JP3897682B2 - Hydrogen-containing gas supply structure and fuel cell system including the same - Google Patents

Hydrogen-containing gas supply structure and fuel cell system including the same Download PDF

Info

Publication number
JP3897682B2
JP3897682B2 JP2002321208A JP2002321208A JP3897682B2 JP 3897682 B2 JP3897682 B2 JP 3897682B2 JP 2002321208 A JP2002321208 A JP 2002321208A JP 2002321208 A JP2002321208 A JP 2002321208A JP 3897682 B2 JP3897682 B2 JP 3897682B2
Authority
JP
Japan
Prior art keywords
hydrogen
containing gas
fuel cell
flow path
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002321208A
Other languages
Japanese (ja)
Other versions
JP2003203658A (en
Inventor
久興 浅津
晋 高見
規寿 神家
聰 伊部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002321208A priority Critical patent/JP3897682B2/en
Publication of JP2003203658A publication Critical patent/JP2003203658A/en
Application granted granted Critical
Publication of JP3897682B2 publication Critical patent/JP3897682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、水素含有ガス生成装置から水素含有ガスを受け入れる受入部と、
前記受入部と燃料電池とを接続する供給流路と、
前記受入部と前記水素含有ガスを燃焼させて排出するバーナとを接続する排出流路と、
前記受入部から前記供給流路への前記水素含有ガスの流通のみを許容する供給状態と、前記受入部から前記排出流路への前記水素含有ガスの流通のみを許容する排出状態とを切換える切換手段とを備えた水素含有ガス供給構造、及びそれを備えた燃料電池システムに関する。
【0002】
【従来の技術】
従来の燃料電池システムは、炭化水素系の原燃料ガスを水蒸気改質して水素含有ガスを生成する水素含有ガス生成装置と、水素含有ガスが供給される燃料電池を備えて構成されている。
【0003】
このような燃料電池システムにおいて、例えば起動時において、水素含有ガス生成装置の運転状態が不安定であることから、良質の水素含有ガスを得ることができない場合がある。
そこで、燃料電池システムの起動時において、先ず、水素含有ガス生成装置で生成された水素含有ガスを、燃料電池側に供給することなく、バーナで燃焼させて排出し、後に、良質の水素含有ガスが生成されるようになってから、水素含有ガスの供給先を切換えて、その水素含有ガスを燃料電池に供給する場合がある。また、このように燃料電池に水素含有ガスを供給する前の段階において、水素含有ガスを燃焼させて排気するためのバーナをパージバーナと呼ぶことがある。
【0004】
また、このように水素含有ガスの供給先を、燃料電池側とバーナ側とに切換えるための水素含有ガス供給構造は、水素含有ガス生成装置から水素含有ガスを受け入れる受入部と、受入部と燃料電池とを接続する供給流路と、受入部と水素含有ガスを燃焼させて排出するバーナとを接続する排出流路とを備えて構成され、さらに、受入部からの水素含有ガスの供給先を供給流路側又は排出流路側に切換える切換手段としての三方切換弁等を備えて構成される(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開2002−216810号公報
【0006】
【発明が解決しようとする課題】
しかし、従来における水素含有ガス供給構造においては、供給流路に水素含有ガスを流通させた場合の圧力損失は特に燃料電池の燃料極において発生し、排出流路に水素含有ガスを流通させた場合の圧力損失は特にバーナの炎孔において発生することから、夫々の圧力損失の大きさは異なる場合が多い。
このような場合に、単純に切換手段により水素含有ガスの供給先を切換えると、供給流路及び排出流路における圧力損失が互いに異なることから、水素含有ガスの所望の流量を維持するために必要な供給圧力が変動し、結果、切換直後において水素含有ガスの流量が不安定となる。
特に、水素含有ガスの供給先を排出流路から供給流路に切換えた場合に、切換直後に水素含有ガスの流量が不安定となると、燃料電池の発電出力が不安定となるという問題が生じる。
従って、本発明は、上記の事情に鑑みて、切換直後における水素含有ガスの流量変動を良好に抑制し、燃料電池の発電出力を安定したものとすることができる水素含有ガス供給構造、及びそれを備えた燃料電池システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
〔構成1〕
本発明に係る水素含有ガス供給構造は、請求項1に記載したごとく、水素含有ガス生成装置から水素含有ガスを受け入れる受入部と、
前記受入部と燃料電池とを接続する供給流路と、
前記受入部と前記水素含有ガスを燃焼させて排出するバーナとを接続する排出流路と、
前記受入部から前記供給流路への前記水素含有ガスの流通のみを許容する供給状態と、前記受入部から前記排出流路への前記水素含有ガスの流通のみを許容する排出状態とを切換える切換手段とを備えた水素含有ガス供給構造であって、
前記供給状態において前記受入部にかかる背圧と、前記排出状態において前記受入部にかかる背圧とを同等に設定する背圧設定手段を備えたことを特徴とする。
【0008】
〔作用効果〕
本構成の水素含有ガス供給構造によれば、背圧設定手段により、受入部から供給流路へ水素含有ガスを供給するときにかかる背圧と、受入部から排出流路へ水素含有ガスを供給するときにかかる背圧とを同等なものとすることができるので、切換手段により、受入部からの水素含有ガスの供給先を、供給流路と排出流路とに択一的に切換えた場合でも、受入部にかかる背圧は殆ど変化することがないので、切換直後における水素含有ガスの流量を比較的安定したものとすることができ、燃料電池の発電電力を安定したものとすることができる。
【0009】
〔構成2〕
本発明に係る水素含有ガス供給構造は、請求項2に記載したごとく、上記構成1の水素含有ガス供給構造の構成に加えて、前記背圧設定手段が、前記排出流路に設けられ、前記排出流路を流通する水素含有ガスに背圧を付加する背圧付加手段として構成されていることを特徴とする。
【0010】
〔作用効果〕
供給状態において受入部にかかる背圧は、大部分が供給流路に通じる燃料電池の燃料極における圧力損失に起因するものであり、排出状態において受入部にかかる背圧は、大部分がバーナの炎孔における圧力損失に起因するものである。そして、一般的に、燃料電池の燃料極における圧力損失が、バーナの炎孔における圧力損失よりも大きいことから、供給流路側に水素含有ガスを供給する場合の背圧の方が、排出流路側に供給する場合の背圧よりも大きい場合が多い。
そして、このような場合には、本構成のごとく、排出流路のみに背圧を付加する背圧付加手段を設けることで、両背圧を同等に設定して切換直後における水素含有ガスの流量を比較的安定したものとすることができる水素含有ガス供給構造を実現することができる。
【0011】
〔構成3〕
本発明に係る水素含有ガス供給構造は、請求項3に記載したごとく、上記構成1又は2の水素含有ガス供給構造の構成に加えて、前記水素含有ガス生成装置が、供給される炭化水素系の原燃料を水蒸気を用いて水素含有ガスに改質する改質器を備えて構成され、
前記バーナが、前記改質器を加熱するように構成されていることを特徴とする。
【0012】
〔作用効果〕
切換手段により、受入部からの水素含有ガスの供給先が排出流路側に切換えられると、水素含有ガス生成装置で生成された水素含有ガスがバーナにて燃焼して、そのように燃焼するバーナにて改質器が加熱されることになり、改質器では、バーナから供給される熱を用いて、炭化水素系の原燃料が改質処理されて水素含有ガスが生成される。
つまり、水素含有ガス生成装置には、炭化水素系の原燃料を水蒸気と改質反応させて水素含有ガスに改質する改質器を備えるものであり、その改質器における改質反応は吸熱反応である。
そこで、水素含有ガス生成装置にて生成された水素含有ガスを燃料電池に供給する前の段階において燃焼させて排気するためのバーナとして、改質器を加熱するように構成することにより、水素含有ガス生成装置の運転状態が不安定なときに生成された水素含有ガスのエネルギーを、原燃料の改質処理用として有効利用することができる。
従って、水素含有ガス生成装置の運転状態が不安定なときに生成された水素含有ガスのエネルギーを水素含有ガス生成装置における水素含有ガスの生成用として有効利用し得る水素含有ガス供給構造を実現することができる。
【0013】
〔構成4〕
本発明に係る燃料電池システムは、請求項4に記載したごとく、水素含有ガス生成装置と燃料電池とを備え、
前記水素含有ガス生成装置から前記受入部に受け入れた水素含有ガスを前記燃料電池に供給するための水素含有ガス供給構造として、請求項1〜3のいずれか1項に記載の水素含有ガス供給構造を備えたことを特徴とする。
【0014】
〔作用効果〕
本構成の燃料電池システムによれば、水素含有ガス供給構造により、水素含有ガス生成装置にて生成された水素含有ガスの供給先が、燃料電池側とバーナ側とに切換えられる。
そして、水素含有ガス供給構造として、請求項1〜3のいずれか1項に記載の水素含有ガス供給構造を備えることにより、受入部からの水素含有ガスの供給先を、供給流路側と排出流路側とに択一的に切換えた場合でも、受入部にかかる背圧は殆ど変化することがないので、切換直後における水素含有ガスの流量を比較的安定したものとすることができ、燃料電池の発電電力を安定したものとすることができる。
【0015】
【発明の実施の形態】
〔第1実施形態〕
以下、本発明の第1実施形態を、図面に基づいて説明する。
図1に示す燃料電池システム100は、水素含有ガス生成装置Pと燃料電池Gとを備え、さらに、水素含有ガス生成装置Pで生成された水素リッチな水素含有ガスを燃料電池Gの燃料極10に供給するための水素含有ガス供給構造50を備える。
【0016】
水素含有ガス生成装置Pは、供給される天然ガス等の炭化水素系の原燃料ガスを脱硫処理する脱硫器1と、供給される原料水を加熱して水蒸気を生成する水蒸気生成器6と、改質器加熱手段としての燃焼器に相当する改質器バーナ31にて加熱されて、脱硫器1から供給される脱硫原燃料ガスを水蒸気生成器6で生成された水蒸気を用いてH2とCOを含むガスに改質処理する改質器2と、改質器2から供給される改質処理ガス中のCOを水蒸気を用いてCO2に変成させることにより変成処理するCO変成器3と、そのCO変成器3から供給される変成処理ガス中のCOを選択酸化することにより選択酸化処理するCO選択酸化反応器4と、水素含有ガス生成装置の運転を制御する制御部(図示せず)等を備えて構成して、CO濃度の低い(例えば10ppm以下)水素リッチな水素含有ガスを生成し、水素含有ガス供給構造50の受入流路(受入部の一例)23に供給するように構成してある。
【0017】
そして、受入流路23に供給された水素含有ガスは、水素含有ガス供給構造50により燃料ガスとして燃料電池Gに供給される。燃料電池Gは、詳細な説明は省略するが、高分子膜を電解質11とする固体高分子型であり、水素含有ガス生成装置Pから燃料極10に供給される燃料ガス中の水素と、ブロア7から空気極12に供給される反応用空気中の酸素との電気化学反応により発電するように構成してある。
ブロア7からの空気の一部は、改質器バーナ31に燃焼用空気として供給される。
【0018】
次に、水素含有ガス供給構造50の詳細について説明する。
受入流路23には、燃料電池Gの燃料極10を通る供給流路21と、後述するパージバーナ30に接続された排出流路22とが、並列接続されている。
【0019】
また、夫々の流路21,22には、開閉弁25,26が設けられており、この開閉弁25,26は、切換手段29により操作される。
詳しくは、切換手段29は、開閉弁25を開状態、開閉弁26を閉状態とすることで、受入流路23から供給流路21への水素含有ガスの流通のみを許容する供給状態と、開閉弁25を閉状態、開閉弁26を開状態とすることで、受入流路23から排出流路22への水素含有ガスの流通のみを許容する排出状態とを切換えるように構成されている。
【0020】
パージバーナ30は、例えば、水素含有ガス生成装置Pにおいて水素含有ガスの生成が開始されてから、燃料電池Gに水素含有ガスを供給する前において、その水素含有ガスをブロア7から供給される空気により燃焼させるように構成されている。
【0021】
即ち、燃料電池システム100は、起動直後においては、水素含有ガス生成装置Pの運転状態が不安定で受入流路23に供給される水素含有ガスの質が安定していないので、切換手段29を働かせて、受入流路23に供給された水素含有ガスを排出流路22を介してパージバーナ30に供給する排出状態として、その水素含有ガスをパージバーナ30において燃焼させて排出する。
そして、水素含有ガス生成装置Pの運転状態が安定し、良質の水素含有ガスが受入流路23に供給されるようになってから、燃料電池システム100は、切換手段29を働かせて、受入流路23に供給された良質の水素含有ガスを供給流路22を介して燃料電池Gの燃料極10に供給する供給状態とするのである。
【0022】
このような燃料電池システム100において、供給流路21は、比較的流路断面積が小さい燃料極10を通り、さらに、燃料極10から排出されるオフガス(水素が残留しているガス)を改質器2の燃焼器に供給するべく、比較的長い流路となっているので、パージバーナ30に接続された排出流路22と比較して、水素含有ガスを流通させるときに発生する圧力損失が大きい。
そして、このように供給流路21の圧力損失が排出流路22の圧力損失よりも大きい場合には、切換手段29により水素含有ガスの供給先を、例えば排出流路22から供給流路21に切換えると、受入流路23にかかる背圧が急激に大きくなり、水素含有ガス生成装置Pに設けられた原燃料ガス供給用のポンプ(図示せず)の出力を増加させても、このポンプの下流側の各種反応器を通る流路の体積が比較的大きいため、切換直後において、燃料電池G側に必要な流量の水素含有ガスを供給することができず、さらに、水素含有ガスの流量が不安定となる場合がある。
【0023】
そこで、本第1実施形態における燃料電池システム100の水素含有ガス供給構造50においては、燃料電池Gに水素含有ガスを供給する供給状態において受入流路23にかかる背圧と、パージバーナ30に水素含有ガスを供給する排出状態において受入流路23にかかる背圧とを同等に設定する背圧設定手段として、排出流路22に圧力調整弁27を設けている。
【0024】
即ち、圧力調整弁27は、排出流路22に背圧を付加する背圧付加手段として構成され、詳しくは、一次側圧力(受入流路23側の圧力)が所定の圧力、即ち、水素含有ガスを供給流路21側に供給する供給状態において受入流路23にかかる圧力と同等になるように、流路断面積を調整するように構成されている。
そして、このような圧力調整弁27により、切換手段29を働かせて、水素含有ガスの供給先を切換えても、受入流路23に係る背圧は変化しなくなるので、切換直後における水素含有ガスの流量変動を良好に抑制し、燃料電池Gの発電出力を安定したものとすることができるのである。
【0025】
〔第2実施形態〕
以下、本発明の第2実施形態を、図面に基づいて説明する。
第2実施形態においては、水素含有ガス供給構造50以外は弟1実施形態と同様に構成してあるので、第1実施形態と同じ構成要素や同じ作用を有する構成要素については、重複説明を避けるために、同じ符号を付すことにより詳細な説明を省略し、主として、水素含有ガス供給構造50について説明する。
【0026】
図2に示すように、第2実施形態においては、起動直後の運転状態が不安定なときに水素含有ガス生成装置Pにて生成された水素含有ガスを、改質器2を加熱する改質器バーナ31にて燃焼させて排出するように構成してあり、第1実施形態において設けたパージバーナ30を省略してある。
【0027】
説明を加えると、受入流路23には、第1実施形態と同様に、燃料電池Gの燃料極10を通る供給流路21と排出流路22とを並列接続してあるが、その排出流路22の先端は、第1実施形態においては、パージバーナ30に接続したのに対して、第2実施形態においては、供給流路21のうちの燃料極10から排出されるオフガスを改質器バーナ31に導くオフガス流路部分21oに接続してある。
改質器バーナ31には、ブロア7から燃焼用空気が供給される。又、改質器バーナ31の燃焼排ガスは、水蒸気生成器6に供給され、その水蒸気生成器6にて、原料水を加熱して水蒸気を生成するための熱源として用いられた後、排出される。
【0028】
又、第1実施形態と同様に、供給流路21及び排出流路22の夫々に、開閉弁25,26が設けられている。切換手段29は、第1実施形態と同様に、開閉弁25,26を操作して、受入流路23から供給流路21への水素含有ガスの流通のみを許容する供給状態と、受入流路23から排出流路22への水素含有ガスの流通のみを許容する排出状態とに切換えるように構成されている。
【0029】
又、排出流路22には、燃料電池Gに水素含有ガスを供給する供給状態において受入流路23にかかる背圧と、改質器バーナ31に水素含有ガスを供給する排出状態において受入流路23にかかる背圧とを同等に設定する背圧設定手段としての圧力調整弁27を設けている。
【0030】
説明を加えると、供給流路21は、比較的流路断面積が小さい燃料極10を通って、改質器バーナ31に接続され、一方、排出流路22は、燃料極10をバイパスして改質器バーナ31に接続されているので、供給流路21は排出流路22と比較して、水素含有ガスを流通させるときに発生する圧力損失が大きい。
そこで、圧力調整弁27により、燃料電池Gに水素含有ガスを供給する供給状態において受入流路23にかかる背圧と、燃料電池Gをバイパスして改質器バーナ31に水素含有ガスを供給する排出状態において受入流路23にかかる背圧とを同等に設定するようにしてある。
【0031】
即ち、第2実施形態の燃料電池システム100においては、水素含有ガス生成装置Pの運転状態が不安定な起動直後で、受入流路23に供給される水素含有ガスの質が安定していない間は、切換手段29により前記排出状態に切換えて、受入流路23に供給された水素含有ガスを改質器バーナ31において燃焼させて排出し、水素含有ガス生成装置Pの運転状態が安定し、良質の水素含有ガスが受入流路23に供給されるようになってから、切換手段29により前記供給状態に切換えて、受入流路23に供給された水素含有ガスを供給流路22を燃料電池Gの燃料極10に供給することになる。
そして、圧力調整弁27により、前記供給状態において受入流路23にかかる背圧と、前記排出状態において受入流路23にかかる背圧とを同等に設定してあることから、切換手段29により前記供給状態と前記排出状態とに切換えても、受入流路23にかかる背圧は変化しなくなるので、切換直後における水素含有ガスの流量変動を良好に抑制し、燃料電池Gの発電出力を安定したものとすることができる。
【0032】
ちなみに、起動時には、原燃料ガスが改質器バーナ31に供給されるので、切換手段29により前記排出状態に切換えられている間は、水素含有ガス生成装置Pにて生成されて、排出流路22を介して改質器バーナ31に供給される水素含有ガスは、原燃料ガスと共に、改質器バーナ31において燃焼して、改質器2が改質反応可能なように加熱されることになる。
そして、切換手段29により前記供給状態に切換えられると、水素含有ガス生成装置Pにて生成された水素含有ガスは、燃料極10に供給され、その燃料極10から排出されたオフガスが改質器バーナ31に供給されて燃焼して、改質器2が改質反応可能なように加熱され、一方、改質器バーナ31への原燃料ガスの供給が停止されることになる。
【0033】
上述のように、第2実施形態の燃料電池システム100は、切換手段29により前記排出状態に切換えると、受入流路23に供給された水素含有ガスが改質器バーナ31に供給されるように構成してあるので、起動直後の運転状態が不安定なときに水素含有ガス生成装置Pにて生成された水素含有ガスを、改質器バーナ31にて燃焼させて、原燃料ガスの改質処理に有効利用することができる。
【0034】
〔別実施の形態〕
本実施形態において、背圧付加手段として圧力調整弁27を排出流路22に設けたが、別に、手動式の絞り弁や、流路断面積を縮小させるためのスリーブ等を背圧付加手段として設けても構わない。
また、本実施形態においては、供給流路の圧力損失が排出流路の圧力損失よりも大きいので、排出流路に背圧設定手段としての背圧付加手段を設けたが、逆に、供給流路の圧力損失が排出流路の圧力損失よりも小さい場合には、供給流路に背圧設定手段としての背圧付加手段を設けても構わない。
【0035】
上記の第2実施形態においては、改質器バーナ31を、水素含有ガス生成装置にて生成された水素含有ガスを燃料電池に供給する前の段階において燃焼させて排気するためのパージバーナとして兼用する場合について例示したが、前記パージバーナとして、専用のパージバーナを設け、その専用のパージバーナを、改質器2を加熱するように構成しても良い。
【図面の簡単な説明】
【図1】第1実施形態に係る燃料電池システムの概略構成図
【図2】第2実施形態に係る燃料電池システムの概略構成図
【符号の説明】
2 改質器
21 供給流路
22 排出流路
23 受入流路(受入部)
27 圧力調整弁(背圧付加手段)
29 切換手段
30,31 バーナ
50 水素含有ガス供給構造
100 燃料電池システム
P 水素含有ガス生成装置
G 燃料電池
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a receiving unit that receives a hydrogen-containing gas from a hydrogen-containing gas generator,
A supply flow path connecting the receiving part and the fuel cell;
A discharge flow path connecting the receiving portion and a burner for burning and discharging the hydrogen-containing gas;
Switching that switches between a supply state that allows only the flow of the hydrogen-containing gas from the receiving unit to the supply channel and a discharge state that allows only the flow of the hydrogen-containing gas from the receiving unit to the discharge channel And a fuel cell system including the same.
[0002]
[Prior art]
A conventional fuel cell system is configured to include a hydrogen-containing gas generation device that generates a hydrogen-containing gas by steam reforming a hydrocarbon-based raw fuel gas, and a fuel cell to which the hydrogen-containing gas is supplied.
[0003]
In such a fuel cell system, for example, at the time of start-up, the operation state of the hydrogen-containing gas generation device is unstable, so that a high-quality hydrogen-containing gas may not be obtained.
Therefore, at the start of the fuel cell system, first, the hydrogen-containing gas generated by the hydrogen-containing gas generator is burned and discharged by a burner without being supplied to the fuel cell side. In some cases, the hydrogen-containing gas is supplied to the fuel cell by switching the supply destination of the hydrogen-containing gas. In addition, the burner for burning and exhausting the hydrogen-containing gas before the supply of the hydrogen-containing gas to the fuel cell may be referred to as a purge burner.
[0004]
Further, the hydrogen-containing gas supply structure for switching the supply destination of the hydrogen-containing gas between the fuel cell side and the burner side in this way includes a receiving unit that receives the hydrogen-containing gas from the hydrogen-containing gas generating device, a receiving unit, and a fuel A supply flow path for connecting the battery, and a discharge flow path for connecting the receiving section and a burner for burning and discharging the hydrogen-containing gas, and further supplying a supply destination of the hydrogen-containing gas from the receiving section. A three-way switching valve or the like is provided as switching means for switching to the supply flow path side or the discharge flow path side (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP-A-2002-216810 [0006]
[Problems to be solved by the invention]
However, in the conventional hydrogen-containing gas supply structure, when the hydrogen-containing gas is circulated in the supply flow path, the pressure loss occurs particularly in the fuel electrode of the fuel cell, and the hydrogen-containing gas is circulated in the discharge flow path. In particular, since the pressure loss occurs in the flame hole of the burner, the magnitude of each pressure loss is often different.
In such a case, if the supply destination of the hydrogen-containing gas is simply switched by the switching means, the pressure loss in the supply flow path and the discharge flow path is different from each other, so that it is necessary to maintain the desired flow rate of the hydrogen-containing gas. As a result, the flow rate of the hydrogen-containing gas becomes unstable immediately after switching.
In particular, when the supply destination of the hydrogen-containing gas is switched from the discharge channel to the supply channel, if the flow rate of the hydrogen-containing gas becomes unstable immediately after the switching, the power generation output of the fuel cell becomes unstable. .
Accordingly, in view of the above circumstances, the present invention provides a hydrogen-containing gas supply structure that can satisfactorily suppress flow rate fluctuations of the hydrogen-containing gas immediately after switching and stabilize the power generation output of the fuel cell, and It aims at providing the fuel cell system provided with.
[0007]
[Means for Solving the Problems]
[Configuration 1]
As described in claim 1, the hydrogen-containing gas supply structure according to the present invention is configured to receive a hydrogen-containing gas from a hydrogen-containing gas generator,
A supply flow path connecting the receiving part and the fuel cell;
A discharge flow path connecting the receiving part and a burner for burning and discharging the hydrogen-containing gas;
Switching that switches between a supply state that allows only the flow of the hydrogen-containing gas from the receiving unit to the supply channel and a discharge state that allows only the flow of the hydrogen-containing gas from the receiving unit to the discharge channel A hydrogen-containing gas supply structure comprising means,
Back pressure setting means is provided for setting back pressure applied to the receiving portion in the supply state and back pressure applied to the receiving portion in the discharged state.
[0008]
[Function and effect]
According to the hydrogen-containing gas supply structure of this configuration, the back pressure setting means supplies the hydrogen-containing gas from the receiving part to the discharge flow path and the back pressure applied when the hydrogen-containing gas is supplied from the receiving part to the supply flow path. Since the back pressure applied to the same can be made equivalent, the supply means of the hydrogen-containing gas from the receiving part is selectively switched between the supply flow path and the discharge flow path by the switching means. However, since the back pressure applied to the receiving portion hardly changes, the flow rate of the hydrogen-containing gas immediately after switching can be made relatively stable, and the generated power of the fuel cell can be made stable. it can.
[0009]
[Configuration 2]
The hydrogen-containing gas supply structure according to the present invention, as described in claim 2, in addition to the configuration of the hydrogen-containing gas supply structure of the configuration 1, the back pressure setting means is provided in the discharge flow path, It is configured as a back pressure applying means for applying a back pressure to the hydrogen-containing gas flowing through the discharge channel.
[0010]
[Function and effect]
Most of the back pressure applied to the receiving part in the supply state is due to pressure loss at the fuel electrode of the fuel cell that leads to the supply flow path. Most of the back pressure applied to the receiving part in the discharged state is from the burner. This is due to the pressure loss in the flame hole. In general, since the pressure loss at the fuel electrode of the fuel cell is larger than the pressure loss at the flame hole of the burner, the back pressure when the hydrogen-containing gas is supplied to the supply flow path side is greater than the discharge flow path side. In many cases, it is larger than the back pressure in the case of supplying to the water.
In such a case, as in the present configuration, by providing a back pressure applying means for applying a back pressure only to the discharge flow path, the flow rate of the hydrogen-containing gas immediately after switching is set by setting both back pressures equally. It is possible to realize a hydrogen-containing gas supply structure that can be made relatively stable.
[0011]
[Configuration 3]
As described in claim 3, the hydrogen-containing gas supply structure according to the present invention is a hydrocarbon system in which the hydrogen-containing gas generation device is supplied in addition to the structure of the hydrogen-containing gas supply structure of the first or second structure. Comprising a reformer that reforms the raw fuel into a hydrogen-containing gas using steam,
The burner is configured to heat the reformer.
[0012]
[Function and effect]
When the supply means of the hydrogen-containing gas from the receiving unit is switched to the discharge channel side by the switching means, the hydrogen-containing gas generated by the hydrogen-containing gas generator burns in the burner, and the burner thus burns The reformer is heated, and the reformer reforms the hydrocarbon-based raw fuel using heat supplied from the burner to generate a hydrogen-containing gas.
In other words, the hydrogen-containing gas generation device includes a reformer that reforms a hydrocarbon-based raw fuel with steam to reform the hydrogen-containing gas, and the reforming reaction in the reformer is endothermic. It is a reaction.
Therefore, the hydrogen-containing gas generated by the hydrogen-containing gas generation device is configured to heat the reformer as a burner for burning and exhausting before the hydrogen-containing gas is supplied to the fuel cell. The energy of the hydrogen-containing gas generated when the operation state of the gas generator is unstable can be effectively used for the raw fuel reforming process.
Accordingly, a hydrogen-containing gas supply structure that can effectively use the energy of the hydrogen-containing gas generated when the operation state of the hydrogen-containing gas generator is unstable is effectively used for generating the hydrogen-containing gas in the hydrogen-containing gas generator. be able to.
[0013]
[Configuration 4]
A fuel cell system according to the present invention includes a hydrogen-containing gas generation device and a fuel cell, as described in claim 4,
The hydrogen-containing gas supply structure according to any one of claims 1 to 3, as a hydrogen-containing gas supply structure for supplying a hydrogen-containing gas received from the hydrogen-containing gas generator to the receiving unit to the fuel cell. It is provided with.
[0014]
[Function and effect]
According to the fuel cell system of this configuration, the supply destination of the hydrogen-containing gas generated by the hydrogen-containing gas generator is switched between the fuel cell side and the burner side by the hydrogen-containing gas supply structure.
Further, by providing the hydrogen-containing gas supply structure according to any one of claims 1 to 3 as a hydrogen-containing gas supply structure, the supply destination of the hydrogen-containing gas from the receiving unit is connected to the supply flow path side and the discharge flow. Even when switching to the road side alternatively, the back pressure applied to the receiving portion hardly changes, so that the flow rate of the hydrogen-containing gas immediately after the switching can be made relatively stable. The generated power can be stabilized.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
A fuel cell system 100 shown in FIG. 1 includes a hydrogen-containing gas generation device P and a fuel cell G, and further uses a hydrogen-rich hydrogen-containing gas generated by the hydrogen-containing gas generation device P as a fuel electrode 10 of the fuel cell G. The hydrogen-containing gas supply structure 50 for supplying to is provided.
[0016]
The hydrogen-containing gas generation device P includes a desulfurizer 1 for desulfurizing a hydrocarbon-based raw fuel gas such as natural gas to be supplied, a steam generator 6 for generating steam by heating the supplied raw water, The desulfurization raw fuel gas heated by the reformer burner 31 corresponding to the combustor as the reformer heating means and supplied from the desulfurizer 1 is converted to H 2 using the steam generated by the steam generator 6. A reformer 2 for reforming the gas containing CO, and a CO converter 3 for performing a modification treatment by converting CO in the reformed gas supplied from the reformer 2 into CO 2 using steam. A CO selective oxidation reactor 4 that selectively oxidizes CO in the shift gas supplied from the CO shifter 3 and a controller (not shown) that controls the operation of the hydrogen-containing gas generator. ) Etc., and the CO concentration is low ( For example, 10 ppm or less) a hydrogen-rich hydrogen-containing gas is generated and supplied to the receiving passage (an example of the receiving portion) 23 of the hydrogen-containing gas supply structure 50.
[0017]
The hydrogen-containing gas supplied to the receiving passage 23 is supplied to the fuel cell G as a fuel gas by the hydrogen-containing gas supply structure 50. Although detailed description is omitted, the fuel cell G is a solid polymer type having a polymer membrane as an electrolyte 11, hydrogen in the fuel gas supplied from the hydrogen-containing gas generator P to the fuel electrode 10, and a blower Power is generated by an electrochemical reaction with oxygen in the reaction air supplied from 7 to the air electrode 12.
A part of the air from the blower 7 is supplied to the reformer burner 31 as combustion air.
[0018]
Next, details of the hydrogen-containing gas supply structure 50 will be described.
A supply flow path 21 passing through the fuel electrode 10 of the fuel cell G and a discharge flow path 22 connected to a purge burner 30 described later are connected in parallel to the reception flow path 23.
[0019]
Each of the flow paths 21 and 22 is provided with on / off valves 25 and 26, and the on / off valves 25 and 26 are operated by the switching means 29.
Specifically, the switching unit 29 is configured to supply only the flow of the hydrogen-containing gas from the receiving flow path 23 to the supply flow path 21 by opening the open / close valve 25 and closing the open / close valve 26, and By closing the on-off valve 25 and opening the on-off valve 26, the discharge state that allows only the flow of the hydrogen-containing gas from the reception passage 23 to the discharge passage 22 is switched.
[0020]
For example, the purge burner 30 is supplied with air supplied from the blower 7 before the hydrogen-containing gas is supplied to the fuel cell G after the hydrogen-containing gas generator P starts generating the hydrogen-containing gas. It is configured to burn.
[0021]
That is, in the fuel cell system 100, immediately after startup, the operation state of the hydrogen-containing gas generation device P is unstable and the quality of the hydrogen-containing gas supplied to the receiving flow path 23 is not stable. As a discharge state in which the hydrogen-containing gas supplied to the receiving passage 23 is supplied to the purge burner 30 via the discharge passage 22, the hydrogen-containing gas is burned in the purge burner 30 and discharged.
Then, after the operation state of the hydrogen-containing gas generation device P is stabilized and a high-quality hydrogen-containing gas is supplied to the receiving flow path 23, the fuel cell system 100 operates the switching means 29 to receive the receiving flow. In this state, the high-quality hydrogen-containing gas supplied to the passage 23 is supplied to the fuel electrode 10 of the fuel cell G via the supply passage 22.
[0022]
In such a fuel cell system 100, the supply channel 21 passes through the fuel electrode 10 having a relatively small channel cross-sectional area, and further modifies off-gas (gas containing hydrogen) discharged from the fuel electrode 10. Since the flow path is relatively long to be supplied to the combustor of the mass device 2, the pressure loss generated when the hydrogen-containing gas is circulated as compared with the discharge flow path 22 connected to the purge burner 30. large.
When the pressure loss of the supply flow path 21 is larger than the pressure loss of the discharge flow path 22 as described above, the supply means of the hydrogen-containing gas is changed from the discharge flow path 22 to the supply flow path 21 by the switching means 29, for example. When the switching is performed, the back pressure applied to the receiving flow path 23 suddenly increases, and even if the output of the raw fuel gas supply pump (not shown) provided in the hydrogen-containing gas generator P is increased, Since the volume of the flow path passing through the various reactors on the downstream side is relatively large, immediately after switching, the hydrogen-containing gas at the required flow rate cannot be supplied to the fuel cell G side. May become unstable.
[0023]
Therefore, in the hydrogen-containing gas supply structure 50 of the fuel cell system 100 according to the first embodiment, the back pressure applied to the receiving passage 23 in the supply state in which the hydrogen-containing gas is supplied to the fuel cell G, and the purge burner 30 containing hydrogen. A pressure regulating valve 27 is provided in the discharge flow path 22 as back pressure setting means for setting the back pressure applied to the receiving flow path 23 to be equal in a discharge state in which gas is supplied.
[0024]
That is, the pressure regulating valve 27 is configured as a back pressure applying means for applying a back pressure to the discharge flow path 22, and more specifically, the primary side pressure (the pressure on the receiving flow path 23 side) is a predetermined pressure, that is, containing hydrogen. In the supply state in which the gas is supplied to the supply flow channel 21 side, the flow channel cross-sectional area is adjusted so as to be equal to the pressure applied to the receiving flow channel 23.
And even if the switching means 29 is operated by such a pressure regulating valve 27 and the supply destination of the hydrogen-containing gas is switched, the back pressure relating to the receiving flow path 23 does not change. The flow rate fluctuation can be suppressed well, and the power generation output of the fuel cell G can be stabilized.
[0025]
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
In the second embodiment, the configuration other than the hydrogen-containing gas supply structure 50 is the same as that of the first embodiment. Therefore, the same components as those in the first embodiment and the components having the same functions as those of the first embodiment are avoided. Therefore, detailed description is omitted by giving the same reference numerals, and the hydrogen-containing gas supply structure 50 will be mainly described.
[0026]
As shown in FIG. 2, in the second embodiment, the reformer that heats the reformer 2 with the hydrogen-containing gas generated by the hydrogen-containing gas generator P when the operation state immediately after startup is unstable. The purge burner 30 provided in the first embodiment is omitted.
[0027]
When the explanation is added, the supply flow path 21 passing through the fuel electrode 10 of the fuel cell G and the discharge flow path 22 are connected in parallel to the reception flow path 23 as in the first embodiment. The tip of the path 22 is connected to the purge burner 30 in the first embodiment, whereas in the second embodiment, the off-gas discharged from the fuel electrode 10 in the supply flow path 21 is supplied to the reformer burner. 31 is connected to an off-gas flow path portion 21o leading to 31.
Combustion air is supplied from the blower 7 to the reformer burner 31. Further, the combustion exhaust gas from the reformer burner 31 is supplied to the steam generator 6, and is discharged after being used as a heat source for heating the raw water to generate steam in the steam generator 6. .
[0028]
Further, as in the first embodiment, on-off valves 25 and 26 are provided in the supply flow path 21 and the discharge flow path 22, respectively. Similarly to the first embodiment, the switching unit 29 operates the on-off valves 25 and 26 to supply only the flow of the hydrogen-containing gas from the receiving channel 23 to the supplying channel 21, and the receiving channel. 23 is configured to switch to a discharge state that allows only the flow of the hydrogen-containing gas from the discharge passage 22 to the discharge passage 22.
[0029]
Further, the discharge flow path 22 has a back pressure applied to the reception flow path 23 in the supply state for supplying the hydrogen-containing gas to the fuel cell G, and a reception flow path in the discharge state for supplying the hydrogen-containing gas to the reformer burner 31. A pressure regulating valve 27 is provided as a back pressure setting means for setting the back pressure applied to the same as 23.
[0030]
In other words, the supply channel 21 is connected to the reformer burner 31 through the fuel electrode 10 having a relatively small channel cross-sectional area, while the discharge channel 22 bypasses the fuel electrode 10. Since the supply channel 21 is connected to the reformer burner 31, the pressure loss generated when the hydrogen-containing gas is circulated is larger than that of the discharge channel 22.
Therefore, the pressure regulating valve 27 supplies the hydrogen-containing gas to the reformer burner 31 bypassing the fuel cell G and the back pressure applied to the receiving passage 23 in the supply state in which the hydrogen-containing gas is supplied to the fuel cell G. The back pressure applied to the receiving flow path 23 in the discharged state is set to be equal.
[0031]
That is, in the fuel cell system 100 of the second embodiment, the hydrogen-containing gas generator P is in an unstable state immediately after startup, while the quality of the hydrogen-containing gas supplied to the receiving passage 23 is not stable. Is switched to the discharge state by the switching means 29, the hydrogen-containing gas supplied to the receiving passage 23 is burned and discharged in the reformer burner 31, and the operation state of the hydrogen-containing gas generating device P is stabilized. After the high-quality hydrogen-containing gas is supplied to the receiving flow path 23, the switching means 29 switches to the supply state, and the hydrogen-containing gas supplied to the receiving flow path 23 is supplied to the supply flow path 22 through the fuel cell. It is supplied to the G fuel electrode 10.
The back pressure applied to the receiving flow path 23 in the supply state and the back pressure applied to the receiving flow path 23 in the discharged state are set to be equal by the pressure adjusting valve 27. Even when switching between the supply state and the discharge state, the back pressure applied to the receiving flow path 23 does not change, so that the fluctuation in the flow rate of the hydrogen-containing gas immediately after switching is satisfactorily suppressed and the power generation output of the fuel cell G is stabilized. Can be.
[0032]
Incidentally, since the raw fuel gas is supplied to the reformer burner 31 at the time of start-up, while being switched to the discharge state by the switching means 29, it is generated by the hydrogen-containing gas generation device P, and the discharge flow path. The hydrogen-containing gas supplied to the reformer burner 31 via 22 is combusted in the reformer burner 31 together with the raw fuel gas and is heated so that the reformer 2 can undergo a reforming reaction. Become.
When switched to the supply state by the switching means 29, the hydrogen-containing gas generated by the hydrogen-containing gas generation device P is supplied to the fuel electrode 10, and the off-gas discharged from the fuel electrode 10 is converted into the reformer. The fuel is supplied to the burner 31 and combusted, and the reformer 2 is heated so that the reforming reaction can be performed. On the other hand, the supply of the raw fuel gas to the reformer burner 31 is stopped.
[0033]
As described above, when the fuel cell system 100 according to the second embodiment is switched to the discharge state by the switching means 29, the hydrogen-containing gas supplied to the receiving flow path 23 is supplied to the reformer burner 31. Since it is configured, the hydrogen-containing gas generated by the hydrogen-containing gas generator P is burned by the reformer burner 31 when the operation state immediately after startup is unstable, and the raw fuel gas is reformed. It can be used effectively for processing.
[0034]
[Another embodiment]
In this embodiment, the pressure regulating valve 27 is provided in the discharge flow path 22 as a back pressure applying means. However, a manual throttle valve, a sleeve for reducing the cross sectional area of the flow path, etc. are separately used as the back pressure adding means. It may be provided.
In this embodiment, since the pressure loss of the supply flow path is larger than the pressure loss of the discharge flow path, back pressure application means as back pressure setting means is provided in the discharge flow path. When the pressure loss of the passage is smaller than the pressure loss of the discharge flow path, back pressure applying means as back pressure setting means may be provided in the supply flow path.
[0035]
In the second embodiment described above, the reformer burner 31 is also used as a purge burner for burning and exhausting the hydrogen-containing gas produced by the hydrogen-containing gas production device before the supply of the hydrogen-containing gas to the fuel cell. As an example of the case, a dedicated purge burner may be provided as the purge burner, and the dedicated purge burner may be configured to heat the reformer 2.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a fuel cell system according to a first embodiment. FIG. 2 is a schematic configuration diagram of a fuel cell system according to a second embodiment.
2 Reformer 21 Supply flow path 22 Discharge flow path 23 Receiving flow path (receiving part)
27 Pressure regulating valve (back pressure applying means)
29 Switching means 30, 31 Burner 50 Hydrogen-containing gas supply structure 100 Fuel cell system P Hydrogen-containing gas generator G Fuel cell

Claims (4)

水素含有ガス生成装置から水素含有ガスを受け入れる受入部と、
前記受入部と燃料電池とを接続する供給流路と、
前記受入部と前記水素含有ガスを燃焼させて排出するバーナとを接続する排出流路と、
前記受入部から前記供給流路への前記水素含有ガスの流通のみを許容する供給状態と、前記受入部から前記排出流路への前記水素含有ガスの流通のみを許容する排出状態とを切換える切換手段とを備えた水素含有ガス供給構造であって、
前記供給状態において前記受入部にかかる背圧と、前記排出状態において前記受入部にかかる背圧とを同等に設定する背圧設定手段を備えた水素含有ガス供給構造。
A receiving unit for receiving a hydrogen-containing gas from a hydrogen-containing gas generator;
A supply flow path connecting the receiving part and the fuel cell;
A discharge flow path connecting the receiving portion and a burner for burning and discharging the hydrogen-containing gas;
Switching that switches between a supply state that allows only the flow of the hydrogen-containing gas from the receiving unit to the supply channel and a discharge state that allows only the flow of the hydrogen-containing gas from the receiving unit to the discharge channel A hydrogen-containing gas supply structure comprising means,
A hydrogen-containing gas supply structure comprising back pressure setting means for setting the back pressure applied to the receiving portion in the supply state and the back pressure applied to the receiving portion in the discharged state to be equal.
前記背圧設定手段が、前記排出流路に設けられ、前記排出流路を流通する水素含有ガスに背圧を付加する背圧付加手段として構成されている請求項1に記載の水素含有ガス供給構造。2. The hydrogen-containing gas supply according to claim 1, wherein the back pressure setting unit is configured as a back pressure applying unit that is provided in the discharge channel and applies a back pressure to the hydrogen-containing gas that flows through the discharge channel. Construction. 前記水素含有ガス生成装置が、供給される炭化水素系の原燃料を水蒸気を用いて水素含有ガスに改質する改質器を備えて構成され、
前記バーナが、前記改質器を加熱するように構成されている請求項1又は2記載の水素含有ガス供給構造。
The hydrogen-containing gas generation device is configured to include a reformer that reforms the supplied hydrocarbon-based raw fuel into a hydrogen-containing gas using steam,
The hydrogen-containing gas supply structure according to claim 1 or 2, wherein the burner is configured to heat the reformer.
水素含有ガス生成装置と燃料電池とを備え、
前記水素含有ガス生成装置から前記受入部に受け入れた水素含有ガスを前記燃料電池に供給するための水素含有ガス供給構造として、請求項1〜3のいずれか1項に記載の水素含有ガス供給構造を備えた燃料電池システム。
A hydrogen-containing gas generator and a fuel cell;
The hydrogen-containing gas supply structure according to any one of claims 1 to 3, as a hydrogen-containing gas supply structure for supplying a hydrogen-containing gas received from the hydrogen-containing gas generator to the receiving unit to the fuel cell. A fuel cell system comprising:
JP2002321208A 2001-11-05 2002-11-05 Hydrogen-containing gas supply structure and fuel cell system including the same Expired - Fee Related JP3897682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321208A JP3897682B2 (en) 2001-11-05 2002-11-05 Hydrogen-containing gas supply structure and fuel cell system including the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001339291 2001-11-05
JP2001-339291 2001-11-05
JP2002321208A JP3897682B2 (en) 2001-11-05 2002-11-05 Hydrogen-containing gas supply structure and fuel cell system including the same

Publications (2)

Publication Number Publication Date
JP2003203658A JP2003203658A (en) 2003-07-18
JP3897682B2 true JP3897682B2 (en) 2007-03-28

Family

ID=27666890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321208A Expired - Fee Related JP3897682B2 (en) 2001-11-05 2002-11-05 Hydrogen-containing gas supply structure and fuel cell system including the same

Country Status (1)

Country Link
JP (1) JP3897682B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174745A (en) * 2003-12-11 2005-06-30 Ebara Ballard Corp Operation method of fuel cell system and fuel cell system
JP4870909B2 (en) * 2004-01-23 2012-02-08 大阪瓦斯株式会社 Fuel cell power generator
US7659019B2 (en) 2005-09-16 2010-02-09 Idatech, Llc Thermally primed hydrogen-producing fuel cell system
JP5011775B2 (en) * 2006-03-27 2012-08-29 カシオ計算機株式会社 Fuel cell power generator
US11316180B2 (en) 2020-05-21 2022-04-26 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212777A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The Fuel feed method to fuel cell
JPS6391165U (en) * 1986-12-04 1988-06-13
JPH02273466A (en) * 1989-04-13 1990-11-07 Fuji Electric Co Ltd Fuel cell power generating system
JP3448568B2 (en) * 2001-01-15 2003-09-22 三洋電機株式会社 Exhaust heat recovery apparatus and method in fuel cell power supply system

Also Published As

Publication number Publication date
JP2003203658A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
AU2003261776B2 (en) Fuel Cell Electrical Power Generation System
JP4988590B2 (en) Method for determining air ratio of fuel cell heater burner and fuel cell heater
JP4884773B2 (en) Fuel cell power generation system
JP5135209B2 (en) HYDROGEN GENERATOR, FUEL CELL SYSTEM HAVING THE SAME, AND METHOD FOR OPERATING THE SAME
JP4130681B2 (en) Fuel cell system
JP3897682B2 (en) Hydrogen-containing gas supply structure and fuel cell system including the same
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JP4902165B2 (en) Fuel cell reformer and fuel cell system comprising the fuel cell reformer
JP5002220B2 (en) Fuel cell system
JP2014082062A (en) Fuel cell power generation device and operation method thereof
JP2011195391A (en) On-start up operation method for hydrogen-containing gas producing apparatus
JPH08180895A (en) Fuel cell generating device
JP2009117120A (en) Method of operating hydrogen and power generation system
JP2004018357A (en) Reforming reactor system
WO2011055523A1 (en) Fuel cell system
JP2003160307A (en) Reformer and its operation method
JP2005158466A (en) Fuel cell power generation system
JP2004217435A (en) Method for stopping hydrogen-containing gas generation equipment, and hydrogen-containing gas generation equipment
JP2015140285A (en) Method for operating hydrogen-containing gas generation apparatus, and hydrogen-containing gas generation apparatus
WO2005009895A1 (en) Method and apparatus for treating reformed gas and fuel cell electric power generation system
JP2020015932A (en) Hydrogen generation system and method for operating the same
JPH01197970A (en) Fuel cell power generating system
JP2006342047A (en) Reformer, method for controlling pump in fuel cell system, and control unit
JP3693933B2 (en) Operation method of solid oxide fuel cell
JP2003212505A (en) Apparatus for producing hydrogen-containing gas and method of controlling quantity of production of hydrogen-containing gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees