JPH01197970A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPH01197970A
JPH01197970A JP63021191A JP2119188A JPH01197970A JP H01197970 A JPH01197970 A JP H01197970A JP 63021191 A JP63021191 A JP 63021191A JP 2119188 A JP2119188 A JP 2119188A JP H01197970 A JPH01197970 A JP H01197970A
Authority
JP
Japan
Prior art keywords
fuel
gas
electrode
line
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63021191A
Other languages
Japanese (ja)
Inventor
Yoshima Iwasaki
岩崎 芳摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63021191A priority Critical patent/JPH01197970A/en
Publication of JPH01197970A publication Critical patent/JPH01197970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent performance deterioration by installing valves which shut off gases flowing in a fuel gas supply line and an oxidizing agent gas supply line, lines which bypass gases flowing these supply lines to an outlet side line of a fuel electrode or an oxidizing agent electrode, and valves which shut off gases flowing in bypass lines. CONSTITUTION:Valves 30A, 30C which shut off gases flowing in a fuel gas supply line and an oxidizing agent gas supply line, lines 31A, 31B which bypass gases flowing in these supply lines to an outlet side line of a fuel electrode 11A or an oxidizing agent electrode 11B, and valves 30B, 30D which shut off gases flowing in the bypass lines 31A, 31B are installed. When a cell is in a power generation preparation state, the valves 30A, 30C on a fuel cell 11 side are closed, and the valves 30B, 30D in the bypass lines 31A, 31B are opened. Since inert gas does not pass the fuel electrode and the oxidizing agent electrode, phosphoric acid aqueous solution in an electrolyte layer is not taken out to the outside. The fuel cell is steadily operated for a long time.

Description

【発明の詳細な説明】 [発明の[1的]1 (産業上の利用分野) 本発明は燃j′;1電池と燃料改質装置と空気供給装置
とを(liiiえて構成される燃料電池発電システムに
係り、特に燃料電池の電1へ内の反応ガスを不活性ガス
でパージする以外に、電極内を不活性ガスが通過するこ
とによる電解質の保持領域外への持も出しによる燃料電
池の性能劣化を防止し得るようにした燃料電池発電シス
テムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object 1 of the Invention] 1 (Field of Industrial Application) The present invention provides a fuel cell comprising a fuel cell, a fuel reformer, and an air supply device. Regarding power generation systems, in particular, in addition to purging the reactant gas inside the fuel cell with an inert gas, it is also possible to carry out the electrolyte outside the holding area by passing an inert gas through the electrodes of the fuel cell. The present invention relates to a fuel cell power generation system capable of preventing performance deterioration of the fuel cell power generation system.

(従来の技術) 従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換するものとして燃料電池が知られてい
る。この燃料電池は通常、電解質層を挟んで燃料極およ
び酸化剤極の一対の電極を配置すると共に、燃料極に水
素ガス等の燃料ガスを供給しまた酸化剤極に空気等の酸
化剤ガスを供給し、このとき起こる電気化学的反応を利
用して上記両電極間から電気工ネルキーを取出すように
したものであり、上記燃料ガスと酸化剤ガスが供給され
ている限り高い変換効率で電気エネルギーを取出すこと
ができるものでおる。
(Prior Art) Fuel cells are conventionally known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell usually has a pair of electrodes, a fuel electrode and an oxidizer electrode, with an electrolyte layer in between, and a fuel gas such as hydrogen gas is supplied to the fuel electrode, and an oxidant gas such as air is supplied to the oxidizer electrode. This system uses the electrochemical reaction that occurs to extract electrical energy from between the two electrodes, and as long as the fuel gas and oxidant gas are supplied, electrical energy can be generated with high conversion efficiency. Use something that can be taken out.

さて、現在考えられている燃料電池としては、ヒドラジ
ンを燃料とする燃料電池、アルカリ水溶液電解質、リン
酸水溶液電解質を電解質とする燃オニ1電池かあるか、
このうらリン酸水溶液電解質を電解質とする燃料電池は
、改質ガスを使用できることから一般的な使用が可能で
あり、産業用または発電事業として使用されつつおる。
Now, as fuel cells that are currently being considered, are there fuel cells that use hydrazine as fuel, alkaline aqueous electrolytes, and phosphoric acid 1 cells that use phosphoric acid aqueous electrolytes as the electrolytes?
Fuel cells using this uraphosphoric acid aqueous solution electrolyte as an electrolyte can be used for general purposes because they can use reformed gas, and are increasingly being used for industrial purposes or power generation projects.

そしてこの種の燃料電池は、その燃料ガスである水素ガ
スを多く含んだ改質ガスを得るための燃料改質装置およ
び酸化剤ガスである圧縮空気を得るための空気供給装置
を陥えて燃1’l電池発電システムを構成していること
か多い。
In this type of fuel cell, the fuel reformer for obtaining reformed gas containing a large amount of hydrogen gas, which is the fuel gas, and the air supply device for obtaining compressed air, which is the oxidant gas, are installed. It is often part of a battery power generation system.

第2図は、この種の従来の燃料電池R,電システムの一
例を示したものでおる。第2図において、天然ガスまた
は石炭ガス等の化石燃a’l 、J、りなる原燃料1と
、スチーム供給器2からのスチームか、それぞれ原燃石
流単節弁3とスチーム流全調節弁4とににす、スチーム
とカーボンの)捏合モル比か3〜5稈1哀となるように
制御されて燃料改¥11装置5内の改TI反応管6に導
入される。ここで、原燃料1とスチームは500〜60
0 ’C程度まで加熱されて改質反応を行ない、次に変
成器7を経て水素含イ′i率の高い改質ガスすなわち燃
)’u+ガスとなる。
FIG. 2 shows an example of this type of conventional fuel cell R and electrical system. In Fig. 2, fossil fuels such as natural gas or coal gas a'l, J, or raw fuel 1, steam from a steam supply device 2, and a raw fuel rock flow single-node valve 3 and steam flow full control, respectively. The mixed molar ratio (of steam and carbon) of the valve 4 is controlled to be 3 to 5 to 1, and is introduced into the modified TI reaction tube 6 in the fuel reforming device 5. Here, raw fuel 1 and steam are 500 to 60
It is heated to about 0'C to carry out a reforming reaction, and then passes through the shift converter 7 to become a reformed gas with a high hydrogen content, that is, a combustion gas.

この水素含有率が高くなった燃料ガスは、燃料ガス気水
分離器8に送られて改質で余剰になったスチームを除去
した後、補助バーナ9へは補助バーナ燃料ガス流量調節
弁10により、また燃料電池、11の燃料極11Aへは
燃料ガス流量調節弁12により、それぞれ流量が制御さ
れて送られる。燃料電池11の燃料極11Aへ流入した
燃料ガス中の水素は、燃料電池11の酸化剤11Bに流
入している酸化剤ガス中の酸素と触媒反応を行ない、そ
の結果燃料ガスの一部が消費されて電気エネルギーと反
応水とが得られる。
This fuel gas with a high hydrogen content is sent to the fuel gas steam water separator 8 to remove surplus steam from reforming, and then sent to the auxiliary burner 9 by the auxiliary burner fuel gas flow rate control valve 10. Further, the fuel gas is sent to the fuel electrode 11A of the fuel cell 11 with its flow rate controlled by a fuel gas flow rate control valve 12, respectively. The hydrogen in the fuel gas that has flowed into the fuel electrode 11A of the fuel cell 11 undergoes a catalytic reaction with the oxygen in the oxidant gas that has flowed into the oxidizer 11B of the fuel cell 11, and as a result, a portion of the fuel gas is consumed. electrical energy and reaction water are obtained.

この燃料電池11内で生成した反応水の一部を含んで燃
料極11Aを出た燃料排ガスは、上述の燃料改質装置5
の主バーナ13の燃料ガスとして送られるが、その途中
においてガス中の水分を回収するため燃料排ガス気水分
離器16を通過させる。そして、主バーナ13へ送られ
た燃料排ガスは燃料改質装置5内で燃焼し、改質反応管
6を加熱した後に高温排ガス17として排出される。
The fuel exhaust gas exiting the fuel electrode 11A containing a portion of the reaction water generated within the fuel cell 11 is transferred to the fuel reformer 5 described above.
The fuel gas is sent as a fuel gas to the main burner 13 of the main burner 13, but along the way, the fuel exhaust gas is passed through a steam/water separator 16 in order to recover moisture in the gas. The fuel exhaust gas sent to the main burner 13 is combusted in the fuel reformer 5, heats the reforming reaction tube 6, and is then discharged as high-temperature exhaust gas 17.

ざらに、この高温排ガス17は燃1′;1電池11の酸
化剤(へ1113から送られる酸化剤排ガスと合流した
1すに混合器18へ導入され、タービン19Aおよびコ
ンブレラ晋119Bからなる空気供給装置19の駆動用
エネルギーの一部として使われる。ざらに補助バーナ9
へ送られた燃料ガスは補助バーナ9内で燃焼し、その燃
焼ガスか混合器18を通過して空気供給装置19のター
ビン19八を駆動する。
Roughly speaking, this high-temperature exhaust gas 17 is combined with the oxidizer exhaust gas sent from the oxidizer 1113 of the fuel 1'; It is used as part of the energy for driving the device 19.Ranani auxiliary burner 9
The fuel gas sent to is combusted in the auxiliary burner 9, and the combustion gas passes through the mixer 18 to drive the turbine 198 of the air supply device 19.

一方、タービン19Aに連結して駆動される]ンプレッ
サ19Bからの吐出空気は、補助バーナ9゜主バーナ1
3へそれぞれ補助バーナ酸化剤ガス流量調節弁20.主
バーナ酸化剤ガス流子調節弁21により空気量を調節し
て送られると共に、酸化剤ガス流間調節介22により燃
料電池11の酸化剤極11Bへ送られ、余剰分は空気供
給装置19の駆動用エネルギーの一部として混合器18
へ送られる。
On the other hand, the air discharged from the compressor 19B connected to and driven by the turbine 19A is supplied to the auxiliary burner 9 and the main burner 1.
3 to each auxiliary burner oxidant gas flow rate control valve 20. The amount of air is adjusted and sent by the main burner oxidant gas flow control valve 21, and the air is sent to the oxidant electrode 11B of the fuel cell 11 by the oxidant gas flow control valve 22. Mixer 18 as part of the driving energy
sent to.

燃料電池11の酸化剤極118へ流入した酸化剤ガスの
一部は、燃料電池11の燃お目I!fi11へに流入し
ている燃″A’4ガス中の水素と反応して消費された後
、酸化剤4へ118内で生成した水分を含んで排出され
る。この排出された酸化剤排ガスは、上述の燃1′;1
排ガスと同様に酸化剤排ガス気水分離器23により酸化
剤排ガス中のスチーム分を一部復水した後に、燃料改質
装置5からの高温排ガス17と合流する。
A portion of the oxidant gas that has flowed into the oxidizer electrode 118 of the fuel cell 11 is transferred to the fuel cell 11's combustion electrode I! After being consumed by reacting with the hydrogen in the fuel A'4 gas flowing into the fi 11, it is discharged to the oxidizer 4 containing the moisture generated in the oxidizer 118.This discharged oxidizer exhaust gas is , the above fuel 1′;1
Similar to the exhaust gas, the steam in the oxidizer exhaust gas is partially condensed by the oxidizer exhaust gas steam water separator 23, and then merges with the high-temperature exhaust gas 17 from the fuel reformer 5.

このように、燃料電池11では燃料極11A内の水素と
酸化剤極11B内の酸素との触媒反応により、酸化剤極
11Bが正極、燃料極11Aが負極となるように電気エ
ネルギーを発生し、この電気エネルギーが電気負荷24
により吸収されることになる。
In this way, in the fuel cell 11, electrical energy is generated by the catalytic reaction between hydrogen in the fuel electrode 11A and oxygen in the oxidizer electrode 11B such that the oxidizer electrode 11B becomes the positive electrode and the fuel electrode 11A becomes the negative electrode. This electrical energy is the electrical load 24
It will be absorbed by

一方、原燃料供給ライン、燃料電池11の燃料(※11
八への燃料ガスの供給ライン、酸化剤極11Bへの酸化
剤ガスの供給ラインには、昇圧および残存ガスのパージ
のために、不活性ガス供給装置28よりそれぞれ原燃料
パージ弁25.燃料ガスパージ弁26、酸化剤ガスパー
ジ弁27を介して、例えば窒素ガス等の不活性ガスが供
給され、燃料電池発電システムが停止または停止操作状
態あるいは発電準備状態、または発電待機状態で、燃料
ガスと酸化剤ガスとの混合か生じないように不活性ガス
で置換している。
On the other hand, raw fuel supply line, fuel for fuel cell 11 (*11
The fuel gas supply line to the oxidizer electrode 11B and the oxidant gas supply line to the oxidizer electrode 11B are connected to raw fuel purge valves 25.1 and 25.2, respectively, from an inert gas supply device 28 for pressurization and purging of residual gas. For example, an inert gas such as nitrogen gas is supplied through the fuel gas purge valve 26 and the oxidizing gas purge valve 27, and when the fuel cell power generation system is stopped or in a stop operation state, in a power generation preparation state, or in a power generation standby state, the fuel gas and The gas is replaced with an inert gas to prevent mixing with the oxidant gas.

ところで、このような燃料電池発電システムにおいて、
燃料電池11が安定して長期間運転を行なうためには、
燃料電池11の燃料極11八と酸化剤極11Bに挾まれ
た電M貿層(図には示していない)の電解質でおるリン
酸水溶液が電解質層から持ち出されることは望ましくな
く、このリン酸水溶液の持ち出しは燃料極11Aヤ酸化
剤極11Bに不活性ガス等のドライガスが流れることに
よって起こることが実験上かられかっている。
By the way, in such a fuel cell power generation system,
In order for the fuel cell 11 to operate stably for a long period of time,
It is undesirable for the aqueous phosphoric acid solution in the electrolyte layer (not shown in the figure) sandwiched between the fuel electrode 118 and the oxidizer electrode 11B of the fuel cell 11 to be carried out from the electrolyte layer. Experiments have shown that the aqueous solution is carried out when a dry gas such as an inert gas flows through the fuel electrode 11A and the oxidizer electrode 11B.

(発明が解決しようとする課題) しかし、不活性ガスの供給目的は、残存ガスのパージお
よび不活性ガスの置換で、これは発電待機状態あるいは
停止操作状態では必ず必要でおる。
(Problems to be Solved by the Invention) However, the purpose of supplying the inert gas is to purge residual gas and replace the inert gas, which is always necessary in a power generation standby state or a stop operation state.

しかし、燃料ガス流量調節弁12と酸化剤ガス流罪調節
弁22を全閉し、原燃料パージ弁25と燃料ガスバージ
弁26と酸化剤ガスパージ弁27を開き、不活性ガス供
給装置28から不活性ガスを供給し、供給先の系内を背
圧すると共に圧力を保持する発電準備状態においては、
残存ガスのパージは不要であるが、数時間に渡って不活
性ガスが燃料極11Aヤj酸化剤極11Bを通過する。
However, the fuel gas flow rate control valve 12 and the oxidant gas discharge control valve 22 are fully closed, the raw fuel purge valve 25, the fuel gas barge valve 26, and the oxidant gas purge valve 27 are opened, and the inert gas is supplied from the inert gas supply device 28. In the power generation preparation state, which supplies back pressure to the system of the supply destination and maintains the pressure,
Although purging of residual gas is not necessary, inert gas passes through the fuel electrode 11A and the oxidizer electrode 11B for several hours.

このように燃料電池発電システムが発電準備状態では、
燃料極11Aや酸化剤極11Bには不活性ガスが流れ、
電解質層の電解質であるリン酸水溶液が電解質層から持
ち出される。これによって燃料電池の性能低下が生じる
。従来の燃料電池発電システムでは以上のように発電準
備状態において燃料電池性能が低下する問題があった。
In this way, when the fuel cell power generation system is ready to generate power,
Inert gas flows through the fuel electrode 11A and the oxidizer electrode 11B,
The phosphoric acid aqueous solution, which is the electrolyte in the electrolyte layer, is taken out from the electrolyte layer. This causes a decrease in the performance of the fuel cell. As described above, the conventional fuel cell power generation system has a problem in that the fuel cell performance deteriorates in the power generation preparation state.

本発明の目的は、燃料極および酸化剤極には不活性ガス
が通過することなく燃料電池システムの起動準備を行な
い、燃料電池の性能低下を起こすことなく運転できるこ
とが可能な燃料電池発電システムを提供することにある
An object of the present invention is to provide a fuel cell power generation system that can prepare the fuel cell system for startup without passing inert gas through the fuel electrode and oxidizer electrode, and that can operate without deteriorating the performance of the fuel cell. It is about providing.

[発明の構成] (課題を解決するための手段) 本発明の燃料電池発電システムでは、燃料電池の燃料ガ
ス供給ライン上に当該ラインを流れるガスをしゃ断する
弁と、当該ラインを流れるガスを燃料極出口側ラインに
バイパスするラインと、このバイパスラインを流れるガ
スをしゃ断する弁と、酸化剤ガス供給ライン上に当該ラ
インを流れるガスをしや断する弁と、当該ラインを流れ
るガスを酸化剤(へ出口側にバイパスするラインとこの
バイパスラインを流れるガスをしゃ断する弁とを設けた
ことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The fuel cell power generation system of the present invention includes a valve on the fuel gas supply line of the fuel cell that shuts off gas flowing through the line, and a valve that shuts off the gas flowing through the line. A line that bypasses the pole outlet side line, a valve that shuts off the gas flowing through this bypass line, a valve that shuts off the gas flowing through the oxidizing gas supply line, and a valve that shuts off the gas flowing through the oxidizing gas supply line. (The device is characterized by being provided with a bypass line on the outlet side and a valve that shuts off gas flowing through this bypass line.

(作 用) 上述の燃料電池発電システムにおいては、発電tV備状
態の場合撚おI極、空気極共に燃料電池側の弁を全閉じ
、バイパス側の弁を開けることにより不活性ガスは、バ
イパス側を通過し、燃料極と空気極へは流れない。
(Function) In the above-mentioned fuel cell power generation system, when the power generation tV is ready, the valves on the fuel cell side for both the twisted I electrode and the air electrode are fully closed, and the valve on the bypass side is opened, so that the inert gas is bypassed. It passes through the side and does not flow to the fuel and air electrodes.

(実施例) 以下本発明の実施例について図面を参照して31明する
。第1図は本発明による燃お1電池発電シスデムの構成
例をブロック的に示したものであり、第2図と同一部分
には同一符号を付して示し、その説明を省略し、ここで
は異なる部分についてのみjホベる。
(Example) Examples of the present invention will be explained below with reference to the drawings. FIG. 1 is a block diagram showing an example of the configuration of a single-cell combustion battery power generation system according to the present invention. The same parts as in FIG. Look only at the different parts.

71なわら、第1図は前述した第2図の燃料電池発電シ
ステムにおいて、燃料ガス流量調節弁12と燃料極11
へのライン上に開閉弁3OAと、この開閉弁30Aと燃
料極ガス流消調節弁12のライン上に燃料極11A出口
から燃料排ガス気水分離器16のライン上の間にバイパ
スする配管31Aと、この配管途中に開閉弁30Bと、
酸化剤ガス流量調節弁22と酸化剤極11Bのライン上
に開閉弁30Cと、この開閉弁30Gと酸化剤ガス流量
調節弁22のライン上に酸化剤極11B出口から酸化剤
排ガス気水分離器23のライン上の間にバイパスする配
管31Bと、この配管途中に開閉弁30[)とを設け、
発電準備状態においては、開閉弁3OAと開閉弁30C
を全閉し、開閉弁30Bと開閉弁30Dは聞き、発電待
機状態において開閉弁3OAと開閉弁30Cは開き、開
閉弁30Bと開閉弁300は全閉に1“るものである。
71. However, FIG. 1 shows the fuel gas flow rate control valve 12 and fuel electrode 11 in the fuel cell power generation system shown in FIG.
On the line between the on-off valve 3OA and the fuel electrode gas flow control valve 12, there is a bypass piping 31A between the fuel electrode 11A outlet and the fuel exhaust gas steam separator 16 line. , an on-off valve 30B is installed in the middle of this piping,
An on-off valve 30C is provided on the line between the oxidant gas flow rate control valve 22 and the oxidant electrode 11B, and an oxidant exhaust gas air-water separator is provided on the line between the on-off valve 30G and the oxidant gas flow rate control valve 22 from the outlet of the oxidant electrode 11B. A bypass pipe 31B is provided between the lines of 23 and an on-off valve 30[) in the middle of this pipe,
In the power generation preparation state, on-off valve 3OA and on-off valve 30C
is fully closed, the on-off valves 30B and 30D are in the standby state, the on-off valves 3OA and 30C are open, and the on-off valves 30B and 300 are fully closed.

次に、かかる如く構成した燃料電池システムにおける発
電準備の手順について述べる。いま本燃料電池プラン1
〜が昇圧するためには、原燃料流量調節弁3とスチーム
流量調節弁4と燃料ガス流量調節弁12と、酸化剤ガス
流量調節弁22が全閉し、原燃料パージ弁25と燃料ガ
スパージ弁26と酸化剤ガスパージ弁27が開き、不活
性ガス供給装置ff28から不活性ガスか供給される。
Next, a procedure for preparing for power generation in the fuel cell system configured as described above will be described. Now this fuel cell plan 1
In order to increase the pressure of ~, the raw fuel flow control valve 3, the steam flow control valve 4, the fuel gas flow control valve 12, and the oxidizing gas flow control valve 22 are fully closed, and the raw fuel purge valve 25 and the fuel gas purge valve are closed. 26 and the oxidizing gas purge valve 27 are opened, and inert gas is supplied from the inert gas supply device ff28.

この際開閉弁3OAと開閉弁30Cは全閉し、開閉弁3
0Bと開閉弁30Dは開く。これにより不活性ガスは燃
料極11Aと酸化剤極118を通過することなく背圧す
ることができる。
At this time, the on-off valve 3OA and the on-off valve 30C are fully closed, and the on-off valve 3
0B and the on-off valve 30D are opened. This allows the inert gas to backpressure without passing through the fuel electrode 11A and the oxidizer electrode 118.

次に燃料改質装置5にて原燃料1とスチーム供給器2か
らのスチームによって、燃料が改質している状態では、
原燃料パージ弁25と燃料ガスパージ弁26が全閉じ、
燃′A(1ガスが開閉弁30Bを通りさらに燃おロJl
′−ガス気水分離器16を通過(〕、主バーナ13の燃
料として燃焼する。この際酸化剤ガスパージ弁27は開
いたままで、背圧した圧力を保持するために不活性ガス
か供給される。しかし開閉弁300が聞いていることに
より酸化剤極11Bには不活性ガスは通過しない。
Next, while the fuel is being reformed in the fuel reformer 5 by the raw fuel 1 and the steam from the steam supply device 2,
The raw fuel purge valve 25 and the fuel gas purge valve 26 are fully closed,
Combustion A (1 gas passes through the on-off valve 30B and further
'-The gas passes through the steam/water separator 16 () and is burned as fuel for the main burner 13. At this time, the oxidizer gas purge valve 27 remains open, and inert gas is supplied to maintain the back pressure. However, since the on-off valve 300 listens, the inert gas does not pass through the oxidizer electrode 11B.

次に、開閉弁3OAと開閉弁30Cを聞け、開閉弁30
Bと開閉弁30Dを閉じることにより、燃料極11Aに
は燃料ガスが供給され、酸化剤極11Bには不活性ガス
が供給され、ただちに酸化剤極に酸化剤ガス流迅調節弁
22を開ぎ空気を供給することにより発電することので
きる発電待機運転状態に移行し、発電準備状態を終了す
る。
Next, listen to the on-off valve 3OA and the on-off valve 30C.
By closing B and the on-off valve 30D, fuel gas is supplied to the fuel electrode 11A, and inert gas is supplied to the oxidizer electrode 11B. Immediately, the oxidizer gas flow adjustment valve 22 is opened to the oxidizer electrode. The system shifts to a power generation standby state in which power can be generated by supplying air, and ends the power generation preparation state.

上述したように本実施例の燃料電池システムは、発電準
備状態において、不活性ガスが燃)!il極11Aと酸
化剤極11Bを通過しないように開閉弁を設けてこれを
切り替えるようにしたものである。従って、燃料極11
Aと酸化剤極11Bの間に挟まれた電解質層のリン酸水
溶液は、発電準備状態では電解質層から持ち出されるこ
となく、長期間安定して発電することが可能となる。
As mentioned above, the fuel cell system of this embodiment burns inert gas in the power generation preparation state. An on-off valve is provided to switch between the illuminating electrode 11A and the oxidizing agent electrode 11B so as not to pass through them. Therefore, the fuel electrode 11
The phosphoric acid aqueous solution in the electrolyte layer sandwiched between A and the oxidizer electrode 11B is not taken out from the electrolyte layer in the power generation preparation state, making it possible to generate power stably for a long period of time.

なあ、本発明は上述した実施例に限定されるものではな
く、その要旨を変更しない範囲で種々に変形して実施す
ることができるものである。例えば、上)本の実施例で
は燃料極11Aと酸化剤極11Bの人出口をバイパスす
るラインを配管としたが、これは燃料電池を模擬する容
器でもよいということはいうまでもなく、また、発電準
備状態以外でも電極内の残存ガスが充分にパージされて
いれば不活性ガスが流れている状態でバイパスラインに
切り替えて使用してもよい。
It should be noted that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without changing the gist thereof. For example, in the above embodiment, the line that bypasses the fuel electrode 11A and the oxidizer electrode 11B's outlet is used as piping, but it goes without saying that this may also be a container simulating a fuel cell. Even in a state other than the power generation preparation state, if the residual gas in the electrode is sufficiently purged, it may be used by switching to the bypass line while the inert gas is flowing.

[発明の効果] 以上説明したように本発明によれば、発電>1+−備状
態に不活性ガスか燃料極と酸化剤極を通過しないため電
解質層のリン酸水溶液が電解質層以外に持ら出されなく
なり、燃料電池を長!VI間安定して運転できる。
[Effects of the Invention] As explained above, according to the present invention, the phosphoric acid aqueous solution in the electrolyte layer is not carried outside the electrolyte layer because the inert gas does not pass through the fuel electrode and the oxidizer electrode when power generation is >1+-. It will no longer be released and the fuel cell will last longer! Stable operation is possible during VI.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による態別電池発電システムの実施例を
示すブロック図、第2図は従来の燃料電池発電システム
の一例を示すブロック図である。 1・・・原燃料 2・・・スチーム供給器 3・・・原燃料流但調Di)弁 4・・・スチーム流量調節弁 5・・・燃料改質装置 6・・・改質反応管 7・・・変成器 8・・・燃料ガス気水分離器 9・・・補助バーナ 10・・・補助バーナ燃料ガス流量調節弁11・・・燃
料電池 11A・・・燃料極 11B・・・酸化剤極 12・・・燃料ガス流母調節弁 13・・・主バーナ− 16・・・燃料排ガス気水分離器 17・・・高温排ガス 18・・・混合器 19・・・空気供給装置 19A・・・タービン 19B・・・コンプレッサ 20・・・補助バーナ酸化剤ガス流量調節弁21・・・
主バーナ酸化剤ガス流量調節弁22・・・酸化剤ガス流
量調節弁 23・・・酸化剤排ガス気水分離器 2/l・・・電気負荷 25・・・原燃料パージ弁 26・・・燃料ガスパージ弁 27・・・酸化剤ガスパージ弁 ?8・・・不活性ガス供給装置 30、30B、 30C,300・・・開閉弁31八、
31B ・・・配管 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 第2図
FIG. 1 is a block diagram showing an embodiment of a fuel cell power generation system according to the present invention, and FIG. 2 is a block diagram showing an example of a conventional fuel cell power generation system. 1... Raw fuel 2... Steam supply device 3... Raw fuel flow control Di) valve 4... Steam flow rate control valve 5... Fuel reformer 6... Reforming reaction tube 7 ...Transformer 8...Fuel gas steam separator 9...Auxiliary burner 10...Auxiliary burner fuel gas flow rate control valve 11...Fuel cell 11A...Fuel electrode 11B...Oxidizer Pole 12...Fuel gas flow control valve 13...Main burner 16...Fuel exhaust gas steam water separator 17...High temperature exhaust gas 18...Mixer 19...Air supply device 19A... - Turbine 19B...Compressor 20...Auxiliary burner oxidant gas flow rate control valve 21...
Main burner oxidant gas flow rate control valve 22...Oxidant gas flow rate control valve 23...Oxidizer exhaust gas steam/water separator 2/l...Electric load 25...Raw fuel purge valve 26...Fuel Gas purge valve 27... Oxidizer gas purge valve? 8... Inert gas supply device 30, 30B, 30C, 300... Opening/closing valve 318,
31B ... Plumbing agent Patent attorney Nori Ken Chika Yudo Ken Daishimaru Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  内部に改質反応触媒層が設けられた改質反応管の内側
に原燃料およびスチームの混合ガスを導入すると共に、
前記改質管の外側に燃焼用燃料および燃焼用空気を燃焼
室で燃焼して得られた高温燃焼ガスを流通させることに
より改質ガスを生成する燃料改質装置と、タービンおよ
びコンプレッサからなり、大気中の空気を圧縮して圧縮
空気を得る空気供給装置と、前記燃料改質装置からの改
質ガスを燃料ガスとして燃料極に導入すると共に空気供
給装置からの圧縮空気を酸化剤ガスとして酸化剤極に導
入し、このとき起こる電気化学的反応により両電極間か
ら電気エネルギーを取出す燃料電池と、前記燃料改質装
置への原燃料の供給ライン、燃料極への燃料ガスの供給
ライン、酸化剤極への酸化剤ガスの供給ラインへ夫々異
なったラインを介して不活性ガスを供給する不活性ガス
供給装置とを備えて構成され、かつ前記燃料電池の燃料
極から排出される排ガスを前記燃料改質装置の燃焼用燃
料として導入すると共に、酸化剤極から排出される排ガ
スを前記空気供給装置の駆動用エネルギーの一部として
導入するようにした燃料電池発電システムにおいて、前
記燃料電池の燃料ガス供給ライン上に当該ラインを流れ
るガスをしや断する弁と、当該ラインを流れるガスを燃
料極出口側ラインにバイパスするラインと、このバイパ
スラインを流れるガスをしや断する弁と、酸化剤ガス供
給ライン上に当該ラインを流れるガスをしや断する弁と
、当該ラインを流れるガスを酸化剤極出口側ラインにバ
イパスするラインと、このバイパスラインを流れるガス
をしや断する弁とを備えたことを特徴とする燃料電池発
電システム。
Introducing a mixed gas of raw fuel and steam into the reforming reaction tube, which has a reforming reaction catalyst layer inside, and
consisting of a fuel reformer that generates reformed gas by circulating high-temperature combustion gas obtained by burning combustion fuel and combustion air in a combustion chamber outside the reforming tube, a turbine, and a compressor, an air supply device that compresses air in the atmosphere to obtain compressed air; and an air supply device that introduces the reformed gas from the fuel reformer into the fuel electrode as a fuel gas, and oxidizes the compressed air from the air supply device as an oxidant gas. A fuel cell that extracts electrical energy from between the two electrodes through an electrochemical reaction that occurs at the electrode, a raw fuel supply line to the fuel reformer, a fuel gas supply line to the fuel electrode, and an oxidation system. and an inert gas supply device that supplies inert gas to the oxidant gas supply line to the fuel electrode through different lines, and the exhaust gas discharged from the fuel electrode of the fuel cell is In a fuel cell power generation system, the fuel of the fuel cell is introduced as the combustion fuel of the fuel reformer, and exhaust gas discharged from the oxidizer electrode is introduced as part of the energy for driving the air supply device. On the gas supply line, there is a valve that cuts off the gas flowing through the line, a line that bypasses the gas flowing through the line to the fuel electrode outlet side line, a valve that cuts off the gas flowing through this bypass line, and an oxidation valve. A valve on the agent gas supply line for cutting off the gas flowing through the line, a line bypassing the gas flowing in the line to the oxidizing agent electrode outlet side line, and a valve cutting off the gas flowing on this bypass line. A fuel cell power generation system characterized by being equipped with.
JP63021191A 1988-02-02 1988-02-02 Fuel cell power generating system Pending JPH01197970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63021191A JPH01197970A (en) 1988-02-02 1988-02-02 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021191A JPH01197970A (en) 1988-02-02 1988-02-02 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPH01197970A true JPH01197970A (en) 1989-08-09

Family

ID=12048066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021191A Pending JPH01197970A (en) 1988-02-02 1988-02-02 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPH01197970A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095415A3 (en) * 2000-06-05 2002-06-27 Vodafone Ag Fuel cell system and method for starting up a fuel cell system
JP2005251766A (en) * 2005-05-31 2005-09-15 Sanyo Electric Co Ltd Fuel cell system
WO2011118169A1 (en) * 2010-03-24 2011-09-29 パナソニック株式会社 Fuel cell system and method for operating fuel cell system
JP2012195173A (en) * 2011-03-16 2012-10-11 Mitsubishi Heavy Ind Ltd Fuel cell and gas turbine combined power generation system and start method of fuel cell thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095415A3 (en) * 2000-06-05 2002-06-27 Vodafone Ag Fuel cell system and method for starting up a fuel cell system
JP2005251766A (en) * 2005-05-31 2005-09-15 Sanyo Electric Co Ltd Fuel cell system
WO2011118169A1 (en) * 2010-03-24 2011-09-29 パナソニック株式会社 Fuel cell system and method for operating fuel cell system
JP5624606B2 (en) * 2010-03-24 2014-11-12 パナソニック株式会社 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
US8911912B2 (en) 2010-03-24 2014-12-16 Panasonic Corporation Fuel cell system and method of operating fuel cell system
JP2012195173A (en) * 2011-03-16 2012-10-11 Mitsubishi Heavy Ind Ltd Fuel cell and gas turbine combined power generation system and start method of fuel cell thereof

Similar Documents

Publication Publication Date Title
JP4248182B2 (en) Fuel cell power generation system and fuel cell purging method
US9509006B2 (en) Fuel cell system
US6926748B2 (en) Staged lean combustion for rapid start of a fuel processor
JPWO2006049299A1 (en) Fuel cell system
JP5086571B2 (en) Fuel cell system
US20090123796A1 (en) Hydrogen and power generation system and method of activating hydrogen generation mode thereof
JPH11191426A (en) Fuel cell power generating system
JPH06203865A (en) Fuel cell system
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JP3704299B2 (en) Combined system of solid oxide fuel cell and industrial process using combustion and its operation method
CN116470107A (en) Efficient power generation system of ammonia fuel solid oxide fuel cell and control method
JP5002220B2 (en) Fuel cell system
JPH01197970A (en) Fuel cell power generating system
JP5366801B2 (en) Fuel cell system and method for operating fuel cell system
JP2001023670A (en) Fuel cell power generating system
JPH08180895A (en) Fuel cell generating device
JP3997264B2 (en) Fuel cell cogeneration system
JP3897682B2 (en) Hydrogen-containing gas supply structure and fuel cell system including the same
JPS63254677A (en) Fuel cell power generating system
JPS62285368A (en) Fuel cell power generation plant
JPS63254675A (en) Fuel cell power generating system
JP3240783B2 (en) Internal reforming fuel cell
JPH10223236A (en) Fuel cell electricity-generating apparatus
WO2022113397A1 (en) Fuel cell system
JPH04337254A (en) Fuel cell power generating system