JPH03245463A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPH03245463A JPH03245463A JP2041963A JP4196390A JPH03245463A JP H03245463 A JPH03245463 A JP H03245463A JP 2041963 A JP2041963 A JP 2041963A JP 4196390 A JP4196390 A JP 4196390A JP H03245463 A JPH03245463 A JP H03245463A
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- electrode
- fuel
- supplied
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 29
- 239000003054 catalyst Substances 0.000 claims abstract description 26
- 239000007789 gas Substances 0.000 claims abstract description 13
- 239000002737 fuel gas Substances 0.000 claims abstract description 7
- 238000003487 electrochemical reaction Methods 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims abstract description 6
- 230000005611 electricity Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 9
- 239000001301 oxygen Substances 0.000 abstract description 9
- 229910052760 oxygen Inorganic materials 0.000 abstract description 9
- 239000001257 hydrogen Substances 0.000 abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 7
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 7
- 239000012495 reaction gas Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010411 electrocatalyst Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、燃料ガスを燃料電極に、空気を空気電極に
供給し、これらの反応ガスがマトリックスを介して電気
化学反応して発電する燃料電池、特にその電極における
触媒の担持方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a fuel that generates electricity by supplying fuel gas to a fuel electrode and air to an air electrode, and causing these reaction gases to undergo an electrochemical reaction via a matrix. The present invention relates to a method for supporting a catalyst on a battery, particularly on an electrode thereof.
燃料電池の一般的な電池積層体(セルスタックとも言う
)構造を第2図に示す。図において1は単電池(単セル
ともいう)であり、これは電解質を保持したマトリック
ス層11、燃料電極触媒層12、空気電極触媒層重3、
燃料電極触媒層4、空気電極基材15、およびセパレー
タ16より成る。かかる単セル1の多数個を積層してセ
ルスタック2を構成している。さらに前記のセルスタッ
ク2には数セル置きに冷却体3が介装されている。この
冷却体3は各々の単セルで電気化学反応によって発電す
るとき発生する反応熱を冷却するため、冷却基板4の層
内に金属製の冷却バイブ5を埋設して配管されている。FIG. 2 shows a general cell stack (also referred to as a cell stack) structure of a fuel cell. In the figure, 1 is a single cell (also called a single cell), which includes a matrix layer 11 holding an electrolyte, a fuel electrode catalyst layer 12, an air electrode catalyst layer 3,
It consists of a fuel electrode catalyst layer 4, an air electrode base material 15, and a separator 16. A cell stack 2 is constructed by stacking a large number of such single cells 1. Furthermore, the cell stack 2 is provided with cooling bodies 3 every few cells. The cooling body 3 has metal cooling vibes 5 buried in the layer of the cooling substrate 4 and is piped in order to cool the reaction heat generated when power is generated by an electrochemical reaction in each single cell.
また各冷却バイブ5はヘッダバイブロに一括接続された
上で外部の図示されていない冷媒供給ラインに接続され
ている。Further, each cooling vibrator 5 is connected to the header vibrator and then to an external refrigerant supply line (not shown).
第3図は第2図に示した単セルの断面図を示す。FIG. 3 shows a cross-sectional view of the single cell shown in FIG. 2.
単セルは燃料ガスを通流する燃料電極基材14と、触媒
を担持した燃料電極触媒層12とよりなる燃料電極と、
空気電極基材15と空気電極触媒層13とよりなる空気
電極と、これらの画電極の間に配置されたマトリックス
層とからなる。これらの電極にはそれぞれ反応ガスであ
る燃料ガスと空気とが別々に供給されている。A single cell includes a fuel electrode including a fuel electrode base material 14 through which fuel gas flows, and a fuel electrode catalyst layer 12 supporting a catalyst;
It consists of an air electrode made up of an air electrode base material 15 and an air electrode catalyst layer 13, and a matrix layer arranged between these picture electrodes. Fuel gas and air, which are reaction gases, are separately supplied to these electrodes.
りん酸型燃料電池においては、燃料ガスには反応成分の
水素以外に二酸化炭素を含み、また、空気には反応成分
である酸素以外に窒素を含んでいる。それぞれの電極に
供給された反応ガスは、水素と酸素のみが消費されるた
め電極基板のガス入口から出口に向けて反応ガスが通流
するうちに、水素と酸素は反応で消費され徐々にその成
分濃度が減少し、逆に二酸化炭素と窒素とがその成分濃
度を増加する。In a phosphoric acid fuel cell, fuel gas contains carbon dioxide in addition to hydrogen, which is a reactive component, and air contains nitrogen in addition to oxygen, which is a reactive component. Only hydrogen and oxygen are consumed in the reaction gas supplied to each electrode, so as the reaction gas flows from the gas inlet to the outlet of the electrode substrate, hydrogen and oxygen are consumed by the reaction and gradually disappear. The component concentration decreases, and conversely, carbon dioxide and nitrogen increase their component concentrations.
一方、反応ガス中の水素及び酸素の濃度と燃料電池出力
電圧の関係は第4図のグラフに示すごとく、濃度が減少
するにしたがって出力電圧が低下するという関係にある
。したがって単セル内では反応ガスの入口部では出力電
圧が高く、水素や酸素の濃度の低い反応ガスの出口部に
向かって徐々に出力電圧が゛低下して、同じ単セル内で
も電極平面内の場所によって電位差が生じている。従来
、電極の燃料電極触媒層12及び空気電極触媒層13で
は、この層の単位平方センチメートル当たり等しいミリ
グラムの触媒が均等に担持されている。また第5図のグ
ラフに示すように、燃料電池電極では、単位面積当たり
の触媒担持量を増加させると、その電池出力電圧が上昇
する特性がある。On the other hand, as shown in the graph of FIG. 4, the relationship between the concentration of hydrogen and oxygen in the reaction gas and the output voltage of the fuel cell is such that as the concentration decreases, the output voltage decreases. Therefore, in a single cell, the output voltage is high at the inlet of the reactant gas, and gradually decreases toward the outlet of the reactant gas, where the concentration of hydrogen and oxygen is low. Potential differences occur depending on location. Conventionally, the fuel electrocatalyst layer 12 and the air electrocatalyst layer 13 of the electrode uniformly support an equal amount of milligrams of catalyst per square centimeter of the layer. Further, as shown in the graph of FIG. 5, the fuel cell electrode has a characteristic that when the amount of catalyst supported per unit area is increased, the cell output voltage increases.
前述したように触媒を均等に担持させた電極を備えた燃
料電池では、単セル内で電位差が生じるので、各々の単
セルでは、この電位差によって電極内を循環して均等化
電流が生じる。したがってこの電流によって発生する熱
による損失が発電効率を低下させ、また局部的に発生す
る発熱で単セルの局部的な劣化が進行するという問題が
あった。As described above, in a fuel cell equipped with electrodes on which a catalyst is evenly supported, a potential difference occurs within the single cell, and in each single cell, this potential difference causes an equalization current to circulate within the electrode. Therefore, there is a problem in that loss due to heat generated by this current reduces power generation efficiency, and localized heat generation progresses local deterioration of the single cell.
この発明はこの点に鑑みなされたもので、単セル内の電
位差をなくし、発電効率の向上と寿命の長い単セルをつ
くれる燃料電池、特にその電極における触媒担持方法を
提供することをその目的とする。This invention was made in view of this point, and its purpose is to provide a fuel cell that can eliminate the potential difference within a single cell, improve power generation efficiency, and create a single cell with a long life, and in particular, to provide a method for supporting a catalyst on its electrode. do.
上記tJ1.Bを解決するために、この発明によれば、
燃料ガスを燃料電極に、空気を空気電極に供給し、これ
らの反応ガスがマトリックスを介して電気化学反応して
発電する燃料電池において、反応ガスが供給される電極
の入口側から出口側に向かって電極が担持する触媒の量
を増加させるものとする。Above tJ1. In order to solve B, according to this invention,
In a fuel cell where fuel gas is supplied to a fuel electrode and air is supplied to an air electrode, these reactive gases undergo an electrochemical reaction via a matrix to generate electricity. The amount of catalyst supported by the electrodes shall be increased.
C作 用〕
この発明によると、燃料電池の電極が担持する触媒の量
を反応ガスが供給される入口側から出口側に向かって増
加させたので、反応ガス中の電気化学反応に関与する水
素や酸素が反応により消費されその濃度が電極の入口側
から出口側に向かって減少して出力電圧が低下しても、
一方電極の触媒量は逆に入口側から出口側に向かって増
加しているので、これによる出力電圧は増加し、全体と
して発生する電圧が電極全体にわたって均一となる。C Effect] According to this invention, since the amount of catalyst supported by the electrode of the fuel cell is increased from the inlet side where the reaction gas is supplied to the outlet side, hydrogen participating in the electrochemical reaction in the reaction gas is Even if oxygen and oxygen are consumed by the reaction and their concentration decreases from the inlet side to the outlet side of the electrode and the output voltage decreases,
On the other hand, since the amount of catalyst in the electrode increases from the inlet side to the outlet side, the resulting output voltage increases, and the voltage generated as a whole becomes uniform over the entire electrode.
(実施例〕
以下この発明を実施例に基づいて説明する。第1図はこ
の発明による燃料電池の電極における触媒担持量をグラ
フにて示したもので、電極触媒層において反応ガス入口
から出口に近づくにしたがってその距離に応じて、単位
面積当たりの触媒担持量を増加させている。(Example) The present invention will be described below based on Examples. Figure 1 is a graph showing the amount of catalyst supported on the electrode of a fuel cell according to the present invention. As the distance approaches, the amount of catalyst supported per unit area is increased.
この発明は前述のように電極触媒層の触媒の担持方法を
反応ガスの通流方向にそって触媒を徐々に増やすことに
よって、電極のすべての箇所にて等しい電圧の発電がで
きて電位差を生じることがないので、燃料電池の電極内
に均等化電流が流れることがない、したがってこの電流
によって発生する熱損失による発電効率の低下を防げる
し、局部発熱による局部的な劣化の進行をなくして長寿
命の燃料電池を提供することができる。In this invention, as mentioned above, by gradually increasing the number of catalysts in the electrode catalyst layer along the flow direction of the reaction gas, the same voltage can be generated at all locations on the electrode, creating a potential difference. Since no equalizing current flows in the electrodes of the fuel cell, it is possible to prevent a decrease in power generation efficiency due to heat loss caused by this current, and to eliminate the progress of local deterioration due to local heat generation. It can provide a long life fuel cell.
第1図はこの発明になる燃料電池の電極における触媒担
持方法を示すグラフ、第2図は電池積層体の斜視図、第
3図は単電池の断面図、第4図は電極を通過する反応ガ
ス中の水素及び酸素の濃度と電池出力電圧の関係グラフ
、第5図は電極における単位面積当たりの触媒担持量と
電池出力電圧の関係を示すグラフである。
11:マ) IJワックス層12:燃料電極触媒層、1
3:空気電極触媒層。
1WtY膚、m&777λ[1711’JNlil第1
図
第2図
第3図
第4図Fig. 1 is a graph showing a method of supporting a catalyst on the electrode of a fuel cell according to the present invention, Fig. 2 is a perspective view of a cell stack, Fig. 3 is a cross-sectional view of a unit cell, and Fig. 4 is a graph showing the reaction passing through the electrode. FIG. 5 is a graph showing the relationship between the concentration of hydrogen and oxygen in the gas and the battery output voltage. FIG. 5 is a graph showing the relationship between the amount of catalyst supported per unit area on the electrode and the battery output voltage. 11: M) IJ wax layer 12: Fuel electrode catalyst layer, 1
3: Air electrode catalyst layer. 1WtY skin, m & 777λ [1711'JNlil 1st
Figure 2 Figure 3 Figure 4
Claims (1)
これらの反応ガスがマトリックスを介して電気化学反応
して発電する燃料電池において、反応ガスが供給される
電極の入口側から出口側に向かって電極が担持する触媒
の量を増加させたことを特徴とする燃料電池。1) Supplying fuel gas to the fuel electrode and air to the air electrode,
In a fuel cell that generates electricity through an electrochemical reaction between these reactive gases via a matrix, the fuel cell is characterized by increasing the amount of catalyst supported by the electrode from the inlet side of the electrode to which the reactive gas is supplied to the outlet side. fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2041963A JPH03245463A (en) | 1990-02-22 | 1990-02-22 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2041963A JPH03245463A (en) | 1990-02-22 | 1990-02-22 | Fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03245463A true JPH03245463A (en) | 1991-11-01 |
Family
ID=12622844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2041963A Pending JPH03245463A (en) | 1990-02-22 | 1990-02-22 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03245463A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0654837A1 (en) * | 1993-11-23 | 1995-05-24 | Johnson Matthey Public Limited Company | Manufacture of electrodes |
WO2001048854A3 (en) * | 1999-12-23 | 2002-03-28 | Siemens Ag | Membrane electrode assembly for a fuel cell and a method for producing the same |
EP1296399A1 (en) * | 2001-09-19 | 2003-03-26 | Asahi Glass Company Ltd. | Process for producing a membrane-electrode assembly for solid polymer electrolyte fuel cells |
US7803325B2 (en) * | 1999-08-17 | 2010-09-28 | Battelle Memorial Institute | Integrated reactors, methods of making same, and methods of conducting simultaneous exothermic and endothermic reactions |
-
1990
- 1990-02-22 JP JP2041963A patent/JPH03245463A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0654837A1 (en) * | 1993-11-23 | 1995-05-24 | Johnson Matthey Public Limited Company | Manufacture of electrodes |
US5702839A (en) * | 1993-11-23 | 1997-12-30 | Johnson Matthey Public Limited Company | Manufacture of electrodes |
US5871860A (en) * | 1993-11-23 | 1999-02-16 | Johnson Matthey Public Limited Company | Manufacture of electrodes |
EP1096586A2 (en) * | 1993-11-23 | 2001-05-02 | Johnson Matthey Public Limited Company | Manufacture of electrodes |
EP1096586A3 (en) * | 1993-11-23 | 2007-04-11 | Johnson Matthey Public Limited Company | Manufacture of electrodes |
US7803325B2 (en) * | 1999-08-17 | 2010-09-28 | Battelle Memorial Institute | Integrated reactors, methods of making same, and methods of conducting simultaneous exothermic and endothermic reactions |
WO2001048854A3 (en) * | 1999-12-23 | 2002-03-28 | Siemens Ag | Membrane electrode assembly for a fuel cell and a method for producing the same |
EP1296399A1 (en) * | 2001-09-19 | 2003-03-26 | Asahi Glass Company Ltd. | Process for producing a membrane-electrode assembly for solid polymer electrolyte fuel cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6348280B1 (en) | Fuel cell | |
CN100377402C (en) | Stack having improved cooling structure and fuel cell system having the same | |
JP2000251913A (en) | Operating method for layered fuel cell, layered fuel cell and layered fuel cell system | |
US11682782B2 (en) | Fuel cell having a modular base active area | |
JPH0696782A (en) | Internal reforming type fuel cell device and its operating method | |
JP2003323905A (en) | Solid polymer fuel cell | |
US20040209140A1 (en) | Fuel cell stack | |
JP2774496B2 (en) | Fuel cell voltage distribution control method | |
US7572538B2 (en) | Fuel cell | |
JPH08167416A (en) | Cell for solid high polymer electrolyte fuel cell | |
JPH01281682A (en) | Fuel cell | |
JPH03245463A (en) | Fuel cell | |
JPS63119166A (en) | Fuel battery | |
US20040038103A1 (en) | Solid polymer electrolyte fuel cell assembly | |
JP3575650B2 (en) | Molten carbonate fuel cell | |
JPS63236262A (en) | Fuel cell | |
JPH0650639B2 (en) | Fuel cell | |
JPS6273568A (en) | Fuel cell | |
JPS63155561A (en) | Fuel cell | |
JP2001202974A (en) | Solid polymer fuel cell stack | |
US7029776B2 (en) | Method for improving a heat and mass transport in a diffusion layer of a fuel cell, and corresponding fuel cell | |
JPS5960973A (en) | Phosphoric acid electrolyte fuel cell | |
JPH0494062A (en) | Fuel cell power generation system | |
JPH0451464A (en) | Fuel cell power generation system | |
JPH01197969A (en) | Cell structure of molten carbonate fuel cell |