JPH03245463A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH03245463A
JPH03245463A JP2041963A JP4196390A JPH03245463A JP H03245463 A JPH03245463 A JP H03245463A JP 2041963 A JP2041963 A JP 2041963A JP 4196390 A JP4196390 A JP 4196390A JP H03245463 A JPH03245463 A JP H03245463A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
fuel
supplied
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2041963A
Other languages
Japanese (ja)
Inventor
Noriyuki Nakajima
中島 憲之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2041963A priority Critical patent/JPH03245463A/en
Publication of JPH03245463A publication Critical patent/JPH03245463A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To generate a power of equal voltage on every position all over electrodes by gradually increasing the amount of catalyst carried on electrodes from the intake side toward the outlet side of the electrodes to which reaction gases are supplied. CONSTITUTION:A fuel gas is supplied to a fuel electrode 14, and air is supplied to an air electrode 15 separately to each other, and these reaction gases electrochemically react through a matrix layer 11 to generate a power. In a fuel cell, the amount of catalyst carried on electrodes is increased gradually from the intake side toward the outlet side of the electrodes to which the reaction gases are supplied. Thereby even when hydrogen and oxygen contributing to the electrochemical reaction contained in the reaction gases are consumed with the reaction, so as that the concentration of them is decreased from the intake side toward the outlet side of the electrodes to reduce the output voltage, on the other hand, the amount of catalyst on the electrodes is inversely increased from the intake side toward the outlet side of the electrodes so as to elevate the output voltage, hence as a whole, the generated voltage can be made uniform all over the electrodes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料ガスを燃料電極に、空気を空気電極に
供給し、これらの反応ガスがマトリックスを介して電気
化学反応して発電する燃料電池、特にその電極における
触媒の担持方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a fuel that generates electricity by supplying fuel gas to a fuel electrode and air to an air electrode, and causing these reaction gases to undergo an electrochemical reaction via a matrix. The present invention relates to a method for supporting a catalyst on a battery, particularly on an electrode thereof.

〔従来の技術〕[Conventional technology]

燃料電池の一般的な電池積層体(セルスタックとも言う
)構造を第2図に示す。図において1は単電池(単セル
ともいう)であり、これは電解質を保持したマトリック
ス層11、燃料電極触媒層12、空気電極触媒層重3、
燃料電極触媒層4、空気電極基材15、およびセパレー
タ16より成る。かかる単セル1の多数個を積層してセ
ルスタック2を構成している。さらに前記のセルスタッ
ク2には数セル置きに冷却体3が介装されている。この
冷却体3は各々の単セルで電気化学反応によって発電す
るとき発生する反応熱を冷却するため、冷却基板4の層
内に金属製の冷却バイブ5を埋設して配管されている。
FIG. 2 shows a general cell stack (also referred to as a cell stack) structure of a fuel cell. In the figure, 1 is a single cell (also called a single cell), which includes a matrix layer 11 holding an electrolyte, a fuel electrode catalyst layer 12, an air electrode catalyst layer 3,
It consists of a fuel electrode catalyst layer 4, an air electrode base material 15, and a separator 16. A cell stack 2 is constructed by stacking a large number of such single cells 1. Furthermore, the cell stack 2 is provided with cooling bodies 3 every few cells. The cooling body 3 has metal cooling vibes 5 buried in the layer of the cooling substrate 4 and is piped in order to cool the reaction heat generated when power is generated by an electrochemical reaction in each single cell.

また各冷却バイブ5はヘッダバイブロに一括接続された
上で外部の図示されていない冷媒供給ラインに接続され
ている。
Further, each cooling vibrator 5 is connected to the header vibrator and then to an external refrigerant supply line (not shown).

第3図は第2図に示した単セルの断面図を示す。FIG. 3 shows a cross-sectional view of the single cell shown in FIG. 2.

単セルは燃料ガスを通流する燃料電極基材14と、触媒
を担持した燃料電極触媒層12とよりなる燃料電極と、
空気電極基材15と空気電極触媒層13とよりなる空気
電極と、これらの画電極の間に配置されたマトリックス
層とからなる。これらの電極にはそれぞれ反応ガスであ
る燃料ガスと空気とが別々に供給されている。
A single cell includes a fuel electrode including a fuel electrode base material 14 through which fuel gas flows, and a fuel electrode catalyst layer 12 supporting a catalyst;
It consists of an air electrode made up of an air electrode base material 15 and an air electrode catalyst layer 13, and a matrix layer arranged between these picture electrodes. Fuel gas and air, which are reaction gases, are separately supplied to these electrodes.

りん酸型燃料電池においては、燃料ガスには反応成分の
水素以外に二酸化炭素を含み、また、空気には反応成分
である酸素以外に窒素を含んでいる。それぞれの電極に
供給された反応ガスは、水素と酸素のみが消費されるた
め電極基板のガス入口から出口に向けて反応ガスが通流
するうちに、水素と酸素は反応で消費され徐々にその成
分濃度が減少し、逆に二酸化炭素と窒素とがその成分濃
度を増加する。
In a phosphoric acid fuel cell, fuel gas contains carbon dioxide in addition to hydrogen, which is a reactive component, and air contains nitrogen in addition to oxygen, which is a reactive component. Only hydrogen and oxygen are consumed in the reaction gas supplied to each electrode, so as the reaction gas flows from the gas inlet to the outlet of the electrode substrate, hydrogen and oxygen are consumed by the reaction and gradually disappear. The component concentration decreases, and conversely, carbon dioxide and nitrogen increase their component concentrations.

一方、反応ガス中の水素及び酸素の濃度と燃料電池出力
電圧の関係は第4図のグラフに示すごとく、濃度が減少
するにしたがって出力電圧が低下するという関係にある
。したがって単セル内では反応ガスの入口部では出力電
圧が高く、水素や酸素の濃度の低い反応ガスの出口部に
向かって徐々に出力電圧が゛低下して、同じ単セル内で
も電極平面内の場所によって電位差が生じている。従来
、電極の燃料電極触媒層12及び空気電極触媒層13で
は、この層の単位平方センチメートル当たり等しいミリ
グラムの触媒が均等に担持されている。また第5図のグ
ラフに示すように、燃料電池電極では、単位面積当たり
の触媒担持量を増加させると、その電池出力電圧が上昇
する特性がある。
On the other hand, as shown in the graph of FIG. 4, the relationship between the concentration of hydrogen and oxygen in the reaction gas and the output voltage of the fuel cell is such that as the concentration decreases, the output voltage decreases. Therefore, in a single cell, the output voltage is high at the inlet of the reactant gas, and gradually decreases toward the outlet of the reactant gas, where the concentration of hydrogen and oxygen is low. Potential differences occur depending on location. Conventionally, the fuel electrocatalyst layer 12 and the air electrocatalyst layer 13 of the electrode uniformly support an equal amount of milligrams of catalyst per square centimeter of the layer. Further, as shown in the graph of FIG. 5, the fuel cell electrode has a characteristic that when the amount of catalyst supported per unit area is increased, the cell output voltage increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述したように触媒を均等に担持させた電極を備えた燃
料電池では、単セル内で電位差が生じるので、各々の単
セルでは、この電位差によって電極内を循環して均等化
電流が生じる。したがってこの電流によって発生する熱
による損失が発電効率を低下させ、また局部的に発生す
る発熱で単セルの局部的な劣化が進行するという問題が
あった。
As described above, in a fuel cell equipped with electrodes on which a catalyst is evenly supported, a potential difference occurs within the single cell, and in each single cell, this potential difference causes an equalization current to circulate within the electrode. Therefore, there is a problem in that loss due to heat generated by this current reduces power generation efficiency, and localized heat generation progresses local deterioration of the single cell.

この発明はこの点に鑑みなされたもので、単セル内の電
位差をなくし、発電効率の向上と寿命の長い単セルをつ
くれる燃料電池、特にその電極における触媒担持方法を
提供することをその目的とする。
This invention was made in view of this point, and its purpose is to provide a fuel cell that can eliminate the potential difference within a single cell, improve power generation efficiency, and create a single cell with a long life, and in particular, to provide a method for supporting a catalyst on its electrode. do.

〔課題を解決するための手段〕[Means to solve the problem]

上記tJ1.Bを解決するために、この発明によれば、
燃料ガスを燃料電極に、空気を空気電極に供給し、これ
らの反応ガスがマトリックスを介して電気化学反応して
発電する燃料電池において、反応ガスが供給される電極
の入口側から出口側に向かって電極が担持する触媒の量
を増加させるものとする。
Above tJ1. In order to solve B, according to this invention,
In a fuel cell where fuel gas is supplied to a fuel electrode and air is supplied to an air electrode, these reactive gases undergo an electrochemical reaction via a matrix to generate electricity. The amount of catalyst supported by the electrodes shall be increased.

C作 用〕 この発明によると、燃料電池の電極が担持する触媒の量
を反応ガスが供給される入口側から出口側に向かって増
加させたので、反応ガス中の電気化学反応に関与する水
素や酸素が反応により消費されその濃度が電極の入口側
から出口側に向かって減少して出力電圧が低下しても、
一方電極の触媒量は逆に入口側から出口側に向かって増
加しているので、これによる出力電圧は増加し、全体と
して発生する電圧が電極全体にわたって均一となる。
C Effect] According to this invention, since the amount of catalyst supported by the electrode of the fuel cell is increased from the inlet side where the reaction gas is supplied to the outlet side, hydrogen participating in the electrochemical reaction in the reaction gas is Even if oxygen and oxygen are consumed by the reaction and their concentration decreases from the inlet side to the outlet side of the electrode and the output voltage decreases,
On the other hand, since the amount of catalyst in the electrode increases from the inlet side to the outlet side, the resulting output voltage increases, and the voltage generated as a whole becomes uniform over the entire electrode.

(実施例〕 以下この発明を実施例に基づいて説明する。第1図はこ
の発明による燃料電池の電極における触媒担持量をグラ
フにて示したもので、電極触媒層において反応ガス入口
から出口に近づくにしたがってその距離に応じて、単位
面積当たりの触媒担持量を増加させている。
(Example) The present invention will be described below based on Examples. Figure 1 is a graph showing the amount of catalyst supported on the electrode of a fuel cell according to the present invention. As the distance approaches, the amount of catalyst supported per unit area is increased.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように電極触媒層の触媒の担持方法を
反応ガスの通流方向にそって触媒を徐々に増やすことに
よって、電極のすべての箇所にて等しい電圧の発電がで
きて電位差を生じることがないので、燃料電池の電極内
に均等化電流が流れることがない、したがってこの電流
によって発生する熱損失による発電効率の低下を防げる
し、局部発熱による局部的な劣化の進行をなくして長寿
命の燃料電池を提供することができる。
In this invention, as mentioned above, by gradually increasing the number of catalysts in the electrode catalyst layer along the flow direction of the reaction gas, the same voltage can be generated at all locations on the electrode, creating a potential difference. Since no equalizing current flows in the electrodes of the fuel cell, it is possible to prevent a decrease in power generation efficiency due to heat loss caused by this current, and to eliminate the progress of local deterioration due to local heat generation. It can provide a long life fuel cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明になる燃料電池の電極における触媒担
持方法を示すグラフ、第2図は電池積層体の斜視図、第
3図は単電池の断面図、第4図は電極を通過する反応ガ
ス中の水素及び酸素の濃度と電池出力電圧の関係グラフ
、第5図は電極における単位面積当たりの触媒担持量と
電池出力電圧の関係を示すグラフである。 11:マ) IJワックス層12:燃料電極触媒層、1
3:空気電極触媒層。 1WtY膚、m&777λ[1711’JNlil第1
図 第2図 第3図 第4図
Fig. 1 is a graph showing a method of supporting a catalyst on the electrode of a fuel cell according to the present invention, Fig. 2 is a perspective view of a cell stack, Fig. 3 is a cross-sectional view of a unit cell, and Fig. 4 is a graph showing the reaction passing through the electrode. FIG. 5 is a graph showing the relationship between the concentration of hydrogen and oxygen in the gas and the battery output voltage. FIG. 5 is a graph showing the relationship between the amount of catalyst supported per unit area on the electrode and the battery output voltage. 11: M) IJ wax layer 12: Fuel electrode catalyst layer, 1
3: Air electrode catalyst layer. 1WtY skin, m & 777λ [1711'JNlil 1st
Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)燃料ガスを燃料電極に、空気を空気電極に供給し、
これらの反応ガスがマトリックスを介して電気化学反応
して発電する燃料電池において、反応ガスが供給される
電極の入口側から出口側に向かって電極が担持する触媒
の量を増加させたことを特徴とする燃料電池。
1) Supplying fuel gas to the fuel electrode and air to the air electrode,
In a fuel cell that generates electricity through an electrochemical reaction between these reactive gases via a matrix, the fuel cell is characterized by increasing the amount of catalyst supported by the electrode from the inlet side of the electrode to which the reactive gas is supplied to the outlet side. fuel cell.
JP2041963A 1990-02-22 1990-02-22 Fuel cell Pending JPH03245463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2041963A JPH03245463A (en) 1990-02-22 1990-02-22 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2041963A JPH03245463A (en) 1990-02-22 1990-02-22 Fuel cell

Publications (1)

Publication Number Publication Date
JPH03245463A true JPH03245463A (en) 1991-11-01

Family

ID=12622844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2041963A Pending JPH03245463A (en) 1990-02-22 1990-02-22 Fuel cell

Country Status (1)

Country Link
JP (1) JPH03245463A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654837A1 (en) * 1993-11-23 1995-05-24 Johnson Matthey Public Limited Company Manufacture of electrodes
WO2001048854A3 (en) * 1999-12-23 2002-03-28 Siemens Ag Membrane electrode assembly for a fuel cell and a method for producing the same
EP1296399A1 (en) * 2001-09-19 2003-03-26 Asahi Glass Company Ltd. Process for producing a membrane-electrode assembly for solid polymer electrolyte fuel cells
US7803325B2 (en) * 1999-08-17 2010-09-28 Battelle Memorial Institute Integrated reactors, methods of making same, and methods of conducting simultaneous exothermic and endothermic reactions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654837A1 (en) * 1993-11-23 1995-05-24 Johnson Matthey Public Limited Company Manufacture of electrodes
US5702839A (en) * 1993-11-23 1997-12-30 Johnson Matthey Public Limited Company Manufacture of electrodes
US5871860A (en) * 1993-11-23 1999-02-16 Johnson Matthey Public Limited Company Manufacture of electrodes
EP1096586A2 (en) * 1993-11-23 2001-05-02 Johnson Matthey Public Limited Company Manufacture of electrodes
EP1096586A3 (en) * 1993-11-23 2007-04-11 Johnson Matthey Public Limited Company Manufacture of electrodes
US7803325B2 (en) * 1999-08-17 2010-09-28 Battelle Memorial Institute Integrated reactors, methods of making same, and methods of conducting simultaneous exothermic and endothermic reactions
WO2001048854A3 (en) * 1999-12-23 2002-03-28 Siemens Ag Membrane electrode assembly for a fuel cell and a method for producing the same
EP1296399A1 (en) * 2001-09-19 2003-03-26 Asahi Glass Company Ltd. Process for producing a membrane-electrode assembly for solid polymer electrolyte fuel cells

Similar Documents

Publication Publication Date Title
US6348280B1 (en) Fuel cell
CN100377402C (en) Stack having improved cooling structure and fuel cell system having the same
JP2000251913A (en) Operating method for layered fuel cell, layered fuel cell and layered fuel cell system
US11682782B2 (en) Fuel cell having a modular base active area
JPH0696782A (en) Internal reforming type fuel cell device and its operating method
JP2003323905A (en) Solid polymer fuel cell
US20040209140A1 (en) Fuel cell stack
JP2774496B2 (en) Fuel cell voltage distribution control method
US7572538B2 (en) Fuel cell
JPH08167416A (en) Cell for solid high polymer electrolyte fuel cell
JPH01281682A (en) Fuel cell
JPH03245463A (en) Fuel cell
JPS63119166A (en) Fuel battery
US20040038103A1 (en) Solid polymer electrolyte fuel cell assembly
JP3575650B2 (en) Molten carbonate fuel cell
JPS63236262A (en) Fuel cell
JPH0650639B2 (en) Fuel cell
JPS6273568A (en) Fuel cell
JPS63155561A (en) Fuel cell
JP2001202974A (en) Solid polymer fuel cell stack
US7029776B2 (en) Method for improving a heat and mass transport in a diffusion layer of a fuel cell, and corresponding fuel cell
JPS5960973A (en) Phosphoric acid electrolyte fuel cell
JPH0494062A (en) Fuel cell power generation system
JPH0451464A (en) Fuel cell power generation system
JPH01197969A (en) Cell structure of molten carbonate fuel cell