JP3240783B2 - Internal reforming fuel cell - Google Patents

Internal reforming fuel cell

Info

Publication number
JP3240783B2
JP3240783B2 JP27583393A JP27583393A JP3240783B2 JP 3240783 B2 JP3240783 B2 JP 3240783B2 JP 27583393 A JP27583393 A JP 27583393A JP 27583393 A JP27583393 A JP 27583393A JP 3240783 B2 JP3240783 B2 JP 3240783B2
Authority
JP
Japan
Prior art keywords
gas
fuel cell
reforming
hydrogen
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27583393A
Other languages
Japanese (ja)
Other versions
JPH07130382A (en
Inventor
哲也 平田
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP27583393A priority Critical patent/JP3240783B2/en
Publication of JPH07130382A publication Critical patent/JPH07130382A/en
Application granted granted Critical
Publication of JP3240783B2 publication Critical patent/JP3240783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内部改質燃料電池に係
わり、更に詳しくは、改質器を内蔵した溶融炭酸塩型燃
料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal reforming fuel cell, and more particularly, to a molten carbonate type fuel cell incorporating a reformer.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、高効率、かつ
環境への影響が少ないなど、従来の発電装置にはない特
徴を有しており、水力・火力・原子力に続く発電システ
ムとして注目を集め、現在世界各国で鋭意研究開発が行
われている。特に天然ガスを燃料とする溶融炭酸塩型燃
料電池を用いた発電設備では、図2に示すように天然ガ
ス等の燃料ガス1を水素を含むアノードガス2に改質す
る改質器10と、アノードガス2と酸素を含むカソード
ガス3とから発電する燃料電池12とを一般的に備えて
おり、改質器で作られたアノードガスは燃料電池に供給
され、燃料電池内でその大部分(例えば80%)を消費
した後、アノード排ガス4として改質器10の燃焼室C
oに供給される。燃料ガス1は燃料予熱器11で予熱さ
れて改質器の改質室Reに入る。改質器ではアノード排
ガス中の可燃成分(水素、一酸化炭素、メタン等)を燃
焼室で燃焼し、高温の燃焼ガスにより改質室Reを加熱
し内部を流れる燃料を改質する。改質室を出た燃焼排ガ
ス5は、空気予熱器13で熱回収され、凝縮器14と気
水分離器15で水分を除去され、タービン圧縮機(動力
回収装置16)で加圧された空気6が混入し、この混合
ガスが空気予熱器13で加熱されてカソードガス3に合
流する。これにより、電池のアノード側で発生した二酸
化炭素が、燃焼排ガス5を介して燃料電池用のカソード
ガス3に入り、燃料電池のカソード反応に必要な二酸化
炭素をカソード側Cに供給する。カソードガス3は燃料
電池内でその一部が反応してカソード排ガス7となり、
その一部はカソード入口側に再循環され、一部は改質器
10の燃焼室Coに供給されてアノード排ガス4を燃焼
させ、残りは動力回収装置16に供給されて圧力回収さ
れ、系外に排出される。なお、図中12aは燃料電池の
格納容器、8は格納容器に供給されるパージガスであ
る。
2. Description of the Related Art Molten carbonate fuel cells have features that are not found in conventional power generation devices, such as high efficiency and little impact on the environment, and have attracted attention as power generation systems following hydro, thermal and nuclear power. Are being researched and developed in various countries around the world. In particular, in a power generation facility using a molten carbonate fuel cell using natural gas as a fuel, as shown in FIG. 2, a reformer 10 for reforming a fuel gas 1 such as natural gas into an anode gas 2 containing hydrogen, A fuel cell 12 generally generates electricity from the anode gas 2 and the cathode gas 3 containing oxygen, and the anode gas produced by the reformer is supplied to the fuel cell, and most of the anode gas is produced in the fuel cell ( After consuming 80%, for example, the combustion chamber C of the reformer 10 is used as the anode exhaust gas 4.
o. The fuel gas 1 is preheated by the fuel preheater 11 and enters the reforming chamber Re of the reformer. In the reformer, combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas are burned in the combustion chamber, and the reforming chamber Re is heated by the high-temperature combustion gas to reform the fuel flowing inside. The combustion exhaust gas 5 that has exited the reforming chamber is heat-recovered by the air preheater 13, water is removed by the condenser 14 and the steam separator 15, and the air compressed by the turbine compressor (power recovery device 16) The mixed gas is heated by the air preheater 13 and merges with the cathode gas 3. As a result, carbon dioxide generated on the anode side of the battery enters the cathode gas 3 for the fuel cell via the combustion exhaust gas 5 and supplies carbon dioxide required for the cathode reaction of the fuel cell to the cathode side C. A part of the cathode gas 3 reacts in the fuel cell to become a cathode exhaust gas 7,
A part thereof is recirculated to the cathode inlet side, a part is supplied to the combustion chamber Co of the reformer 10 to burn the anode exhaust gas 4, and the remaining part is supplied to the power recovery unit 16 to be pressure-recovered. Is discharged. In the drawing, reference numeral 12a denotes a storage container of the fuel cell, and reference numeral 8 denotes a purge gas supplied to the storage container.

【0003】[0003]

【発明が解決しようとする課題】溶融炭酸塩型燃料電池
におけるアノード側Aとカソード側Cとの間のガスシー
ルは、燃料電池の運転温度(約600〜700℃)にお
ける電解質の濡れ(表面張力)によっている(ウェット
シールと呼ぶ)。このため、アノード・カソード間の差
圧は、加圧運転の場合であっても例えば500mmAq
(0.05kg/cm2 )程度の小さい差圧に制御する
必要がある。しかし、上述した従来の発電装置では、燃
料電池12のアノード側Aとカソード側Cとの間に差圧
が発生しやすい問題点があった。すなわち、図2の発電
装置を模式的に示す図3から明らかなように、燃料電池
12のアノード側Aを通過したガスが改質器10の燃焼
室Co等を通過した後、燃料電池12のカソード側Cに
入るため、アノード側Aの圧力がカソード側Cより中間
機器や流路等の圧損分だけ高くなる問題点があった。こ
のため、従来の発電装置では、高温のガスラインにバル
ブやブロアを備え、アノード・カソード間の差圧を常時
制御する必要があった。しかし、かかる制御は、燃料電
池の種々の運転条件(例えば起動時、負荷変動時の条
件)に対応する必要があり、かつ加圧運転下で精密な差
圧制御を行う必要があり、制御が複雑となり信頼性に乏
しい問題点があった。また、かかる発電設備では、改質
器10における改質率を高く(例えば90%以上)に維
持しないと、アノードガス2の水素濃度が低く、燃料電
池の性能が低下する問題点があった。
The gas seal between the anode side A and the cathode side C in the molten carbonate type fuel cell can prevent electrolyte wetting (surface tension) at the operating temperature of the fuel cell (about 600 to 700 ° C.). ) (Wet seal). Therefore, the differential pressure between the anode and the cathode is, for example, 500 mmAq even in the case of the pressurizing operation.
It is necessary to control the pressure difference to be as small as about (0.05 kg / cm 2 ). However, the above-described conventional power generation device has a problem that a pressure difference is easily generated between the anode side A and the cathode side C of the fuel cell 12. That is, as is apparent from FIG. 3 schematically showing the power generation device in FIG. 2, after the gas that has passed through the anode side A of the fuel cell 12 has passed through the combustion chamber Co and the like of the reformer 10, the fuel cell 12 Since the gas enters the cathode side C, the pressure on the anode side A is higher than that on the cathode side C by an amount corresponding to the pressure loss of the intermediate device and the flow path. For this reason, in the conventional power generation device, it was necessary to provide a valve and a blower in the high-temperature gas line and to constantly control the differential pressure between the anode and the cathode. However, such control needs to cope with various operating conditions of the fuel cell (for example, conditions at the time of startup and load change), and it is necessary to perform precise differential pressure control under pressurized operation. There was a problem that it was complicated and poor in reliability. In addition, in such a power generation facility, unless the reforming rate in the reformer 10 is maintained at a high level (for example, 90% or more), there is a problem that the hydrogen concentration of the anode gas 2 is low and the performance of the fuel cell is reduced.

【0004】一方、燃料電池のアノード側Aに改質触媒
を直接充填した内部改質燃料電池が一部で提案され、実
施されている(以下、直接内部改質燃料電池と呼ぶ)。
かかる直接内部改質燃料電池は、改質により発生した水
素が直ぐに燃料電池で消費されるため、改質器の温度
(例えば800℃以上)よりも低い燃料電池の運転温度
(約600〜700℃)においても、改質率が高い利点
があるが、改質触媒が燃料電池の電解質に直接接触する
ため、改質触媒が汚染されやすく、かつ図4に示す模式
図からも明らかなように、アノード側Aの圧力がカソー
ド側Cより高くなりやすい問題点があった。
On the other hand, an internal reforming fuel cell in which a reforming catalyst is directly filled in the anode side A of the fuel cell has been proposed and implemented (hereinafter, referred to as a direct internal reforming fuel cell).
In such a direct internal reforming fuel cell, since the hydrogen generated by the reforming is immediately consumed in the fuel cell, the operating temperature (about 600 to 700 ° C.) of the fuel cell is lower than the temperature of the reformer (for example, 800 ° C. or higher). ) Also has the advantage of a high reforming rate, but since the reforming catalyst is in direct contact with the electrolyte of the fuel cell, the reforming catalyst is easily contaminated, and as is clear from the schematic diagram shown in FIG. There is a problem that the pressure on the anode side A tends to be higher than that on the cathode side C.

【0005】更に、直接内部改質燃料電池の問題点を回
避するために、燃料電池の間に改質器を内蔵した間接内
部改質燃料電池(図5)が提案されている。しかし、か
かる間接内部改質燃料電池では、燃料電池の温度が低く
かつ発生した水素が直ぐには消費されないため、燃料ガ
ス1の改質率が低い問題点があった。このため、従来の
間接内部改質燃料電池では、燃料ガス1に大量の水蒸気
を混入させて改質におけるS/C比(蒸気/カーボン
比)を反応に必要な以上に高くする必要があった。しか
し、S/C比を高くすると、余分の水蒸気により、アノ
ードガス2に含まれる水素濃度が低下し燃料電池の性能
が低下する問題があった。
Further, in order to avoid the problems of the direct internal reforming fuel cell, an indirect internal reforming fuel cell (FIG. 5) in which a reformer is incorporated between the fuel cells has been proposed. However, such an indirect internal reforming fuel cell has a problem that the reforming rate of the fuel gas 1 is low because the temperature of the fuel cell is low and the generated hydrogen is not consumed immediately. For this reason, in the conventional indirect internal reforming fuel cell, it was necessary to mix a large amount of steam into the fuel gas 1 to increase the S / C ratio (steam / carbon ratio) in the reforming beyond that required for the reaction. . However, when the S / C ratio is increased, there is a problem that the concentration of hydrogen contained in the anode gas 2 is reduced due to excess steam, and the performance of the fuel cell is reduced.

【0006】また、図3〜図4に示した燃料電池では、
燃料電池を通過したアノード排ガス4を燃焼室Coで燃
焼させてカソードガス3に循環させるため、カソードガ
ス3に含まれる二酸化炭素(CO2 )の濃度が低い問題
点があった。
In the fuel cells shown in FIGS. 3 and 4,
Since the anode exhaust gas 4 that has passed through the fuel cell is burned in the combustion chamber Co and circulated to the cathode gas 3, the concentration of carbon dioxide (CO 2 ) contained in the cathode gas 3 is low.

【0007】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、アノ
ード・カソード間の差圧が本質的に低く、燃料ガスの改
質率が高く、改質触媒が汚染されず、かつアノードガス
中の水素濃度とカソードガス中の二酸化炭素の濃度が高
い、内部改質燃料電池を提供することにある。
The present invention has been made to solve such a problem. That is, an object of the present invention is that the pressure difference between the anode and the cathode is essentially low, the reforming rate of the fuel gas is high, the reforming catalyst is not polluted, and the hydrogen concentration in the anode gas and the cathode gas An object of the present invention is to provide an internal reforming fuel cell having a high concentration of carbon dioxide.

【0008】[0008]

【課題を解決するための手段】本発明によれば、水素を
含むアノードガス(2)と酸素を含むカソードガス
(3)とから発電する燃料電池(22)と、燃料電池
(22)から伝熱される熱で燃料ガス(1)を改質する
改質器(24)とを備え、前記改質器(24)は、改質
触媒が充填された改質室(26)と、改質ガスから分離
された水素を主成分とするガスを保有する水素室(2
8)と、改質器(24)内を改質室(26)と水素室
(28)に仕切り、改質ガスから水素を主成分とするガ
スを分離する水素分離機能を有する分離膜(30)とを
有し、前記改質室(26)に燃料ガス(1)を導入する
燃料ガスライン(32)と、改質室(26)を通過した
燃料ガス(1)を燃焼させる燃焼器(34)と、燃焼器
(34)を出た燃焼排ガスをカソードガス(3)に混入
させるカソードガスライン(36)と、前記水素室(2
8)内のガスをアノードガス(2)に導入するアノード
ガスライン(38)とを備える、ことを特徴とする内部
改質燃料電池が提供される。
According to Means for Solving the Problems] The present invention, cathode gas containing oxygen and anode gas (2) containing hydrogen
A fuel cell (22) for generating electricity from (3) , and a fuel cell
A reformer (24 ) for reforming the fuel gas (1) with heat transferred from the (22) , wherein the reformer (24) comprises a reforming chamber (26) filled with a reforming catalyst. And a hydrogen chamber (2) holding a gas mainly composed of hydrogen separated from the reformed gas.
8) and a reforming chamber (26) and a hydrogen chamber in the reformer (24) .
(28) , a separation membrane (30) having a hydrogen separation function of separating a gas containing hydrogen as a main component from the reformed gas, and introducing the fuel gas (1) into the reforming chamber (26). Do
Passed through the fuel gas line (32) and the reforming chamber (26)
A combustor (34) for burning the fuel gas (1), and a combustor
Combustion exhaust gas discharged from (34) is mixed into cathode gas (3)
The cathode gas line (36) to be
8) Anode for introducing gas in anode to anode gas (2)
And a gas line (38) .

【0009】[0009]

【0010】[0010]

【作用】上記本発明の構成によれば、本発明の内部改質
燃料電池は、燃料電池(22)から伝熱される熱で燃料
ガス(1)を改質する改質器(24)を備え、この改質
(24)は、改質器(24)内を改質室(26)と水
素室(28)に仕切り改質ガス()から水素を主成分と
するガスを分離する水素分離機能を有する分離膜(3
0)を有し、この分離膜(30)により改質室(26)
で発生した水素が直ぐに分離されるので、燃料電池(2
2)の運転温度(約650℃)においても、高い改質率
を得ることができる。また、改質触媒は燃料電池(2
2)とは別個の改質器(24)内に充填されているた
め、燃料電池(22)の電解質に直接接触することがな
く、改質触媒が汚染されない。
According to the structure of the present invention, the internal reforming fuel cell of the present invention includes the reformer (24) for reforming the fuel gas (1) with the heat transferred from the fuel cell (22). The reformer (24) partitions the interior of the reformer (24) into a reforming chamber (26) and a hydrogen chamber (28) and separates hydrogen-based gas from the reformed gas (). Separation membrane with function (3
0) , and the separation membrane (30) allows the reforming chamber (26)
Since the hydrogen generated in the fuel cell is immediately separated, the fuel cell (2
Even at the operation temperature 2) (about 650 ° C.), a high reforming rate can be obtained. The reforming catalyst is a fuel cell (2
Since it is filled in the reformer (24) separate from 2) , there is no direct contact with the electrolyte of the fuel cell (22) , and the reforming catalyst is not contaminated.

【0011】特に、本発明の内部改質燃料電池は、前記
改質室(26)に燃料ガス(1)を導入する燃料ガスラ
イン(32)と、改質室(26)を通過した燃料ガス
(1)を燃焼させる燃焼器(34)と、燃焼器(34)
を出た燃焼排ガスをカソードガス(3)に混入させるカ
ソードガスライン(36)と、前記水素室(28)内の
ガスをアノードガス(2)に導入するアノードガスライ
(38)とを備えているので、分離膜(30)で分離
され水素室(28)を出たガスがアノードガス(38)
に入り、改質室(26)を通過した燃料ガス(1)が燃
焼器(34)で燃焼後にカソードガス(3)に入るの
で、アノードガス(2)とカソードガス(3)の圧力差
は、分離膜(30)の圧損と燃焼器(34)の圧損の差
だけであり、共に圧損が低いので(例えば200〜30
0mmAq程度)、その差は更に小さい。従って、高温
のガスラインにバルブやブロアを備えることなく、かつ
特別の制御装置を用いることなく、本質的に安定にアノ
ード・カソード間の差圧を常に小さく維持することがで
きる。
[0011] In particular, the internal reforming fuel cell of the present invention, the reforming chamber and the fuel gas line for introducing the fuel gas (1) to (26) (32), the fuel gas passing through the reforming chamber (26)
A combustor (34 ) for burning (1) , and a combustor (34)
A cathode gas line (36 ) for mixing the combustion exhaust gas discharged from the chamber with the cathode gas (3) , and an anode gas line (38) for introducing the gas in the hydrogen chamber (28) to the anode gas (2). The gas separated from the hydrogen chamber (28) by the separation membrane (30) is the anode gas (38).
And the fuel gas (1) that has passed through the reforming chamber (26) enters the cathode gas (3) after burning in the combustor (34) , so that the pressure difference between the anode gas (2) and the cathode gas (3) is Since only the difference between the pressure loss of the separation membrane (30) and the pressure loss of the combustor (34) is low and both are low (e.g.
The difference is even smaller. Therefore, the differential pressure between the anode and the cathode can always be kept essentially small without providing a valve or a blower in the high-temperature gas line and without using a special control device.

【0012】また、分離膜(30)で分離された水素を
主成分とするガスがアノードガス(2)に導入されるの
で、従来に比べ余分な水蒸気や二酸化炭素が少なくアノ
ードガス(2)中の水素濃度を高めることができる。更
に、分離膜(30)で水素成分を分離され改質室(2
6)を通過した燃料ガス(1)が燃焼器(34)で燃焼
後にカソードガス(3)に入り、かつS/C比を上げる
ことなく高い改質率が得られるので余分な水蒸気が少な
いので、カソードガス(3)中の二酸化炭素の濃度を高
めることができる。
Further, since the gas containing hydrogen as a main component separated by the separation membrane (30) is introduced into the anode gas (2) , the amount of excess water vapor and carbon dioxide in the anode gas (2) is smaller than in the prior art. Hydrogen concentration can be increased. Further, the hydrogen component is separated by the separation membrane (30) , and the reforming chamber (2)
6) The fuel gas (1) that has passed through the combustor (34) enters the cathode gas (3) after combustion, and a high reforming rate can be obtained without increasing the S / C ratio. The concentration of carbon dioxide in the cathode gas (3) can be increased.

【0013】[0013]

【実施例】以下に本発明の好ましい実施例を図面を参照
して説明する。図1は、本発明による内部改質燃料電池
の全体構成図である。この図において、本発明の内部改
質燃料電池20は、水素を含むアノードガス2と酸素を
含むカソードガス3とから発電する燃料電池22と、燃
料電池22から伝熱される熱で燃料ガス1を改質する改
質器24とを備えている。燃料電池22と改質器24と
は、実質的に一体に構成されており、燃料電池22で発
生した熱が改質器24に伝熱され、改質器24の全体が
燃料電池22と同一の温度(約600〜700℃)にな
るように構成されている。例えば、図示のように、改質
器24を平面状に構成し、燃料電池20を構成する複数
の単セル(アノードA、カソードC、その間の電解質板
からなる)の間に数セル毎に挟持するのが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of an internal reforming fuel cell according to the present invention. In this figure, an internal reforming fuel cell 20 of the present invention generates a fuel cell 22 that generates electricity from an anode gas 2 containing hydrogen and a cathode gas 3 containing oxygen, and generates a fuel gas 1 by heat transferred from the fuel cell 22. And a reformer 24 for reforming. The fuel cell 22 and the reformer 24 are substantially integrally formed, and heat generated in the fuel cell 22 is transferred to the reformer 24, and the entire reformer 24 is the same as the fuel cell 22. (About 600 to 700 ° C.). For example, as shown in the drawing, the reformer 24 is configured in a planar shape, and is sandwiched between a plurality of single cells (anode A, a cathode C, and an electrolyte plate therebetween) constituting the fuel cell 20 every several cells. Is preferred.

【0014】改質器24は、改質触媒が充填された改質
室26と、改質ガスから分離された水素を主成分とする
ガスを保有する水素室28と、改質器24を改質室26
と水素室28に仕切り、改質ガスから水素を主成分とす
るガスを分離する水素分離機能を有する分離膜30とを
有する。分離膜30は、600〜700℃で水素の選択
分離性能を有する多孔質膜であり、例えば多孔質ガラス
膜、多孔質セラミックス板、バラジウム膜、或いは金属
薄膜等が好ましい。なお、図1では、改質器24を2枚
の分離膜30で3つに仕切り、そのうち2つを改質室2
6としているが、本発明はかかる構成に限定されるもの
ではなく、少なくとも1枚の分離膜30と各々2つの改
質室26と水素室28を備えていればよい。
The reformer 24 includes a reforming chamber 26 filled with a reforming catalyst, a hydrogen chamber 28 containing a gas containing hydrogen as a main component separated from the reformed gas, and a reformer 24. Quality room 26
And a separation membrane 30 having a hydrogen separation function of separating a gas containing hydrogen as a main component from the reformed gas. The separation membrane 30 is a porous membrane having a performance of selectively separating hydrogen at 600 to 700 ° C., and is preferably, for example, a porous glass membrane, a porous ceramics plate, a palladium film, a metal thin film, or the like. In FIG. 1, the reformer 24 is divided into three by two separation membranes 30, and two of them are
However, the present invention is not limited to such a configuration, and it is sufficient that at least one separation membrane 30, two reforming chambers 26, and two hydrogen chambers 28 are provided.

【0015】上述した構成により、分離膜30により改
質室28で発生した水素が直ぐに分離されるので、燃料
電池22の運転温度(約600〜700℃)において
も、高い改質率を得ることができる。また、改質触媒は
燃料電池22とは別個の改質器24の内部に充填されて
いるため、燃料電池22の電解質に直接接触することが
なく、改質触媒が汚染されない。
According to the above-described structure, since the hydrogen generated in the reforming chamber 28 is immediately separated by the separation membrane 30, a high reforming rate can be obtained even at the operating temperature of the fuel cell 22 (about 600 to 700 ° C.). Can be. Further, since the reforming catalyst is filled in the reformer 24 separate from the fuel cell 22, the reforming catalyst does not come into direct contact with the electrolyte of the fuel cell 22, and the reforming catalyst is not contaminated.

【0016】本発明の内部改質燃料電池20は更に、改
質室26に燃料ガス1を導入する燃料ガスライン32
と、改質室26を通過した燃料ガスを燃焼させる燃焼器
34と、燃焼器34を出た燃焼排ガスをカソードガス3
に混入させるカソードガスライン36と、水素室28内
のガスをアノードガス2に導入するアノードガスライン
38とを備えている。
The internal reforming fuel cell 20 of the present invention further comprises a fuel gas line 32 for introducing the fuel gas 1 into the reforming chamber 26.
And a combustor 34 for burning the fuel gas that has passed through the reforming chamber 26,
And a cathode gas line 38 for introducing the gas in the hydrogen chamber 28 to the anode gas 2.

【0017】かかる構成により、分離膜30で分離され
水素室28を出たガスがアノードガス2に入り、改質室
26を通過した燃料ガスが燃焼器34で燃焼後にカソー
ドガス3に入るので、アノードガス2とカソードガス3
の圧力差は、実質的に分離膜30の圧損と燃焼器34の
圧損の差だけであり、共に圧損が低いので(例えば20
0〜300mmAq程度)、その差は更に小さい。従っ
て、高温のガスラインにバルブやブロアを備えることな
く、かつ特別の制御装置を用いることなく、本質的に安
定にアノード・カソード間の差圧を常に小さく維持する
ことができる。
With this configuration, the gas separated from the hydrogen chamber 28 by the separation membrane 30 enters the anode gas 2, and the fuel gas passing through the reforming chamber 26 enters the cathode gas 3 after burning in the combustor 34. Anode gas 2 and cathode gas 3
Is substantially the only difference between the pressure loss of the separation membrane 30 and the pressure loss of the combustor 34, and both are low pressure losses (for example, 20
The difference is even smaller. Therefore, the differential pressure between the anode and the cathode can always be kept essentially small without providing a valve or a blower in the high-temperature gas line and without using a special control device.

【0018】燃焼器34は、内部に燃焼触媒を充填した
触媒燃焼器であるのがよい。これにより、改質器24に
おける改質率と水素の分離率が高く、改質室26を通過
した燃料ガス中の可燃成分が少ない(発熱量が小さい)
場合でも、安定した燃焼を維持することができる。な
お、燃焼器34には図示しないラインから燃焼に必要な
空気が供給される。
The combustor 34 is preferably a catalytic combustor filled with a combustion catalyst. Thereby, the reforming rate and the hydrogen separation rate in the reformer 24 are high, and the combustible components in the fuel gas that has passed through the reforming chamber 26 are small (the calorific value is small).
Even in this case, stable combustion can be maintained. Air required for combustion is supplied to the combustor 34 from a line (not shown).

【0019】カソードガスライン36には、空気6が混
入されてカソードガス3となる。これにより、水素成分
を分離され改質室を通過した燃料ガスが燃焼器で燃焼後
にカソードガスに入り、かつS/C比を上げることなく
高い改質率が得られるので余分な水蒸気が少ないので、
カソードガス中の二酸化炭素の濃度を高めることができ
る。なお、図1に示すように改質室26を通過したガス
を燃料ガス1を導入する燃料ガスライン32に戻すリサ
イクルライン35を設けてもよい。
Air 6 is mixed into the cathode gas line 36 to become the cathode gas 3. As a result, the fuel gas that has separated the hydrogen component and passed through the reforming chamber enters the cathode gas after burning in the combustor, and a high reforming rate can be obtained without increasing the S / C ratio. ,
The concentration of carbon dioxide in the cathode gas can be increased. In addition, as shown in FIG. 1, a recycle line 35 for returning the gas that has passed through the reforming chamber 26 to the fuel gas line 32 for introducing the fuel gas 1 may be provided.

【0020】アノードガスライン38は、水素室28内
のガスをそのまま燃料電池22のアノード側Aに供給し
てもよく、或いは適当な希釈ガス(例えば燃料電池22
のアノード側を一旦通過したリサイクルガス)を混入し
てもよい。かかる構成により、従来に比べ余分な水蒸気
や二酸化炭素が少なくアノードガス中の水素濃度を高め
ることができる。
The anode gas line 38 may supply the gas in the hydrogen chamber 28 to the anode side A of the fuel cell 22 as it is, or may supply an appropriate dilution gas (for example, the fuel cell 22).
(A recycle gas that has once passed through the anode side of the above). With this configuration, the amount of excess water vapor and carbon dioxide is smaller than in the related art, and the hydrogen concentration in the anode gas can be increased.

【0021】[0021]

【発明の効果】上述したように、本発明の内部改質燃料
電池は、アノード・カソード間の差圧を本質的に低く維
持し、燃料ガスの改質率を高め、改質触媒の汚染を防止
し、かつアノードガス中の水素濃度とカソードガス中の
二酸化炭素の濃度を高める効果を有し、これにより燃料
電池の性能を高め、かつ長期間にわたり安定して性能を
維持することができる優れた効果を有する。
As described above, the internal reforming fuel cell of the present invention maintains the pressure difference between the anode and the cathode essentially low, increases the fuel gas reforming rate, and reduces contamination of the reforming catalyst. Has the effect of preventing and increasing the concentration of hydrogen in the anode gas and the concentration of carbon dioxide in the cathode gas, thereby enhancing the performance of the fuel cell and maintaining the performance stably for a long period of time. Has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による内部改質燃料電池の全体構成図で
ある。
FIG. 1 is an overall configuration diagram of an internal reforming fuel cell according to the present invention.

【図2】従来の溶融炭酸塩型燃料電池を用いた発電設備
の全体構成図である。
FIG. 2 is an overall configuration diagram of a power generation facility using a conventional molten carbonate fuel cell.

【図3】図2の発電装置を模式的に示す構成図である。FIG. 3 is a configuration diagram schematically showing the power generator of FIG. 2;

【図4】従来の直接内部改質燃料電池の全体構成図であ
る。
FIG. 4 is an overall configuration diagram of a conventional direct internal reforming fuel cell.

【図5】従来の間接内部改質燃料電池の全体構成図であ
る。
FIG. 5 is an overall configuration diagram of a conventional indirect internal reforming fuel cell.

【符号の説明】[Explanation of symbols]

1 燃料ガス 2 アノードガス 3 カソードガス 4 アノード排ガス 5 燃焼排ガス 6 空気 7 カソード排ガス 8 パージガス 10 改質器 11 燃料予熱器 12 燃料電池 12a 格納容器 13 空気予熱器 14 凝縮器 15 気水分離器 16 動力回収装置 20 内部改質燃料電池 22 燃料電池 24 改質器 26 改質室 28 水素室 30 分離膜 32 燃料ガスライン 34 燃焼器 36 カソードガスライン 38 アノードガスライン Re 改質室 Co 燃焼室 A アノード側 C カソード側 DESCRIPTION OF SYMBOLS 1 Fuel gas 2 Anode gas 3 Cathode gas 4 Anode exhaust gas 5 Combustion exhaust gas 6 Air 7 Cathode exhaust gas 8 Purge gas 10 Reformer 11 Fuel preheater 12 Fuel cell 12a Storage container 13 Air preheater 14 Condenser 15 Gas-water separator 16 Power Recovery device 20 Internal reforming fuel cell 22 Fuel cell 24 Reformer 26 Reforming chamber 28 Hydrogen chamber 30 Separation membrane 32 Fuel gas line 34 Combustor 36 Cathode gas line 38 Anode gas line Re Reforming chamber Co Combustion chamber A Anode side C Cathode side

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素を含むアノードガス(2)と酸素を
含むカソードガス(3)とから発電する燃料電池(2
2)と、燃料電池(22)から伝熱される熱で燃料ガス
(1)を改質する改質器(24)とを備え、 前記改質器(24)は、改質触媒が充填された改質室
(26)と、改質ガスから分離された水素を主成分とす
るガスを保有する水素室(28)と、改質器(24)
を改質室(26)と水素室(28)に仕切り、改質ガス
から水素を主成分とするガスを分離する水素分離機能を
有する分離膜(30)とを有し、前記改質室(26)に燃料ガス(1)を導入する燃料ガ
スライン(32)と、改質室(26)を通過した燃料ガ
ス(1)を燃焼させる燃焼器(34)と、燃焼器(3
4)を出た燃焼排ガスをカソードガス(3)に混入させ
るカソードガスライン(36)と、前記水素室(28)
内のガスをアノードガス(2)に導入するアノードガス
ライン(38)とを備える、 ことを特徴とする内部改質
燃料電池。
A fuel cell (2 ) that generates power from an anode gas (2) containing hydrogen and a cathode gas (3) containing oxygen.
2) and the fuel gas by heat transferred from the fuel cell (22)
A reformer (24 ) for reforming (1) , wherein the reformer (24) is a reforming chamber filled with a reforming catalyst.
(26) , a hydrogen chamber (28) holding a gas mainly composed of hydrogen separated from the reformed gas, and a reformer (24) into a reforming chamber (26) and a hydrogen chamber (28) . A separation membrane (30) having a hydrogen separation function for separating a gas containing hydrogen as a main component from the reformed gas, wherein a fuel gas (1) is introduced into the reforming chamber (26).
The fuel gas that has passed through the sling (32) and the reforming chamber (26)
A combustor (34) for burning the gas (1);
4) Mixing the flue gas that has exited into the cathode gas (3)
A cathode gas line (36) and the hydrogen chamber (28)
Gas that introduces the gas inside to the anode gas (2)
And a line (38) .
JP27583393A 1993-11-05 1993-11-05 Internal reforming fuel cell Expired - Fee Related JP3240783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27583393A JP3240783B2 (en) 1993-11-05 1993-11-05 Internal reforming fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27583393A JP3240783B2 (en) 1993-11-05 1993-11-05 Internal reforming fuel cell

Publications (2)

Publication Number Publication Date
JPH07130382A JPH07130382A (en) 1995-05-19
JP3240783B2 true JP3240783B2 (en) 2001-12-25

Family

ID=17561069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27583393A Expired - Fee Related JP3240783B2 (en) 1993-11-05 1993-11-05 Internal reforming fuel cell

Country Status (1)

Country Link
JP (1) JP3240783B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536391B2 (en) * 2004-02-09 2010-09-01 日本電信電話株式会社 Fuel cell power generation system and fuel cell module
FR2883420B1 (en) * 2005-03-17 2007-05-11 Armines Ass Loi De 1901 HIGH TEMPERATURE FUEL CELL WITH ANIONIC AND PROTONIC MIXED CONDUCTION CELL

Also Published As

Publication number Publication date
JPH07130382A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
JP5011673B2 (en) Fuel cell power generation system
US20050123810A1 (en) System and method for co-production of hydrogen and electrical energy
EP1571727B1 (en) Apparatus and method for operation of a high temperature fuel cell system using recycled anode exhaust
JPH09129255A (en) Power generating system for combined cycle of indirect combustion gas turbine and doubled fuel cell
JP2001524739A (en) Cover gas and starting gas supply system for solid oxide fuel cell power plant
JPH02226664A (en) Apparatus and method for driving fuel cell
WO2010044113A1 (en) Apparatus and method for capturing carbon dioxide from combustion exhaust gas and generating electric energy by means of mcfc systems
JP2007128680A (en) Fuel cell system
JP2002319428A (en) Molten carbonate fuel cell power generating device
JP2002110207A (en) Fuel cell system and operation method therefor
JP4596745B2 (en) Method for improving efficiency and reducing exhaust gas in a fuel cell system
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JP4342172B2 (en) Co-energy system
JP2000331697A (en) Fuel cell generating device injecting vapor into anode exhaust gas line
JP3240783B2 (en) Internal reforming fuel cell
JP2001023670A (en) Fuel cell power generating system
JPS60258862A (en) Fuel cell generation system
JPH06275291A (en) Molten carbonate fuel cell system
JP3139574B2 (en) Fuel cell generator
JPS6134865A (en) Fuel cell power generating system
JP2017152313A (en) Fuel cell hybrid power generation system and method for operating the same
JP2882019B2 (en) Fuel cell
JPH01143155A (en) Fuel cell power generator
JPH10223236A (en) Fuel cell electricity-generating apparatus
JPH04274172A (en) Molten carbonate type fuel cell power generation device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees