JPS63254677A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPS63254677A
JPS63254677A JP62087063A JP8706387A JPS63254677A JP S63254677 A JPS63254677 A JP S63254677A JP 62087063 A JP62087063 A JP 62087063A JP 8706387 A JP8706387 A JP 8706387A JP S63254677 A JPS63254677 A JP S63254677A
Authority
JP
Japan
Prior art keywords
fuel
gas
fuel cell
inert gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62087063A
Other languages
Japanese (ja)
Inventor
Yoshikiyo Iwasaki
岩崎 芳摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62087063A priority Critical patent/JPS63254677A/en
Publication of JPS63254677A publication Critical patent/JPS63254677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To decrease the thermal stress of the constituting equipment materials due to the temperature difference between the reaction gas and the inactive gas and prevent the life reduction and performance deterioration by adjusting the temperature of the inactive gas purging the reaction gas in response to the system condition. CONSTITUTION:The temperature of the inactive gas purging the reaction gas is adjusted by the high-temperature exhaust gas of an air feeding device 19 in a heat exchanger 29. Under the power generation stand-by condition, an oxidizer gas purge valve 27 is opened, and the inactive gas is fed to the oxidizer electrode 11B of a fuel cell 11. Under the stop operation condition, a raw fuel purge valve 25, a fuel gas purge valve 26, and the valve 27 are opened, and the inactive gas is fed to a fuel reforming device 5, the fuel electrode 11A of the cell 11, and the oxidizer electrode 11B. Since the temperature of the inactive gas is adjusted, its temperature difference with the oxidizer gas which is the reaction gas is decreased. The thermal stress applied to the constituting equipment materials is thereby decreased, and the life reduction and performance deterioration is prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は燃料電池と燃料改質装置と空気供給装置とを備
えて構成される燃料電池発電システムに係り、特に反応
ガスを不活性ガスでパージする際における0反応ガスと
不活性ガスとの温度差による燃料電池構成材料およびシ
ステム構成機器材料の熱応力による性能劣化を防止し得
るようにした燃料電池発電システムに開する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel cell power generation system comprising a fuel cell, a fuel reformer, and an air supply device, and particularly relates to a fuel cell power generation system comprising a fuel cell, a fuel reformer, and an air supply device. A fuel cell power generation system capable of preventing performance deterioration of fuel cell constituent materials and system constituent equipment materials due to thermal stress due to temperature difference between zero reaction gas and inert gas when purging with inert gas. .

(従来の技術) 従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換するものとして燃料電池が知られてい
る。この燃料電池は通常、電解質層を挟んで燃料極およ
び酸化剤極の一対の電極を配置すると共に、燃料極に水
素ガス等の燃料ガスを供給しまた酸化剤極に空気等の酸
化剤ガスを供給し、このとき起こる電気化学的反応を利
用して上記両電極間から電気エネルギーを取出すように
したものであり、上記燃料ガスと酸化剤ガスが供給され
ている限り高い変換効率で電気エネルギーを取出すこと
ができるものである。
(Prior Art) Fuel cells are conventionally known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell usually has a pair of electrodes, a fuel electrode and an oxidizer electrode, with an electrolyte layer in between, and a fuel gas such as hydrogen gas is supplied to the fuel electrode, and an oxidant gas such as air is supplied to the oxidizer electrode. The system uses the electrochemical reaction that occurs at this time to extract electrical energy from between the two electrodes, and as long as the fuel gas and oxidant gas are supplied, electrical energy can be extracted with high conversion efficiency. It is something that can be taken out.

さて、現在考えられている燃料電池としては、ヒドラジ
ンを燃料とする燃料電池、アルカリ水溶液電解質、リン
酸水溶液電解質を電解質とする燃料電池があるが、この
うちリン酸水溶液電解質を電解質とする燃料電池は、改
質ガスを使用できることから一般的な使用が可能であり
、産業用または発電事業用として使用されつつある。そ
してこの種の燃料電池は、その燃料ガスである水素ガス
を多く含んだ改質ガスを得るための燃料改質装置、およ
び酸化剤ガスである圧縮空気を得るための空気供給装置
を備えて燃料電池発電システムを構成していることが多
い。
Currently, fuel cells that are being considered include fuel cells that use hydrazine as fuel, alkaline aqueous electrolytes, and phosphoric acid aqueous electrolytes as electrolytes. Among these, fuel cells that use phosphoric acid aqueous electrolytes as electrolytes Since it can use reformed gas, it can be used in general, and it is being used for industrial purposes and power generation projects. This type of fuel cell is equipped with a fuel reformer to obtain reformed gas containing a large amount of hydrogen gas, which is the fuel gas, and an air supply device to obtain compressed air, which is the oxidant gas. It often constitutes a battery power generation system.

第3図は、この種の従来の燃料電池発電システムの一例
を示したものである。第3図において、天然ガスまたは
石炭ガス等の化石燃料よりなる原燃料1と、スチーム供
給器2からのスチームが、それぞれ原燃料流量調節弁3
とスチーム流量調部弁4とにより、スチームとカーボン
の混合モル比が3〜5程度となるように制御されて燃料
改質装置5内の改質反応管6に導入される。ここで、原
燃料1とスチームは500〜600℃程度まで加熱され
て改質反応を行ない、次に変成器7を経て水素含有率の
高い改質ガスすなわち燃料ガスとなる。この水素含有率
が高くなった燃料ガスは、燃料ガス気水分離器8に送ら
れて改質で余剰になったスチームを除去した後、補助バ
ーナ9へは補助バーナ燃料ガス流山調節弁10により、
また燃料電池11の燃料極11Aへは燃料ガス流m調節
弁12により、それぞれ流量が制御されて送られる。
FIG. 3 shows an example of this type of conventional fuel cell power generation system. In FIG. 3, a raw fuel 1 made of fossil fuel such as natural gas or coal gas and steam from a steam supply device 2 are supplied to a raw fuel flow rate control valve 3, respectively.
The steam is introduced into the reforming reaction tube 6 in the fuel reformer 5 after being controlled by the steam flow control valve 4 so that the molar ratio of steam to carbon is about 3 to 5. Here, the raw fuel 1 and steam are heated to about 500 to 600° C. to perform a reforming reaction, and then pass through a shift converter 7 to become a reformed gas with a high hydrogen content, that is, a fuel gas. This fuel gas with a high hydrogen content is sent to the fuel gas steam/water separator 8 to remove surplus steam from reforming, and then sent to the auxiliary burner 9 via the auxiliary burner fuel gas flow control valve 10. ,
Further, the fuel gas flow m is sent to the fuel electrode 11A of the fuel cell 11 with its flow rate controlled by the control valve 12.

燃料電池11の燃料極11Aへ流入した燃料ガス中の水
素は、燃料電池11の酸化剤極11Bに流入している酸
化剤ガス中の酸素と触媒反応を行ない、その結果燃料ガ
スの一部が消費されて電気エネルギーと反応反応水とが
得られる。この燃料電池11内で生成した反応反応水の
一部を含んで燃料極11Aを出た燃料排ガスは、上述の
燃料改質装置5の主バーナ13の燃料ガスとして送られ
るが、その途中においてガス中の水分を回収するため燃
料排ガス気水分離器16を通過させる。そして、主バー
ナ13へ送られた燃料排ガスは燃料改質装置5内で燃焼
し、改質反応管6を加熱した後に高温排ガス17として
排出される。さらに、この高温排ガス17は燃料電池1
1の酸化剤極11Bから送られる酸化剤排ガスと合流し
た後に混合器18へ導入され、タービン19Aおよびコ
ンプレッサ19Bからなる空気供給装置19の駆動用エ
ネルギーの一部として使われる。一方、補助バーナ9へ
送られた燃料ガスは補助バーナ9内で燃焼し、その燃焼
ガスが混合器18を通過して空気供給袋@19のタービ
ン19Aを駆動する。
Hydrogen in the fuel gas that has flowed into the fuel electrode 11A of the fuel cell 11 undergoes a catalytic reaction with oxygen in the oxidant gas that has flowed into the oxidizer electrode 11B of the fuel cell 11, and as a result, a portion of the fuel gas is Electrical energy and reaction water are obtained by being consumed. The fuel exhaust gas that exits the fuel electrode 11A and contains a part of the reaction water generated in the fuel cell 11 is sent as fuel gas to the main burner 13 of the fuel reformer 5, but on the way, the gas The fuel exhaust gas is passed through a steam/water separator 16 to recover moisture therein. The fuel exhaust gas sent to the main burner 13 is combusted in the fuel reformer 5, heats the reforming reaction tube 6, and is then discharged as high-temperature exhaust gas 17. Furthermore, this high temperature exhaust gas 17 is transferred to the fuel cell 1
After combining with the oxidant exhaust gas sent from the oxidizer electrode 11B, it is introduced into the mixer 18, and is used as part of the energy for driving the air supply device 19 consisting of the turbine 19A and the compressor 19B. On the other hand, the fuel gas sent to the auxiliary burner 9 is combusted within the auxiliary burner 9, and the combustion gas passes through the mixer 18 to drive the turbine 19A of the air supply bag @19.

一方、タービン19Aに連結して駆動されるコンプレッ
サ19Bからの吐出空気は、補助バーナ9、主バーナ1
3へそれぞれ補助バーナ酸化剤ガス流量調節弁20.主
バーナ酸化剤ガス流量調節弁21により空燃を調節して
送られると共に、酸化剤ガス流量調節弁22により燃料
電池11の酸化剤極11Bへ送られ、余剰分は空気供給
装置1つの駆動用エネルギーの一部として混合器18へ
送られる。
On the other hand, the air discharged from the compressor 19B connected to and driven by the turbine 19A is sent to the auxiliary burner 9, the main burner 1
3 to each auxiliary burner oxidant gas flow rate control valve 20. Air and fuel are adjusted and sent by the main burner oxidant gas flow rate control valve 21, and are also sent to the oxidant electrode 11B of the fuel cell 11 by the oxidant gas flow rate control valve 22, and the surplus is used to drive one air supply device. It is sent to the mixer 18 as part of the energy.

燃料電池11の酸化剤極11Bへ流入した酸化剤ガスの
一部は、燃料電池11の燃料極11Aに流入している燃
料ガス中の水素と反応して消費された後、酸化剤極11
B内で生成した水分を含んで排出される。この排出され
た酸化剤排ガスは、上述の燃料排ガスと同様に酸化剤排
ガス気水分離器23により酸化剤排ガス中のスチーム分
を一部復水した後に、燃料改質装@5からの高温排ガス
17と合流する。
A part of the oxidant gas that has flowed into the oxidizer electrode 11B of the fuel cell 11 is consumed by reacting with hydrogen in the fuel gas that has flowed into the fuel electrode 11A of the fuel cell 11.
It is discharged containing the water produced in B. This discharged oxidizer exhaust gas is converted into high-temperature exhaust gas from the fuel reformer @5 after partially condensing the steam content in the oxidizer exhaust gas in the oxidizer exhaust gas steam water separator 23 in the same manner as the above-mentioned fuel exhaust gas. Join up with 17.

このように、燃料型)I!!11では燃料極11A内の
水素と酸化剤極11B内の酸素との触媒反応により、酸
化剤極11Bが正極、燃料極11Aが負極となるように
電気エネルギーを発生し、この電気エネルギーが電気負
荷24により吸収されることになる。
In this way, fuel type) I! ! At No. 11, electrical energy is generated by a catalytic reaction between hydrogen in the fuel electrode 11A and oxygen in the oxidizer electrode 11B so that the oxidizer electrode 11B becomes a positive electrode and the fuel electrode 11A becomes a negative electrode, and this electrical energy is used as an electrical load. 24.

一方、原燃料の供給ライン、燃料電池11の燃料1i1
1Aへの燃料ガスの供給ライン、酸化剤極11Bへの酸
化剤ガスの供給ラインには、昇圧および残存ガスのパー
ジのために、不活性ガス供給装置28よりそれぞれ原燃
料パージ弁25.燃料ガスパージ弁26.酸化剤ガスパ
ージ弁27を介して、例えば窒素ガス等の不活性ガスが
供給され、燃料電池発電システムが停止または停止操作
状態あるいは発電待機状態で、燃料ガスと酸化剤ガスと
の混合が生じないように不活性ガスで置換している。
On the other hand, the raw fuel supply line, the fuel 1i1 of the fuel cell 11
The fuel gas supply line to the oxidizer electrode 1A and the oxidizer gas supply line to the oxidizer electrode 11B are connected to a raw fuel purge valve 25. Fuel gas purge valve 26. An inert gas such as nitrogen gas is supplied through the oxidizing gas purge valve 27 to prevent mixing of the fuel gas and the oxidizing gas when the fuel cell power generation system is stopped or in a stopped operation state or in a power generation standby state. is replaced with inert gas.

ところで、このような燃料電池発電システムにおいて、
燃料電池11が安定して良期間運転を行なうためには、
燃料電池11に供給するガスまたは冷却水は、その温度
変化をできるだけ小さくして燃料電池11構成材料の熱
応力を小さくすることが望ましく、発電待機状態である
燃料電池11の昇温は、1時間当り40〜50℃となる
ように燃料電池11の冷却水温度を調節している。一方
、発電状態から発電待機状態〈燃料極11Aに燃料ガス
を供給し、酸化剤極11Bには不活性ガスを供給してい
る状態)へ移行する場合、または上述の夫々の状態から
停止操作状態へ移行する場合には、次のような手順で残
存ガスのパージを行なっている。
By the way, in such a fuel cell power generation system,
In order for the fuel cell 11 to operate stably for a good period,
It is desirable that the temperature change of the gas or cooling water supplied to the fuel cell 11 be as small as possible to reduce thermal stress on the constituent materials of the fuel cell 11, and the temperature of the fuel cell 11 in standby state for power generation should be increased within one hour. The temperature of the cooling water of the fuel cell 11 is adjusted so that the temperature is 40 to 50°C. On the other hand, when transitioning from the power generation state to the power generation standby state (state in which fuel gas is supplied to the fuel electrode 11A and inert gas is supplied to the oxidizer electrode 11B), or from each of the above states to the stop operation state When moving to the next stage, the residual gas is purged using the following procedure.

(a)発電状態から発電待機状態への移行酸化剤ガス流
量調節弁22を全閉し、その直後に酸化剤ガスパージ弁
27を開いて不活性ガス供給装置28から不活性ガスを
供給する。
(a) Transition from power generation state to power generation standby state The oxidizing gas flow rate control valve 22 is fully closed, and immediately after that, the oxidizing gas purge valve 27 is opened to supply inert gas from the inert gas supply device 28.

(b)発電待機状態から停止操作状態への移行燃料ガス
流量調節弁12を全閉し、その直後に燃料ガスパージ2
6を開いて不活性ガス供給装置28から不活性ガスを供
給する(酸化剤極118は不活性ガスに切替わっている
ためその状態を継続する)。
(b) Transition from power generation standby state to stop operation state The fuel gas flow rate control valve 12 is fully closed, and immediately after that, the fuel gas purge 2
6 is opened and inert gas is supplied from the inert gas supply device 28 (the oxidizer electrode 118 continues to be in that state since it has been switched to inert gas).

(C)発電状態から停止操作状態への移行上述の(a>
および(b)の操作の他に、原燃料流聞調節弁3および
スチーム流量調節弁4を全閉し、その直後に原燃料パー
ジ弁25を開いて不活性ガス供給袋@28から不活性ガ
スを供給する。
(C) Transition from power generation state to stop operation state (a>
In addition to the operations in (b), the raw fuel flow control valve 3 and the steam flow rate control valve 4 are fully closed, and immediately after that, the raw fuel purge valve 25 is opened to supply inert gas from the inert gas supply bag @28. supply.

このような手順により、不活性ガスを用いて残存ガスを
パージするようにしている。
Through this procedure, residual gas is purged using an inert gas.

しかしながら、燃料電池11の動作湿度に比べて酸化剤
ガスおよび燃料ガスの供給ガス温度は、コンプレッサ1
.9Bの圧縮熱や燃料改質装置5のバーナ燃焼熱等のプ
ロセスの過程で加熱調部されてほぼ同じになるように調
節されるが、不活性ガス供給装置28から供給される不
活性ガスは例えば窒素ガスの場合、液体窒素を蒸発器に
より気化させて使用しているためガス濃度は常温であり
、パージ前後でのガス温度差が大きい。特に、負荷運転
状態から発電待機状態へ移行する場合、燃料極1Aには
200’C程度の燃料ガスが流れ、使方の酸化剤極11
Bには常温の不活性ガスが流れるという現象が生ずる。
However, compared to the operating humidity of the fuel cell 11, the supply gas temperature of the oxidant gas and fuel gas is
.. The heat of compression in 9B and the heat of burner combustion in the fuel reformer 5 are adjusted to be almost the same during the process, but the inert gas supplied from the inert gas supply device 28 is For example, in the case of nitrogen gas, since liquid nitrogen is used after being vaporized in an evaporator, the gas concentration is at room temperature, and there is a large difference in gas temperature before and after purging. In particular, when transitioning from a load operating state to a power generation standby state, fuel gas at about 200'C flows through the fuel electrode 1A, and the oxidizer electrode 11
A phenomenon occurs in which inert gas at room temperature flows through B.

このようなことから、システムの発電・停止を繰返す程
燃料電池11には急激な供給ガスの温度差が生じ、熱応
力による燃料電池11構成材料の劣化が増長して、電池
寿命が低下する恐れがあるという問題がある。また、上
述した燃料電池の問題と同様に、不活性ガスが通過する
燃料改質装置5.変成器7.気水分離器16.23等の
システム成灘器の材料についても、同様に急激な温度差
が生じて熱応力による性能劣化が生ずる。
As a result, as the system repeatedly generates and stops power generation, a sudden temperature difference in the supply gas occurs in the fuel cell 11, which increases the deterioration of the constituent materials of the fuel cell 11 due to thermal stress, which may shorten the battery life. There is a problem that there is. Also, similar to the problem of the fuel cell described above, the fuel reformer 5 through which the inert gas passes. Transformer 7. Similarly, sudden temperature differences occur in the materials of system components such as the steam/water separators 16 and 23, resulting in performance deterioration due to thermal stress.

(発明が解決しようとする問題点) 従来の燃料電池発電システムでは以上のような問題があ
り、何らかの方法でこれを解決することが望ましいが、
例えば電気ヒータ等の加熱装置を設けて加熱するには、
大容量の加熱器が必要でありまた温度調節用の装置が必
要であり、システム効率の低下およびシステム構成の複
雑化を来たすことになる。
(Problems to be solved by the invention) Conventional fuel cell power generation systems have the above-mentioned problems, and it is desirable to solve them in some way.
For example, to heat by installing a heating device such as an electric heater,
A large-capacity heater and a temperature control device are required, resulting in a decrease in system efficiency and a complicated system configuration.

本発明は上述のような問題を解決するために成されたも
ので、その目的は反応ガスを不活性ガスでパージする際
における1反応ガスと不活性ガスとの温度差による燃料
電池構成材料およびシステム構成機器材料の熱応力を小
さくし寿命低下および性能劣化を防止することが可能な
燃料電池発電システムを提供することにある。
The present invention has been made in order to solve the above-mentioned problems, and its purpose is to reduce the temperature difference between fuel cell constituent materials and An object of the present invention is to provide a fuel cell power generation system that can reduce thermal stress in system component materials and prevent shortened lifespan and performance deterioration.

[発明の構成コ (問題点を解決するための手段) 上記の目的を達成するために本発明では、燃料改質装置
と、空気供給装置と、燃料電池と、燃料改質装置、燃料
電池の燃料極および酸化剤極へ不活性ガスを供給する不
活性ガス供給装置とを備えて構成される前述した燃料電
池発電システムにおいて、不活性ガス供給装置から各供
給ラインへ不活性ガスを供給する各々のラインの共通ラ
イン上に、当該ラインを流通する不活性ガスの温度を調
節する温度調節手段を設け、さらに燃料改質装置への原
燃料の供給ラインへ不活性ガスを供給するライン上に、
システムの停止操作状態時に開する原燃料パージ弁を、
燃料極への燃料ガスの供給ラインへ不活性ガスを供給す
るライン上に、システムの停止操作状態時に開する燃料
ガスパージ弁を、酸化剤極への酸化剤ガスの供給ライン
へ不活性ガスを供給するライン上に、システムの停止操
作状態時および発電待機状態時に夫々開する酸化剤ガス
パージ弁を夫々設けるようにしたことを特徴とする。
[Configuration of the Invention (Means for Solving Problems)] In order to achieve the above object, the present invention includes a fuel reformer, an air supply device, a fuel cell, a fuel reformer, and a fuel cell. In the above-mentioned fuel cell power generation system configured with an inert gas supply device that supplies inert gas to the fuel electrode and the oxidizer electrode, each of the inert gas supply devices supplies inert gas to each supply line from the inert gas supply device. A temperature control means for adjusting the temperature of the inert gas flowing through the line is provided on the common line of the line, and further on the line that supplies the inert gas to the raw fuel supply line to the fuel reformer,
The raw fuel purge valve, which opens when the system is in a stopped state,
On the line that supplies inert gas to the fuel gas supply line to the fuel electrode, install a fuel gas purge valve that opens when the system is in a stopped state, and supply inert gas to the oxidant gas supply line to the oxidizer electrode. The present invention is characterized in that oxidant gas purge valves are provided on the lines that open when the system is in a stopped operation state and when the system is in standby state for power generation.

(作用) 上述の燃料電池発電システムにおいては、温度調節の媒
体である不活性ガスが温度調節手段で温度調節される。
(Function) In the above-described fuel cell power generation system, the temperature of the inert gas, which is a temperature regulating medium, is controlled by the temperature regulating means.

そして、システムの発電待機状態時には酸化剤ガスバー
ジ弁が開することにより、温度調節された不活性ガスが
酸化剤ガス供給ラインを通して燃料電池の酸化剤極に供
給され、またシステムの停止操作状態時には原燃料パー
ジ弁。
When the system is in standby mode for power generation, the oxidant gas barge valve is opened to supply temperature-controlled inert gas to the oxidizer electrode of the fuel cell through the oxidant gas supply line, and when the system is in the standby state, the oxidant gas is supplied to the oxidizer electrode of the fuel cell. Fuel purge valve.

燃料ガスパージ弁、酸化剤ガスバージ弁が夫々開するこ
とにより、湿度調節された不活性ガスが原燃料の供給ラ
インを通して燃料改質装置に、燃料ガス供給ラインを通
して燃料電池の燃料極に、酸化剤ガス供給ラインを通し
て燃料電池の酸化剤極に夫々供給される。従って、発電
状態から発電待機状態あるいは停止状態に至る残存ガス
のパージ用の不活性ガスは、システム内の高温ガスで予
め温度調節して燃料電池および燃料改質装置へ供給され
ることになり、反応ガスを不活性ガスでパージする際に
おける9反応ガスと不活性ガスとの温度差を小さくでき
ることになる。
By opening the fuel gas purge valve and the oxidant gas purge valve, the humidity-controlled inert gas is passed through the raw fuel supply line to the fuel reformer, and through the fuel gas supply line to the fuel electrode of the fuel cell. The oxidizer electrodes of the fuel cell are each supplied through supply lines. Therefore, the inert gas for purging the remaining gas from the power generation state to the power generation standby state or stop state is supplied to the fuel cell and fuel reformer after the temperature is adjusted in advance using the high temperature gas in the system. This means that the temperature difference between the reaction gas and the inert gas when purging the reaction gas with the inert gas can be reduced.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明による燃料電池発電システムの構成例
をブロック的に示すものであり、第3図と同一部分には
同一符号を付して示してその説明を省略し、ここでは異
なる部分についてのみ述べる。
FIG. 1 shows in block form an example of the configuration of a fuel cell power generation system according to the present invention. The same parts as in FIG. I will only talk about.

すなわち第1図は、前述した第3図の燃料電池発電シス
テムにおいて、不活性ガス供給装置28から各供給ライ
ンへ不活性ガスを供給する各々のラインの共通ライン上
に、この共通ラインを流通する不活性ガスの温度を調節
する温度調節手段として9例えば熱交換器2つを設ける
ようにしたものである。ここで熱交換器29は、システ
ム内9高温ガスとして例えば、空気供給袋fiW19の
タービン19Aからの燃焼排ガスをその一次側に導入し
、かつ不活性ガスをその二次側に導入するようにしてい
る。また、燃料改質vl@5への原燃料の供給ラインへ
不活性ガスを供給するライン上に設けられた原燃料パー
ジ弁25は、システムの停止操作状態時に開するもので
あり、燃料極への燃料ガスの供給ラインへ不活性ガスを
供給するライン上に設けられた燃料ガスパージ弁26は
、システムの停止操作状態時に開するものであり、さら
に酸化剤極への酸化剤ガスの供給ラインへ不活性ガスを
供給するライン上に設けられた酸化剤ガスパージ弁27
は、システムの停止操作状態時および発電待機状態時に
夫々開するものである。
That is, in the fuel cell power generation system shown in FIG. 3 described above, FIG. 1 shows a common line for supplying inert gas from the inert gas supply device 28 to each supply line. For example, two heat exchangers are provided as temperature regulating means for regulating the temperature of the inert gas. Here, the heat exchanger 29 is configured to introduce, for example, combustion exhaust gas from the turbine 19A of the air supply bag fiW19 into its primary side as high-temperature gas in the system, and to introduce inert gas into its secondary side. There is. In addition, the raw fuel purge valve 25, which is installed on the line that supplies inert gas to the raw fuel supply line to the fuel reformer vl@5, is opened when the system is in a stopped operation state, and is used to supply fuel to the fuel electrode. The fuel gas purge valve 26, which is provided on the line that supplies inert gas to the fuel gas supply line of the oxidant electrode, opens when the system is in a stopped operation state, and is further provided on the line that supplies the oxidant gas to the oxidizer electrode. Oxidizing gas purge valve 27 provided on the line that supplies inert gas
are opened when the system is in a stop operation state and in a power generation standby state.

次に、かかる如く構成した燃料電池発電システムにおけ
る、燃料改質装置の昇温作用について述べる。
Next, the temperature increasing effect of the fuel reformer in the fuel cell power generation system configured as described above will be described.

いま、不活性ガス供給装置28から供給される不活性ガ
スは、熱交換器29の二次側の入口にほぼ常温で導入さ
れる。一方、補助バーナ9の燃焼ガスおよび混合器18
に流入するガスは、空気供給装置1つのタービン19A
を駆動してもまだ400〜500℃の高温状態にあり、
この高温の燃焼排ガスは熱交換器29の一次側に導入さ
れる。
Now, the inert gas supplied from the inert gas supply device 28 is introduced into the secondary side inlet of the heat exchanger 29 at approximately room temperature. On the other hand, the combustion gas of the auxiliary burner 9 and the mixer 18
The gas flowing into the air supply device 19A
Even if you drive it, it is still in a high temperature state of 400 to 500 degrees Celsius,
This high temperature combustion exhaust gas is introduced into the primary side of the heat exchanger 29.

これにより熱交換器2つでは、低温の不活性ガスと高温
の燃焼排ガスとが熱交換を行ない、不活性ガスはその温
度が高くなって、また燃焼排ガスはその温度が下がって
熱交換器29の各出口より排出される。
As a result, in the two heat exchangers, the low-temperature inert gas and the high-temperature combustion exhaust gas exchange heat, and the temperature of the inert gas increases, and the temperature of the combustion exhaust gas decreases, and the heat exchanger 29 is discharged from each outlet.

そして、この熱交換器29より排出された不活性ガスは
、システムの発電待機状態時に酸化剤ガスパージ弁27
が開することにより、酸化剤ガスの供給ラインを通して
燃料電池11の酸化剤極11B内に供給される。また、
システムの停止操作状態時には空気処理装@19は停止
するが、不活性ガスは燃焼排ガスの余熱で上述と同様に
熱交換が行なわれる。そして、この時には原燃料パージ
弁25.燃料ガスパージ弁26.酸化剤ガスパージ弁2
7が夫々開することにより、不活性ガスが原燃料の供給
ラインを通して燃料改質装置5に。
The inert gas discharged from the heat exchanger 29 is transferred to the oxidizing gas purge valve 27 when the system is in standby mode for power generation.
When the oxidant gas is opened, the oxidant gas is supplied into the oxidant electrode 11B of the fuel cell 11 through the oxidant gas supply line. Also,
When the system is in a shutdown state, the air treatment device @19 is stopped, but the inert gas exchanges heat with the residual heat of the combustion exhaust gas in the same manner as described above. At this time, the raw fuel purge valve 25. Fuel gas purge valve 26. Oxidizing gas purge valve 2
7 open, the inert gas passes through the raw fuel supply line to the fuel reformer 5.

燃料ガスの供給ラインおよび酸化剤ガスの供給ラインを
通して燃料電池11の燃料極11Aおよび酸化剤極11
Bに夫々供給される。さらに、熱交換器29より排出さ
れた燃焼排ガスは大気中に放出される。
The fuel electrode 11A and the oxidizer electrode 11 of the fuel cell 11 are passed through the fuel gas supply line and the oxidant gas supply line.
B is supplied respectively. Furthermore, the combustion exhaust gas discharged from the heat exchanger 29 is released into the atmosphere.

上述したように、本実施例の燃料電池発電システムは、
不活性ガス供給装置28から各供給ラインへ不活性ガス
を供給する各々のラインの共通ライン上に、当該共通ラ
インを流通する不活性ガスの温度を調節する温度調節手
段としての熱交換器29を設け、さらに燃料改質装置5
への原燃料1の供給ラインへ不活性ガスを供給するライ
ン上に。
As mentioned above, the fuel cell power generation system of this example has the following features:
A heat exchanger 29 as a temperature adjustment means for adjusting the temperature of the inert gas flowing through the common line is installed on the common line of each line that supplies inert gas from the inert gas supply device 28 to each supply line. Furthermore, a fuel reformer 5 is provided.
On the line that supplies inert gas to the raw fuel 1 supply line.

システムの停止操作状態時に開する原燃料パージ弁25
を、燃料電池11の燃料極11Aへの燃料ガスの供給ラ
インへ不活性ガスを供給するライン上に、システムの停
止操作状態時に開する燃料ガスパージ弁26を、同じく
酸化剤極11Bへの酸化剤ガスの供給ラインへ不活性ガ
スを供給するライン上に、システムの停止操作状態時お
よび発電待機状態時に夫々開する酸化剤ガスパージ弁2
7を夫々設けるようにしたものである。
Raw fuel purge valve 25 that opens when the system is in a stop operation state
A fuel gas purge valve 26, which is opened when the system is in a stopped operation state, is installed on the line that supplies inert gas to the fuel gas supply line to the fuel electrode 11A of the fuel cell 11, and also connects the oxidizer to the oxidizer electrode 11B. An oxidizing gas purge valve 2 is provided on the line that supplies inert gas to the gas supply line, which opens when the system is in a stopped operation state and in a standby state for power generation.
7 are provided respectively.

従って、燃料電池発電システムの発電待機状態で(よ、
空気供給装置19のタービン19Aからの高温燃焼排ガ
スで不活性ガスを200’C程度まで加熱できるため、
システムの発電待機状態から発電状態または発電状態か
ら発電待機状態へ移行する際に、反応ガスである酸化剤
ガスの温度と不活性ガスの温度との温度差が小さくなる
。これにより、燃料電池11構成材料および燃料改質装
置5等のシステム構成機器材料に与える熱応力が小さく
なり、前述した寿命低下および性能劣化を防止すること
が可能となる。また、燃料電池発電システムの停止操作
状態では、空気供給装置19のタービン19Aからの高
温燃焼排ガスの温度低下と共に不活性ガスの温度も徐々
に低下するため、緩やかな降温を行なうことができる。
Therefore, when the fuel cell power generation system is in standby state (yo,
Since the inert gas can be heated to about 200'C with the high temperature combustion exhaust gas from the turbine 19A of the air supply device 19,
When the system transitions from a power generation standby state to a power generation state or from a power generation state to a power generation standby state, the temperature difference between the temperature of the oxidizing gas, which is a reactive gas, and the temperature of the inert gas becomes small. This reduces the thermal stress applied to the constituent materials of the fuel cell 11 and the materials of the system constituent devices such as the fuel reformer 5, making it possible to prevent the aforementioned reduction in life and performance deterioration. Furthermore, when the fuel cell power generation system is in a stopped operation state, the temperature of the inert gas gradually decreases as the temperature of the high-temperature combustion exhaust gas from the turbine 19A of the air supply device 19 decreases, so that the temperature can be gradually decreased.

これにより、上)ホと同様の効果を得ることが可能とな
る。さらに、燃料改質装置5および燃料電池11の温度
調節媒体である不活性ガスを、従来では大気中に多量に
無駄に放出されていたタービン19Aからの高温燃焼排
ガスで予熱するようにしていることから、システム全体
の熱効率をも向上させることが可能である。
This makes it possible to obtain the same effect as in (e) above. Furthermore, the inert gas, which is the temperature regulating medium of the fuel reformer 5 and the fuel cell 11, is preheated with the high-temperature combustion exhaust gas from the turbine 19A, which conventionally was wasted in large quantities into the atmosphere. Therefore, it is possible to improve the thermal efficiency of the entire system.

次に、本発明の他の実施例について図面を参照して説明
する。
Next, other embodiments of the present invention will be described with reference to the drawings.

第2図は、本発明による燃料電池発電システムのその他
の構成例をブロック的に示すものであり、第1図と同一
部分には同一符号を付して示してその説明を省略し、こ
こでは異なる部分についてのみ述べる。
FIG. 2 shows in block form another example of the configuration of the fuel cell power generation system according to the present invention, and the same parts as in FIG. Only the different parts will be described.

すなわち第2図は、前述した第1図における熱交換器2
9の一次側の高温ガスとして、空気供給装置19のター
ビン19Aからの燃焼排ガスに代えて、燃料改質装置5
からの燃焼排ガス(300〜400℃の高温)を導入し
、熱交換後の燃焼排ガスを混合器18へ導入するように
構成したものである。本実施例においても、燃料改質装
置5からの燃焼排ガスによって不活性ガスが前述と同様
に加熱され、上述の実施例と同様の作用効果が得られる
ものである。
That is, FIG. 2 shows the heat exchanger 2 in FIG.
As the high temperature gas on the primary side of 9, instead of the combustion exhaust gas from the turbine 19A of the air supply device 19, the fuel reformer 5
The combustion exhaust gas (at a high temperature of 300 to 400°C) is introduced into the mixer 18, and the combustion exhaust gas after heat exchange is introduced into the mixer 18. Also in this embodiment, the inert gas is heated by the combustion exhaust gas from the fuel reformer 5 in the same manner as described above, and the same effects as in the above-mentioned embodiments can be obtained.

尚、本発明は上述した各実施例に限定されるものではな
く、その要旨を変更しない範囲で種々に変形して実施す
ることができるものである。
It should be noted that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without changing the gist thereof.

例えば、上述の各実施例では不活性ガスを昇温する温度
調節手段として熱交換器を用いたが、これ以外の温度調
節手段を用いてもよいことは言うまでもない。
For example, in each of the embodiments described above, a heat exchanger is used as a temperature control means for raising the temperature of the inert gas, but it goes without saying that other temperature control means may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、残存ガスをパージ
するための不活性ガスの温度が、システムの発電待機状
態では反応ガスの温度とほぼ同じ温度に、またシステム
の停止操作状態では徐々に温度が低下するように、シス
テムの状態に応じて適切に調節されるので、反応ガスを
不活性ガスでパージする際における1反応ガスと不活性
ガスとの温度差による燃料電池構成材料およびシステム
構成機器材料の熱応力を小さくし寿命低下および性能劣
化を防止することが可能な燃料電池発電システムが提供
できる。
As explained above, according to the present invention, the temperature of the inert gas for purging residual gas becomes approximately the same temperature as the reactant gas when the system is on standby for power generation, and gradually increases when the system is in the stopped operation state. 1 Fuel cell constituent materials and system configuration due to the temperature difference between the reactant gas and the inert gas when purging the reactant gas with an inert gas, so that the temperature is appropriately adjusted according to the system state. It is possible to provide a fuel cell power generation system that can reduce thermal stress in equipment materials and prevent shortened lifespan and performance deterioration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による燃料電池発電システムの一実施例
を示すブロック図、第2図は本発明による燃料電池発電
システムの他の実施例を示すブロック図、第3図は従来
の燃料電池発電システムの一例を示すブロック図である
。 1・・・原燃料、2・・・スチーム供給器、3・・・原
燃料流量調節弁、4・・・スチーム流量調節弁、5・・
・燃料改質装置、6・・・改質反応管、7・・・変成器
、8・・・燃料ガス気水分離器、9・・・補助バーナ、
10・・・補助バーナ燃料ガス流層調節弁、11・・・
燃料電池、11A・・・燃料極、11B・・・酸化剤極
、12・・・燃料ガス流量調節弁、13・・・主バーナ
、16・・・燃料排ガス気水分離器、17・・・高温排
ガス、18・・・混合器、19・・・空気供給装置、1
9A・・・タービン、19B・・・コンプレッサ、20
・・・補助バーナ酸化剤ガス流量調節弁、21・・・主
バーナ酸化剤ガス流量調節弁、22・・・酸化剤ガス流
量調節弁、23・・・酸化剤排ガス気水分離器、24・
・・電気負荷、25・・・原燃料パージ弁、26・・・
燃料ガスパージ弁、27・・・酸化剤ガスパージ弁、2
8・・・不活性ガス供給装置、2つ・・・熱交換器。
FIG. 1 is a block diagram showing one embodiment of the fuel cell power generation system according to the present invention, FIG. 2 is a block diagram showing another embodiment of the fuel cell power generation system according to the present invention, and FIG. 3 is a block diagram showing a conventional fuel cell power generation system. FIG. 1 is a block diagram showing an example of a system. DESCRIPTION OF SYMBOLS 1... Raw fuel, 2... Steam supply device, 3... Raw fuel flow rate control valve, 4... Steam flow rate control valve, 5...
・Fuel reformer, 6... Reforming reaction tube, 7... Shift converter, 8... Fuel gas steam separator, 9... Auxiliary burner,
10... Auxiliary burner fuel gas flow layer control valve, 11...
Fuel cell, 11A...Fuel electrode, 11B...Oxidizer electrode, 12...Fuel gas flow rate control valve, 13...Main burner, 16...Fuel exhaust gas air/water separator, 17... High temperature exhaust gas, 18... Mixer, 19... Air supply device, 1
9A...Turbine, 19B...Compressor, 20
... Auxiliary burner oxidizing gas flow rate control valve, 21... Main burner oxidizing gas flow rate control valve, 22... Oxidizing gas flow rate control valve, 23... Oxidizing exhaust gas steam/water separator, 24.
... Electrical load, 25 ... Raw fuel purge valve, 26 ...
Fuel gas purge valve, 27... Oxidizer gas purge valve, 2
8...Inert gas supply device, 2...Heat exchanger.

Claims (4)

【特許請求の範囲】[Claims] (1)内部に改質反応触媒層が設けられた改質反応管の
内側に原燃料およびスチームの混合ガスを導入すると共
に、前記改質管の外側に燃焼用燃料および燃焼用空気を
燃焼室で燃焼して得られた高温燃焼ガスを流通させるこ
とにより改質ガスを生成する燃料改質装置と、タービン
およびコンプレッサからなり、大気中の空気を圧縮して
圧縮空気を得る空気供給装置と、前記燃料改質装置から
の改質ガスを燃料ガスとして燃料極に導入すると共に空
気供給装置からの圧縮空気を酸化剤ガスとして酸化剤極
に導入し、このとき起こる電気化学的反応により両電極
間から電気エネルギーを取出す燃料電池と、前記燃料改
質装置への原燃料の供給ライン、燃料極への燃料ガスの
供給ライン、酸化剤極への酸化剤ガスの供給ラインへ夫
々異なったラインを介して不活性ガスを供給する不活性
ガス供給装置とを備えて構成され、かつ前記燃料電池の
燃料極から排出される排ガスを前記燃料改質装置の燃焼
用空気として導入すると共に、酸化剤極から排出される
排ガスを前記空気供給装置の駆動用エネルギーの一部と
して導入するようにした燃料電池発電システムにおいて
、前記不活性ガス供給装置から各供給ラインへ不活性ガ
スを供給する各々のラインの共通ライン上に設けられ、
当該ラインを流通する不活性ガスの温度を調節する温度
調節手段と、前記燃料改質装置への原燃料の供給ライン
へ不活性ガスを供給するライン上に設けられ、システム
の停止操作状態時に開する原燃料パージ弁と、前記燃料
極への燃料ガスの供給ラインへ不活性ガスを供給するラ
イン上に設けられ、システムの停止操作状態時に開する
燃料ガスバージ弁と、前記酸化剤極への酸化剤ガスの供
給ラインへ不活性ガスを供給するライン上に設けられ、
システムの停止操作状態時および発電待機状態時に夫々
開する酸化剤ガスパージ弁とを備えて成ることを特徴と
する燃料電池発電システム。
(1) A mixed gas of raw fuel and steam is introduced into the reforming reaction tube in which a reforming reaction catalyst layer is provided, and combustion fuel and combustion air are introduced into the combustion chamber outside the reforming tube. a fuel reformer that generates reformed gas by circulating high-temperature combustion gas obtained by combustion; an air supply device that is composed of a turbine and a compressor and obtains compressed air by compressing air in the atmosphere; The reformed gas from the fuel reformer is introduced into the fuel electrode as a fuel gas, and the compressed air from the air supply device is introduced into the oxidizer electrode as an oxidant gas, and the electrochemical reaction that occurs at this time causes a gap between the two electrodes. A fuel cell that extracts electrical energy from the fuel cell, a raw fuel supply line to the fuel reformer, a fuel gas supply line to the fuel electrode, and an oxidant gas supply line to the oxidizer electrode are connected through different lines, respectively. and an inert gas supply device that supplies inert gas to the fuel cell, and introduces exhaust gas discharged from the fuel electrode of the fuel cell as combustion air to the fuel reformer, and also introduces exhaust gas from the oxidizer electrode In a fuel cell power generation system in which exhaust gas is introduced as part of energy for driving the air supply device, a common fuel cell for each line that supplies inert gas from the inert gas supply device to each supply line. installed on the line,
A temperature control means for regulating the temperature of the inert gas flowing through the line, and a temperature control means provided on the line for supplying the inert gas to the raw fuel supply line to the fuel reformer, and a temperature control means for controlling the temperature of the inert gas flowing through the line, and a temperature control means for controlling the temperature of the inert gas flowing through the line. a fuel gas purge valve that is installed on a line that supplies inert gas to the fuel gas supply line to the fuel electrode and that opens when the system is in a stopped operation state; Installed on the line that supplies inert gas to the agent gas supply line,
A fuel cell power generation system comprising: an oxidizing gas purge valve that opens when the system is in a stopped operation state and in a power generation standby state.
(2)温度調節手段としては熱交換器を用いることを特
徴とする特許請求の範囲第(1)項記載の燃料電池発電
システム。
(2) The fuel cell power generation system according to claim (1), characterized in that a heat exchanger is used as the temperature control means.
(3)熱交換器としては、空気供給装置のタービンから
の燃焼排ガスを一次側に導入し、不活性ガスを二次側に
導入することを特徴とする特許請求の範囲第(2)項記
載の燃料電池発電システム。
(3) The heat exchanger is characterized in that the combustion exhaust gas from the turbine of the air supply device is introduced into the primary side, and the inert gas is introduced into the secondary side. fuel cell power generation system.
(4)熱交換器としては、燃料改質装置からの燃焼排ガ
スを一次側に導入し、不活性ガスを二次側に導入するこ
とを特徴とする特許請求の範囲第(2)項記載の燃料電
池発電システム。
(4) The heat exchanger is characterized in that the combustion exhaust gas from the fuel reformer is introduced into the primary side and the inert gas is introduced into the secondary side. Fuel cell power generation system.
JP62087063A 1987-04-10 1987-04-10 Fuel cell power generating system Pending JPS63254677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62087063A JPS63254677A (en) 1987-04-10 1987-04-10 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62087063A JPS63254677A (en) 1987-04-10 1987-04-10 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPS63254677A true JPS63254677A (en) 1988-10-21

Family

ID=13904480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62087063A Pending JPS63254677A (en) 1987-04-10 1987-04-10 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS63254677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010266A2 (en) * 1989-12-29 1991-07-11 International Fuel Cells Corporation Use and composition of a reactant gas to control fuel cell potential
JPH05198308A (en) * 1992-01-20 1993-08-06 Mitsubishi Electric Corp Fuel cell
US7892687B2 (en) * 2004-04-15 2011-02-22 Versa Power Systems, Ltd. Fuel cell shutdown with steam purging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010266A2 (en) * 1989-12-29 1991-07-11 International Fuel Cells Corporation Use and composition of a reactant gas to control fuel cell potential
JPH05198308A (en) * 1992-01-20 1993-08-06 Mitsubishi Electric Corp Fuel cell
US7892687B2 (en) * 2004-04-15 2011-02-22 Versa Power Systems, Ltd. Fuel cell shutdown with steam purging
US8722270B2 (en) 2004-04-15 2014-05-13 Versa Power Systems, Ltd. Fuel cell shutdown with steam purging

Similar Documents

Publication Publication Date Title
CN109860660B (en) High-efficiency solid oxide fuel cell system
JP2004207241A (en) Integrated fuel cell hybrid generator with re-circulated air fuel flow
JP2005276836A (en) Method and system for start and transient operation of fuel cell-gas turbine combined system
JP2005293951A (en) Fuel cell and its operation method
US20070154752A1 (en) Starting up and shutting down a fuel cell stack
US20100221620A1 (en) Fuel cell system and operation method thereof
US11309563B2 (en) High efficiency fuel cell system with hydrogen and syngas export
JP2003059521A (en) Combined system of solid oxide fuel cell and industrial process utilizing combustion and its operating method
JP3889553B2 (en) Method and apparatus for controlling fuel cell system
JPS63254677A (en) Fuel cell power generating system
KR100778207B1 (en) Fuel cell system using waste heat of power conditioning system
JP3997264B2 (en) Fuel cell cogeneration system
JP2001143731A (en) Fuel cell system
JP2007026998A (en) Fuel cell temperature control method for fused carbonate type fuel cell power generator, and device for the same
JP2009117170A (en) Hydrogen and power generating system, and load following power generation method therein
JPH01197970A (en) Fuel cell power generating system
JP3211505B2 (en) Method for controlling anode inlet temperature of molten carbonate fuel cell power generator
JPS6020473A (en) Fuel cell power generating system
JPS59149664A (en) Fuel-cell system
KR100623942B1 (en) System for molten carbonate fuel cells
JPS63254675A (en) Fuel cell power generating system
JP2000243423A (en) Fuel cell purging method
KR102548739B1 (en) Fuel cell system having high thermal efficiency
JP3830842B2 (en) Solid oxide fuel cell and power generation method using the same
JPS6010566A (en) Operation of fuel cell