JP3448568B2 - Exhaust heat recovery apparatus and method in fuel cell power supply system - Google Patents

Exhaust heat recovery apparatus and method in fuel cell power supply system

Info

Publication number
JP3448568B2
JP3448568B2 JP2001006482A JP2001006482A JP3448568B2 JP 3448568 B2 JP3448568 B2 JP 3448568B2 JP 2001006482 A JP2001006482 A JP 2001006482A JP 2001006482 A JP2001006482 A JP 2001006482A JP 3448568 B2 JP3448568 B2 JP 3448568B2
Authority
JP
Japan
Prior art keywords
fuel cell
hot water
heat exchanger
heat
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001006482A
Other languages
Japanese (ja)
Other versions
JP2002216810A (en
Inventor
勝行 槇原
恵吾 宮井
浩二 進藤
一弘 田島
聡史 山本
正天 門脇
収 田島
昭 藤生
勝也 小田
龍次 畑山
丈俊 黄木
雅敏 上田
竜司 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18874367&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3448568(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001006482A priority Critical patent/JP3448568B2/en
Priority to DK02729526.0T priority patent/DK1351328T3/en
Priority to CNB028000706A priority patent/CN100391037C/en
Priority to DE60239591T priority patent/DE60239591D1/en
Priority to KR10-2002-7011981A priority patent/KR100525538B1/en
Priority to AT02729526T priority patent/ATE504097T1/en
Priority to US10/221,338 priority patent/US7052787B2/en
Priority to EP02729526A priority patent/EP1351328B1/en
Priority to PCT/JP2002/000053 priority patent/WO2002056403A1/en
Publication of JP2002216810A publication Critical patent/JP2002216810A/en
Publication of JP3448568B2 publication Critical patent/JP3448568B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、都市ガス等の原燃
料ガスを水素リッチガスに改質し、この改質ガスと空気
とを燃料電池に供給して化学反応により起電力を生じさ
せるようにした燃料電池電源システムにおける排熱回収
方法に関する。
TECHNICAL FIELD The present invention relates to reforming a raw fuel gas such as city gas into a hydrogen-rich gas and supplying the reformed gas and air to a fuel cell to generate an electromotive force by a chemical reaction. And a method for recovering exhaust heat in a fuel cell power supply system.

【0002】[0002]

【従来の技術】家庭用として開発された燃料電池電源シ
ステムがあり、これは例えば図3のように燃料電池電源
装置Aを屋外に隣接して設置し、都市ガス等の原燃料ガ
スを供給して発電し、インバータBで直流を交流に変換
して屋内の電気機器に電力を供給できるようにしたもの
である。燃料電池電源装置Aは発電中に熱を排出するた
め、その排熱を利用して市水から温水を生成し、屋内の
台所・洗面所・風呂場等の水回りに給湯することが行わ
れている。そのため、燃料電池電源装置Aには貯湯タン
クCが接続される。
2. Description of the Related Art There is a fuel cell power supply system developed for home use. For example, as shown in FIG. 3, a fuel cell power supply device A is installed adjacent to the outside to supply raw fuel gas such as city gas. To generate electric power, convert the direct current into the alternating current with the inverter B, and supply the electric power to indoor electric equipment. Since the fuel cell power supply device A discharges heat during power generation, the exhaust heat is used to generate hot water from city water to supply hot water around the indoor kitchen, washroom, bathroom, etc. ing. Therefore, the hot water storage tank C is connected to the fuel cell power supply device A.

【0003】前記貯湯タンクCは底部内に市水が供給さ
れ、この市水の一部を燃料電池電源装置A内に配設され
た複数の熱交換器に送り込んで温水とし、この温水を貯
湯タンクCの上部内に戻して貯湯し、給湯時には上部か
ら温水を取り出して前記のように屋内の水回り箇所に給
湯するようにしてある。
City water is supplied to the bottom of the hot water storage tank C, and a part of the city water is sent to a plurality of heat exchangers arranged in the fuel cell power supply device A to obtain hot water. The water is returned to the upper part of the tank C to store hot water, and when hot water is supplied, hot water is taken out from the upper part to supply hot water to indoor water supply areas as described above.

【0004】貯湯タンクCの水と燃料電池電源装置A内
の熱交換器との熱交換は、図4に示すように改質装置に
おける改質器1のバーナ1aでの燃焼排ガスが通過する
第1の熱交換器H1との間で行われる第1の循環路R1
と、PGバーナ2での燃焼排ガスが通過する第2の熱交
換器H2との間で行われる第2の循環路R2と、燃料電
池3の空気極から排出される未反応酸素ガスが通過する
第3の熱交換器H3との間で行われる第3の循環路R3
とによっていた。つまり、第1の熱交換器H1〜第3の
熱交換器H3内で、いずれも貯湯タンクCから送り込ま
れた水と、燃焼排ガス又は未反応酸素ガスとの間で熱交
換されるようにしてある。
As shown in FIG. 4, the heat exchange between the water in the hot water storage tank C and the heat exchanger in the fuel cell power supply device A is performed by the combustion exhaust gas passing through the burner 1a of the reformer 1 in the reformer as shown in FIG. No. 1 heat exchanger H1 and first circulation path R1
And the second heat exchanger H2 through which the combustion exhaust gas from the PG burner 2 passes, and the unreacted oxygen gas discharged from the air electrode of the fuel cell 3 passes through. Third circulation path R3 performed with the third heat exchanger H3
It depended on That is, in each of the first heat exchanger H1 to the third heat exchanger H3, heat is exchanged between the water sent from the hot water storage tank C and the combustion exhaust gas or the unreacted oxygen gas. is there.

【0005】[0005]

【発明が解決しようとする課題】上記貯湯タンクCの底
部には常温の市水層が存在し、上部には温められて軽く
なった温水層が存在しているが、非給湯時には底部の市
水が前記熱交換器により温められて上部に戻されるた
め、温水層が徐々に増大し延いては全部温水層になるこ
ともある。一方、給湯時には上部の温水が取り出される
ため温水層が徐々に減少し、その給湯量に応じて底部に
は市水が補充されるため市水層は増大する。従って、貯
湯タンクCの底部から熱交換器に送り込まれる水の温度
は常時一定せず、熱交換器での熱交換効率に変動が生じ
ることになる。前記3つの熱交換器H1〜H3を通過す
る燃焼排ガス又は未反応酸素ガスの温度もそれぞれ異な
るため、貯湯タンクCから送り込まれた水の温度差との
関係で熱交換効率に変動が生じ、この温度差が小さい場
合は熱交換効率が低下してしまう。
The city water layer at room temperature exists at the bottom of the hot water storage tank C, and the warmed and lightened water layer exists at the top, but when the water is not supplied, the city water at the bottom does not exist. Since the water is warmed by the heat exchanger and returned to the upper part, the warm water layer may gradually increase and eventually become a warm water layer. On the other hand, at the time of hot water supply, the hot water in the upper part is taken out, so that the hot water layer gradually decreases, and the city water is replenished in the bottom part according to the amount of hot water supplied, so that the city water layer increases. Therefore, the temperature of the water sent from the bottom of the hot water storage tank C to the heat exchanger is not always constant, and the heat exchange efficiency in the heat exchanger varies. Since the temperatures of the combustion exhaust gas or the unreacted oxygen gas passing through the three heat exchangers H1 to H3 are also different from each other, the heat exchange efficiency varies depending on the temperature difference of the water sent from the hot water storage tank C. If the temperature difference is small, the heat exchange efficiency will decrease.

【0006】本発明は、このような従来の事態に鑑みな
されたもので、貯湯タンクと燃料電池電源装置の複数の
熱交換器との間で効率良く熱交換できるようにした燃料
電池電源システムにおける排熱回収方法を提供すること
を目的とする。
The present invention has been made in view of such a conventional situation, and relates to a fuel cell power supply system capable of efficiently exchanging heat between a hot water storage tank and a plurality of heat exchangers of a fuel cell power supply device. The purpose is to provide a method for recovering exhaust heat.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
の手段として、本発明の請求項1及び3の燃料電池電源
システムにおける排熱回収装置及び方法は、原燃料ガス
を水素リッチな改質ガスに改質する改質装置と、この改
質装置から供給される前記改質ガス中の水素ガスと外部
から供給される空気中の酸素ガスとで化学反応を起こし
て起電力を生じる燃料電池と、温水を蓄える貯湯タンク
と、を含む燃料電池電源システムであっこの燃料電
池電源システム中に設けられ、貯湯タンク内の水と熱交
換を行う、少なくとも燃料電池から排出される未反応酸
素ガスとの熱交換器と燃料電池へ供給される冷却水との
熱交換器を含む複数の熱交換器と、を備え、貯湯タンク
複数の熱交換器とを管接続してループ状の管路を形成
し、この管路を介して前記貯湯タンク内の水を前記熱交
換器に対して順に通過させることで温水にすることを
徴とする。
As means for achieving this object, a fuel cell power source according to claims 1 and 3 of the present invention.
Exhaust heat recovery apparatus and method in the system, a reformer for reforming a raw fuel gas into hydrogen-rich reformed gas is supplied from the reforming external and hydrogen gas in the reformed gas supplied from the device A fuel cell that generates an electromotive force by causing a chemical reaction with oxygen gas in the air and a hot water storage tank that stores hot water
When, a fuel cell power system comprising, a fuel collector
It is installed in the pond power supply system and exchanges heat with the water in the hot water storage tank.
At least unreacted acid discharged from the fuel cell
Between the heat exchanger with the raw gas and the cooling water supplied to the fuel cell
A plurality of heat exchangers including a heat exchanger, and a hot water storage tank and a plurality of heat exchangers are connected by pipes to form a loop-shaped pipe, and water in the hot water storage tank is formed through the pipes. JP to the hot water by passing in sequence against the heat exchanger
To collect.

【0008】また、本発明の請求項2及び4の燃料電池
電源システムにおける排熱回収装置及び方法は、請求項
1の燃料電池電源システムにおいて、貯湯タンクと前記
燃料電池から排出される未反応酸素ガスとの熱交換器を
含む熱交換器とを管接続したループ状の管路を形成する
と共に、この管路に第1の切替バルブを設け、その第1
の切替バルブの上流側から分岐して燃料電池へ供給され
る冷却水との熱交換器を経て前記第1の切替バルブの下
流側に至る分岐路を形成し、この分岐路の燃料電池へ供
給される冷却水との熱交換器より上流側に第2の切替バ
ルブを設け、燃料電池発電時において前記冷却水の水温
が所定温度以上の場合には、前記第1の切替バルブを閉
じ第2の切替バルブを開けて前記分岐路に水を通して冷
却水から熱を回収し、冷却水の水温が所定温度以下にな
った場合には、前記第1の切替バルブを開き第2の切替
バルブを閉じて前記分岐路に水を供給しないことを特徴
とする。本発明では、貯湯タンクと複数の熱交換器との
間を各別に接続して複数の循環路を形成するのではな
く、複数の熱交換器を含む一連のループ状の管路を構成
したので、貯湯タンクからの水の温度に変動があっても
各熱交換器での熱効率を高めることができる。
Further , the fuel cell according to claims 2 and 4 of the present invention
An exhaust heat recovery device and method in a power supply system is claimed.
In the fuel cell power supply system of No. 1, the hot water storage tank and the
A heat exchanger for unreacted oxygen gas discharged from the fuel cell
A loop-shaped pipe line is formed by pipe connection with the heat exchanger containing
Along with this, a first switching valve is provided in this pipe,
Is branched from the upstream side of the switching valve of the
Under the first switching valve via a heat exchanger with cooling water
Form a branch path to the flow side and supply this branch path to the fuel cell.
A second switching bar is provided upstream of the heat exchanger with the supplied cooling water.
The temperature of the cooling water during fuel cell power generation
Is above a predetermined temperature, the first switching valve is closed.
Open the second switching valve and pass water through the branch passage to cool.
Heat is recovered from the wastewater and the temperature of the cooling water falls below the specified temperature.
If it does, open the first switching valve and switch to the second switching valve.
The valve is closed so that water is not supplied to the branch passage.
And In the present invention, the hot water storage tank and the plurality of heat exchangers are not separately connected to each other to form a plurality of circulation paths, but a series of loop-shaped pipelines including a plurality of heat exchangers are configured.
Since the can even if variations in the temperature of the water from the hot water storage tank enhances the thermal efficiency of the heat exchanger.

【0009】[0009]

【発明の実施の形態】次に、本発明に係る燃料電池電源
システムにおける排熱回収方法の実施形態を添付図面に
基づいて説明する。図1は燃料電池電源システムの構成
を示すブロック図であり、前記のように改質装置と燃料
電池3とを含み、PGバーナ2、水タンク4、貯湯タン
クC等が組み込まれている。改質装置は脱硫器5と、改
質器1と、CO変成器6と、CO除去器7とで構成さ
れ、改質器1にはバーナ1aが付設されている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of an exhaust heat recovery method in a fuel cell power supply system according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing the configuration of the fuel cell power supply system, which includes the reformer and the fuel cell 3 as described above, and incorporates the PG burner 2, the water tank 4, the hot water storage tank C, and the like. The reformer is composed of a desulfurizer 5, a reformer 1, a CO shift converter 6, and a CO remover 7. The reformer 1 is provided with a burner 1a.

【0010】又、改質器1のバーナ1aでの燃焼排ガス
が通過する第1の熱交換器H1と、PGバーナ2での燃
焼排ガスが通過する第2の熱交換器H2と、燃料電池3
の空気極から排出される未反応酸素ガスが通過する第3
の熱交換器H3とがそれぞれ配設されている。
The first heat exchanger H1 through which the combustion exhaust gas from the burner 1a of the reformer 1 passes, the second heat exchanger H2 through which the combustion exhaust gas from the PG burner 2 passes, and the fuel cell 3
Through which unreacted oxygen gas discharged from the air electrode of
And the heat exchangers H3 and H3 of FIG.

【0011】これら第1の熱交換器H1〜第3の熱交換
器H3を通過した燃焼排ガス又は未反応酸素ガスは、ダ
クト8内に流入して燃料電池電源装置の排出孔から外部
に排出されるが、その際ダクト8に設けられた第4の熱
交換器H4を通過した後に排出される。
The combustion exhaust gas or unreacted oxygen gas that has passed through the first heat exchanger H1 to the third heat exchanger H3 flows into the duct 8 and is discharged to the outside from the discharge hole of the fuel cell power supply device. However, at that time, it is discharged after passing through the fourth heat exchanger H4 provided in the duct 8.

【0012】第1の熱交換器H1〜第4の熱交換器H4
は、貯湯タンクCと管接続されてループ状の管路が形成
されている。即ち、貯湯タンクCの底部からポンプP1
を介して取り出された水を第4の熱交換器H4に送り込
む第1の管路S1と、第4の熱交換器H4から第3の熱
交換器H3に送り込む第2の管路S2と、第3の熱交換
器H3から第1の熱交換器H1に送り込む第3の管路
と、第1の熱交換器H1から第2の熱交換器H2に送り
込む第4の管路S4と、第2の熱交換器H2から貯湯タ
ンクCの上部に送り込む第5の管路S5とから構成され
ている。
The first heat exchanger H1 to the fourth heat exchanger H4
Is connected to the hot water storage tank C to form a loop-shaped conduit. That is, from the bottom of the hot water storage tank C to the pump P1
A first pipe S1 for sending water taken out via the fourth heat exchanger H4, and a second pipe S2 for sending water from the fourth heat exchanger H4 to the third heat exchanger H3; A third conduit from the third heat exchanger H3 to the first heat exchanger H1, a fourth conduit S4 from the first heat exchanger H1 to the second heat exchanger H2, It is composed of a second pipe S5 which is sent from the second heat exchanger H2 to the upper part of the hot water storage tank C.

【0013】又、前記第5の管路S5から分岐して水タ
ンク4に送り込む第6の管路S6と、水タンク4からの
復路で第5の管路S5に合流して貯湯タンクCの上部に
送り込む第7の管路S7とが設けられ、分岐点付近の第
5の管路S5には第1の切替バルブV1が、第6の管路
S6には第2の切替バルブV2がそれぞれ取り付けられ
ている。
Further, a sixth pipe S6 branched from the fifth pipe S5 and fed to the water tank 4 and a return pipe from the water tank 4 join the fifth pipe S5 to join the hot water storage tank C. A seventh conduit S7 for feeding to the upper part is provided, and a first switching valve V1 is provided in the fifth conduit S5 near the branch point, and a second switching valve V2 is provided in the sixth conduit S6. It is installed.

【0014】このように構成された燃料電池電源装置に
おいて、起動時には都市ガス等の原燃料ガスと空気ファ
ンF1により取り込まれた空気が改質器1のバーナ1a
に供給される。バーナ1aが点火されると、原燃料ガス
が燃焼し改質器1内に充填されている触媒の温度を適温
まで上昇させる。このバーナ1aでの燃焼排ガスは、前
記のように第1の熱交換器H1を通過してダクト8内に
流入する。
In the fuel cell power supply device configured as described above, the raw fuel gas such as city gas and the air taken in by the air fan F1 at the time of startup are burner 1a of the reformer 1.
Is supplied to. When the burner 1a is ignited, the raw fuel gas burns to raise the temperature of the catalyst filled in the reformer 1 to an appropriate temperature. The combustion exhaust gas from the burner 1a passes through the first heat exchanger H1 and flows into the duct 8 as described above.

【0015】改質器1の触媒が所定の温度まで上昇する
と、前記脱硫器5で脱硫された原燃料ガスは改質器1内
に供給され、その際気化器9(熱交換器)から水蒸気が
混入される。これにより、水蒸気改質が行われて原燃料
ガスから水素、二酸化炭素、及び一酸化炭素を含む改質
ガスが生成される。気化器9には前記バーナ1aでの燃
焼排ガスが通過するようにしてあり、且つ水タンク4か
らポンプP2により取り出された水が送り込まれ、この
水と燃焼排ガスとの間で熱交換が行われることで水蒸気
が生成される。
When the temperature of the catalyst of the reformer 1 rises to a predetermined temperature, the raw fuel gas desulfurized by the desulfurizer 5 is supplied into the reformer 1 and, at that time, steam is supplied from the vaporizer 9 (heat exchanger). Is mixed in. As a result, steam reforming is performed and reformed gas containing hydrogen, carbon dioxide, and carbon monoxide is generated from the raw fuel gas. The combustion exhaust gas from the burner 1a passes through the vaporizer 9, and the water taken out by the pump P2 from the water tank 4 is sent to the vaporizer 9 to perform heat exchange between the water and the combustion exhaust gas. As a result, water vapor is generated.

【0016】改質器1で水蒸気改質された改質ガスは、
前記CO変成器6に送り込まれて改質ガス中に含まれて
いる一酸化炭素が二酸化炭素に変成される。次いで、変
成されたガスはCO除去器7に送り込まれ、ここで空気
ファンF2により取り込まれた空気中の酸素により選択
酸化され、改質ガス中に含まれる一酸化炭素の濃度が1
0ppm以下に減少される。
The reformed gas steam-reformed by the reformer 1 is
The carbon monoxide sent to the CO shift converter 6 and contained in the reformed gas is transformed into carbon dioxide. Next, the transformed gas is sent to the CO remover 7, where it is selectively oxidized by oxygen in the air taken in by the air fan F2, and the concentration of carbon monoxide contained in the reformed gas is 1.
It is reduced to 0 ppm or less.

【0017】このようにしてCO濃度の低い水素リッチ
ガスに生成された改質ガスは、起動時の段階では安定し
ていないため燃料電池3に供給せず、前記PGバーナ2
に送り込んで燃焼させる。このPGバーナ2での燃焼排
ガスは、前記のように第2の熱交換器H2を通過してダ
クト8内に流入する。
The reformed gas thus generated in the hydrogen-rich gas having a low CO concentration is not stable at the start-up stage, and therefore is not supplied to the fuel cell 3 and the PG burner 2 is used.
Send it to and burn it. The combustion exhaust gas from the PG burner 2 passes through the second heat exchanger H2 and flows into the duct 8 as described above.

【0018】改質ガスが安定すると、PGバーナ2への
供給は遮断され、以後は燃料電池3に供給されて発電が
行われる。この場合、燃料電池3は固体高分子形であっ
て改質ガスは燃料極に供給される。この燃料極に供給さ
れた改質ガス中の水素ガスと、空気極に供給される空気
中の酸素ガスとで、固体高分子電解質膜を介して電気化
学反応が起こり電気と水とが生成される。空気極への空
気の供給は、空気ファンF4により取り込んだ空気を一
旦水タンク4内に送り込み、ここで空気を湿潤させた後
に空気極に供給するようにしている。これは固体高分子
電解質膜を適度に湿潤させるためであり、湿潤が不充分
であると燃料電池3の発電が正常になされない。場合に
よっては、燃料極に供給する改質ガスの方を湿潤させて
供給し、固体高分子電解質膜を適度に湿潤させることも
ある。
When the reformed gas becomes stable, the supply to the PG burner 2 is cut off, and thereafter it is supplied to the fuel cell 3 to generate power. In this case, the fuel cell 3 is a solid polymer type, and the reformed gas is supplied to the fuel electrode. The hydrogen gas in the reformed gas supplied to the fuel electrode and the oxygen gas in the air supplied to the air electrode cause an electrochemical reaction through the solid polymer electrolyte membrane to generate electricity and water. It The air is supplied to the air electrode by temporarily feeding the air taken in by the air fan F4 into the water tank 4, moistening the air therein, and then supplying the air to the air electrode. This is for appropriately wetting the solid polymer electrolyte membrane, and if the wetting is insufficient, the power generation of the fuel cell 3 cannot be normally performed. In some cases, the reformed gas supplied to the fuel electrode may be moistened and supplied to appropriately moisten the solid polymer electrolyte membrane.

【0019】燃料電池3の空気極で未反応に終わった未
反応酸素ガスは、前記のように第3の熱交換器H3を通
過してダクト8内に流入する。一方、燃料電池3の燃料
極で未反応に終わった改質ガスは、切替バルブによって
前記改質器1のバーナ1a又はPGバーナ2に送り込ま
れて燃焼される。
The unreacted oxygen gas that has not reacted at the air electrode of the fuel cell 3 passes through the third heat exchanger H3 and flows into the duct 8 as described above. On the other hand, the reformed gas that has not reacted at the fuel electrode of the fuel cell 3 is sent to the burner 1a of the reformer 1 or the PG burner 2 by the switching valve and burned.

【0020】燃料電池3はほぼ80℃で正常に作動する
が、電気化学反応に伴う発熱のため温度が上昇する。こ
の温度上昇を防ぐために、前記水タンク4からポンプP
3により燃料電池3の冷却部に水を供給することで冷却
する。冷却後の水は水タンク4に戻すが、この水タンク
4内の水量は徐々に減少するため適宜補充する。この補
充は市水をイオン交換樹脂10により純水化し、その純
水を溜めた補助タンク11からなされる。この補助タン
ク11には前記第3の熱交換器H3で生じた水分(未反
応酸素ガス中の水分)が混入される。
The fuel cell 3 operates normally at about 80 ° C., but the temperature rises due to the heat generated by the electrochemical reaction. In order to prevent this temperature rise, the pump P from the water tank 4 is
By supplying water to the cooling portion of the fuel cell 3 by means of 3, cooling is performed. The water after cooling is returned to the water tank 4, but the amount of water in the water tank 4 gradually decreases, so it is appropriately replenished. This replenishment is performed from the auxiliary tank 11 in which city water is purified by the ion exchange resin 10 and the pure water is stored. Water (water in unreacted oxygen gas) generated in the third heat exchanger H3 is mixed in the auxiliary tank 11.

【0021】ところで、燃料電池電源装置の運転中に、
前記貯湯タンクCではポンプP1によって底部の水(常
温例えば20℃)が取り出され、前記第1の管路S1を
経て第4の熱交換器H4に送り込まれる。この第4の熱
交換器H4を通過する排ガスは、前記ダクト8内で合流
した改質器バーナ1aからの燃焼排ガスと、PGバーナ
2からの燃焼排ガスと、燃料電池3からの未反応酸素ガ
スとが合流したものである。改質器バーナ1aからの燃
焼排ガスは途中で前記気化器9及び第1の熱交換器H1
を通過しているためその温度は低下されており、PGバ
ーナ2からの燃焼排ガスも途中で前記第2の熱交換器H
2を通過しているためその温度は低下されている。燃料
電池3からの未反応酸素ガスは、前記第3の熱交換器H
3を通過しているため温度が低下されている。従って、
第4の熱交換器H4を通過する合流ガスの温度レベルは
低く約50〜60℃となっている。
By the way, during operation of the fuel cell power supply,
In the hot water storage tank C, water at the bottom (normal temperature, for example, 20 ° C.) is taken out by the pump P1 and sent to the fourth heat exchanger H4 via the first pipe line S1. The exhaust gas passing through the fourth heat exchanger H4 is the combustion exhaust gas from the reformer burner 1a, which merges in the duct 8, the combustion exhaust gas from the PG burner 2, and the unreacted oxygen gas from the fuel cell 3. And are merged. The combustion exhaust gas from the reformer burner 1a is in the middle of the carburetor 9 and the first heat exchanger H1.
The temperature of the combustion exhaust gas from the PG burner 2 is lowered because it passes through the second heat exchanger H.
Since it has passed 2, the temperature is lowered. The unreacted oxygen gas from the fuel cell 3 is supplied to the third heat exchanger H.
The temperature is lowered because it has passed No. 3. Therefore,
The temperature level of the combined gas passing through the fourth heat exchanger H4 is low and is about 50 to 60 ° C.

【0022】この第4の熱交換器H4で温められた水
は、第2の管路S2を経て第3の熱交換器H3に送り込
まれる。この第3の熱交換器H3では、燃料電池3の空
気極から排出された未反応酸素ガスとの間で熱交換され
るが、そこでの温度レベルは約70〜80℃である。
The water warmed in the fourth heat exchanger H4 is sent to the third heat exchanger H3 via the second pipe line S2. In the third heat exchanger H3, heat is exchanged with the unreacted oxygen gas discharged from the air electrode of the fuel cell 3, and the temperature level there is about 70 to 80 ° C.

【0023】次いで、温水は第3の管路S3を経て第1
の熱交換器H1に送り込まれ、この第1の熱交換器H1
を通過する燃焼排ガスとの間で熱交換される。この燃焼
排ガスは改質器バーナ1aからの燃焼排ガスであるが、
前記のように気化器9を通過しているため温度レベルは
約100〜120℃程度である。
Next, the hot water is passed through the third pipeline S3 to the first hot water.
Of the first heat exchanger H1.
The heat is exchanged with the combustion exhaust gas passing through. This combustion exhaust gas is the combustion exhaust gas from the reformer burner 1a,
Since it has passed through the vaporizer 9 as described above, the temperature level is about 100 to 120 ° C.

【0024】更に、温水は第1の熱交換器H1から第4
の管路S4を経て第2の熱交換器H2に送り込まれ、P
Gバーナ2からの燃焼排ガスとの間で熱交換される。こ
の第2の熱交換器H2での温度レベルは約150〜18
0℃である。この第2の熱交換器H2から第5の管路S
5を経て貯湯タンクCの上部に温水が供給される。この
時、前記第1の切替バルブV1は開き、第2の切替バル
ブV2は閉じておく。
Further, hot water is supplied from the first heat exchanger H1 to the fourth heat exchanger H1.
Is sent to the second heat exchanger H2 through the pipe line S4 of
Heat is exchanged with the combustion exhaust gas from the G burner 2. The temperature level in this second heat exchanger H2 is about 150-18.
It is 0 ° C. From this second heat exchanger H2 to the fifth conduit S
Hot water is supplied to the upper part of the hot water storage tank C via 5. At this time, the first switching valve V1 is opened and the second switching valve V2 is closed.

【0025】PGバーナ2は、前記のように起動時に改
質ガスが未だ安定しない段階で燃焼され、改質ガスの安
定した後は燃焼が停止されるため、燃料電池3の発電中
は第2の熱交換器H2での熱交換は行われない。一方、
前記改質器1のバーナ1aは、燃料電池3の発電中も改
質器1の内部に充填されている触媒を所定の温度に保持
するために燃焼が続行される。それに必要な燃料供給
は、前記のように燃料電池3の燃料極から排出される未
反応改質ガスをバーナ1aに送り込むことでなされる。
As described above, the PG burner 2 is burned when the reformed gas is not yet stable at the time of start-up, and is stopped after the reformed gas is stabilized. No heat exchange is performed in the heat exchanger H2. on the other hand,
The burner 1a of the reformer 1 continues to burn even during power generation of the fuel cell 3 in order to keep the catalyst filled in the reformer 1 at a predetermined temperature. The fuel supply necessary for that purpose is made by sending the unreacted reformed gas discharged from the fuel electrode of the fuel cell 3 to the burner 1a as described above.

【0026】このようにして、貯湯タンクCの底部の水
は、温度レベルの低い熱交換器から徐々に温度レベルの
高い熱交換器を順に通過し、約60〜70℃の温水とな
って貯湯タンクCの上部に戻される。この場合、水の温
度は徐々に上昇させられ、その温度に対応する温度レベ
ルの熱交換器にて熱交換されることとなり、各熱交換器
での熱交換効率を高めることができる。
In this way, the water at the bottom of the hot water storage tank C gradually passes through the heat exchanger having a low temperature level and then the heat exchanger having a high temperature level in order to become hot water of about 60 to 70 ° C. Returned to the top of Tank C. In this case, the temperature of the water is gradually raised and heat is exchanged in the heat exchanger at a temperature level corresponding to the temperature, so that the heat exchange efficiency in each heat exchanger can be increased.

【0027】図2は、本発明に係る排熱回収方法の他の
実施形態であって、図1における燃料電池電源システム
の構成中、要部のみをブロック図で示したものである。
この場合、前記貯湯タンクCから第4の熱交換器H4、
第3の熱交換器H3、第1の熱交換器H1をこの順に経
て貯湯タンクCに戻るループ状の管路を形成し、この管
路における第1の熱交換器H1と、貯湯タンクCとの間
に第1の切替バルブV1を設ける。更に、第1の切替バ
ルブV1と、第1の熱交換器H1との中間部から分岐し
て前記燃料電池3に冷却水を供給する水タンク4を経て
貯湯タンクCに至る分岐路を形成し、この分岐路におけ
る水タンク4より上流側に第2の切替バルブV2を設け
る構成としてある。
FIG. 2 shows another embodiment of the exhaust heat recovery method according to the present invention, and is a block diagram showing only the main part of the configuration of the fuel cell power supply system in FIG.
In this case, from the hot water storage tank C to the fourth heat exchanger H4,
A loop-shaped pipe line is formed which returns to the hot water storage tank C through the third heat exchanger H3 and the first heat exchanger H1 in this order, and the first heat exchanger H1 and the hot water storage tank C in this pipe line are formed. A first switching valve V1 is provided between the two. Further, a branch path is formed from a middle portion between the first switching valve V1 and the first heat exchanger H1 to a hot water storage tank C through a water tank 4 that supplies cooling water to the fuel cell 3. A second switching valve V2 is provided upstream of the water tank 4 in this branch passage.

【0028】燃料電池3の発電時において、前記水タン
ク4の水温が所定温度(例えば、80℃)以上の場合に
は、前記第1の切替バルブV1を閉じると同時に第2の
切替バルブV2を開ける。ポンプP1により貯湯タンク
Cの底部から取り出された水は、第4の熱交換器H4、
第3の熱交換器H3、第1の熱交換器H1を順に通過
し、更に分岐路を介して水タンク4を通過した後に貯湯
タンクCに戻される。このようにして、貯湯タンクCの
水を循環させることで水タンク4の熱を回収することが
できる。
When the water temperature of the water tank 4 is equal to or higher than a predetermined temperature (for example, 80 ° C.) during the power generation of the fuel cell 3, the first switching valve V1 is closed and the second switching valve V2 is closed at the same time. Open. The water taken out from the bottom of the hot water storage tank C by the pump P1 is the fourth heat exchanger H4,
After passing through the third heat exchanger H3 and the first heat exchanger H1 in this order, and further passing through the water tank 4 via the branch passage, the water is returned to the hot water storage tank C. In this way, by circulating the water in the hot water storage tank C, the heat in the water tank 4 can be recovered.

【0029】水タンク4の水温が所定温度(例えば、7
6℃)以下になった場合には、先とは逆に第1の切替バ
ルブV1を開くと同時に第2の切替バルブV2を閉じ
る。これにより、ポンプP1により貯湯タンクCの底部
から取り出された水は、第4の熱交換器H4、第3の熱
交換器H3、第1の熱交換器H1を順に通過して貯湯タ
ンクCに戻され、分岐路を介して水タンク4へは供給さ
れない。即ち、76℃以下の場合は水タンク4から熱を
回収しない。
The water temperature of the water tank 4 is a predetermined temperature (for example, 7
6 ° C.) or lower, the first switching valve V1 is opened and the second switching valve V2 is closed at the same time. As a result, the water taken out from the bottom of the hot water storage tank C by the pump P1 passes through the fourth heat exchanger H4, the third heat exchanger H3, and the first heat exchanger H1 in this order, and enters the hot water storage tank C. It is returned and is not supplied to the water tank 4 via the branch path. That is, when the temperature is 76 ° C. or lower, heat is not recovered from the water tank 4.

【0030】燃料電池電源装置の運転停止時には、燃料
電池3が冷却すると共に水タンク4内の水の温度が低下
し、冬季においては水タンク4が凍結することもある。
このような場合は、起動時に温水を水タンク4内に送り
込む。水タンク4への温水の供給は、前記切替バルブV
1を閉じ切替バルブV2を開いて温水を分岐路に導入
し、水タンク4内に送り込むことでなされる。この後、
温水は貯湯タンクCに戻される。
When the operation of the fuel cell power supply is stopped, the fuel cell 3 is cooled and the temperature of the water in the water tank 4 is lowered, so that the water tank 4 may be frozen in winter.
In such a case, hot water is sent into the water tank 4 at the time of startup. The hot water is supplied to the water tank 4 by the switching valve V
1 is closed and the switching valve V2 is opened to introduce hot water into the branch passage and send it into the water tank 4. After this,
The warm water is returned to the hot water storage tank C.

【0031】燃料電池3の発電中に水タンク4内の水が
ある温度(例えば、76℃)まで上昇したら、前記切替
バルブV2を閉じて切替バルブV1を開き、水タンク4
への温水の供給を停止すると共に貯湯タンクCに送り込
む。水タンク4内の水がある温度(例えば、80℃)ま
で上昇したら、前記切替バルブV2を開き切替バルブV
1を閉じて水タンク4へ温水を供給し、水タンク4内の
熱を回収すると共に、回収した熱を貯湯タンクCの上部
へ送り込む。
When the water in the water tank 4 rises to a certain temperature (for example, 76 ° C.) during the power generation of the fuel cell 3, the switching valve V2 is closed and the switching valve V1 is opened, and the water tank 4 is closed.
The supply of hot water to the hot water is stopped and the hot water is sent to the hot water storage tank C. When the water in the water tank 4 rises to a certain temperature (for example, 80 ° C.), the switching valve V2 is opened and the switching valve V2 is opened.
1 is closed and hot water is supplied to the water tank 4 to recover the heat in the water tank 4 and send the recovered heat to the upper part of the hot water storage tank C.

【0032】水タンク4内の水が温められると、前記の
ように水タンク4を通して燃料電池3の空気極に送り込
む空気が温められることから、燃料電池3を短時間で温
めて運転開始時期を早めることができる。
When the water in the water tank 4 is warmed, the air sent to the air electrode of the fuel cell 3 through the water tank 4 is warmed as described above, so that the fuel cell 3 is warmed in a short time and the operation start time is set. It can be hastened.

【0033】[0033]

【発明の効果】以上説明したように、本発明は、燃料電
池電源システムの排熱を利用して貯湯タンクの水を温め
る場合に、貯湯タンクの底部から取り出した水を燃料電
池電源装置内の複数の熱交換器に対しループ状に形成し
た一連の管路に沿って、しかも温度レベルの低い熱交換
器から徐々に温度レベルの高い熱交換器内を通過させる
ようにしたので、各熱交換器での熱交換効率を向上させ
ることができる。又、燃料電池の発電時、水タンクの水
温によって2つの切替バルブを操作することで、水タン
クから熱を回収することができる。
As described above, according to the present invention, when the waste heat of the fuel cell power supply system is used to warm the water in the hot water storage tank, the water taken out from the bottom of the hot water storage tank is stored in the fuel cell power supply device. A plurality of heat exchangers are made to pass through a series of pipes formed in a loop, and from the heat exchangers with a low temperature level to the heat exchangers with a high temperature level gradually. The heat exchange efficiency in the vessel can be improved. Further, during power generation of the fuel cell, heat can be recovered from the water tank by operating the two switching valves depending on the water temperature of the water tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る燃料電池電源システムにおける排
熱回収方法の実施形態を示すブロック図
FIG. 1 is a block diagram showing an embodiment of an exhaust heat recovery method in a fuel cell power supply system according to the present invention.

【図2】排熱回収方法の他の実施形態を示す熱回収ルー
ト要部のブロック図
FIG. 2 is a block diagram of a main part of a heat recovery route showing another embodiment of the exhaust heat recovery method.

【図3】燃料電池電源装置と貯湯タンクとの使用状態を
示す説明図
FIG. 3 is an explanatory view showing a usage state of a fuel cell power supply device and a hot water storage tank.

【図4】従来の燃料電池電源システムにおける排熱回収
方法を示すブロック図
FIG. 4 is a block diagram showing an exhaust heat recovery method in a conventional fuel cell power supply system.

【符号の説明】[Explanation of symbols]

1…改質器 1a…バーナ 2…PGバーナ 3…燃料電池 4…水タンク 5…脱硫器 6…CO変成器 7…CO除去器 8…ダクト 9…気化器 10…イオン交換樹脂 11…補助タンク C…貯湯タンク H1…第1の熱交換器 H2…第2の熱交換器 H3…第3の熱交換器 H4…第4の熱交換器 S1…第1の管路 S2…第2の管路 S3…第3の管路 S4…第4の管路 S5…第5の管路 S6…第6の管路 S7…第7の管路 V1…第1の切替バルブ V2…第2の切替バルブ 1 ... reformer 1a ... Burner 2 ... PG burner 3 ... Fuel cell 4 ... Water tank 5 ... Desulfurizer 6 ... CO transformer 7 ... CO remover 8 ... Duct 9 ... Vaporizer 10 ... Ion exchange resin 11 ... Auxiliary tank C ... Hot water storage tank H1 ... First heat exchanger H2 ... Second heat exchanger H3 ... Third heat exchanger H4 ... Fourth heat exchanger S1 ... the first conduit S2 ... Second conduit S3 ... third conduit S4 ... Fourth conduit S5 ... 5th pipeline S6 ... Sixth pipeline S7 ... Seventh pipeline V1 ... First switching valve V2 ... Second switching valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田島 一弘 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 山本 聡史 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 門脇 正天 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 田島 収 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 藤生 昭 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 小田 勝也 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 畑山 龍次 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 黄木 丈俊 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 上田 雅敏 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 湯川 竜司 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開2001−255010(JP,A) 特開2002−25591(JP,A) 特開2001−185167(JP,A) 特開2002−170583(JP,A) 特開2001−23668(JP,A) 特開2001−313053(JP,A) 特開2001−185197(JP,A) 特開2001−185196(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/00 - 8/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Tajima 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Satoshi Yamamoto 2--5 Keihanhondori, Moriguchi-shi, Osaka No. 5 In Sanyo Electric Co., Ltd. (72) Inventor Shoten Kadowaki 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5-5 Sanyo Electric Co., Ltd. (72) Osamu Tajima 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Number 5 Sanyo Electric Co., Ltd. (72) Inventor Akira Fujio 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture 5-5 Sanyo Electric Co., Ltd. (72) Katsuya Oda 2-5 Keihan Main Street, Moriguchi City, Osaka Prefecture No. 5 In Sanyo Electric Co., Ltd. (72) Inventor Ryuji Hatayama 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture 5-5 Sanyo Denki Co., Ltd. (72) Inventor Taketoshi Koki 2 Keihan Hondori, Moriguchi City, Osaka Prefecture Ding No. 5-5 Sanyo Electric Co., Ltd. (72) Inventor Masatoshi Ueda 2-chome, Keihan Hondori, Moriguchi City, Osaka Prefecture 5-5 Sanyo Denki Co., Ltd. (72) Ryuji Yukawa, 2-chome Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5-5 Sanyo Electric Co., Ltd. (56) Reference JP 2001-255010 (JP, A) JP 2002-25591 (JP, A) JP 2001-185167 (JP, A) JP 2002-170583 ( JP, A) JP 2001-23668 (JP, A) JP 2001-313053 (JP, A) JP 2001-185197 (JP, A) JP 2001-185196 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 8/00-8/24

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原燃料ガスを水素リッチな改質ガスに改質
する改質装置と、前記改質装置から供給される前記改質
ガス中の水素ガスと外部から供給される空気中の酸素ガ
スとで化学反応を起こして起電力を生じる燃料電池と、
温水を蓄える貯湯タンクと、を含む燃料電池電源システ
ムであって、前記燃料電池電源システム中に設けられ、前記貯湯タン
ク内の水と熱交換を行う、少なくとも前記燃料電池から
排出される未反応酸素ガスとの熱交換器と前記燃料電池
へ供給される冷却水との熱交換器を含む複数の熱交換器
と、 前記 貯湯タンクと前記複数の熱交換器とを管接続し
ープ状の管路と、を備えることを特徴とする燃料電池電
源システムにおける排熱回収装置
1. A reforming apparatus for reforming a raw fuel gas into hydrogen-rich reformed gas, oxygen in the air supplied from outside and hydrogen gas in the reformed gas supplied from the reformer A fuel cell that produces an electromotive force by causing a chemical reaction with gas,
A fuel cell power supply system including a hot water storage tank for storing hot water, the hot water storage tank being provided in the fuel cell power supply system.
Heat exchange with water in the fuel cell, at least from the fuel cell
Heat exchanger for discharging unreacted oxygen gas and the fuel cell
Heat exchangers including heat exchangers with cooling water supplied to
When exhaust heat recovery apparatus of a fuel cell power system comprising: a, a conduit Le <br/>-loop shape with the connection between the hot water storage tank a plurality of heat exchangers tubes.
【請求項2】請求項1の燃料電池電源システムにおい
て、 前記貯湯タンクと前記燃料電池から排出される未反応酸
素ガスとの熱交換器を含む熱交換器とを管接続したルー
プ状の管路と、 該管路に設けられた第1の切替バルブと、 該第1の切替バルブの上流側から分岐して前記燃料電池
へ供給される冷却水との熱交換器を経て前記第1の切替
バルブの下流側に至る分岐路と、 該分岐路の前記燃料電池へ供給される冷却水との熱交換
器より上流側に設けられ、前記第1の切替バルブと切替
る第2の切替バルブと、を備えることを特徴とする燃料
電池電源システムにおける排熱回収装置。
2. The fuel cell power supply system according to claim 1.
The unreacted acid discharged from the hot water storage tank and the fuel cell.
A loop connection with a heat exchanger including a heat exchanger for the raw gas
-Shaped pipe line, a first switching valve provided in the pipe line, and the fuel cell branched from the upstream side of the first switching valve.
The first switching via a heat exchanger with cooling water supplied to
Heat exchange between a branch passage leading to the downstream side of the valve and cooling water supplied to the fuel cell in the branch passage
Provided upstream of the container and switched with the first switching valve
And a second switching valve that
Exhaust heat recovery device for battery power system.
【請求項3】原燃料ガスを水素リッチな改質ガスに改質
する改質装置と、前記改質装置から供給される前記改質
ガス中の水素ガスと外部から供給される空気中の酸素ガ
スとで化学反応を起こして起電力を生じる燃料電池と、
温水を蓄える貯湯タンクと、を含む燃料電池電源システ
ムであって、 前記燃料電池電源システム中に設けられ、前記貯湯タン
ク内の水と熱交換を行う、少なくとも前記燃料電池から
排出される未反応酸素ガスとの熱交換器と前記燃料電池
へ供給される冷却水との熱交換器を含む複数の熱交換器
と、を備え、 前記貯湯タンクと前記複数の熱交換器とを管接続してル
ープ状の管路を形成し、前記管路を介して前記貯湯タン
ク内の水を前記熱交換器に対して順に通過させることで
温水にすることを特徴とする燃料電池電源システムにお
ける排熱回収方法。
3. Reforming raw fuel gas into hydrogen-rich reformed gas
And a reformer supplied from the reformer.
Hydrogen gas in the gas and oxygen gas in the air supplied from the outside
A fuel cell that produces an electromotive force by causing a chemical reaction with
A fuel cell power supply system including a hot water storage tank for storing hot water
A hot water storage tank provided in the fuel cell power supply system.
Heat exchange with water in the fuel cell, at least from the fuel cell
Heat exchanger for discharging unreacted oxygen gas and the fuel cell
Heat exchangers including heat exchangers with cooling water supplied to
And a pipe connection between the hot water storage tank and the plurality of heat exchangers.
Forming a loop-shaped pipe, and through the pipe, the hot water storage tank
By passing the water in the passage through the heat exchanger in order
A fuel cell power supply system that features warm water
Exhaust heat recovery method.
【請求項4】請求項1の燃料電池電源システムにおい
て、 前記貯湯タンクと前記燃料電池から排出される未反応酸
素ガスとの熱交換器を含む熱交換器とを管接続したルー
プ状の管路を形成すると共に、 管路第1の切替バルブを設け、 第1の切替バルブの上流側から分岐して前記燃料電池
へ供給される冷却水との熱交換器を経て前記第1の切替
バルブの下流側に至る分岐路を形成し、 分岐路の前記燃料電池へ供給される冷却水との熱交換
より上流側に第2の切替バルブを設け、 燃料電池発電時において前記冷却水の水温が所定温度以
上の場合には、前記第1の切替バルブを閉じ第2の切替
バルブを開けて前記分岐路に水を通して前記冷却水から
熱を回収し、前記 冷却水の水温が所定温度以下になった場合には、前
記第1の切替バルブを開き第2の切替バルブを閉じて前
記分岐路に水を供給しない燃料電池電源システムにおけ
る排熱回収方法。
4. The fuel cell power supply system according to claim 1, wherein unreacted acid discharged from the hot water storage tank and the fuel cell.
To form the rule <br/> looped conduit which connects the heat exchanger tubes containing a heat exchanger with a hydrogen gas, a first switching valve provided in said conduit, said first switching valve Branching from the upstream side of the fuel cell
The first switching via a heat exchanger with cooling water supplied to
Forming a branch path to the downstream side of the valve , and exchanging heat with the cooling water supplied to the fuel cell in the branch path.
A second switching valve is provided on the upstream side of the reactor, and when the temperature of the cooling water is equal to or higher than a predetermined temperature during fuel cell power generation, the first switching valve is closed and the second switching valve is opened to branch the branch. road to recover heat from the cooling water through the water, when said coolant temperature is equal to or less than a predetermined temperature, the water in the branch passage by closing the second switching valve is opened the first switching valve Exhaust heat recovery method in a fuel cell power supply system that does not supply heat.
JP2001006482A 2001-01-12 2001-01-15 Exhaust heat recovery apparatus and method in fuel cell power supply system Expired - Fee Related JP3448568B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001006482A JP3448568B2 (en) 2001-01-15 2001-01-15 Exhaust heat recovery apparatus and method in fuel cell power supply system
US10/221,338 US7052787B2 (en) 2001-01-12 2002-01-09 Solid high polymer type fuel cell power generating device
CNB028000706A CN100391037C (en) 2001-01-12 2002-01-09 Proton-exchange film fuel-cell generating device
DE60239591T DE60239591D1 (en) 2001-01-12 2002-01-09 SOLID HIGH POLYMER FUEL CELL POWER SYSTEM
KR10-2002-7011981A KR100525538B1 (en) 2001-01-12 2002-01-09 Solid high polymer type fuel cell power generating device
AT02729526T ATE504097T1 (en) 2001-01-12 2002-01-09 SOLID HIGH POLYMER FUEL CELL POWER SUPPLY SYSTEM
DK02729526.0T DK1351328T3 (en) 2001-01-12 2002-01-09 Solid high polymer fuel cell energy generating apparatus
EP02729526A EP1351328B1 (en) 2001-01-12 2002-01-09 Solid high polymer type fuel cell power generating device
PCT/JP2002/000053 WO2002056403A1 (en) 2001-01-12 2002-01-09 Solid high polymer type fuel cell power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001006482A JP3448568B2 (en) 2001-01-15 2001-01-15 Exhaust heat recovery apparatus and method in fuel cell power supply system

Publications (2)

Publication Number Publication Date
JP2002216810A JP2002216810A (en) 2002-08-02
JP3448568B2 true JP3448568B2 (en) 2003-09-22

Family

ID=18874367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001006482A Expired - Fee Related JP3448568B2 (en) 2001-01-12 2001-01-15 Exhaust heat recovery apparatus and method in fuel cell power supply system

Country Status (1)

Country Link
JP (1) JP3448568B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897682B2 (en) * 2001-11-05 2007-03-28 大阪瓦斯株式会社 Hydrogen-containing gas supply structure and fuel cell system including the same
DE10301667B4 (en) * 2003-01-17 2006-05-18 J. Eberspächer GmbH & Co. KG Device for conditioning a vehicle
JP2018073672A (en) * 2016-10-31 2018-05-10 京セラ株式会社 Fuel cell device

Also Published As

Publication number Publication date
JP2002216810A (en) 2002-08-02

Similar Documents

Publication Publication Date Title
KR100525538B1 (en) Solid high polymer type fuel cell power generating device
JP4738480B2 (en) Fuel cell system
JPWO2012091096A1 (en) Fuel cell system
US20040043266A1 (en) Solid polymer type fuel cell system
JP5127395B2 (en) Fuel cell power generation system
JP2005276757A (en) Fuel cell cogeneration system
JP3943405B2 (en) Fuel cell power generation system
JP2889807B2 (en) Fuel cell system
JP3448568B2 (en) Exhaust heat recovery apparatus and method in fuel cell power supply system
JP2006024478A (en) Operating method for fuel cell power generating system and fuel cell power generating system
JP2001023668A (en) Fuel cell power generating system
JP2003031255A (en) Fuel cell power generation device and feeding method of condensate to water storage tank
JP3956208B2 (en) Fuel cell power generation system and operation method thereof
JP2007242493A (en) Fuel cell system and its operation stopping method
JP2006302792A (en) Fuel cell system
JP2005259663A (en) Fuel cell power generation method and fuel cell power generation system
JP4176130B2 (en) Fuel cell power generation system
JP5502521B2 (en) Fuel cell system
JP2004293816A (en) Processing device accompanied by hot-water supply together
JP3846180B2 (en) Cogeneration system
JP2002083606A (en) Polyelectrolyte type fuel cell co-generation system
JP2006179346A (en) Fuel cell power generation system and its operation method
JP2002083607A (en) Polyeletrolyte type fuel cell cogeneration system
JP3939333B2 (en) Hot water system
JP6800367B1 (en) Fuel cell system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees