JP2001023668A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JP2001023668A
JP2001023668A JP11192808A JP19280899A JP2001023668A JP 2001023668 A JP2001023668 A JP 2001023668A JP 11192808 A JP11192808 A JP 11192808A JP 19280899 A JP19280899 A JP 19280899A JP 2001023668 A JP2001023668 A JP 2001023668A
Authority
JP
Japan
Prior art keywords
fuel cell
cell power
water
power generation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11192808A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hirai
一裕 平井
Norihisa Kamiya
規寿 神家
Seisaku Azumaguchi
誠作 東口
Masashi Tatsumori
正史 立森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP11192808A priority Critical patent/JP2001023668A/en
Publication of JP2001023668A publication Critical patent/JP2001023668A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a price of a system and enhance exhaust heat recovering efficiency by rationally improving exhaust heat recovering constitution. SOLUTION: This fuel cell power generating system is constituted so that a fuel cell power generating part 4 for generating power by the electrochemical reaction of hydrogen in a supplied hydrogen-containing gas with oxygen in a supplied oxygen-containing gas is installed, exhaust heat of the fuel cell power generating part 4 is recovered with heated water, and recovered heat is stored in a hot water storing bath 3. In such system, the heated water is circulated to the fuel cell power generating part 4 as cooling water to recover the exhaust heat of the fuel cell power generating part 4 with the heated water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素含有ガス及び
酸素含有ガスが供給されて、水素含有ガス中の水素と酸
素含有ガス中の酸素とを電気化学反応させて発電する燃
料電池発電部が設けられ、被加熱水が前記燃料電池発電
部の排熱を回収して、貯湯槽に貯留されるように構成さ
れた燃料電池発電装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a fuel cell power generation unit which is supplied with a hydrogen-containing gas and an oxygen-containing gas and generates power by causing an electrochemical reaction between hydrogen in the hydrogen-containing gas and oxygen in the oxygen-containing gas. The present invention relates to a fuel cell power generation device provided so that heated water recovers exhaust heat of the fuel cell power generation unit and is stored in a hot water storage tank.

【0002】[0002]

【従来の技術】かかる燃料電池発電装置には、図8に示
すように、水素含有ガス路1を通じて供給される水素含
有ガス中の水素と、酸素含有ガス路2を通じて供給され
る酸素含有ガスとしての空気中の酸素とを電気化学反応
させて発電する燃料電池発電部4を設け、被加熱水が燃
料電池発電部4の排熱を回収した後、貯湯槽3に貯湯さ
れるように構成してある。燃料電池発電部4には、冷却
水を通流させて燃料電池発電部4を水冷する水冷部5を
設けてある。
2. Description of the Related Art In such a fuel cell power generator, as shown in FIG. 8, hydrogen in a hydrogen-containing gas supplied through a hydrogen-containing gas passage 1 and oxygen-containing gas supplied through an oxygen-containing gas passage 2 are used. A fuel cell power generation unit 4 for generating electricity by electrochemical reaction with oxygen in the air, and recovering the heated water from the exhaust heat of the fuel cell power generation unit 4 and then storing it in the hot water storage tank 3. It is. The fuel cell power generation unit 4 is provided with a water cooling unit 5 for flowing cooling water and cooling the fuel cell power generation unit 4 with water.

【0003】従来は、燃料電池発電部4の水冷部5から
排出された冷却水から被加熱水に熱回収させる発電部排
熱回収用熱交換器51を設けていた。つまり、水冷部5
と発電部排熱回収用熱交換器51とを、循環ポンプ52
を介装した冷却水循環路53にて接続し、発電部排熱回
収用熱交換器51と貯湯槽3とを、循環ポンプ54を介
装した被加熱水循環路55にて接続していた。そして、
発電部排熱回収用熱交換器51において、料電池発電部
3の排熱を、冷却水を介して被加熱水に回収させ、その
ように熱回収させた被加熱水を貯湯槽3に貯留するよう
にしていた。
Conventionally, there has been provided a heat exchanger 51 for heat recovery of the power generation unit, which recovers heat from the cooling water discharged from the water cooling unit 5 of the fuel cell power generation unit 4 to the heated water. That is, the water cooling unit 5
And a heat generating unit heat recovery heat exchanger 51, and a circulation pump 52.
And a heat exchanger 51 for recovering exhaust heat from the power generation unit and the hot water storage tank 3 are connected by a heated water circulation path 55 in which a circulation pump 54 is interposed. And
In the heat-exchanging heat exchanger 51 for heat recovery of the power generation unit, the waste heat of the fuel cell power generation unit 3 is recovered to the heated water via the cooling water, and the heated water thus recovered is stored in the hot water storage tank 3. I was trying to do it.

【0004】尚、図8中の17は、ガス路16を通じて
供給される炭化水素系の原燃料ガスを水蒸気と改質反応
させて、水素ガスと一酸化炭素ガスを含有するガスに改
質処理する改質装置であり、図示は省略するが、更に、
改質装置17にて改質処理されたガスに含まれる一酸化
炭素を低減すべく、変成装置、CO除去装置等を設けて
あり、そのように一酸化炭素ガス含有量が低減された水
素含有ガスが、水素含有ガス路1を通じて燃料電池発電
部4に供給されるようになっている。図中の17bは、
改質反応に必要な熱を与えるべく、改質装置17に設け
たバーナであり、そのバーナ17bには、燃料として、
燃料電池発電部4から排出された排水素含有ガスが排水
素含有ガス路7を通じて供給され、燃焼用空気路25を
通じて燃焼用空気が供給されるようになっている。
In FIG. 8, reference numeral 17 denotes a reforming reaction of a hydrocarbon-based raw fuel gas supplied through a gas passage 16 with steam to form a gas containing hydrogen gas and carbon monoxide gas. It is a reformer that performs, although not shown,
In order to reduce the carbon monoxide contained in the gas reformed by the reformer 17, a shift converter, a CO removing device, etc. are provided, and the hydrogen content having a reduced carbon monoxide gas content is provided. Gas is supplied to the fuel cell power generation unit 4 through the hydrogen-containing gas passage 1. 17b in the figure is
It is a burner provided in the reformer 17 to provide heat required for the reforming reaction.
The exhausted hydrogen-containing gas discharged from the fuel cell power generation unit 4 is supplied through the exhausted hydrogen-containing gas passage 7, and the combustion air is supplied through the combustion air passage 25.

【0005】従来は、排酸素含有ガス路9を通じて燃料
電池発電部4から排出された排酸素含有ガス、及び、排
燃焼ガス路30を通じて排出されたバーナ17bの燃焼
ガスから冷却水に排熱を回収させる排ガス冷却用交換器
57を設け、その排ガス冷却用熱交換器57と、被加熱
水が通流するように被加熱水循環路55に設けた排ガス
排熱回収用熱交換器58とを、循環ポンプ59を介装し
た冷却水循環路60にて接続してある。そして、排ガス
排熱回収用熱交換器58において、燃料電池発電部4か
ら排出された排酸素含有ガス及びバーナ17bから排出
された燃焼ガスの熱を、冷却水を介して被加熱水に回収
させるようにしていた。
Conventionally, waste heat is discharged from the exhaust gas containing gas discharged from the fuel cell power generation unit 4 through the exhaust gas passage 9 and the combustion gas of the burner 17 b discharged through the waste gas passage 30 to the cooling water. An exhaust gas cooling exchanger 57 to be recovered is provided, and the exhaust gas cooling heat exchanger 57 and an exhaust gas exhaust heat recovery heat exchanger 58 provided in the heated water circulation path 55 so that the heated water flows therethrough, The cooling water circulation path 60 is provided with a circulation pump 59 interposed therebetween. Then, in the exhaust gas exhaust heat recovery heat exchanger 58, the heated oxygen-containing gas discharged from the fuel cell power generation unit 4 and the heat of the combustion gas discharged from the burner 17b are recovered by the heated water via the cooling water. Was like that.

【0006】[0006]

【発明が解決しようとする課題】従来では、燃料電池発
電部4から排出された冷却水から被加熱水に熱回収させ
る発電部排熱回収用熱交換器51を別に設けていたこと
と、発電部排熱回収用熱交換器51を設けることにより
装置構成が複雑になることが相俟って、燃料電池発電装
置の価格が高くなるという問題があった。又、冷却水を
介して燃料電池発電部の排熱を被加熱水に回収させるた
め、排熱回収効率が低いという問題があった。
Conventionally, a heat exchanger 51 for recovering waste heat from a power generation unit for recovering heat from cooling water discharged from a fuel cell power generation unit 4 to water to be heated is provided separately. The provision of the heat exchanger 51 for exhaust heat recovery partially complicates the configuration of the apparatus, and thus increases the price of the fuel cell power generator. Further, since the exhaust heat of the fuel cell power generation unit is recovered to the heated water via the cooling water, there is a problem that the exhaust heat recovery efficiency is low.

【0007】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、排熱回収構成を合理的に改善し
て、装置価格の低減及び排熱回収効率の向上を図ること
にある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to rationally improve the configuration of exhaust heat recovery to reduce the cost of the apparatus and improve the efficiency of exhaust heat recovery. .

【0008】[0008]

【課題を解決するための手段】〔請求項1記載の発明〕
請求項1に記載の特徴構成は、前記被加熱水を冷却水と
して前記燃料電池発電部に通流させて、前記被加熱水が
前記燃料電池発電部の排熱を回収するように構成されて
いることにある。
Means for Solving the Problems [Invention according to claim 1]
The characteristic configuration according to claim 1 is configured such that the heated water flows through the fuel cell power generation unit as cooling water, and the heated water recovers exhaust heat of the fuel cell power generation unit. Is to be.

【0009】請求項1に記載の特徴構成によれば、被加
熱水を冷却水として燃料電池発電部に通流させて、燃料
電池発電部の排熱を被加熱水に直接に回収させる。従っ
て、従来設けていた発電部排熱回収用熱交換器が不要に
なるので、装置価格を低減することができると共に、冷
却水を介して燃料電池発電部の排熱を被加熱水に回収さ
せていた従来に比べて、排熱回収効率を向上することが
できるようになった。
According to the first aspect of the present invention, the heated water flows through the fuel cell power generation section as cooling water, and the exhaust heat of the fuel cell power generation section is directly recovered by the heated water. Therefore, the heat exchanger for recovering the exhaust heat of the power generation unit, which is conventionally provided, becomes unnecessary, so that the cost of the apparatus can be reduced, and the exhaust heat of the fuel cell power generation unit can be recovered into the heated water via the cooling water. The exhaust heat recovery efficiency can be improved as compared with the related art.

【0010】〔請求項2記載の発明〕請求項2に記載の
特徴構成は、前記被加熱水を、前記燃料電池発電部から
排出された排水素含有ガス又は前記燃料電池発電部から
排出された排酸素含有ガスにて加熱されるように通流さ
せて、前記被加熱水が前記燃料電池発電部の排熱を回収
するように構成されていることにある。
According to a second aspect of the present invention, the heated water is discharged from the fuel cell power generation section or the exhausted hydrogen-containing gas discharged from the fuel cell power generation section. The configuration is such that the heated water recovers the exhaust heat of the fuel cell power generation unit by flowing the gas so as to be heated by the exhausted oxygen-containing gas.

【0011】請求項2に記載の特徴構成によれば、被加
熱水を、燃料電池発電部から排出された排水素含有ガス
又は燃料電池発電部から排出された排酸素含有ガスにて
加熱されるように通流させて、排水素含有ガス又は排酸
素含有ガスにて排出される燃料電池発電部の排熱を、排
水素含有ガス又は排酸素含有ガスから被加熱水に直接に
回収させる。従って、従来設けていた排ガス排熱回収用
熱交換器も不要になるので、装置価格を更に低減するこ
とができる。又、排水素含有ガス又は排酸素含有ガスに
て排出される燃料電池発電部の排熱を冷却水を介して被
加熱水に回収させていた従来に比べて、排熱回収効率を
更に向上することができるようになった。
According to the second aspect of the present invention, the water to be heated is heated by the exhausted hydrogen-containing gas discharged from the fuel cell power generation unit or the exhausted oxygen-containing gas discharged from the fuel cell power generation unit. And the exhaust heat of the fuel cell power generation unit discharged by the exhausted hydrogen-containing gas or the exhausted oxygen-containing gas is directly recovered from the exhausted hydrogen-containing gas or the exhausted oxygen-containing gas into the heated water. Accordingly, the heat exchanger for exhaust gas exhaust heat recovery, which is conventionally provided, is not required, and the cost of the apparatus can be further reduced. Further, the exhaust heat recovery efficiency is further improved as compared with the related art in which the exhaust heat of the fuel cell power generation unit discharged with the exhausted hydrogen-containing gas or the exhausted oxygen-containing gas is recovered into the heated water via the cooling water. Now you can do it.

【0012】〔請求項3記載の発明〕請求項3に記載の
特徴構成は、前記被加熱水として水道水をその給水圧に
て通流させるように構成されていることにある。請求項
3に記載の特徴構成によれば、被加熱水を通流させるた
めのポンプ等が不要になるので、装置価格を更に低減す
ることができる。
According to a third aspect of the present invention, there is provided a characteristic configuration in which tap water is passed as the heated water at its supply pressure. According to the characteristic configuration of the third aspect, since a pump or the like for flowing the heated water is not required, the cost of the apparatus can be further reduced.

【0013】〔請求項4記載の発明〕請求項4に記載の
特徴構成は、前記貯湯槽に湯水が温度成層を形成して貯
留されるように、前記貯湯槽の底部から取り出した前記
被加熱水を前記燃料電池発電部の排熱を回収するように
通流させた後、前記貯湯槽の上部に供給する状態で、前
記被加熱水を循環させる被加熱水循環手段が設けられ、
前記貯湯槽の上部に給湯路が接続されていることにあ
る。
The invention according to claim 4 is characterized in that the heated object taken out from the bottom of the hot water storage tank so that hot water forms a temperature stratification and is stored in the hot water storage tank. After flowing water so as to recover the exhaust heat of the fuel cell power generation unit, a heated water circulation means for circulating the heated water is provided in a state of being supplied to an upper portion of the hot water storage tank,
A hot water supply path is connected to an upper part of the hot water storage tank.

【0014】請求項4に記載の特徴構成によれば、貯湯
槽の底部から取り出した被加熱水を燃料電池発電部の排
熱を回収するように通流させて加熱した後、貯湯槽の上
部に供給する状態で被加熱水を循環させることにより、
貯湯槽に湯水を温度成層を形成するように貯留して、貯
湯槽上部の高温の湯水を給湯路を通じて湯水需要先に供
給する。従って、貯湯槽に温度成層を形成せずに湯水を
貯留する場合に比べて、高温の湯水を温度が安定した状
態で効率良く需要先に供給することができる。
According to the fourth aspect of the present invention, the heated water taken out from the bottom of the hot water storage tank is passed through the fuel cell power generation unit so as to recover the exhaust heat, and heated. By circulating the heated water in a state where it is supplied to
Hot water is stored in a hot water tank so as to form a temperature stratification, and hot water at the upper portion of the hot water tank is supplied to a hot water demand destination through a hot water supply channel. Therefore, compared to a case where hot water is stored without forming a temperature stratification in the hot water storage tank, high-temperature hot water can be efficiently supplied to the demand destination in a state where the temperature is stable.

【0015】〔請求項5記載の発明〕請求項5に記載の
特徴構成は、前記燃料電池発電部の排熱を回収した後、
前記貯湯槽に貯留される被加熱水の温度を検出する温度
検出手段と、前記被加熱水の通流量を調節する給水量調
節手段と、前記温度検出手段の検出温度が設定温度にな
るように、前記給水量調節手段を制御する制御手段が設
けられていることにある。
According to a fifth aspect of the present invention, after recovering the exhaust heat of the fuel cell power generation unit,
Temperature detecting means for detecting the temperature of the heated water stored in the hot water storage tank, water supply amount adjusting means for adjusting the flow rate of the heated water, and the detected temperature of the temperature detecting means is set to a set temperature. And a control means for controlling the water supply amount adjusting means.

【0016】請求項5に記載の特徴構成によれば、燃料
電池発電部の排熱を回収した後、貯湯槽に貯留される被
加熱水の温度が設定温度になるように、被加熱水の通流
量が調節されるので、貯湯槽からの給湯温度が安定す
る。又、燃料電池発電部の温度も所定の温度になるよう
に調節されるので、発電出力が安定する。
According to the characteristic configuration of the fifth aspect, after the exhaust heat of the fuel cell power generation unit is recovered, the temperature of the heated water is set such that the temperature of the heated water stored in the hot water storage tank reaches the set temperature. Since the flow rate is adjusted, the temperature of hot water from the hot water storage tank is stabilized. Further, since the temperature of the fuel cell power generation unit is also adjusted to a predetermined temperature, the power generation output is stabilized.

【0017】〔請求項6載の発明〕請求項6に記載の特
徴構成は、前記燃料電池発電部が、高分子電解質層を備
えたセルにて構成されていることにある。つまり、燃料
電池発電部が高分子電解質層を備えたセルにて構成され
た、所謂、高分子電解質型の燃料電池発電装置は、例え
ば、燃料電池発電部がリン酸電解質層を備えたセルにて
構成された、所謂、リン酸型の燃料電池発電装置に比べ
て、燃料電池発電部の動作温度が低い。例えば、リン酸
型の燃料電池発電部の動作温度が180〜200°C程
度であるのに対して、高分子電解質型の燃料電池発電部
の動作温度は70〜80°C程度である。従って、高分
子電解質型の燃料電池発電部において、燃料電池発電部
の排熱を冷却水を介して被加熱水に回収する従来の構成
では、排熱回収後の被加熱水の温度が低いため、貯湯槽
からの給湯温度が低いという欠点があった。そこで、高
分子電解質型の燃料電池発電部において、本発明を実施
すると、燃料電池発電部の排熱を被加熱水に直接に回収
させることにより、排熱回収後の被加熱水の温度が高く
なり、貯湯槽からの給湯温度を高くすることができるの
で、好適である。
According to a sixth aspect of the present invention, the fuel cell power generation section is constituted by a cell having a polymer electrolyte layer. In other words, a so-called polymer electrolyte type fuel cell power generation device in which the fuel cell power generation unit is composed of cells having a polymer electrolyte layer is, for example, a cell in which the fuel cell power generation unit has a phosphoric acid electrolyte layer. The operating temperature of the fuel cell power generation unit is lower than that of a so-called phosphoric acid type fuel cell power generator configured as described above. For example, the operating temperature of the phosphoric acid type fuel cell power generation unit is about 180 to 200 ° C., whereas the operating temperature of the polymer electrolyte type fuel cell power generation unit is about 70 to 80 ° C. Therefore, in the conventional configuration in which the exhaust heat of the fuel cell power generation unit is recovered into the heated water via the cooling water in the polymer electrolyte fuel cell power generation unit, the temperature of the heated water after the recovery of the exhaust heat is low. However, there is a disadvantage that the temperature of hot water supplied from the hot water storage tank is low. Therefore, when the present invention is implemented in a polymer electrolyte fuel cell power generation unit, the temperature of the heated water after the exhaust heat recovery is increased by directly collecting the waste heat of the fuel cell power generation unit into the heated water. This is preferable because the temperature of hot water from the hot water storage tank can be increased.

【0018】[0018]

【発明の実施の形態】〔第1実施形態〕以下、図1、図
2、図4ないし図7に基づいて、本発明を高分子電解質
型の燃料電池発電装置に適用した場合の第1の実施の形
態を説明する。図1及び図2に示すように、燃料電池発
電装置には、燃料ガス路1を通じて供給される燃料ガス
(水素含有ガスに相当する)中の水素と、反応用空気路
2を通じて供給される反応用空気(酸素含有ガスに相当
する)中の酸素とを電気化学反応させて発電する燃料電
池発電部4を設け、被加熱水が燃料電池発電部4の排熱
を回収した後、貯湯槽3に貯留されるように構成してあ
る。貯湯槽3に貯留されている湯水は、給湯路37を通
じて湯水需要先に供給するように構成してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] A first embodiment in which the present invention is applied to a polymer electrolyte fuel cell power generator based on FIGS. 1, 2, 4 to 7 will be described below. An embodiment will be described. As shown in FIGS. 1 and 2, the fuel cell power generator includes a fuel gas (corresponding to a hydrogen-containing gas) supplied through a fuel gas passage 1 and a reaction gas supplied through a reaction air passage 2. A fuel cell power generation unit 4 for generating electricity by electrochemically reacting oxygen in the working air (corresponding to oxygen-containing gas) with the heated water is used to recover the exhaust heat of the fuel cell power generation unit 4. It is configured to be stored in. The hot water stored in the hot water storage tank 3 is configured to be supplied to a hot water demand destination through the hot water supply channel 37.

【0019】燃料電池発電部4には、冷却水を通流させ
て燃料電池発電部4を水冷する水冷部5を設けてある。
本発明においては、被加熱水を冷却水として水冷部5に
通流させて、被加熱水が燃料電池発電部4の排熱を回収
するように構成してある。つまり、燃料電池発電部4の
排熱を回収した後、貯湯槽3に供給するように、被加熱
水を通流させる被加熱水路6を、被加熱水が水冷部5を
通流するように水冷部5に接続してある。
The fuel cell power generation unit 4 is provided with a water cooling unit 5 for flowing cooling water to cool the fuel cell power generation unit 4 with water.
In the present invention, the heated water is passed through the water cooling unit 5 as cooling water, and the heated water recovers the exhaust heat of the fuel cell power generation unit 4. That is, after the exhaust heat of the fuel cell power generation unit 4 is recovered, the heated water passage 6 through which the heated water flows is supplied to the hot water storage tank 3 so that the heated water flows through the water cooling unit 5. It is connected to the water cooling unit 5.

【0020】又、燃料電池発電部4から排燃料ガス路7
を通じて排出される排燃料ガスにより、被加熱水路6を
通流する被加熱水を加熱する排燃料ガス用熱交換器8、
燃料電池発電部4から排反応用空気路9を通じて排出さ
れる排反応用空気により、被加熱水路6を通流する被加
熱水を加熱する排空気用熱交換器10を設け、燃料電池
発電部4の排熱を、燃料電池発電部4から排出された排
燃料ガス及び排反応用空気から被加熱水に直接に回収さ
せるように構成してある。
Further, the fuel cell power generation unit 4 is connected to the exhaust fuel gas passage 7.
A fuel gas heat exchanger 8, which heats the heated water flowing through the heated water passage 6 by the discharged fuel gas discharged through
An exhaust air heat exchanger 10 is provided for heating water to be heated flowing through the heated water passage 6 by exhaust reaction air discharged from the fuel cell power generation unit 4 through the exhaust reaction air passage 9. The exhaust heat of the fuel cell 4 is directly recovered to the heated water from the exhaust fuel gas discharged from the fuel cell power generation unit 4 and the exhaust reaction air.

【0021】詳細は後述するが、天然ガス等の原燃料ガ
スを水蒸気改質する改質装置17のバーナ17bに、排
燃料ガス路7を接続して、燃料電池発電部4から排出さ
れた排燃料ガスをバーナ17bにて燃焼させるようにし
てある。そして、そのバーナ17bから排燃焼ガス路3
0を通じて排出された燃焼ガスにより、被加熱水路6を
通流する被加熱水を加熱する排燃焼ガス用熱交換器33
を設け、バーナ17bの排熱を、被加熱水に直接に回収
させるように構成してある。
As will be described in detail later, the exhaust fuel gas passage 7 is connected to a burner 17b of a reformer 17 for steam reforming a raw fuel gas such as natural gas, so that the exhaust gas discharged from the fuel cell power generation unit 4 is discharged. The fuel gas is burned by the burner 17b. And, from the burner 17b, the exhaust combustion gas path 3
0, the exhaust gas heat exchanger 33 for heating the water to be heated flowing through the heated water passage 6 by the combustion gas discharged through
And the exhaust heat of the burner 17b is directly recovered by the heated water.

【0022】被加熱水路6には水道を接続して、被加熱
水として水道水をその給水圧にて被加熱水路6を通流さ
せるようにしてある。又、被加熱水路6には、被加熱水
路6への給水量を調節する比例弁34(給水量調節手段
に相当する)、及び、燃料電池発電部4の排熱を回収し
た後、貯湯槽3に貯留される被加熱水の温度を検出する
温度センサ35(温度検出手段に相当する)を設けてあ
る。そして、温度センサ35の検出温度が設定温度(例
えば、80°C)になるように、比例弁34の開度を調
節する制御装置36(制御手段に相当する)を設けてあ
る。
A water supply is connected to the heated water passage 6, so that tap water as the heated water flows through the heated water passage 6 at its supply pressure. In the heated water channel 6, a proportional valve 34 (corresponding to a water supply amount adjusting means) for adjusting the amount of water supplied to the heated water channel 6 and the exhaust heat of the fuel cell power generation unit 4 are collected. A temperature sensor 35 (corresponding to a temperature detecting means) for detecting the temperature of the heated water stored in 3 is provided. Further, a control device 36 (corresponding to control means) for adjusting the opening of the proportional valve 34 is provided so that the temperature detected by the temperature sensor 35 becomes a set temperature (for example, 80 ° C.).

【0023】図4ないし図7に基づいて、燃料電池発電
部4について説明を加える。先ず、燃料電池のセルCに
ついて説明を加える。セルCは、高分子膜41の一方の
面に酸素極42、集電板44及び酸素極側セパレータ4
5を配置し、且つ、他方の面に燃料極43、集電板44
及び燃料極側セパレータ46を配置して構成してある。
そして、そのようなセルCの複数を、積層状態に並置
し、並びに、積層方向の両端部夫々に電力取り出し用の
集電部47を設けて、燃料電池発電部4を構成してあ
る。
The fuel cell power generation section 4 will be described with reference to FIGS. First, the cell C of the fuel cell will be described. The cell C has an oxygen electrode 42, a current collector 44 and an oxygen electrode side separator 4 on one surface of the polymer film 41.
5 and the fuel electrode 43 and the current collector 44 on the other surface.
And a fuel electrode side separator 46.
A plurality of such cells C are juxtaposed in a stacked state, and a power collection unit 47 for extracting power is provided at each of both ends in the stacking direction to constitute the fuel cell power generation unit 4.

【0024】酸素極側セパレータ45は、酸素極42側
の面に、反応用空気を通流させる酸素極側流路を形成す
る酸素極側ガス通流溝45sを形成し、反対側の面に、
冷却水流路を形成する冷却水通流溝45wを形成してあ
る。燃料極側セパレータ46は、燃料極43側の面に、
燃料ガスを通流させる燃料極側流路を形成する燃料極側
ガス通流溝46fを形成し、反対側の面に、酸素極側セ
パレータ45の冷却水通流溝45wと面対称となる冷却
水流路形成用の冷却水通流溝46wを形成してある。
The oxygen electrode side separator 45 has an oxygen electrode side gas flow groove 45s which forms an oxygen electrode side flow path through which air for reaction flows is formed on the surface on the oxygen electrode 42 side, and is formed on the opposite surface. ,
A cooling water flow groove 45w that forms a cooling water flow path is formed. The fuel electrode side separator 46 has a surface on the fuel electrode 43 side,
A fuel electrode-side gas flow groove 46f that forms a fuel electrode-side flow path through which fuel gas flows is formed, and cooling on the opposite surface is plane-symmetric with the cooling water flow groove 45w of the oxygen electrode-side separator 45. A cooling water flow groove 46w for forming a water flow path is formed.

【0025】更に、高分子膜41、酸素極側セパレータ
45及び燃料極側セパレータ46の夫々には、それらを
重ねたときに夫々が積層方向に連なる状態で、厚さ方向
に貫通する6個の孔41h,45h,46hを形成して
ある。積層方向視において、高分子膜41、酸素極側セ
パレータ45及び燃料極側セパレータ46の夫々に形成
する6個の孔41h,45h,46hのうち、2個は酸
素極側ガス通流溝45sの通流経路の両端部に各別に重
なり、別の2個は燃料極側ガス通流溝46fの通流経路
の両端部に各別に重なり、残りの2個は冷却水通流溝4
5w,46wの通流経路の両端部に各別に重なる。
Further, each of the polymer film 41, the oxygen electrode side separator 45, and the fuel electrode side separator 46 is provided with six pieces penetrating in the thickness direction in a state where they are connected in the stacking direction when they are stacked. Holes 41h, 45h and 46h are formed. As viewed in the stacking direction, two of the six holes 41h, 45h, and 46h formed in the polymer film 41, the oxygen electrode-side separator 45, and the fuel electrode-side separator 46 are two of the oxygen electrode-side gas flow grooves 45s. The other two portions overlap with both ends of the flow path of the fuel electrode side gas flow groove 46f, respectively, and the other two pieces overlap with the cooling water flow grooves 4 respectively.
5w and 46w respectively overlap with both ends of the flow path.

【0026】従って、燃料電池発電部4には、高分子膜
41、酸素極側セパレータ45及び燃料極側セパレータ
46夫々の孔41h,45h,46hが積層方向に連な
って形成される通路が6本形成されるが、それらのうち
の2本は、各酸素極側ガス通流溝45sの通流経路の両
端部に各別に連通し、別の2本は、各燃料極側ガス通流
溝46sの通流経路の両端部に各別に連通し、残りの2
本は、各冷却水通流溝45w,46wの通流経路の両端
部に各別に連通している。尚、各酸素極側ガス通流溝4
5sの通流経路の両端部に各別に連通する2本の通路
を、酸素極側連通路Tsと、各燃料極側ガス通流溝46
fの通流経路の両端部に各別に連通する2本の通路を燃
料極側連通路Tfと、各冷却水通流溝45w,46wの
通流経路の両端部に各別に連通する2本の通路を冷却水
側連通路Twと夫々称する。
Accordingly, the fuel cell power generation section 4 has six passages in which the holes 41h, 45h, 46h of the polymer membrane 41, the oxygen electrode side separator 45, and the fuel electrode side separator 46 are respectively connected in the stacking direction. Two of them are individually connected to both ends of the flow path of each oxygen electrode side gas flow groove 45s, and the other two are each fuel electrode side gas flow groove 46s. To the two ends of the flow path of
The book is in communication with both ends of the flow path of each cooling water flow groove 45w, 46w. In addition, each oxygen electrode side gas flow groove 4
Two passages respectively communicating with both ends of the 5 s flow passage are formed as an oxygen electrode side communication passage Ts and a fuel electrode side gas flow groove 46.
The two passages respectively communicating with both ends of the flow path of f are connected to the fuel electrode side communication path Tf and the two passages respectively communicating with both ends of the flow paths of the cooling water flow grooves 45w and 46w. The passages are respectively referred to as cooling water side communication passages Tw.

【0027】高分子膜41は、フッ素樹脂系のイオン交
換膜(ナフィオン等)にて形成してある。酸素極42及
び燃料極43は、カーボンから成る多孔状の導電材にて
形成し、白金から成る電極触媒を担持してある。集電板
44は、多孔状のカーボンペーパ等にて形成し、酸素極
側セパレータ45及び燃料極側セパレータ46は、カー
ボン等から成る緻密な気密性の導電材にて形成してあ
る。
The polymer membrane 41 is formed of a fluororesin-based ion exchange membrane (such as Nafion). The oxygen electrode 42 and the fuel electrode 43 are formed of a porous conductive material made of carbon, and carry an electrode catalyst made of platinum. The current collector plate 44 is formed of porous carbon paper or the like, and the oxygen electrode side separator 45 and the fuel electrode side separator 46 are formed of a dense airtight conductive material made of carbon or the like.

【0028】更に、図7に示すように、燃料電池発電部
3の積層方向の両端部夫々に端板49を設けてある。一
方の端板49には、2本の酸素極側連通路Tsのうちの
一方の端部に連通接続する空気用接続部48s、2本の
燃料極側連通路Tfのうちの一方の端部に連通接続する
燃料ガス用接続部48f、及び、2本の冷却水連通路T
wのうちの一方の端部に連通接続する冷却水用接続部4
8wを備えてある。又、他方の端板49には、2本の酸
素極側連通路Tsのうちの他方の端部に連通接続する空
気用接続部48s、2本の燃料極側連通路Tfのうちの
他方の端部に連通接続する燃料ガス用接続部48f、及
び、2本の冷却水連通路Twのうちの他方の端部に連通
接続する冷却水用接続部48wを備えてある。
Further, as shown in FIG. 7, end plates 49 are provided at both ends in the stacking direction of the fuel cell power generation unit 3. One end plate 49 has an air connection portion 48s that is connected to one end of two oxygen electrode side communication passages Ts and one end of two fuel electrode side communication passages Tf. Connecting portion 48f for fuel gas communicating with the cooling water and two cooling water communication passages T
w connection part 4 for cooling water which is connected to one end of w
8w. Further, the other end plate 49 has an air connection portion 48 s that is connected to the other end of the two oxygen electrode side communication passages Ts and the other of the two fuel electrode side communication passages Tf. A fuel gas connecting portion 48f communicating with the end portion and a cooling water connecting portion 48w communicating with the other end portion of the two cooling water communication passages Tw are provided.

【0029】尚、2個の空気用接続部48sのうち、一
方は反応用空気の供給用として、他方は反応用空気の排
出用として用い、2個の燃料ガス用接続部48fのう
ち、一方は燃料ガスの供給用として、他方は燃料ガスの
排出用として用い、並びに、2個の冷却水用接続部48
wのうち、一方は冷却水の供給用として、他方は冷却水
の排出用として用いる。
One of the two air connection portions 48s is used for supplying reaction air, and the other is used for discharging reaction air, and one of the two fuel gas connection portions 48f is used. Is used for supplying fuel gas, the other is used for discharging fuel gas, and two cooling water connections 48 are used.
One of w is used for supplying cooling water, and the other is used for discharging cooling water.

【0030】そして、供給用の空気用接続部48sから
反応用空気を、供給用の燃料ガス用接続部8fから燃料
ガスを、並びに、供給用の冷却水用接続部8wから冷却
水を夫々供給する。すると、反応用空気ガスは、各図中
において実線矢印にて示すように、一方の酸素極側連通
路Tsから各セルCの酸素極側流路に供給され、酸素極
側流路を通流してから、他方の酸素極側連通路Tsに流
出し、その酸素極側連通路Tsを通流して排出用の空気
用接続部48sから排出される。又、燃料ガスは、各図
中において二点鎖線矢印にて示すように、一方の燃料極
側連通路Tfから各セルCの燃料極側流路に供給され、
燃料極側流路を通流してから、他方の燃料極側連通路T
fに流出し、その燃料極側連通路Tfを通流して排出用
の燃料ガス用接続部48fから排出される。又、冷却水
は、各図中において一点鎖線矢印にて示すように、一方
の冷却水連通路Twから各セルCの冷却水流路に供給さ
れて、冷却水流路を通流してから、他方の冷却水連通路
Twに流出し、その冷却水連通路Twを通流して排出用
の冷却水用接続部48wから排出される。
The reaction air is supplied from the supply air connection 48s, the fuel gas is supplied from the supply fuel gas connection 8f, and the cooling water is supplied from the supply cooling water connection 8w. I do. Then, the reaction air gas is supplied from one of the oxygen electrode side communication passages Ts to the oxygen electrode side flow path of each cell C and flows through the oxygen electrode side flow path as indicated by a solid line arrow in each drawing. After that, it flows out to the other oxygen electrode side communication passage Ts, flows through the oxygen electrode side communication passage Ts, and is discharged from the air connection portion 48s for discharge. Further, the fuel gas is supplied from one fuel electrode side communication passage Tf to the fuel electrode side flow path of each cell C, as indicated by a two-dot chain line arrow in each drawing,
After flowing through the fuel electrode side flow path, the other fuel electrode side communication passage T
f, flows through the fuel electrode side communication passage Tf, and is discharged from the fuel gas connecting portion 48f for discharge. In addition, the cooling water is supplied to the cooling water flow path of each cell C from one cooling water communication path Tw, and flows through the cooling water flow path, as indicated by a chain line arrow in each drawing. It flows out into the cooling water communication passage Tw, flows through the cooling water communication passage Tw, and is discharged from the cooling water connection portion 48w for discharge.

【0031】そして、各セルCにおいては、後述するよ
うに加湿された燃料ガス中に含まれる水分によって高分
子膜41が湿らされる状態で、反応用空気中の酸素と燃
料ガス中の水素との電気化学反応により発電される。
又、冷却水の通流により、各セルCの温度が所定の温度
に維持される。燃料電池発電部4で発電された直流電力
は、インバータIによって交流電力に変換されて給電さ
れる。
In each cell C, the oxygen contained in the reaction air and the hydrogen contained in the fuel gas are mixed with each other while the polymer film 41 is moistened by the moisture contained in the humidified fuel gas as described later. Is generated by the electrochemical reaction of
In addition, the flow of the cooling water maintains the temperature of each cell C at a predetermined temperature. The DC power generated by the fuel cell power generation unit 4 is converted into AC power by the inverter I and supplied.

【0032】従って、冷却水流路を形成する冷却水通流
溝45w及び冷却水通流溝46wが水冷部5として機能
するように構成してある。
Therefore, the cooling water flow groove 45w and the cooling water flow groove 46w forming the cooling water flow path are configured to function as the water cooling section 5.

【0033】次に、図2に基づいて、燃料電池発電部4
に燃料ガスを供給するための構成について説明する。天
然ガス等の炭化水素系の原燃料ガスを、原燃料ガス路1
1を通じて脱硫装置12に供給して脱硫し、その脱硫原
燃料ガスを、ガス路13を通じてエジェクタ14に送
り、そのエジェクタ14おいて、脱硫原燃料ガスと後述
の改質用水蒸気路15を通じて送られてくる水蒸気と混
合させて、ガス路16を通じて改質装置17に送る。改
質装置17において、バーナ17bの燃焼熱を反応熱と
して、原燃料ガスと水蒸気とを改質反応させて、水素ガ
ス及び一酸化炭素ガスを含有するガスに改質処理し、そ
の改質処理後のガスをガス路18を通じて変成装置19
に送り、変成装置19において、送られてきたガス中の
一酸化炭素ガスと水蒸気とを変成反応させて、水素ガス
及び二酸化炭素ガスを含有するガスに変成処理し、その
変成処理後のガスをガス路20を通じてCO除去装置2
1に送り、CO除去装置21において、送られてきたガ
ス中の一酸化炭素ガスを選択酸化用空気路22からの空
気により選択的に酸化する。そして、このように生成さ
れた一酸化炭素ガス含有量の少ない水素含有ガスを燃料
ガスとして、加湿器23にて加湿した後、燃料ガス路1
を通じて供給用の燃料ガス用接続部48fから燃料電池
発電部4に供給する。
Next, based on FIG.
A configuration for supplying fuel gas to the fuel cell will be described. Hydrocarbon raw fuel gas such as natural gas is supplied to raw fuel gas path 1
The desulfurization raw fuel gas is supplied to a desulfurization device 12 through the gas desulfurizer 1, and the desulfurization raw fuel gas is sent to an ejector 14 through a gas passage 13, where the desulfurization raw fuel gas is sent through a reforming steam passage 15 to be described later. It is mixed with incoming steam and sent to a reformer 17 through a gas passage 16. In the reforming device 17, the raw fuel gas and the steam are subjected to a reforming reaction using the combustion heat of the burner 17b as reaction heat to reform the gas containing hydrogen gas and carbon monoxide gas. The post-gas is passed through a gas passage 18 to be transformed
And in the shift converter 19, a shift reaction is performed between the carbon monoxide gas and the steam in the sent gas to convert the gas into a gas containing hydrogen gas and carbon dioxide gas. CO removal device 2 through gas path 20
The carbon monoxide gas in the sent gas is selectively oxidized by the air from the selective oxidation air passage 22 in the CO removing device 21. Then, after the humidifier 23 humidifies the hydrogen-containing gas thus generated with a low carbon monoxide gas content as a fuel gas, the fuel gas passage 1
The fuel gas is supplied to the fuel cell power generation section 4 from the fuel gas connection section 48f for supply.

【0034】空気供給用のブロア24を設け、そのブロ
ア24と燃料電池発電部4の供給用の空気用接続部48
sとを反応用空気路2にて接続し、ブロア24とガス路
20とを選択酸化用空気路22にて接続し、ブロア24
と改質装置17のバーナ17bとを燃焼用空気路25に
て接続してある。
An air supply blower 24 is provided, and the blower 24 and an air connection 48 for supply of the fuel cell power generation unit 4 are provided.
s are connected by the reaction air passage 2, the blower 24 and the gas passage 20 are connected by the selective oxidation air passage 22,
The burner 17b of the reformer 17 is connected to a combustion air passage 25.

【0035】燃料電池発電部4から排出された排燃料ガ
スを改質装置17のバーナ17bに供給すべく、燃料電
池発電部4の排出用の燃料ガス用接続部48fとバーナ
17bとを排燃料ガス路7にて接続し、燃料電池発電部
4から排出された排反応用空気を導くべく、排出用の空
気用接続部48sに排反応用空気路9を接続してある。
尚、改質装置17における改質反応に必要な反応熱を与
えるに当たって、排燃料ガスだけでは不足する分を補う
べく、改質装置17のバーナ17bには、原燃料ガス補
給用のガス補給路26を接続してある。又、バーナ17
bには、燃焼ガスを排出させるための排燃焼ガス路30
を接続してある。
In order to supply the exhaust gas discharged from the fuel cell power generation section 4 to the burner 17b of the reformer 17, the fuel gas connection section 48f for discharge of the fuel cell power generation section 4 and the burner 17b are discharged. In order to guide the exhaust reaction air discharged from the fuel cell power generation unit 4 through the gas passage 7, the exhaust reaction air passage 9 is connected to the exhaust air connection unit 48s.
In addition, in giving the reaction heat necessary for the reforming reaction in the reformer 17, a burner 17b of the reformer 17 is provided with a gas supply path for replenishing the raw fuel gas in order to compensate for the shortage of the exhaust gas alone. 26 is connected. Burner 17
b, an exhaust combustion gas passage 30 for discharging combustion gas.
Is connected.

【0036】排燃料ガス路7には、通流する排燃料ガス
中の水分を凝縮分離するための気水分離器27を設け、
排反応用空気路9には、通流する排反応用空気中の水分
を凝縮分離するための気水分離器28を設け、それら両
気水分離器27,28にて分離された凝縮水を貯留する
気水分離器29を設けてある。そして、気水分離器29
の液相部とエジェクタ14とを改質用水蒸気路15にて
接続するとともに、その改質用水蒸気路15に、そこを
通流する水を改質装置17から排出されてガス路18を
通流する高温の改質処理ガスによる加熱により蒸発させ
る水蒸発用熱交換器31を設けて、気水分離器29にて
貯留されている水を蒸発させて、その水蒸気を改質反応
用としてエジェクタ14に供給するようにしてある。
尚、水蒸発用熱交換器31は、改質装置17から排出さ
れてガス路18を通流する高温の改質処理ガスにより、
ガス路13を通流して改質装置17に供給される原燃料
ガスを予熱する機能を備えている。尚、図2中の32
は、気水分離器29に純水を補給する補給水路である。
A steam-water separator 27 for condensing and separating moisture in the flowing exhaust gas is provided in the exhaust gas path 7.
The exhaust-reaction air passage 9 is provided with a steam-water separator 28 for condensing and separating moisture in the exhaust-reaction air flowing therethrough, and the condensed water separated by the steam-water separators 27, 28 is separated from the steam. A steam-water separator 29 for storage is provided. And steam-water separator 29
Is connected to the ejector 14 through a reforming steam passage 15, and the water flowing therethrough is discharged from the reformer 17 and passed through the gas passage 18. A water-evaporating heat exchanger 31 for evaporating by heating with the flowing high-temperature reforming gas is provided, the water stored in the steam separator 29 is evaporated, and the steam is used as an ejector for the reforming reaction. 14.
The water-evaporating heat exchanger 31 is heated by the high-temperature reforming gas discharged from the reformer 17 and flowing through the gas passage 18.
It has a function of preheating raw fuel gas supplied to the reformer 17 through the gas passage 13. Incidentally, 32 in FIG.
Is a supply channel for supplying pure water to the steam separator 29.

【0037】図1及び図2に示すように、排燃焼ガス路
30には、排燃焼ガスから排熱を回収するための排燃焼
ガス用熱交換器33を設け、排燃料ガス路7において、
気水分離器27よりも上流側には、排燃料ガスから排熱
を回収するための排燃料ガス用熱交換器8を設け、排反
応用空気路9において、気水分離器28よりも上流側に
は、排反応用空気から排熱を回収するための排空気用熱
交換器10を設けてある。そして、被加熱水を、排燃焼
ガス用熱交換器33、排燃料ガス用熱交換器8、排空気
用熱交換器10、燃料電池発電部4の水冷部5を順に通
流させて、貯湯槽3に供給するように、被加熱水路6に
て、排燃焼ガス用熱交換器33、排燃料ガス用熱交換器
8、排空気用熱交換器10、供給用の冷却水用接続部4
8w、排出用の冷却水用接続部48w、貯湯槽3の湯水
受入口3iを順に接続してある。従って、被加熱水は、
排燃焼ガス用熱交換器33において排燃焼ガスから排熱
を回収し、排燃料ガス用熱交換器8において排燃料ガス
から排熱を回収し、排空気用熱交換器10において排反
応用空気から排熱を回収し、並びに、水冷部5において
冷却水として通流して燃料電池発電部4の排熱を回収し
た後、湯水受入口3iから貯湯槽3に供給される。
As shown in FIGS. 1 and 2, an exhaust combustion gas passage 30 is provided with an exhaust combustion gas heat exchanger 33 for recovering exhaust heat from the exhaust combustion gas.
An exhaust fuel gas heat exchanger 8 for recovering exhaust heat from the exhaust fuel gas is provided on the upstream side of the steam separator 27, and is provided upstream of the steam separator 28 in the exhaust reaction air passage 9. On the side, an exhaust air heat exchanger 10 for recovering exhaust heat from exhaust reaction air is provided. Then, the heated water flows through the exhaust combustion gas heat exchanger 33, the exhaust fuel gas heat exchanger 8, the exhaust air heat exchanger 10, and the water cooling unit 5 of the fuel cell power generation unit 4 in this order. To be supplied to the tank 3, in the heated water channel 6, the exhaust combustion gas heat exchanger 33, the exhaust fuel gas heat exchanger 8, the exhaust air heat exchanger 10, and the cooling water connection 4 for supply
8w, a connecting portion 48w for cooling water for discharge, and a hot water receiving port 3i of the hot water storage tank 3 are connected in order. Therefore, the heated water is
The exhaust heat is recovered from the exhaust gas in the exhaust gas heat exchanger 33, the exhaust heat is recovered from the exhaust gas in the exhaust gas heat exchanger 8, and the exhaust reaction air is recovered in the exhaust air heat exchanger 10. After collecting the exhaust heat from the fuel cell power generation unit 4 by flowing it as cooling water in the water cooling unit 5, the exhaust heat is supplied to the hot water storage tank 3 from the hot water inlet 3 i.

【0038】従って、燃料電池発電部4の排熱を被加熱
水に直接回収させ、並びに、排燃料ガス及び排反応用空
気にて排出される燃料電池発電部4の排熱を、排燃料ガ
ス及び排反応用空気から被加熱水に直接回収させること
に加えて、改質装置17のバーナ17bの燃焼ガスから
被加熱水に排熱を直接回収させるようにしてあるので、
排熱回収効率を一層向上することができると共に、貯湯
槽3からの給湯温度を一層高くすることができる。
Accordingly, the exhaust heat of the fuel cell power generation unit 4 is directly recovered by the heated water, and the exhaust heat of the fuel cell power generation unit 4 discharged by the exhaust fuel gas and the exhaust reaction air is converted into the exhaust fuel gas. In addition to directly recovering the waste water from the exhaust reaction air into the heated water, the waste heat is directly recovered from the combustion gas of the burner 17b of the reformer 17 into the heated water.
Exhaust heat recovery efficiency can be further improved, and the temperature of hot water supplied from hot water storage tank 3 can be further increased.

【0039】〔第2実施形態〕以下、図3に基づいて、
本発明を高分子電解質型の燃料電池発電装置に適用した
場合の第2の実施の形態を説明する。第2実施形態にお
いては、燃料電池発電部4、その燃料電池発電部4に燃
料ガス及び反応用空気夫々を供給するための構成は、上
記の第1実施形態と同様に構成し、更に、第1実施形態
と同様に、排燃焼ガス用熱交換器33、排燃料ガス用熱
交換器8、排空気用熱交換器10を設けてある。
[Second Embodiment] Hereinafter, based on FIG.
A second embodiment in which the present invention is applied to a polymer electrolyte fuel cell power generator will be described. In the second embodiment, the fuel cell power generation unit 4 and the configuration for supplying each of the fuel gas and the reaction air to the fuel cell power generation unit 4 are configured in the same manner as the first embodiment described above. As in the first embodiment, a heat exchanger 33 for exhaust combustion gas, a heat exchanger 8 for exhaust fuel gas, and a heat exchanger 10 for exhaust air are provided.

【0040】そして、貯湯槽3に湯水が温度成層を形成
して貯留されるように、貯湯槽3の底部の湯水取り出し
口3oから取り出した被加熱水を燃料電池発電部4の排
熱を回収するように通流させた後、貯湯槽3の上部の湯
水受入口3iに供給する状態で、被加熱水を循環させる
被加熱水循環手段L を設けてある。又、貯湯槽3内に満
水状態で湯水を貯留すべく、水道水をその給水圧で供給
する給水路40を槽底部に接続し、槽上部に給湯路37
を接続し、給水路40からの給水圧にて、槽上部の湯を
給湯路37から給湯するように構成してある。
Then, the heated water taken out from the hot water outlet 3o at the bottom of the hot water tank 3 is recovered by the exhaust heat of the fuel cell power generation unit 4 so that the hot water forms a temperature stratification and is stored in the hot water tank 3. A heated water circulating means L for circulating the heated water is provided in such a state that the heated water is supplied to the hot water receiving port 3i in the upper part of the hot water storage tank 3 after flowing the hot water. In order to store hot water in the hot water storage tank 3 in a full state, a water supply path 40 for supplying tap water at the water supply pressure is connected to the bottom of the tank, and a hot water supply path 37 is provided at the top of the tank.
Is connected, and hot water in the upper part of the tank is supplied from the hot water supply channel 37 by the water supply pressure from the water supply channel 40.

【0041】説明を加えると、湯水取り出し口3oから
取り出した被加熱水を、排燃焼ガス用熱交換器33、排
燃料ガス用熱交換器8、排空気用熱交換器10、燃料電
池発電部4の水冷部5の順に通流させて、湯水受入口3
iから貯湯槽3に供給するように、被加熱水循環路38
にて、湯水取り出し口3o、排燃焼ガス用熱交換器3
3、排燃料ガス用熱交換器8、排空気用熱交換器10、
燃料電池発電部4の供給用の冷却水用接続部48w、排
出用の冷却水用接続部48w、貯湯槽3の湯水受入口3
iを順に接続してある。又、被加熱水循環路38には、
循環用ポンプ39を設けてある。従って、被加熱水循環
手段Lは、被加熱水循環路38と、その被加熱水循環路
38に設けた循環用ポンプ39にて構成してある。
In addition, the heated water taken out from the hot water outlet 3o is discharged into the heat exchanger 33 for exhaust combustion gas, the heat exchanger 8 for exhaust gas, the heat exchanger 10 for exhaust air, and the fuel cell power generator. 4 in the order of the water cooling section 5 and the hot and cold water inlet 3
i, the heated water circulation path 38
, The hot water outlet 3o, the exhaust gas heat exchanger 3
3. Exhaust gas heat exchanger 8, Exhaust air heat exchanger 10,
Cooling water connection 48 w for supply of fuel cell power generation unit 4, cooling water connection 48 w for discharge, hot water inlet 3 of hot water tank 3
i are connected in order. In the heated water circulation path 38,
A circulation pump 39 is provided. Therefore, the heated water circulation means L is constituted by the heated water circulation path 38 and the circulation pump 39 provided in the heated water circulation path 38.

【0042】そして、循環用ポンプ39の通水作用によ
り、湯水取り出し口3oから取り出した被加熱水を、排
燃焼ガス用熱交換器33、排燃料ガス用熱交換器8、排
空気用熱交換器10、燃料電池発電部4の水冷部5の順
に通流させて加熱した後、湯水受入口3iから供給する
ことにより、貯湯槽3内の上側に湯を、貯湯槽3内の下
側に水を分離貯留するようにしてある。貯湯槽3内の湯
層と水層との境界は、給湯路37からの給湯量が少なく
なると槽下方に、多くなると槽上方に移動する如く、給
湯路37からの給湯量に応じて槽上下方向に移動する。
The water to be heated taken out of the hot / water take-out port 3o is discharged by the circulation pump 39 into the heat exchanger 33 for the exhaust combustion gas, the heat exchanger 8 for the exhaust fuel gas, and the heat exchanger for the exhaust air. After passing through the heater 10 and the water cooling unit 5 of the fuel cell power generation unit 4 in order, and heating, the hot water is supplied from the hot water receiving port 3i, so that the hot water is supplied to the upper side of the hot water storage tank 3 and to the lower side of the hot water storage tank 3. Water is stored separately. The boundary between the hot water layer and the water layer in the hot water storage tank 3 is such that, when the amount of hot water supplied from the hot water supply channel 37 decreases, the boundary moves downward in the tank, and when the amount increases, moves upward in the tank. Move in the direction.

【0043】被加熱水循環路38には、燃料電池発電部
4の排熱を回収した後、貯湯槽3に貯留される被加熱水
の温度を検出する温度センサ35を設け、制御装置36
は、温度センサ35の検出温度が設定温度(例えば、8
0°C)になるように、被加熱水の通流量を調節すべ
く、循環用ポンプ39を制御するように構成してある。
従って、循環用ポンプ39が、給水量調節手段として機
能する。
The heated water circulation path 38 is provided with a temperature sensor 35 for detecting the temperature of the heated water stored in the hot water storage tank 3 after recovering the exhaust heat of the fuel cell power generation unit 4.
Indicates that the temperature detected by the temperature sensor 35 is the set temperature (for example, 8
The circulation pump 39 is controlled so as to adjust the flow rate of the heated water so that the temperature becomes 0 ° C.).
Therefore, the circulation pump 39 functions as a water supply amount adjusting unit.

【0044】〔別実施形態〕次に別実施形態を説明す
る。 (イ) 上記の実施形態においては、水冷部5において
燃料電池発電部4の排熱を被加熱水に直接回収させるこ
とに加えて、排燃料ガスから排熱を被加熱水に直接回収
するための排燃料ガス用熱交換器8、排反応用空気から
排熱を被加熱水に直接回収するための排空気用熱交換器
10、及び、排燃焼ガスから排熱を被加熱水に直接回収
するための排燃焼ガス用熱交換器33を設ける場合につ
いて例示した。これに代えて、排燃料ガス用熱交換器
8、排空気用熱交換器10及び排燃焼ガス用熱交換器3
3の全てを省略したり、いずれか二つを省略したり、い
ずれか一つを省略しても良い。
[Another Embodiment] Next, another embodiment will be described. (A) In the above embodiment, in addition to directly collecting the waste heat of the fuel cell power generation unit 4 in the water to be heated in the water cooling unit 5, in addition to directly collecting the waste heat from the waste fuel gas to the heated water. Exhaust gas heat exchanger 8, Exhaust air heat exchanger 10 for directly collecting exhaust heat from exhaust reaction air into heated water, and Exhaust heat from exhaust combustion gas directly into heated water The case of providing the exhaust gas heat exchanger 33 for performing the operation is described above. Instead of this, the exhaust gas heat exchanger 8, the exhaust air heat exchanger 10, and the exhaust combustion gas heat exchanger 3
3 may be omitted, any two may be omitted, or one of them may be omitted.

【0045】(ロ) 被加熱水を、排燃焼ガス用熱交換
器33、排燃料ガス用熱交換器8、排空気用熱交換器1
0及び水冷部5夫々に通流させる場合、通流させる順序
は、上記の実施形態において例示した、排燃焼ガス用熱
交換器33、排燃料ガス用熱交換器8、排空気用熱交換
器10、水冷部5の順に限定されるものではない。例え
ば、排燃料ガス用熱交換器8、排空気用熱交換器10、
排燃焼ガス用熱交換器33、水冷部5の順としても良
い。
(B) The heated water is supplied to the heat exchanger 33 for exhaust combustion gas, the heat exchanger 8 for exhaust fuel gas, and the heat exchanger 1 for exhaust air.
In the case where the flow is made to flow through each of the heat exchanger 0 and the water cooling section 5, the flow order is as described in the above-described embodiment. It is not limited to 10 and the water cooling section 5 in this order. For example, the exhaust gas heat exchanger 8, the exhaust air heat exchanger 10,
The exhaust combustion gas heat exchanger 33 and the water cooling unit 5 may be arranged in this order.

【0046】(ハ) 上記の実施形態において設けた温
度センサ35に代えて、燃料電池発電部4の温度を検出
する温度センサを設け、制御装置36を、その燃料電池
発電部4の温度を検出する温度センサの検出温度が設定
温度になるように、比例弁34又は循環用ポンプ39の
作動を制御するように構成しても良い。
(C) A temperature sensor for detecting the temperature of the fuel cell power generation unit 4 is provided in place of the temperature sensor 35 provided in the above embodiment, and the control unit 36 detects the temperature of the fuel cell power generation unit 4 The operation of the proportional valve 34 or the circulation pump 39 may be controlled such that the temperature detected by the temperature sensor becomes the set temperature.

【0047】(ニ) 本発明を適用することができる高
分子電解質型の燃料電池発電装置の構成は、上記の実施
形態において例示した構成に限定されるものではない。
例えば、上記の実施形態では、1個のセルC置きに冷却
水を通流させる水冷部5を備えさせる場合について例示
したが、これに代えて、複数のセルC置きに水冷部5を
備えさせるように構成しても良い。
(D) The configuration of the polymer electrolyte fuel cell power generator to which the present invention can be applied is not limited to the configuration exemplified in the above embodiment.
For example, in the above embodiment, the case where the water cooling unit 5 for allowing the cooling water to flow is provided in each of the cells C, but instead, the water cooling unit 5 is provided in the plurality of cells C. It may be configured as follows.

【0048】水冷部5として、上記の実施形態では、酸
素極側セパレータ45に冷却水通流溝45wを、及び、
燃料極側セパレータ46に冷却水通流溝46wを夫々形
成する場合について例示した。これに代えて、冷却水通
流溝45w及び冷却水通流溝46wを省略して、セルC
の間に、水冷部5として、冷却水を通流させる金属製の
管路、又は、金属製のチャンバーを設けても良い。
In the above embodiment, the water cooling section 5 is provided with a cooling water flow groove 45 w in the oxygen electrode side separator 45, and
The case where the cooling water flow grooves 46w are respectively formed in the fuel electrode side separator 46 has been exemplified. Instead of this, the cooling water flow groove 45w and the cooling water flow groove 46w are omitted, and the cell C
In between, a metal pipe or a metal chamber through which cooling water flows may be provided as water cooling section 5.

【0049】(ホ) 上記の実施形態において例示した
天然ガス以外に、アルコール等種々の炭化水素系の原燃
料から改質処理等により生成した水素含有ガスを燃料ガ
スとして用いることができる。又、炭化水素系の原燃料
を用いて水素含有ガスを生成するための構成(改質装置
17、変成装置19及びCO除去装置21等)を省略し
て、純水素ガスを燃料ガスとして用いても良い。
(E) In addition to the natural gas exemplified in the above embodiment, a hydrogen-containing gas produced by reforming a variety of hydrocarbon-based raw fuels such as alcohol can be used as a fuel gas. In addition, a configuration for generating a hydrogen-containing gas using a hydrocarbon-based raw fuel (reforming device 17, shift device 19, CO removing device 21 and the like) is omitted, and pure hydrogen gas is used as a fuel gas. Is also good.

【0050】(ヘ) 本発明は、燃料電池発電部4が高
分子電解質層を備えたセルCにて構成された高分子電解
質型の燃料電池発電装置以外に、例えば、燃料電池発電
部4がリン酸電解質層を備えたセルCにて構成されたリ
ン酸型の燃料電池発電装置にも適用することができる。
(F) In the present invention, for example, the fuel cell power generation unit 4 may be a fuel cell power generation unit 4 other than a polymer electrolyte type fuel cell power generation device including a cell C having a polymer electrolyte layer. The present invention can also be applied to a phosphoric acid type fuel cell power generation device including a cell C having a phosphoric acid electrolyte layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態にかかる燃料電池発電装置におけ
る排熱回収構成を示す要部の図
FIG. 1 is a main part view showing an exhaust heat recovery configuration in a fuel cell power generator according to a first embodiment.

【図2】第1実施形態にかかる燃料電池発電装置の全体
構成を示す図
FIG. 2 is a diagram showing the overall configuration of the fuel cell power generator according to the first embodiment.

【図3】第2実施形態にかかる燃料電池発電装置におけ
る排熱回収構成を示す要部の図
FIG. 3 is a view of a main part showing an exhaust heat recovery configuration in a fuel cell power generator according to a second embodiment.

【図4】実施形態にかかる燃料電池発電装置における燃
料電池発電部のセルの構成を示す斜視図
FIG. 4 is a perspective view showing a configuration of a cell of a fuel cell power generation unit in the fuel cell power generation device according to the embodiment.

【図5】実施形態にかかる燃料電池発電装置における燃
料電池発電部の要部の分解斜視図
FIG. 5 is an exploded perspective view of a main part of a fuel cell power generation unit in the fuel cell power generation device according to the embodiment.

【図6】実施形態にかかる燃料電池発電装置における燃
料電池発電部の要部の分解斜視図
FIG. 6 is an exploded perspective view of a main part of a fuel cell power generation unit in the fuel cell power generation device according to the embodiment.

【図7】実施形態にかかる燃料電池発電装置における燃
料電池発電部の全体概略構成を示す図
FIG. 7 is a diagram showing an overall schematic configuration of a fuel cell power generation unit in the fuel cell power generation device according to the embodiment.

【図8】従来の燃料電池発電装置における排熱回収構成
を示す要部の図
FIG. 8 is a view of a main part showing an exhaust heat recovery configuration in a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

3 貯湯槽 4 燃料電池発電部 34 給水量調節手段 35 温度検出手段 36 制御手段 37 給湯路 39 給水量調節手段 C セル L 被加熱水循環手段 REFERENCE SIGNS LIST 3 hot water storage tank 4 fuel cell power generating unit 34 water supply amount adjusting means 35 temperature detecting means 36 control means 37 hot water supply path 39 water supply amount adjusting means C cell L heated water circulation means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東口 誠作 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 立森 正史 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 5H026 AA06 CC03 CC08 5H027 AA06 BA01 BA09 CC06 DD06 KK41 MM16  ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Seisaku Higashiguchi 4-1-2, Hiranocho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. (72) Inventor Masashi Tatemori Hirano-cho, Chuo-ku, Osaka-shi, Osaka 4-chome 1-2-2 Osaka Gas Co., Ltd. F-term (reference) 5H026 AA06 CC03 CC08 5H027 AA06 BA01 BA09 CC06 DD06 KK41 MM16

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水素含有ガス及び酸素含有ガスが供給さ
れて、水素含有ガス中の水素と酸素含有ガス中の酸素と
を電気化学反応させて発電する燃料電池発電部が設けら
れ、 被加熱水が前記燃料電池発電部の排熱を回収して、貯湯
槽に貯留されるように構成された燃料電池発電装置であ
って、 前記被加熱水を冷却水として前記燃料電池発電部に通流
させて、前記被加熱水が前記燃料電池発電部の排熱を回
収するように構成されている燃料電池発電装置。
1. A fuel cell power generation section is provided which is supplied with a hydrogen-containing gas and an oxygen-containing gas, and which generates an electrochemical reaction between hydrogen in the hydrogen-containing gas and oxygen in the oxygen-containing gas to generate power. Is a fuel cell power generation device configured to recover exhaust heat of the fuel cell power generation unit and store the waste heat in a hot water tank, wherein the heated water is allowed to flow as cooling water to the fuel cell power generation unit. A fuel cell power generator configured so that the heated water recovers exhaust heat of the fuel cell power generator.
【請求項2】 前記被加熱水を、前記燃料電池発電部か
ら排出された排水素含有ガス又は前記燃料電池発電部か
ら排出された排酸素含有ガスにて加熱されるように通流
させて、前記被加熱水が前記燃料電池発電部の排熱を回
収するように構成されている請求項1記載の燃料電池発
電装置。
2. Flowing the heated water so as to be heated by the exhausted hydrogen-containing gas discharged from the fuel cell power generation unit or the exhausted oxygen-containing gas discharged from the fuel cell power generation unit, The fuel cell power generator according to claim 1, wherein the heated water is configured to recover exhaust heat of the fuel cell power generator.
【請求項3】 前記被加熱水として水道水をその給水圧
にて通流させるように構成されている請求項1又は2記
載の燃料電池発電装置。
3. The fuel cell power generator according to claim 1, wherein tap water is supplied at the supply pressure as the heated water.
【請求項4】 前記貯湯槽に湯水が温度成層を形成して
貯留されるように、前記貯湯槽の底部から取り出した前
記被加熱水を前記燃料電池発電部の排熱を回収するよう
に通流させた後、前記貯湯槽の上部に供給する状態で、
前記被加熱水を循環させる被加熱水循環手段が設けら
れ、 前記貯湯槽の上部に給湯路が接続されている請求項1又
は2記載の燃料電池発電装置。
4. The heated water taken out from the bottom of the hot water storage tank is passed through the hot water storage tank so as to recover exhaust heat of the fuel cell power generation unit so that hot water is stored in the hot water storage tank by forming a temperature stratification. After flowing, in a state of being supplied to the upper part of the hot water storage tank,
3. The fuel cell power generator according to claim 1, wherein a heated water circulating unit that circulates the heated water is provided, and a hot water supply path is connected to an upper portion of the hot water storage tank. 4.
【請求項5】 前記燃料電池発電部の排熱を回収した
後、前記貯湯槽に貯留される被加熱水の温度を検出する
温度検出手段と、 前記被加熱水の通流量を調節する給水量調節手段と、 前記温度検出手段の検出温度が設定温度になるように、
前記給水量調節手段を制御する制御手段が設けられてい
る請求項1〜4のいずれか1項に記載の燃料電池発電装
置。
5. A temperature detecting means for detecting a temperature of water to be heated stored in the hot water storage tank after recovering exhaust heat of the fuel cell power generation unit, and a water supply amount for adjusting a flow rate of the water to be heated. Adjusting means, so that the temperature detected by the temperature detecting means becomes a set temperature,
The fuel cell power generator according to any one of claims 1 to 4, further comprising control means for controlling the water supply amount adjusting means.
【請求項6】前記燃料電池発電部が、高分子電解質層を
備えたセルにて構成されている請求項1〜5のいずれか
1項に記載の燃料電池発電装置。
6. The fuel cell power generation device according to claim 1, wherein the fuel cell power generation unit comprises a cell having a polymer electrolyte layer.
JP11192808A 1999-07-07 1999-07-07 Fuel cell power generating system Pending JP2001023668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11192808A JP2001023668A (en) 1999-07-07 1999-07-07 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11192808A JP2001023668A (en) 1999-07-07 1999-07-07 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JP2001023668A true JP2001023668A (en) 2001-01-26

Family

ID=16297342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11192808A Pending JP2001023668A (en) 1999-07-07 1999-07-07 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JP2001023668A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023661A1 (en) * 2000-09-14 2002-03-21 Kabushiki Kaisha Toshiba Solid polymer type fuel cell system
JP2002270194A (en) * 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd Fuel cell cogeneration system
JP2003257465A (en) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd Fuel cell generation system
WO2004027914A1 (en) * 2002-09-20 2004-04-01 Matsushita Electric Industrial Co., Ltd. Fuel cell cogeneration system
JP2005285611A (en) * 2004-03-30 2005-10-13 Seinan Sogo Kaihatsu Kk Fuel cell power generation system provided with hydrogen storage device and its fuel cell power generation method
US7402354B2 (en) 2002-08-27 2008-07-22 Toyota Jidosha Kabushiki Kaisha Fuel cell apparatus
KR101006161B1 (en) 2009-01-21 2011-01-07 주식회사 엑스에프씨 Apparatus for Humidification of Fuelcell
JP2011181514A (en) * 2011-04-28 2011-09-15 Panasonic Corp Fuel cell cogeneration system
JP2012209173A (en) * 2011-03-30 2012-10-25 Panasonic Corp Power generation system
JP2016096112A (en) * 2014-11-17 2016-05-26 東京瓦斯株式会社 Fuel cell system and control program thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023661A1 (en) * 2000-09-14 2002-03-21 Kabushiki Kaisha Toshiba Solid polymer type fuel cell system
JP2002270194A (en) * 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd Fuel cell cogeneration system
JP2003257465A (en) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd Fuel cell generation system
US7402354B2 (en) 2002-08-27 2008-07-22 Toyota Jidosha Kabushiki Kaisha Fuel cell apparatus
CN1324747C (en) * 2002-09-20 2007-07-04 松下电器产业株式会社 Fuel cell cogeneration system
JPWO2004027914A1 (en) * 2002-09-20 2006-01-19 松下電器産業株式会社 FUEL CELL COGENERATION SYSTEM, FUEL CELL COGENERATION SYSTEM OPERATION METHOD, PROGRAM THEREOF, AND RECORDING MEDIUM
WO2004027914A1 (en) * 2002-09-20 2004-04-01 Matsushita Electric Industrial Co., Ltd. Fuel cell cogeneration system
US7452618B2 (en) 2002-09-20 2008-11-18 Panasonic Corporation Fuel cell cogeneration system
JP2010153390A (en) * 2002-09-20 2010-07-08 Panasonic Corp Fuel cell co-generation system and operation method of fuel cell co-generation system
JP4544998B2 (en) * 2002-09-20 2010-09-15 パナソニック株式会社 FUEL CELL COGENERATION SYSTEM AND METHOD OF OPERATING FUEL CELL COGENERATION SYSTEM
JP2005285611A (en) * 2004-03-30 2005-10-13 Seinan Sogo Kaihatsu Kk Fuel cell power generation system provided with hydrogen storage device and its fuel cell power generation method
KR101006161B1 (en) 2009-01-21 2011-01-07 주식회사 엑스에프씨 Apparatus for Humidification of Fuelcell
JP2012209173A (en) * 2011-03-30 2012-10-25 Panasonic Corp Power generation system
JP2011181514A (en) * 2011-04-28 2011-09-15 Panasonic Corp Fuel cell cogeneration system
JP2016096112A (en) * 2014-11-17 2016-05-26 東京瓦斯株式会社 Fuel cell system and control program thereof

Similar Documents

Publication Publication Date Title
JP5542333B2 (en) Fuel cell system that recycles electrochemical anode exhaust
JP2004207241A (en) Integrated fuel cell hybrid generator with re-circulated air fuel flow
JP4295847B2 (en) Polymer electrolyte fuel cell system
JP2009140695A (en) System and method for recovering exhaust heat of fuel cell
JP3685936B2 (en) Polymer electrolyte fuel cell system
WO2013046582A1 (en) High-temperature operation fuel cell module and high-temperature operation fuel cell system
JP4450623B2 (en) Fuel cell system
JP2000156236A5 (en)
JPWO2002023661A1 (en) Polymer electrolyte fuel cell system
JP2001023668A (en) Fuel cell power generating system
JP3943405B2 (en) Fuel cell power generation system
JP3879480B2 (en) Fuel cell system
JP3943406B2 (en) Fuel cell power generation system and operation method thereof
JP4342172B2 (en) Co-energy system
JP2003017098A (en) Fuel cell system
JP3575650B2 (en) Molten carbonate fuel cell
JP4176130B2 (en) Fuel cell power generation system
JP4618985B2 (en) Fuel cell system
JP2002083606A (en) Polyelectrolyte type fuel cell co-generation system
JP3448568B2 (en) Exhaust heat recovery apparatus and method in fuel cell power supply system
KR102548739B1 (en) Fuel cell system having high thermal efficiency
JP2002083607A (en) Polyeletrolyte type fuel cell cogeneration system
KR20230037179A (en) Fuel cell device and method for controlling the same
KR20230069648A (en) Fuel cell system
JP4656286B2 (en) Fuel cell system