8-138714) has been proposed.
[0011]
Of these, heat-sterilized water-recovery equipment that cools and recovers water from the exhaust gas from the fuel cell when introducing tap water from outside reduces the cooling effect by reducing the flow rate of cooling water from normal operation. Thus, the temperature of the water in the recovered water tank is temporarily made higher than a predetermined temperature (for example, 70 ° C.) necessary for heat sterilization.
[0012]
[Problems to be solved by the invention]
In the conventional phosphoric acid fuel cell cogeneration system, the operating temperature is a few hundreds of degrees Celsius or higher. Therefore, the temperature of the entire recovered water in the tank is relatively higher than a predetermined temperature (eg, 70 ° C.) required for heat sterilization. Although it is easy, in the solid polymer fuel cell cogeneration system, the operating temperature is tens of degrees Celsius, and when recovering heat from exhaust gas or when recovering water, it is necessary to cool to a lower temperature. It was difficult to make the temperature of the entire recovered water higher than a predetermined temperature (for example, 70 ° C.) required for heat sterilization.
[0013]
In the present invention, microorganisms and algae such as bacteria that enter from the outside are propagated by temporarily setting the water temperature to a predetermined temperature (for example, 70 ° C.) or higher necessary for heat sterilization without providing a heating means dedicated to sterilization. The purpose is to prevent the blockage in the water flow path.
[0014]
[Means for Solving the Problems]
In order to solve the above-described problems, a fuel cell cogeneration system according to the present invention includes a solid polymer fuel cell, a cooling water circulation channel through which water for cooling the solid polymer fuel cell flows, and the fuel cell from a raw material. A reformer for generating fuel to be supplied to the tank, a water storage tank that is provided outside the cooling water circulation passage and stores condensed water from the air discharged from the polymer electrolyte fuel cell , and water in the water storage tank A cooling water supply channel that feeds into the cooling water circulation channel; and the cooling water drain channel that returns water from the cooling water circulation channel to the water storage tank. Through the cooling water circulation channel, the temperature of the water in the cooling water circulation channel is at least temporarily set to a predetermined temperature necessary for heat sterilization, and the water storage tank is again passed through the cooling water drainage channel. Back It is characterized in.
[0016]
Further, the present invention is provided with a cooling water heating means provided in the cooling water circulation passage to heat the cooling water to a temperature suitable for power generation when the fuel cell is started.
[0017]
Further, the fuel cell cogeneration system of the present invention supplies the water in the water storage tank to the cooling water circulation channel via the cooling water supply channel after the end of power generation, and the temperature of the water in the cooling water circulation channel Is at least temporarily set to a predetermined temperature necessary for heat sterilization, and returned to the water storage tank again through the cooling water drainage channel .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
(Embodiment 1)
FIG. 1 is a configuration diagram of a fuel cell cogeneration system according to Embodiment 1 of the present invention, in which 1 is a fuel cell, 2 is a reformer, 3 is a combustion section for heating the reformer 2, and 7 is condensation. , 8 is a water storage tank, 9 is a cooling water tank, 13a and 13b are ion exchange resins, 15 is a cooling water circulation pump, 16 is a cooling water supply pump, 17 is a reforming water supply pump, 18 is a cooling water drain valve, 20 Is a cooling water circulation channel, 21 is a cooling water supply channel, 22 is a cooling water drainage channel, 27 is a radiator, 31 is a level sensor, and 32 is a temperature sensor.
[0022]
In the fuel cell cogeneration system having this configuration, a heating flow path is formed that returns from the water storage tank 8 to the water storage tank 8 again through the cooling water supply flow path 21, the cooling water tank 9, the cooling water circulation flow path 20, and the cooling water drainage flow path 22. Has been.
[0023]
The operation of the fuel cell cogeneration system configured as described above will be described below.
[0024]
The operation of power generation is as follows.
[0025]
The reformer 2 reacts the city gas with water to generate hydrogen, and the hydrogen-rich gas is supplied to the fuel cell 1. A catalyst is used for hydrogen generation, and the reformer 2 is heated by burning the city gas in the combustion section 3 so that the catalytic activity becomes optimal. Electricity is generated by the reaction between hydrogen and oxygen in the air inside the fuel cell 1, and water is generated accordingly.
[0026]
Further, water flows from the cooling water tank 9 provided in the cooling water circulation passage 20 through the inside of the fuel cell by the cooling water circulation pump 15, and heat generated during power generation is recovered. The recovered heat is radiated by the radiator 27 and the cooling water temperature is lowered. At this time, the temperature of the cooling water is monitored by the temperature sensor 32 to keep the temperature of the fuel cell within a certain range. When the water in the cooling water tank 9 decreases, the level sensor 31 detects a drop in the water level, and the cooling water supply pump 16 supplies the cooling water.
[0027]
The air discharged from the fuel cell condenses water through the condenser 7, the water enters the water storage tank 8, and the air is discharged out of the apparatus. The hydrogen side exhaust gas enters the combustion section 3 of the reformer and is combusted with the city gas.
[0028]
The operation of water sterilization is as follows.
[0029]
The cooling water circulation pump 15 circulates water through the fuel cell 1 to generate electricity, the cooling water replenishment pump 16 sends the water in the water storage tank 8 to the cooling water tank 9, the cooling water drain valve 18 is opened, and the cooling water drain flow path 22. The cooling water is returned to the water storage tank 8. If the water temperature is monitored by the temperature sensor 32 and the temperature of the cooling water is kept at a predetermined temperature (eg, 70 ° C.) or higher necessary for heat sterilization, the sterilized water can be stored in the water storage tank 8. .
[0030]
In this embodiment, water is supplied by a cooling water replenishment pump at the time of power generation, but even after power generation is completed, if it is kept at a predetermined temperature (for example, 70 ° C.) or higher necessary for heat sterilization with residual heat, Similar effects can be obtained.
[0031]
In this embodiment, the cooling water drainage is drained to the water storage tank 8 through the cooling water drain valve 18, but the same effect can be obtained by returning the water overflowing from the cooling water tank 9 to the water storage tank 8. can get.
[0032]
As described above, in this embodiment, the temperature of the water in the cooling water channel is at least temporarily set by supplying the water in the water storage tank to the cooling water channel and heating it with the heat generated by the power generation of the fuel cell. By returning to the water storage tank again while keeping the temperature higher than a predetermined temperature (eg, 70 ° C.) necessary for heat sterilization, it is possible to suppress the growth of microorganisms such as bacteria and algae, thereby preventing blockage in the water flow path. It can be done.
[0033]
(Embodiment 2)
FIG. 2 is a configuration diagram of a fuel cell cogeneration system according to Embodiment 2 of the present invention. 1 is a fuel cell, 2 is a reformer, 3 is a combustion section for heating the reformer 2, and 7 is a condensation unit. , 8 is a water storage tank, 9 is a cooling water tank, 10 is a heater serving as cooling water heating means, 13 a and 13 b are ion exchange resins, 15 is a cooling water circulation pump, 16 is a cooling water supply pump, and 17 is a supply of reforming water. A pump, 18 is a cooling water drain valve, 20 is a cooling water circulation channel, 21 is a cooling water supply channel, 22 is a cooling water discharge channel, 27 is a radiator, 31 is a level sensor, and 32 is a temperature sensor.
[0034]
Since the operation of power generation is the same as that of the first embodiment, the description here is omitted, and the operation of water sterilization will be described below.
[0035]
The heater 10 for raising the temperature of the fuel cell 1 is energized by heating the cooling water circulating in the fuel cell 1 at the time of startup, and the water temperature in the cooling water tank 9 is a predetermined temperature (for example, 70) required for heat sterilization. While the temperature of the cooling water is monitored by the temperature sensor 32 so that the temperature can be maintained at a temperature equal to or higher than (° C.), the water in the water storage tank 8 is sent to the cooling water tank 9 by the cooling water maintenance supply pump 16. Further, the cooling water drain valve 18 is opened to return the sterilized water to the water storage tank 8.
[0036]
In this embodiment, the cooling water drainage is drained to the water storage tank 8 through the cooling water drain valve 18, but the same effect can be obtained by returning the water overflowing from the cooling water tank 9 to the water storage tank 8. can get.
[0037]
Further, a method of using heat at the time of power generation of the fuel cell as described in Embodiment 1 may be used in combination.
[0038]
As described above, in the present embodiment, the temperature of the water in the cooling water passage is at least temporarily by supplying the water in the water storage tank to the cooling water passage and heating it with the heating means that heats the cooling water at the time of startup. In order to prevent the microorganisms such as bacteria and algae from propagating by returning them to the water storage tank again while maintaining the temperature higher than the required temperature for heat sterilization (for example, 70 ° C.), this prevents blockage in the water flow path. It is something that can be done.
[0039]
( Reference form 1 )
Figure 3 is a block diagram of a fuel cell cogeneration system in accordance with the first reference of the present invention, 1 is a fuel cell, 2 the reformer, 3 a combustion portion for heating the reformer 2, 5 Kai A heat exchanger for recovering waste heat of the mass device 2, 7 a condenser, 8 a water storage tank, 9 a cooling water tank, 13a and 13b ion exchange resin, 15 a cooling water circulation pump, 16 a cooling water supply pump, 17 is a reforming water supply pump, 18 is a cooling water drain valve, 20 is a cooling water circulation passage, 21 is a cooling water supply passage, 22 is a cooling water discharge passage, 23 is a heating passage, and 24 is a heating passage. A liquid pump, 26 is a heat exchanger, 27 is a radiator, and 32a is a temperature sensor.
[0040]
Since the operation of power generation is the same as that of the first embodiment, the description here is omitted, and the operation of water sterilization will be described below.
[0041]
When the reformer 2 is in operation, the water in the water storage tank 8 is caused to flow to the heating channel 23 by the heating channel feed pump 24, and the heat of the exhaust gas from the combustion unit 3 of the reformer 2 is heat exchanged. The water is recovered by the vessel 5 and the water in the heating channel 23 is heated. The temperature of the outlet of the heat exchanger 5 is monitored by the temperature sensor 32, and the flow rate of the heating flow path liquid feed pump 24 is adjusted so that the temperature is higher than a predetermined temperature (for example, 70 ° C.) necessary for heat sterilization. Once the temperature reaches a predetermined temperature (eg, 70 ° C.) necessary for heat sterilization, the sterilized water returns to the water storage tank 8 while cooling while passing through the heating flow path 23.
[0042]
In this embodiment, any one of Embodiments 1 and 2 or both methods may be used in combination.
[0043]
Or in the form of this reference is as the water in the water storage tank 8 is heated by the heat of exhaust gas of the reformer 2, the temperature of the water at least temporarily a predetermined temperature required for heat sterilization (e.g., 70 ° C.) After the above, by returning to the water storage tank 8 again, it is possible to suppress the propagation of microorganisms such as bacteria and algae, thereby preventing blockage in the water flow path.
[0044]
( Reference form 2 )
FIG. 4 is a configuration diagram of a fuel cell cogeneration system according to Reference Embodiment 2 of the present invention, in which 1 is a fuel cell, 2 is a reformer, 3 is a combustion section for heating the reformer 2, and 4 is hot water storage. The tank, 5a is a first heat exchanger, 5b is a second heat exchanger, 7 is a condenser, 8 is a water storage tank, 9 is a cooling water tank, 12a is a first hot water storage water circulation channel, and 12b is a second heat exchanger. Hot water storage circulation path, 13a and 13b are ion exchange resins, 15 is a cooling water circulation pump, 16 is a cooling water supply pump, 17 is a reforming water supply pump, 18 is a cooling water drain valve, and 19a is a first hot water circulating pump. , 19b is a second hot-water storage water circulation pump, 20 is a cooling water circulation channel, 21 is a cooling water supply channel, 22 is a cooling water drainage channel, 23 is a heating channel, 24 is a heating channel feed pump, and 32a is It is a temperature sensor.
[0045]
The operation of power generation is the same as that of the first embodiment, but the first heat exchanger 5a is provided in the cooling water circulation channel, and the heat of the cooling water is heated by the first hot water circulation pump 19a. Then, heat is exchanged with the water sent out to the first hot water storage water circulation passage 12a, and the water is returned to the hot water tank 4 to store hot water.
[0046]
Even in the case of a polymer electrolyte fuel cell, if the thermal efficiency is sufficiently high, it is possible to store hot water at an operating temperature of about 80 ° C. or more at a predetermined temperature (eg, 70 ° C.) required for heat sterilization in a hot water storage tank.
[0047]
The sterilization operation is as follows.
[0048]
Hot water stored in the hot water storage tank 4 is caused to flow to the second hot water storage water circulation channel 12b by the second hot water storage water circulation pump 19b. On the other hand, the water in the water storage tank 8 is caused to flow into the heating flow path 23 by the heating flow path feed pump 24, and is heated by the hot water flowing through the second hot water storage water circulation path 12b in the second heat exchanger 5b. If the flow rate is adjusted, the water in the heating channel 23 can be set to a predetermined temperature (for example, 70 ° C.) or higher necessary for heat sterilization.
[0049]
After being heated, the water returns to the water storage tank 8.
[0050]
In this reference embodiment, although using two heat exchangers flow path switching valve 29a as shown in FIG. 5, by switching the flow path by 29 b, and the cooling water to one of the heat exchanger 5 A similar effect can be obtained with a system that flows any of the water in the water storage tank.
[0051]
Further, the same effect can be obtained even in a system configured using one heat exchanger 5 having three flow paths as shown in FIG.
[0052]
In addition, any one or a plurality of methods according to Embodiments 1 and 2 and Reference Embodiment 1 may be used in combination with this reference embodiment.
[0053]
Or in the form of this reference is as, water by hot heat exchange stored in the hot water storage tank 4 the water tank 8, least temporarily given temperature necessary for the heat sterilization (e.g., 70 ° C.) After the above, by returning to the water storage tank 8 again, it is possible to suppress the propagation of microorganisms such as bacteria and algae, thereby preventing blockage in the water flow path.
[0054]
( Reference form 3 )
FIG. 7 is a configuration diagram of a fuel cell cogeneration system according to Reference Embodiment 3 of the present invention, where 1 is a fuel cell, 2 is a reformer, 3 is a combustion unit for heating the reformer 2, and 4 is Hot water storage tank, 5a is a first heat exchanger, 5b is a second heat exchanger, 7 is a condenser, 8 is a water storage tank, 9 is a cooling water tank, and 12a and 12b are first and second hot water circulation flows. 13, 13 b is an ion exchange resin, 15 is a cooling water circulation pump, 16 is a cooling water supply pump, 17 is a reforming water supply pump, 18 is a cooling water drain valve, 19 a, 19 b are first and second hot water circulation. Pump, 20 is a cooling water circulation flow path, 21 is a cooling water supply flow path, 22 is a cooling water drain flow path, 23 is a heating flow path, 24 is a heating flow path liquid feed pump, and 25 is a hot water storage temperature of the hot water tank 4. An additional cooking burner 28 serving as additional cooking means is a hot water supply switching valve.
[0055]
The operation of power generation is the same as that of Embodiment 1, and the operation of hot water storage is the same as that of Reference Embodiment 2 .
[0056]
For hot water supply, hot water stored in the hot water storage tank 4 is supplied. When the temperature of the hot water is low, the hot water is heated by the additional cooking burner 25 before being supplied.
[0057]
The sterilization operation is performed by switching the flow of hot water stored in the hot water storage tank 4 with the hot water supply switching valve 28, flowing the hot water stored in the hot water storage tank 4 into the second hot water storage water circulation channel 12b with the second hot water storage water circulation pump 19b, and at the outlet of the heat exchanger 5b. While the water temperature is monitored by the temperature sensor 32a, the water in the water storage tank 8 and the first water flowed to the heating passage 23 by the heating passage liquid feed pump 24 so as to be higher than a predetermined temperature (eg, 70 ° C.) necessary for the heat sterilization. After sterilization by exchanging heat with the second heat exchanger 5b, the water tank 8 is returned to. When the temperature of the hot water in the hot water storage tank is low, the hot water is sent to the heat exchanger 5b after being heated by the additional cooking burner 25, and the water in the heating channel 23 is heated to a predetermined temperature (for example, 70 ° C.) or higher necessary for heat sterilization. To. The sterilized water returns to the water storage tank 8.
[0058]
In this embodiment, any one of Embodiments 1 and 2, and Reference Embodiments 1 and 2 , or a plurality of methods may be used in combination.
[0059]
In the embodiment of the present reference above, the required water of the water storage tank 8, by exchanging the hot water heat stored in the hot water storage tank 4 is heated by additionally cooking means, temporarily heat sterilization and less After raising the temperature to a predetermined temperature (for example, 70 ° C.) or higher, returning to the water storage tank 8 again can suppress the growth of microorganisms such as bacteria and algae, thereby preventing clogging in the water channel. is there.
[0060]
【Effect of the invention】
As is apparent from the above description, according to the present invention, the water in the water storage tank is raised at least temporarily above a predetermined temperature (eg, 70 ° C.) necessary for heat sterilization without providing a dedicated heating means. By doing so, it is possible to suppress the growth of algae, fungi and mold.
[0061]
Furthermore, by utilizing the exhaust heat from the high-temperature fuel generation unit, the water in the reject water flow path can be heated to a higher temperature, and reliable sterilization can be performed.
[0062]
In addition, it is possible to efficiently suppress the growth of algae, fungi, and fungi using the heat of hot water remaining in the hot water tank.
[Brief description of the drawings]
In Figure 1 Reference of the present first configuration diagram of a fuel cell cogeneration system according to a second embodiment of the block diagram of a fuel cell cogeneration system [2] The present invention according to the first embodiment of the invention the present invention; FIG block diagram of another fuel cell cogeneration system according to a second reference structure diagram of a fuel cell cogeneration system [5] the present invention in reference to embodiment 2 of the block diagram of a fuel cell cogeneration system [4] the present invention Figure 6 a configuration diagram of a fuel cell cogeneration system according to a third reference configuration diagram of another fuel cell cogeneration system [7] the present invention in reference to embodiment 2 of the present invention

Claims (3)

固体高分子型燃料電池と、前記固体高分子型燃料電池を冷却する水が流れる冷却水循環流路と、原料から前記燃料電池に供給する燃料を生成する改質器と、前記冷却水循環流路外に設けられ、前記固体高分子型燃料電池から排出された空気からの凝縮水を貯える貯水タンクと、前記貯水タンクの水を前記冷却水循環流路に送り込む冷却水供給流路と、前記冷却水循環流路から前記貯水タンクに水を戻す冷却水排水流路とを具備し、前記貯水タンクの水を前記冷却水供給流路を介して前記冷却水循環流路に供給し、前記冷却水循環流路の水の温度を少なくとも一時的に加熱殺菌に必要な所定の温度以上にし、前記冷却水排水流路を介して再び前記貯水タンクにもどすことを特徴とする燃料電池コージェネシステム。A polymer electrolyte fuel cell; a cooling water circulation channel through which water for cooling the polymer electrolyte fuel cell flows; a reformer that generates fuel to be supplied from a raw material to the fuel cell; and the outside of the cooling water circulation channel A storage tank for storing condensed water from the air discharged from the polymer electrolyte fuel cell , a cooling water supply passage for feeding water from the storage tank to the cooling water circulation passage, and the cooling water circulation flow A cooling water drainage channel for returning water from the channel to the water storage tank, supplying water from the water storage tank to the cooling water circulation channel via the cooling water supply channel, and water in the cooling water circulation channel The fuel cell cogeneration system is characterized in that the temperature is at least temporarily set to a predetermined temperature required for heat sterilization and returned to the water storage tank through the cooling water drainage channel. 前記冷却水循環流路に設けられ起動時に燃料電池が発電に適した温度まで冷却水を加熱する冷却水加熱手段を具備したことを特徴とする請求項1記載の燃料電池コージェネシステム。Claim 1 Symbol mounting the fuel cell cogeneration system, characterized by comprising a cooling water heating means for heating the cooling water to a temperature fuel cell at startup is provided suitable for power generation in the cooling water circulation passage. 発電終了後において、前記貯水タンクの水を前記冷却水供給流路を介して前記冷却水循環流路に供給し、前記冷却水循環流路の水の温度を少なくとも一時的に加熱殺菌に必要な所定の温度以上にし、前記冷却水排水流路を介して再び前記貯水タンクにもどすことを特徴とする請求項1記載の燃料電池コージェネシステム。 After the end of power generation, the water in the water storage tank is supplied to the cooling water circulation channel through the cooling water supply channel, and the temperature of the water in the cooling water circulation channel is at least temporarily required for predetermined heat sterilization. the above temperature, claim 1 Symbol mounting the fuel cell cogeneration system and returning to the water storage tank again through the cooling water discharge passage.
JP2001066334A 2001-03-09 2001-03-09 Fuel cell cogeneration system Expired - Lifetime JP5092186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066334A JP5092186B2 (en) 2001-03-09 2001-03-09 Fuel cell cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066334A JP5092186B2 (en) 2001-03-09 2001-03-09 Fuel cell cogeneration system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011101064A Division JP2011181514A (en) 2011-04-28 2011-04-28 Fuel cell cogeneration system

Publications (2)

Publication Number Publication Date
JP2002270194A JP2002270194A (en) 2002-09-20
JP5092186B2 true JP5092186B2 (en) 2012-12-05

Family

ID=18924834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066334A Expired - Lifetime JP5092186B2 (en) 2001-03-09 2001-03-09 Fuel cell cogeneration system

Country Status (1)

Country Link
JP (1) JP5092186B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4040062B2 (en) 2002-07-30 2008-01-30 松下電器産業株式会社 Fuel cell power generator
JP2005129381A (en) * 2003-10-24 2005-05-19 Matsushita Electric Ind Co Ltd Water treatment apparatus of fuel cell system
JP4944382B2 (en) * 2004-01-30 2012-05-30 パナソニック株式会社 Fuel cell system
WO2005074064A1 (en) 2004-01-30 2005-08-11 Matsushita Electric Industrial Co., Ltd. Fuel cell system
JP2006107893A (en) * 2004-10-05 2006-04-20 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP4949619B2 (en) * 2004-11-18 2012-06-13 パナソニック株式会社 Fuel cell system and operation method thereof
JP4988260B2 (en) * 2006-07-06 2012-08-01 パナソニック株式会社 Fuel cell system
JP5185521B2 (en) * 2006-09-29 2013-04-17 株式会社日立製作所 Fuel cell power generation system and operation method thereof
EP2211411A4 (en) * 2007-10-11 2011-11-16 Panasonic Corp Fuel cell system
KR100911055B1 (en) * 2007-10-19 2009-08-06 (주)퓨얼셀 파워 Heat Recovery Apparatus of Fuel Cell System
JP5242126B2 (en) * 2007-10-22 2013-07-24 株式会社荏原製作所 Fuel cell system
JP2010170877A (en) * 2009-01-23 2010-08-05 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and operation method thereof
JP2010257737A (en) * 2009-04-24 2010-11-11 Aisin Seiki Co Ltd Fuel cell system
JP4926298B2 (en) * 2010-03-04 2012-05-09 パナソニック株式会社 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP5284330B2 (en) * 2010-10-12 2013-09-11 パナソニック株式会社 Fuel cell power generation system
WO2012124298A1 (en) * 2011-03-14 2012-09-20 パナソニック株式会社 Fuel cell system and method for operating same
EP2869379B1 (en) * 2012-06-28 2019-11-13 Panasonic Intellectual Property Management Co., Ltd. Solid oxide fuel cell system
JP6501577B2 (en) * 2015-03-24 2019-04-17 大阪瓦斯株式会社 Fuel cell system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114411A (en) * 1991-10-22 1993-05-07 Toshiba Corp Fuel cell power generation system
JP3599761B2 (en) * 1993-09-28 2004-12-08 バラード パワー システムズ インコーポレイティド Fuel cell warm-up system
JP2924671B2 (en) * 1994-11-11 1999-07-26 三菱電機株式会社 Water treatment system for fuel cell power plant
JPH10172598A (en) * 1996-12-13 1998-06-26 Tokyo Gas Co Ltd Fuel cell mechanism
JP2001023668A (en) * 1999-07-07 2001-01-26 Osaka Gas Co Ltd Fuel cell power generating system
JP2002053307A (en) * 2000-08-10 2002-02-19 Osaka Gas Co Ltd Device for generating hydrogen

Also Published As

Publication number Publication date
JP2002270194A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
JP5092186B2 (en) Fuel cell cogeneration system
WO2002035632A1 (en) Fuel cell system and method of operating the system
JP2016219303A (en) Solid oxide type fuel battery system
CN113793947B (en) Fuel cell waste heat utilization system and energy system
JP2013012381A (en) Fuel cell cogeneration system
JPWO2011052233A1 (en) Fuel cell cogeneration system
JP2008300059A (en) Fuel cell device
JP2013004295A (en) Fuel cell device
JP2010250948A (en) Fuel cell system
JP4926298B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP5534775B2 (en) Fuel cell cogeneration system
JP2010170877A (en) Fuel cell power generation system and operation method thereof
JP2009081084A (en) Fuel cell power generation apparatus
JP2006147348A (en) Fuel cell power generation device and water quality control method of the same
JP5593808B2 (en) Fuel cell hot water supply system
JP2002100382A (en) Fuel cell power generator
JP2011181514A (en) Fuel cell cogeneration system
JP2016157621A (en) Fuel battery system
JP2007048654A (en) Power generator
JP2013206657A (en) Fuel cell power generation system
JP2010113885A (en) Fuel cell power generation system and its operation method
JP6299383B2 (en) Cogeneration system
JP7109218B2 (en) fuel cell system
JP2018106952A (en) Fuel cell system and operational method of the same
JP2004303495A (en) Fuel cell power generation hot-water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R151 Written notification of patent or utility model registration

Ref document number: 5092186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

EXPY Cancellation because of completion of term