JPH05198308A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH05198308A
JPH05198308A JP4007681A JP768192A JPH05198308A JP H05198308 A JPH05198308 A JP H05198308A JP 4007681 A JP4007681 A JP 4007681A JP 768192 A JP768192 A JP 768192A JP H05198308 A JPH05198308 A JP H05198308A
Authority
JP
Japan
Prior art keywords
gas
inert gas
fuel cell
air
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4007681A
Other languages
Japanese (ja)
Inventor
Kengo Ohashi
賢剛 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4007681A priority Critical patent/JPH05198308A/en
Publication of JPH05198308A publication Critical patent/JPH05198308A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To perform the substitution with the inert gas quickly in a fuel cell, in which the oxidizer gas remaining inside the fuel cell at the time of stopping the operation of the fuel cell is substituted with the inert gas. CONSTITUTION:An inert gas supply tube 10, which is connected to a switching valve 9 arranged in a supply pipeline 4, is provided. A heating device 11 arranged in the inert gas supply tube 10 and for heating the nitrogen gas, which flows inside the inert gas supply tube 10 as the inert gas, to raise the temperature thereof is provided. At the time of stopping the operation of a fuel cell, the supply of the air from the supply pipeline 4 is stopped by the switching valve 9, and the nitrogen gas, which is heated by the heating device 11 and of which temperature is raised, is supplied from the supply pipeline 4 to an oxidizer gas supply heater 2 and a cell main body 1 through the inert gas supply tube 10 and the switching valve 9, and the inside air is substituted with the nitrogen gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は例えば燃料電池の運転
停止時に燃料電池内に残留する酸化剤ガスを不活性ガス
に置換する燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell for replacing an oxidant gas remaining in the fuel cell with an inert gas when the operation of the fuel cell is stopped.

【0002】[0002]

【従来の技術】図3は例えば特開昭62−268067
号公報に開示された従来の燃料電池を模式的に示す断面
図であり、図において、1は図示しない一対のガス拡散
電極間に電解質を保持した単電池を複数積層して構成さ
れる電池本体、2および3はこの電池本体1の側部に配
置された酸化剤ガス供給ヘッダおよび酸化剤ガス排気ヘ
ッダ、4は酸化剤ガス供給ヘッダ2に設けられ、その酸
化剤ガス供給ヘッダ2内に酸化剤ガスを供給する供給配
管、5は酸化剤ガス排気ヘッダ3に設けられ、使用後の
酸化剤ガスを排気する排気配管、6は電池本体1の酸化
剤ガス供給側の側面に配置された整流板、7はある間隔
で単電池間に配置される冷却板、8は冷却管である。
2. Description of the Related Art FIG. 3 shows, for example, Japanese Patent Laid-Open No. 62-268067.
FIG. 1 is a cross-sectional view schematically showing a conventional fuel cell disclosed in Japanese Patent Laid-Open Publication No. JP-A-2003-242, in which a cell body 1 is formed by stacking a plurality of unit cells holding an electrolyte between a pair of gas diffusion electrodes (not shown). Reference numerals 2 and 3 denote an oxidant gas supply header and an oxidant gas exhaust header arranged on the side of the battery main body 1, and 4 denotes an oxidant gas supply header 2 in which the oxidant gas supply header 2 is oxidized. Supply pipe 5 for supplying the agent gas, 5 is provided in the oxidant gas exhaust header 3 for exhausting the used oxidant gas, and 6 is a rectifier arranged on the side surface of the battery body 1 on the oxidant gas supply side. A plate, 7 are cooling plates arranged between the cells at a certain interval, and 8 is a cooling pipe.

【0003】次に動作について説明する。燃料電池の運
転中は供給配管4から酸化剤ガス、例えば約200度程
度の空気(密度約0.7Kg/m3)が酸化剤ガス供給ヘッダ2
を介して電池本体1の各電極に供給されると同時に、図
示しない供給配管から燃料ガス、例えば水素が電池本体
1に同様に供給され、電機化学的な反応により発電す
る。この時、各電極における空気の流量に差が生じ、あ
る電極で空気流量が必要量に満たない場合、この電極で
は水素が発生し空気と混合されるため爆発を生じる危険
性がある。整流板6はこの流量の差を小さくするための
ものである。使用後の空気は酸化剤ガス排気ヘッダ3で
集合され排気配管5から排気される。冷却板7は冷却管
8で給排される冷却媒体により電池本体1を冷却する。
Next, the operation will be described. During operation of the fuel cell, oxidant gas, for example, air of about 200 degrees (density of about 0.7 Kg / m 3 ) is supplied from the supply pipe 4 to the oxidant gas supply header 2.
At the same time as being supplied to each electrode of the battery main body 1 via the, a fuel gas, for example, hydrogen is similarly supplied to the battery main body 1 from a supply pipe (not shown) to generate electric power by an electrochemical reaction. At this time, a difference occurs in the flow rate of air at each electrode, and if the air flow rate at a certain electrode is less than the required amount, hydrogen is generated at this electrode and is mixed with air, which may cause an explosion. The current plate 6 is for reducing the difference between the flow rates. The used air is collected by the oxidant gas exhaust header 3 and exhausted from the exhaust pipe 5. The cooling plate 7 cools the battery main body 1 with the cooling medium supplied and discharged through the cooling pipe 8.

【0004】一方、燃料電池の停止時には、電極の保護
等のため電池本体1を含む供給排気系を不活性ガス、例
えば常温の窒素ガス(密度約1.1Kg/m3)で置換する操作
が一般的に実施されている。例えば、発電出力を徐々に
下げながら図示しない負荷を遮断し、出力を図示しない
放電抵抗に切り替えると同時に、供給配管4からの空気
の供給を停止し、窒素ガスを同じく供給配管4から酸化
剤ガス供給ヘッダ2、電池本体1、酸化剤ガス排気ヘッ
ダ3に供給し、内部の空気を窒素ガスに置換する。この
時、電極の電圧は一時的に上昇するが、残留空気の減少
とともに低下し、やがて零となり、供給排気系が完全に
置換された後、窒素ガスの供給を停止し密閉される。
On the other hand, when the fuel cell is stopped, it is common to replace the supply / exhaust system including the cell body 1 with an inert gas, for example, nitrogen gas at a room temperature (density of about 1.1 kg / m 3 ) to protect the electrodes. Have been implemented. For example, while gradually lowering the power generation output, a load (not shown) is cut off, and the output is switched to a discharge resistance (not shown). The air is supplied to the supply header 2, the battery main body 1, and the oxidant gas exhaust header 3 to replace the internal air with nitrogen gas. At this time, the voltage of the electrode temporarily rises, but drops with the decrease of the residual air, and eventually becomes zero. After the supply / exhaust system is completely replaced, the supply of nitrogen gas is stopped and sealed.

【0005】[0005]

【発明が解決しようとする課題】しがしながら上述した
従来装置は、窒素ガスの密度が空気の密度より大きいた
め、窒素ガスは空気の下に潜り込むように流れる。すな
わち、窒素ガスにより置換を実施する場合、電池本体1
が密度の小さい空気で充満されているため、供給配管4
から供給された窒素ガスは、電池本体1の下部に流れ込
む。しかし、排気配管5が酸化剤ガス排気ヘッダ3の下
部に設けられており、電池本体1の下部を流れた窒素ガ
スはそのまま排気配管5から排気されるため、その上方
の空気はほとんど置換されない。下部の窒素ガスと上方
の空気との境界近傍では熱交換・拡散運動、流れの粘性
などにより窒素ガスと空気が混合され、徐々に上方の空
気も置換されるが、最上部の空気が置換されるには長時
間を要する。すなわち、下部にに窒素ガス、上部に空気
が滞留している時間が長く、しかも置換が均一に行われ
ない。
However, in the above-mentioned conventional apparatus, since the density of nitrogen gas is higher than the density of air, nitrogen gas flows under the air. That is, when the replacement is performed with nitrogen gas, the battery main body 1
Is filled with air of low density, so supply pipe 4
The nitrogen gas supplied from flows into the lower part of the battery body 1. However, since the exhaust pipe 5 is provided in the lower part of the oxidant gas exhaust header 3, and the nitrogen gas flowing in the lower part of the battery body 1 is exhausted from the exhaust pipe 5 as it is, the air above it is hardly replaced. In the vicinity of the boundary between the lower nitrogen gas and the upper air, the nitrogen gas and air are mixed due to heat exchange / diffusion motion and flow viscosity, and the upper air is gradually replaced, but the uppermost air is replaced. Takes a long time to complete. That is, nitrogen gas remains in the lower part and air stays in the upper part for a long time, and the replacement is not performed uniformly.

【0006】このような状態では、下部電極では空気が
排出されているため酸化剤側の電極では水素が発生し、
酸化剤ガス排気ヘッダ3より下流では排気ガス中に可燃
性の水素が混入する。
In this state, since air is exhausted from the lower electrode, hydrogen is generated at the electrode on the oxidant side,
Flammable hydrogen is mixed in the exhaust gas downstream of the oxidant gas exhaust header 3.

【0007】また、電極の電圧分布は下部で低いが、上
部では一時的に上昇した電位のままであり速やかに低下
せず、高電位に保持されるため、上部電極においては、
白金の溶出による電極の劣化が生じ易くなる。上部電極
の電圧を下げるには、放電抵抗の抵抗値を小さくする方
法も考えられるが、下部電極での水素発生が活発になる
とともに、電流容量を大きくする必要があり、放電抵抗
が大型になるなど現実的でない。
Further, the voltage distribution of the electrode is low at the lower part, but at the upper part, the potential is temporarily increased and does not decrease rapidly, and is maintained at the high potential. Therefore, in the upper electrode,
Electrode deterioration due to platinum elution is likely to occur. In order to lower the voltage of the upper electrode, a method of reducing the resistance value of the discharge resistance may be considered, but as the hydrogen generation in the lower electrode becomes active, it is necessary to increase the current capacity, which increases the discharge resistance. It is not realistic.

【0008】さらに、上部まで完全に置換するには多量
の窒素ガスが必要であるばかりでなく、大型の窒素ガス
貯蔵タンクも必要となるなどの問題がある。
Further, there is a problem that not only a large amount of nitrogen gas is required to completely replace the upper portion, but also a large-sized nitrogen gas storage tank is required.

【0009】この発明は上記のような課題を解決するた
めになされたものであり、不活性ガスによる置換を迅速
に実施できる燃料電池を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel cell capable of rapidly performing replacement with an inert gas.

【0010】[0010]

【課題を解決するための手段】この発明に係る燃料電池
は、不活性ガスの供給管に加熱装置を設けたものであ
る。
A fuel cell according to the present invention is provided with a heating device in an inert gas supply pipe.

【0011】また、不活性ガスの供給管に加熱装置を設
け、この加熱装置に温度設定器を設けたものである。
Further, a heating device is provided in the inert gas supply pipe, and a temperature setting device is provided in the heating device.

【0012】[0012]

【作用】この発明における燃料電池は、不活性ガスの供
給配管に設けた加熱装置により不活性ガスを加熱し、昇
温された不活性ガスにより置換が実施される。
In the fuel cell of the present invention, the inert gas is heated by the heating device provided in the inert gas supply pipe, and the heated inert gas is replaced.

【0013】また、不活性ガスの供給配管に設けた加熱
装置により温度設定器で設定された温度に不活性ガスを
加熱し、設定された温度の不活性ガスにより置換が実施
される。
Further, the inert gas is heated to the temperature set by the temperature setter by the heating device provided in the inert gas supply pipe, and the replacement is carried out by the inert gas at the set temperature.

【0014】[0014]

【実施例】実施例1.以下、この発明の実施例1を図1
に基づいて説明する。図において、1〜8は上述した従
来装置の構成と同様である。9は供給配管4に配設され
た切り換えバルブであり、通常は酸化剤ガスが供給され
不活性ガスの供給は停止されるようになっている。10
はこの切り換えバルブ9に接続された不活性ガス供給
管、11はこの不活性ガス供給管10に配設され、不活
性ガス供給管10内を流れる不活性ガスである窒素ガス
を加熱し昇温する加熱装置である。
EXAMPLES Example 1. Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
It will be explained based on. In the figure, 1 to 8 are the same as the configuration of the conventional device described above. Reference numeral 9 is a switching valve arranged in the supply pipe 4, and normally the oxidant gas is supplied and the supply of the inert gas is stopped. 10
Is an inert gas supply pipe connected to the switching valve 9, 11 is arranged in the inert gas supply pipe 10, and heats nitrogen gas which is an inert gas flowing in the inert gas supply pipe 10 to raise its temperature. It is a heating device.

【0015】次に動作について説明する。燃料電池の運
転中は、切り換えバルブ9により供給配管4から酸化剤
ガス、例えば約200度程度の空気が酸化剤ガス供給ヘ
ッダ2を介して電池本体1の各電極に供給されると同時
に、図示しない供給配管から燃料ガス、例えば水素が電
池本体1に同様に供給され、電機化学的な反応により発
電する。使用後の空気は酸化剤ガス排気ヘッダ3で集合
され排気配管5から排気される。
Next, the operation will be described. During operation of the fuel cell, an oxidant gas, for example, air at about 200 degrees is supplied from the supply pipe 4 to each electrode of the cell body 1 via the oxidant gas supply header 2 by the switching valve 9 and, at the same time, shown in the figure. Similarly, fuel gas, for example, hydrogen is supplied to the battery main body 1 from the supply pipe, and electric power is generated by an electrochemical reaction. The used air is collected by the oxidant gas exhaust header 3 and exhausted from the exhaust pipe 5.

【0016】一方、燃料電池の停止時には、図示しない
負荷を遮断し、出力を図示しない放電抵抗に切り替える
と同時に、切り換えバルブ9により供給配管4からの空
気の供給を停止し、加熱装置11により加熱され昇温さ
れた窒素ガスを不活性ガス供給管10、切り換えバルブ
9を通して供給配管4から酸化剤ガス供給ヘッダ2、電
池本体1、酸化剤ガス排気ヘッダ3に供給し、内部の空
気を窒素ガスに置換する。この場合、供給する窒素ガス
の温度は加熱装置11により空気と同じ200度程度に
加熱して昇温しておく。なお、電極の電圧は一時的に上
昇するが、残留空気の減少とともに低下する。
On the other hand, when the fuel cell is stopped, the load (not shown) is cut off, and the output is switched to the discharge resistance (not shown). At the same time, the supply of air from the supply pipe 4 is stopped by the switching valve 9 and the heating device 11 heats it. The heated and heated nitrogen gas is supplied from the supply pipe 4 through the inert gas supply pipe 10 and the switching valve 9 to the oxidant gas supply header 2, the battery main body 1, and the oxidant gas exhaust header 3, and the internal air is supplied to the nitrogen gas. Replace with. In this case, the temperature of the nitrogen gas to be supplied is heated to about 200 degrees, which is the same as that of air, by the heating device 11, and is raised. It should be noted that the voltage of the electrode rises temporarily, but drops as the residual air decreases.

【0017】また、窒素ガスの温度は空気と同程度であ
るため、密度も同程度となる。したがって、窒素ガスの
流れは運転中と同様に、各電極に一様に流れ、残留空気
は迅速に窒素ガスに置換され、各電極の電圧も一様に低
下する。その結果、酸化剤側の電極に水素が発生しない
ので、酸化剤ガス排気ヘッダ3より下流での排気ガス中
へ可燃性の水素が混入することがなく、水素発生による
爆発の危険性も解消される。また、迅速に置換するでき
るので少量の窒素ガスでよくなり、小型の窒素ガス貯蔵
タンクでよくなる。
Further, since the temperature of nitrogen gas is about the same as that of air, the density is also about the same. Therefore, the flow of the nitrogen gas flows uniformly to each electrode as in the operation, the residual air is quickly replaced with the nitrogen gas, and the voltage of each electrode also uniformly decreases. As a result, hydrogen is not generated in the electrode on the oxidant side, so flammable hydrogen is not mixed in the exhaust gas downstream from the oxidant gas exhaust header 3, and the risk of explosion due to hydrogen generation is eliminated. It Further, since the gas can be replaced quickly, a small amount of nitrogen gas is sufficient, and a small nitrogen gas storage tank is sufficient.

【0018】実施例2.上述した実施例1では、不活性
ガスを加熱装置11により200度程度に加熱して昇温
するようにしているが、実施例2においては、加熱装置
11の加熱温度を設定する温度設定器12を設け、電池
本体1内部の空気の温度に応じて、不活性ガスがその空
気の温度と同程度となるように加熱装置11の加熱温度
をコントロールすることにより、電池本体1内部の空気
の温度が変化しても、不活性ガスがその空気の温度と同
程度となるように追従して調整でき、上述した実施例1
よりもさらに効果の高い置換動作を実現することができ
る。
Example 2. In the first embodiment described above, the inert gas is heated to about 200 degrees by the heating device 11 to raise the temperature, but in the second embodiment, the temperature setter 12 that sets the heating temperature of the heating device 11. The temperature of the air inside the battery body 1 is controlled by controlling the heating temperature of the heating device 11 according to the temperature of the air inside the battery body 1 so that the inert gas has the same temperature as the temperature of the air. Can be tracked and adjusted so that the temperature of the inert gas becomes almost the same as the temperature of the air even if the value changes.
It is possible to realize a replacement operation that is even more effective than that.

【0019】[0019]

【発明の効果】この発明は以上説明したとおり、不活性
ガスの供給配管に設けた加熱装置により不活性ガスを加
熱し、昇温された不活性ガスにより置換を実施するよう
にしたことにより、不活性ガスによる置換を迅速に実施
できる燃料電池を得ることができる。
As described above, according to the present invention, the inert gas is heated by the heating device provided in the inert gas supply pipe, and the heated inert gas is used for replacement. It is possible to obtain a fuel cell that can be rapidly replaced with an inert gas.

【0020】また、不活性ガスの供給配管に設けた加熱
装置により温度設定器で設定された温度に不活性ガスを
加熱し、設定された温度の不活性ガスにより置換を実施
するようにしたことにより、不活性ガスによる置換を迅
速に実施できると共に酸化剤ガスの温度に応じた温度に
不活性ガスを加熱制御できる燃料電池を得ることができ
る。
Further, the inert gas is heated to the temperature set by the temperature setter by the heating device provided in the inert gas supply pipe, and the replacement is carried out by the inert gas at the set temperature. As a result, it is possible to obtain a fuel cell in which replacement with an inert gas can be carried out rapidly and the inert gas can be heated and controlled to a temperature according to the temperature of the oxidant gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す縦断面図である。FIG. 1 is a vertical sectional view showing a first embodiment of the present invention.

【図2】この発明の実施例2を示す縦断面図である。FIG. 2 is a vertical sectional view showing a second embodiment of the present invention.

【図3】従来の燃料電池を示す縦断面図である。FIG. 3 is a vertical sectional view showing a conventional fuel cell.

【符号の説明】[Explanation of symbols]

2 酸化剤ガス供給ヘッダ 3 酸化剤ガス排気ヘッダ 4 供給配管 10 不活性ガス供給管 11 加熱装置 12 温度設定器 2 Oxidant gas supply header 3 Oxidant gas exhaust header 4 Supply pipe 10 Inert gas supply pipe 11 Heating device 12 Temperature setting device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の単電池を積層し、これら複数の単
電池に共通のガス供給ヘッダおよびガス排気ヘッダで酸
化剤ガスおよび燃料ガスの給排を行うと共にプラント停
止時等に不活性ガスで酸化剤ガスを置換する燃料電池に
おいて、上記不活性ガスの供給管に加熱装置を設けたこ
とを特徴とする燃料電池。
1. A plurality of unit cells are stacked, and an oxidant gas and a fuel gas are supplied and discharged by a gas supply header and a gas exhaust header common to the plurality of unit cells, and an inert gas is used when the plant is stopped. A fuel cell in which an oxidizing gas is replaced, wherein a heating device is provided in a supply pipe for the inert gas.
【請求項2】 複数の単電池を積層し、これら複数の単
電池に共通のガス供給ヘッダおよびガス排気ヘッダで酸
化剤ガスおよび燃料ガスの給排を行うと共にプラント停
止時等に不活性ガスで酸化剤ガスを置換する燃料電池に
おいて、上記不活性ガスの供給管に設けられた加熱装置
と、上記加熱装置に設けられた温度設定器とを備えたこ
とを特徴とする燃料電池。
2. A plurality of unit cells are stacked, and an oxidant gas and a fuel gas are supplied and discharged by a gas supply header and a gas exhaust header common to the plurality of unit cells, and an inert gas is used when the plant is stopped. A fuel cell for replacing an oxidant gas, comprising: a heating device provided in the inert gas supply pipe; and a temperature setter provided in the heating device.
JP4007681A 1992-01-20 1992-01-20 Fuel cell Pending JPH05198308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4007681A JPH05198308A (en) 1992-01-20 1992-01-20 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4007681A JPH05198308A (en) 1992-01-20 1992-01-20 Fuel cell

Publications (1)

Publication Number Publication Date
JPH05198308A true JPH05198308A (en) 1993-08-06

Family

ID=11672538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4007681A Pending JPH05198308A (en) 1992-01-20 1992-01-20 Fuel cell

Country Status (1)

Country Link
JP (1) JPH05198308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691505B2 (en) 2004-11-30 2010-04-06 Sanyo Electric Co., Ltd. Fuel cell system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254677A (en) * 1987-04-10 1988-10-21 Toshiba Corp Fuel cell power generating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254677A (en) * 1987-04-10 1988-10-21 Toshiba Corp Fuel cell power generating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691505B2 (en) 2004-11-30 2010-04-06 Sanyo Electric Co., Ltd. Fuel cell system
US8158287B2 (en) 2004-11-30 2012-04-17 Sanyo Electric Co., Ltd. Fuel cell

Similar Documents

Publication Publication Date Title
JP2924009B2 (en) How to stop fuel cell power generation
JPS6010425B2 (en) How to reduce the output power of a fuel cell
EP1187242B1 (en) Fuel cell system and method for operating the same
JPH025366A (en) Fuel cell and its operating method
JPH09259913A (en) Fuel battery power generator and operation method thereof
JP2005528765A (en) Recovery of fuel cell performance due to periodic oxidant depletion.
JPH1167254A (en) Fuel cell power generating plant and its start/stop operation method
WO2002047190A8 (en) Polyelectrolyte type fuel cell, and operation method therefor
JP2003109634A (en) Fuel cell system and operation method of fuel cell
JPH05251102A (en) Phospholic acid type fuel cell power generating plant
KR20210143836A (en) Reduced fuel cell startup/shutdown degradation by oxygen adsorption/absorption media removal
JPH07183039A (en) Stopping method for power generation at fuel cell plant
US9917314B2 (en) Mitigating electrode erosion in high temperature PEM fuel cell
JPH05198308A (en) Fuel cell
JPH05225995A (en) Fuel cell
JPH0945351A (en) Fuel cell power generation device and its stopping method
JPH0654674B2 (en) Fuel cell power generator
JPH04262371A (en) Operating method for fuel cell with phosphoric acid
JPH08190929A (en) Fuel cell power generating plant
JPH07302603A (en) Fuel cell power generating system and its operating method
JP2006179389A (en) Fuel cell power generating device, stopping method and stopped-state keeping method of the same
JPH03245463A (en) Fuel cell
JPS58155664A (en) Molten-salt type fuel cell
JPH02273467A (en) Starting method for fuel cell
JPH07249423A (en) Fuel cell power generating device